1
|
Tomuleasa C, Tigu AB, Munteanu R, Moldovan CS, Kegyes D, Onaciu A, Gulei D, Ghiaur G, Einsele H, Croce CM. Therapeutic advances of targeting receptor tyrosine kinases in cancer. Signal Transduct Target Ther 2024; 9:201. [PMID: 39138146 PMCID: PMC11323831 DOI: 10.1038/s41392-024-01899-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/29/2024] [Accepted: 06/14/2024] [Indexed: 08/15/2024] Open
Abstract
Receptor tyrosine kinases (RTKs), a category of transmembrane receptors, have gained significant clinical attention in oncology due to their central role in cancer pathogenesis. Genetic alterations, including mutations, amplifications, and overexpression of certain RTKs, are critical in creating environments conducive to tumor development. Following their discovery, extensive research has revealed how RTK dysregulation contributes to oncogenesis, with many cancer subtypes showing dependency on aberrant RTK signaling for their proliferation, survival and progression. These findings paved the way for targeted therapies that aim to inhibit crucial biological pathways in cancer. As a result, RTKs have emerged as primary targets in anticancer therapeutic development. Over the past two decades, this has led to the synthesis and clinical validation of numerous small molecule tyrosine kinase inhibitors (TKIs), now effectively utilized in treating various cancer types. In this manuscript we aim to provide a comprehensive understanding of the RTKs in the context of cancer. We explored the various alterations and overexpression of specific receptors across different malignancies, with special attention dedicated to the examination of current RTK inhibitors, highlighting their role as potential targeted therapies. By integrating the latest research findings and clinical evidence, we seek to elucidate the pivotal role of RTKs in cancer biology and the therapeutic efficacy of RTK inhibition with promising treatment outcomes.
Collapse
Affiliation(s)
- Ciprian Tomuleasa
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania.
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj Napoca, Romania.
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania.
| | - Adrian-Bogdan Tigu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania
| | - Raluca Munteanu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania
| | - Cristian-Silviu Moldovan
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - David Kegyes
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania
| | - Anca Onaciu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Diana Gulei
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Gabriel Ghiaur
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Department of Leukemia, Sidney Kimmel Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hermann Einsele
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Universitätsklinikum Würzburg, Medizinische Klinik II, Würzburg, Germany
| | - Carlo M Croce
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
2
|
Jackson JC, Sanchez D, Johns AC, Campbell MT, Aydin AM, Gokden N, Maraboyina S, Muesse JL, Ward JF, Pisters LL, Zacharias NM, Guo CC, Tu SM. Germ Cell Tumor of the Testis: Lethal Subtypes of a Curable Cancer. J Clin Med 2024; 13:3436. [PMID: 38929965 PMCID: PMC11205088 DOI: 10.3390/jcm13123436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Germ cell tumor of the testis (GCT) is a curable cancer even when it is widely metastatic; however, outcomes can differ based on tumor histology. Chemo-resistance in certain phenotypes, such as teratoma and yolk sac tumor, contributes to poor clinical outcomes in some patients with GCT. Despite this resistance to S-YSTemic therapy, many of these tumor subtypes remain amenable to surgical resection and possible cure. In this study, we report on a series of seven patients highlighting two chemo-resistant subtypes of nonseminomatous germ cell tumor (NSGCT), sarcomatoid yolk sac tumor (S-YST), and epithelioid trophoblastic tumor (ETT) for which early resection rather than additional salvage chemotherapy or high-dose intense chemotherapy might provide a superior clinical outcome and enhance cure rate.
Collapse
Affiliation(s)
- Jamaal C. Jackson
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (J.C.J.); (D.S.); (J.F.W.); (L.L.P.); (N.M.Z.)
| | - Darren Sanchez
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (J.C.J.); (D.S.); (J.F.W.); (L.L.P.); (N.M.Z.)
| | - Andrew C. Johns
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (A.C.J.); (M.T.C.)
| | - Matthew T. Campbell
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (A.C.J.); (M.T.C.)
| | - Ahmet M. Aydin
- Division of Urology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Neriman Gokden
- Division of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Sanjay Maraboyina
- Division of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Jason L. Muesse
- Department of Surgery, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - John F. Ward
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (J.C.J.); (D.S.); (J.F.W.); (L.L.P.); (N.M.Z.)
| | - Louis L. Pisters
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (J.C.J.); (D.S.); (J.F.W.); (L.L.P.); (N.M.Z.)
| | - Niki M. Zacharias
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (J.C.J.); (D.S.); (J.F.W.); (L.L.P.); (N.M.Z.)
| | - Charles C. Guo
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Shi-Ming Tu
- Division of Hematology/Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
3
|
Kilic I, Acosta AM, Idrees MT. Evolution of Testicular Germ Cell Tumors in the Molecular Era With Histogenetic Implications. Adv Anat Pathol 2024; 31:206-214. [PMID: 38525515 DOI: 10.1097/pap.0000000000000438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
The current WHO classification of testicular germ cell tumors is based on the pathogenesis of the tumors driven by different genomic events. The germ cell neoplasia in situ is the precursor lesion for all malignant germ cell tumors. The current understanding of pathogenesis is that the developmental and environmental factors with the erasure of parental genomic imprinting lead to the development of abnormal gonocytes that settle in the "spermatogonial Niche" in seminiferous tubules. The abnormal primordial germ cells in the seminiferous tubules give rise to pre-GCNIS cells under the influence of TPSY and OCT4 genes. The whole genome duplication events give rise to germ cell neoplasia in situ, which further acquires alterations in 12p along with NRAS and KRAS mutations to produce seminoma. A subset of seminomas acquires KIT mutation and does not differentiate further. The remaining KIT-stable seminomas differentiate to nonseminomatous GCTs after obtaining recurrent chromosomal losses, epigenetic modification, and posttranscriptional regulation by multiple genes. Nonseminomatous germ cell tumors also develop directly from differentiated germ cell neoplasia in situ. TP53 pathway with downstream drivers may give rise to somatic-type malignancies of GCT. The GCTs are remarkably sensitive to cisplatin-based combination chemotherapy; however, resistance to cisplatin develops in up to 8% of tumors and appears to be driven by TP53/MDM2 gene mutations. Serum and Plasma miRNAs show promise in diagnosing, managing, and following up on these tumors. The mechanisms underlying the development of most tumors have been elucidated; however, additional studies are required to pinpoint the events directing specific characteristics. Advances in identifying specific molecular markers have been seen recently and may be adopted as gold standards in the future.
Collapse
Affiliation(s)
- Irem Kilic
- Department of Pathology, Indiana University, Indianapolis, IN
| | | | | |
Collapse
|
4
|
Vahdatinia M, Derakhshan F, Da Cruz Paula A, Dopeso H, Marra A, Gazzo AM, Brown D, Selenica P, Ross DS, Razavi P, Zhang H, Weigelt B, Wen HY, Brogi E, Reis-Filho JS, Pareja F. KIT genetic alterations in breast cancer. J Clin Pathol 2023; 77:40-45. [PMID: 36323507 PMCID: PMC10151428 DOI: 10.1136/jcp-2022-208611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 10/12/2022] [Indexed: 01/19/2023]
Abstract
AIMS Activating somatic mutations or gene amplification of KIT result in constitutive activation of its receptor tyrosine kinase, which is targetable in various solid tumours. Here, we sought to investigate the presence of KIT genetic alterations in breast cancer (BC) and characterise the histological and genomic features of these tumours. METHODS A retrospective analysis of 5,575 BCs previously subjected to targeted sequencing using the FDA-authorised Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Targets (MSK-IMPACT) assay was performed to identify BCs with KIT alterations. A histological assessment of KIT-altered BCs was conducted, and their repertoire of genetic alterations was compared with that of BCs lacking KIT genetic alterations, matched for age, histological type, oestrogen receptor/HER2 status and sample type. RESULTS We identified 18 BCs (0.32%), including 9 primary and 9 metastatic BCs, with oncogenic/likely oncogenic genetic alterations affecting KIT, including activating somatic mutations (n=4) or gene amplification (n=14). All KIT-altered BCs were of high histological grade, although no distinctive histological features were observed. When compared with BCs lacking KIT genetic alterations, no distinctive genetic features were identified. In two metastatic KIT-altered BCs in which the matched primary BC had also been analysed by MSK-IMPACT, the KIT mutations were found to be restricted to the metastatic samples, suggesting that they were late events in the evolution of these cancers. CONCLUSIONS KIT genetic alterations are vanishingly rare in BC. KIT-altered BCs are of high grade but lack distinctive histological features. Genetic alterations in KIT might be late events in the evolution and/or progression of BC.
Collapse
Affiliation(s)
- Mahsa Vahdatinia
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Fatemeh Derakhshan
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Arnaud Da Cruz Paula
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Higinio Dopeso
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Antonio Marra
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Andrea M Gazzo
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - David Brown
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Pier Selenica
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Dara S Ross
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Pedram Razavi
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Hong Zhang
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Britta Weigelt
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Hannah Y Wen
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Edi Brogi
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Jorge S Reis-Filho
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Fresia Pareja
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
5
|
Abdellateif MS, Bayoumi AK, Mohammed MA. c-Kit Receptors as a Therapeutic Target in Cancer: Current Insights. Onco Targets Ther 2023; 16:785-799. [PMID: 37790582 PMCID: PMC10544070 DOI: 10.2147/ott.s404648] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 09/19/2023] [Indexed: 10/05/2023] Open
Abstract
c-Kit is a type III receptor tyrosine kinase (RTK) that has an essential role in various biological functions including gametogenesis, melanogenesis, hematopoiesis, cell survival, and apoptosis. c-KIT aberrations, either overexpression or loss-of-function mutations, have been implicated in the pathogenesis and development of many cancers, including gastrointestinal stromal tumors, mastocytosis, acute myeloid leukemia, breast, thyroid, and colorectal cancer, making c-KIT an attractive molecular target for the treatment of cancers. Therefore, a lot of effort has been put into investigating the utility of tyrosine kinase inhibitors for the management of c-KIT mutated tumors. This review of the literature illustrates the role of c-KIT mutations in many cancers, aiming to provide insights into the role of TKIs as a therapeutic option for cancer patients with c-KIT aberrations. In conclusion, c-KIT is implicated in different types of cancer, and it could be a successful molecular target; however, proper detection of the underlying mutation type is required before starting the appropriate personalized therapy.
Collapse
Affiliation(s)
- Mona S Abdellateif
- Medical Biochemistry and Molecular Biology, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, 11796, Egypt
| | - Ahmed K Bayoumi
- Paediatric Oncology Department, National Cancer Institute, Cairo University, Cairo, 11796, Egypt
- Children’s Cancer Hospital 57357, Cairo, 11617, Egypt
| | - Mohammed Aly Mohammed
- Medical Biochemistry and Molecular Biology, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, 11796, Egypt
| |
Collapse
|
6
|
Cuevas-Estrada B, Montalvo-Casimiro M, Munguia-Garza P, Ríos-Rodríguez JA, González-Barrios R, Herrera LA. Breaking the Mold: Epigenetics and Genomics Approaches Addressing Novel Treatments and Chemoresponse in TGCT Patients. Int J Mol Sci 2023; 24:ijms24097873. [PMID: 37175579 PMCID: PMC10178517 DOI: 10.3390/ijms24097873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/19/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
Testicular germ-cell tumors (TGCT) have been widely recognized for their outstanding survival rates, commonly attributed to their high sensitivity to cisplatin-based therapies. Despite this, a subset of patients develops cisplatin resistance, for whom additional therapeutic options are unsuccessful, and ~20% of them will die from disease progression at an early age. Several efforts have been made trying to find the molecular bases of cisplatin resistance. However, this phenomenon is still not fully understood, which has limited the development of efficient biomarkers and precision medicine approaches as an alternative that could improve the clinical outcomes of these patients. With the aim of providing an integrative landscape, we review the most recent genomic and epigenomic features attributed to chemoresponse in TGCT patients, highlighting how we can seek to combat cisplatin resistance through the same mechanisms by which TGCTs are particularly hypersensitive to therapy. In this regard, we explore ongoing treatment directions for resistant TGCT and novel targets to guide future clinical trials. Through our exploration of recent findings, we conclude that epidrugs are promising treatments that could help to restore cisplatin sensitivity in resistant tumors, shedding light on potential avenues for better prognosis for the benefit of the patients.
Collapse
Affiliation(s)
- Berenice Cuevas-Estrada
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City 14080, Mexico
| | - Michel Montalvo-Casimiro
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City 14080, Mexico
| | - Paulina Munguia-Garza
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City 14080, Mexico
| | - Juan Alberto Ríos-Rodríguez
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City 14080, Mexico
| | - Rodrigo González-Barrios
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City 14080, Mexico
| | - Luis A Herrera
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City 14080, Mexico
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64710, Mexico
| |
Collapse
|
7
|
Cabral ERM, Pacanhella MF, Lengert AVH, dos Reis MB, Leal LF, de Lima MA, da Silva ALV, Pinto IA, Reis RM, Pinto MT, Cárcano FM. Somatic mutation detection and KRAS amplification in testicular germ cell tumors. Front Oncol 2023; 13:1133363. [PMID: 37007070 PMCID: PMC10060882 DOI: 10.3389/fonc.2023.1133363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND Testicular Germ Cell Tumors (TGCT) are the most common cancer among young adult men. The TGCT histopathology is diverse, and the frequency of genomic alterations, along with their prognostic role, remains largely unexplored. Herein, we evaluate the mutation profile of a 15-driver gene panel and copy number variation of KRAS in a large series of TGCT from a single reference cancer center. MATERIALS AND METHODS A cohort of 97 patients with TGCT, diagnosed at the Barretos Cancer Hospital, was evaluated. Real-time PCR was used to assess copy number variation (CNV) of the KRAS gene in 51 cases, and the mutation analysis was performed using the TruSight Tumor 15 (Illumina) panel (TST15) in 65 patients. Univariate analysis was used to compare sample categories in relation to mutational frequencies. Survival analysis was conducted by the Kaplan-Meier method and log-rank test. RESULTS KRAS copy number gain was a very frequent event (80.4%) in TGCT and presented a worse prognosis compared with the group with no KRAS copy gain (10y-OS, 90% vs. 81.5%, p = 0.048). Among the 65 TGCT cases, different variants were identified in 11 of 15 genes of the panel, and the TP53 gene was the most recurrently mutated driver gene (27.7%). Variants were also detected in genes such as KIT, KRAS, PDGFRA, EGFR, BRAF, RET, NRAS, PIK3CA, MET, and ERBB2, with some of them potentially targetable. CONCLUSION Although larger studies incorporating collaborative networks may shed the light on the molecular landscape of TGCT, our findings unveal the potential of actionable variants in clinical management for applying targeted therapies.
Collapse
Affiliation(s)
| | | | - Andre V. H. Lengert
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil
| | - Mariana B. dos Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil
| | - Leticia F. Leal
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil
- Barretos School of Health Sciences Dr. Paulo Prata – FACISB, Barretos, Brazil
| | - Marcos A. de Lima
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil
| | | | - Icaro A. Pinto
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil
| | - Rui M. Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil
- Life and Health Sciences Research Institute (ICVS), Medical School, University of Minho, Braga, Portugal
- 3ICVS/3B’s-PT Government Associate Laboratory, Braga, Portugal
| | - Mariana T. Pinto
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil
| | - Flavio M. Cárcano
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil
- Division of Genitourinary Medical Oncology, Oncoclínicas, Belo Horizonte, Brazil
| |
Collapse
|
8
|
Schepisi G, Gianni C, Cursano MC, Gallà V, Menna C, Casadei C, Bleve S, Lolli C, Martinelli G, Rosti G, De Giorgi U. Immune checkpoint inhibitors and Chimeric Antigen Receptor (CAR)-T cell therapy: Potential treatment options against Testicular Germ Cell Tumors. Front Immunol 2023; 14:1118610. [PMID: 36860862 PMCID: PMC9968831 DOI: 10.3389/fimmu.2023.1118610] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/03/2023] [Indexed: 02/15/2023] Open
Abstract
Germ cell tumors (GCTs) represent a heterogeneous neoplasm family affecting gonads and rarely occurring in extragonadal areas. Most of patients have a good prognosis, often even in the presence of metastatic disease; however, in almost 15% of cases, tumor relapse and platinum resistance are the main challenges. Thus, novel treatment strategies with both improved antineoplastic activity and minor treatment-related adverse events compared with platinum are really expected. In this context, the development and the high activity demonstrated by immune checkpoint inhibitors in solid tumors and, subsequently, the interesting results obtained from the use of chimeric antigen receptor (CAR-) T cell therapy in hematological tumors, have stimulated research in this direction also in GCTs. In this article, we will analyze the molecular mechanisms underlying the immune action in the development of GCTs, and we will report the data from the studies that tested the new immunotherapeutic approaches in these neoplasms.
Collapse
Affiliation(s)
- Giuseppe Schepisi
- 1Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy,*Correspondence: Giuseppe Schepisi,
| | - Caterina Gianni
- 1Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Maria Concetta Cursano
- 1Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Valentina Gallà
- 2Unit of Biostatistics and Clinical Trials, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Cecilia Menna
- 1Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Chiara Casadei
- 1Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Sara Bleve
- 1Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Cristian Lolli
- 1Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Giovanni Martinelli
- 1Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Giovanni Rosti
- 1Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Ugo De Giorgi
- 1Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| |
Collapse
|
9
|
Abstract
Testicular cancer is a curable cancer. The success of physicians in curing the disease is underpinned by multidisciplinary advances. Cisplatin-based combination chemotherapy and the refinement of post-chemotherapy surgical procedures and diagnostic strategies have greatly improved long term survival in most patients. Despite such excellent outcomes, several controversial dilemmas exist in the approaches to clinical stage I disease, salvage chemotherapy, post-chemotherapy surgical procedures, and implementing innovative imaging studies. Relapse after salvage chemotherapy has a poor prognosis and the optimal treatment is not apparent. Recent research has provided insight into the molecular mechanisms underlying cisplatin resistance. Phase 2 studies with targeted agents have failed to show adequate efficacy; however, our understanding of cisplatin resistant disease is rapidly expanding. This review summarizes recent advances and discusses relevant issues in the biology and management of testicular cancer.
Collapse
Affiliation(s)
- Michal Chovanec
- 2nd Department of Oncology, Faculty of Medicine, Comenius University, National Cancer Institute, Bratislava, Slovakia
| | - Liang Cheng
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School of Brown University, Lifespan Academic Medical Center, Providence, RI, USA
| |
Collapse
|
10
|
Bray AW, Duan R, Malalur P, Drusbosky LM, Gourdin TS, Hill EG, Lilly MB. Elevated serum CEA is associated with liver metastasis and distinctive circulating tumor DNA alterations in patients with castration-resistant prostate cancer. Prostate 2022; 82:1264-1272. [PMID: 35766303 PMCID: PMC9388585 DOI: 10.1002/pros.24400] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 02/14/2022] [Accepted: 06/01/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND Elevated serum carcinoembryonic antigen (CEA) is used to identify "treatment emergent" forms of castration-resistant prostate cancer (CRPC) such as aggressive variant prostate cancer (AVPC). However, its individual utility as a prognostic marker and the genetic alterations associated with its expression have not been extensively studied in CRPC. METHODS This study retrospectively analyzed clinical outcomes and circulating tumor DNA profiles in 163 patients with CRPC and elevated or normal serum CEA. These same patients were then classified as AVPC or non-AVPC and compared to determine the uniqueness of CEA-associated gene alterations. RESULTS Patients with elevated CEA demonstrated higher rates of liver metastasis (37.5% vs. 19.1%, p = 0.02) and decreased median overall survival from CRPC diagnosis (28.7 vs. 73.2 mo, p < 0.0001). In addition, patients with elevated CEA were more likely to harbor copy number amplifications (CNAs) in AR, PIK3CA, MYC, BRAF, CDK6, MET, CCNE1, KIT, RAF1, and KRAS. Based on variant allele frequency we also defined "clonal" single-nucleotide variants (SNVs) thought to be driving disease progression in each patient and found that CEA expression was negatively correlated with clonal AR SNVs and positively correlated with clonal TP53 SNVs. Of these genetic associations, only the increases in clonal TP53 SNVs and KRAS amplifications were recapitulated among patients with AVPC when compared to patients without AVPC. CONCLUSIONS Together these findings suggest that CEA expression in CRPC is associated with aggressive clinical behavior and gene alterations distinct from those in AVPC.
Collapse
Affiliation(s)
- Alexander W. Bray
- Department of MedicineMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Rong Duan
- Department of Public Health SciencesMedical University of South CarolinaCharlestonSouth CarolinaUSA
- Hollings Cancer CenterMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Pannaga Malalur
- The Ohio State University Wexner Medical CenterColumbusOhioUSA
| | | | - Theodore S. Gourdin
- Department of MedicineMedical University of South CarolinaCharlestonSouth CarolinaUSA
- Hollings Cancer CenterMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Elizabeth G. Hill
- Department of Public Health SciencesMedical University of South CarolinaCharlestonSouth CarolinaUSA
- Hollings Cancer CenterMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Michael B. Lilly
- Department of MedicineMedical University of South CarolinaCharlestonSouth CarolinaUSA
- Hollings Cancer CenterMedical University of South CarolinaCharlestonSouth CarolinaUSA
| |
Collapse
|
11
|
Pal S, Paul S. An in silico investigation of the binding modes and pathway of APTO-253 on c-KIT G-quadruplex DNA. Phys Chem Chem Phys 2021; 23:3361-3376. [PMID: 33502401 DOI: 10.1039/d0cp05210h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The stability of c-KIT G-quadruplex DNA via ligands has been a significant concern in the growing field of cancer therapy. Thus, it is very important to understand the mechanism behind the high binding affinity of the small drug molecules on the c-KIT G-quadruplex DNA. In this study, we have investigated the binding mode and pathway of the APTO-253 ligand on the c-KIT G-quadruplex DNA employing a total of 10 μs all atom molecular dynamics simulations and further 8.82 μs simulations via the umbrella sampling method using both OL15 and BSC1 latest force fields for DNA structures. From the cluster structure analysis, mainly three binding pathways i.e., top, bottom and side loop stacking modes are identified. Moreover, RMSD, RMSF and 2D-RMSD values indicate that the c-KIT G-quadruplex DNA and APTO-253 molecules are stable throughout the simulation run. Furthermore, the number of hydrogen bonds in each tetrad and the distance between the two central K+ cations confirm that the c-KIT G-quadruplex DNA maintains its conformation in the process of complex formation with the APTO-253 ligand. The binding free energies and the minimum values in the potential of mean forces suggest that the binding processes are energetically favorable. Furthermore, we have found that the bottom stacking mode is the most favorable binding mode among all the three modes for the OL15 force field. However, for the BSC1 force field, both the top and bottom binding modes of the APTO-253 ligand in c-KIT G-quadruplex DNA are comparable to each other. To investigate the driving force for the complex formation, we have noticed that the van der Waals (vdW) and π-π stacking interactions are mainly responsible. Our detailed studies provide useful information for the discovery of novel drugs in the field of stabilization of G-quadruplex DNAs.
Collapse
Affiliation(s)
- Saikat Pal
- Department of Chemistry, Indian Institute of Technology, Guwahati Assam, 781039, India.
| | | |
Collapse
|
12
|
Matsumoto T, Shiota M, Uchiumi T, Ueda S, Tsukahara S, Toshima T, Matsumoto S, Noda N, Eto M, Kang D. Genomic characteristics revealed by targeted exon sequencing of testicular germ cell tumors in Japanese men. Int J Urol 2020; 28:40-46. [PMID: 33047348 DOI: 10.1111/iju.14396] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 08/25/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To investigate the somatic mutation profiles of testicular germ cell tumors in Japanese men. METHODS We analyzed the somatic missense mutation profile of testicular germ cell tumors among 21 Japanese men with seminoma (n = 14), pure embryonic carcinoma (n = 3) and mixed testicular germ cell tumor (n = 4) by targeted next-generation sequencing of 409 cancer-related genes covering 1.23 Mb of the genome. RESULTS We identified a total of 22 missense mutations in 21 primary testicular germ cell tumor samples (0.89 mutations/Mb), of which seven mutations were confirmed to be absent from the germline. KIT:p.Asn822Tyr, KIT:p.Leu576Pro, PIK3CA:p.Glu542Lys and FBXW7:p.Arg505His were statistically and functionally potential. A total of 18 missense mutations were previously unknown in testicular germ cell tumors. PDGFRA amplification from one patient with seminoma was detected. KIT, BCR,PIK3CG, PIK3CA and PDGFRA mutations involved in aberrant signaling of the KIT-PI3K-AKT pathway was detected in 27.3% of detected mutations. CONCLUSIONS The present investigation identified a low mutation rate in testicular germ cell tumors among Asian patients, 18 novel mutations and PDGFRA amplification. Limitations of the present study are the small sample and missing normal DNA for some testicular germ cell tumors.
Collapse
Affiliation(s)
- Takashi Matsumoto
- Departments of, Department of, Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of, Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masaki Shiota
- Department of, Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takeshi Uchiumi
- Departments of, Department of, Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shohei Ueda
- Department of, Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shigehiro Tsukahara
- Department of, Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takahiro Toshima
- Departments of, Department of, Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shinya Matsumoto
- Departments of, Department of, Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Nozomi Noda
- Departments of, Department of, Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masatoshi Eto
- Department of, Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Dongchon Kang
- Departments of, Department of, Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
13
|
Rahimi M, Behjati F, Hamid Reza KK, Karimlou M, Keyhani E. The Relationship between KIT Copy Number Variation, Protein Expression, and Angiogenesis in Sporadic Breast Cancer. Rep Biochem Mol Biol 2020; 9:40-49. [PMID: 32821750 DOI: 10.29252/rbmb.9.1.40] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Background KIT is a protooncogene that encodes for the KIT oncoprotein, which is a transmembrane tyrosine kinase growth factor receptor that holds a critical role in a variety of normal physiological and pathological processes including angiogenesis. KIT has been shown to be involved in tumorigenesis, contributing to the development of gastrointestinal carcinoma and leukemia. A link between KIT overexpression and breast cancer development has previously been reported. In the current study, we explored KIT gene expression and exonic copy number variants (CNV) and the relationship with angiogenesis (CD34) and the clinicopathological features of breast cancer. Methods MLPA technique was used to determine the CNV in 64 breast cancer tumor samples from patients diagnosed with primary sporadic breast cancer. Results were confirmed by quantitative PCR. Expression of KIT and CD34 was determined using immunohistochemistry (IHC). Results Our results show that 28.1% of the tumor samples from patients with primary sporadic breast cancer had CNV in the KIT gene. Among the breast tumor samples, 54.7% showed positive KIT expression. The expression of the CD34 angiogenesis marker was reported in 43.8% of the tumor samples as low, 42.2% as moderate and 14.1% as high. A significant correlation between increased CNV of KIT exons, a high level of angiogenesis (CD34) and increased tumor grade was observed (p< 0.05). Conclusion A significant correlation between the KIT CNV and the angiogenesis marker was found. Examining KIT expression and CNV has the potential to function as a biomarker for tyrosine kinase inhibitor drugs in breast cancer.
Collapse
Affiliation(s)
- Maryam Rahimi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.,Department of Microbiology, Karaj branch, Islamic Azad University, Karaj, Iran
| | - Farkhondeh Behjati
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | | | - Masoud Karimlou
- Department of Epidemiology and Biostatistics, Tehran Medical Branch, Islamic Azad University, Tehran, Iran
| | - Elahe Keyhani
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.,Clinical Research Development Center of Rofeideh Rehabilitation Hospital, Tehran, Iran
| |
Collapse
|
14
|
Looijenga LH, Van der Kwast TH, Grignon D, Egevad L, Kristiansen G, Kao CS, Idrees MT. Report From the International Society of Urological Pathology (ISUP) Consultation Conference on Molecular Pathology of Urogenital Cancers: IV: Current and Future Utilization of Molecular-Genetic Tests for Testicular Germ Cell Tumors. Am J Surg Pathol 2020; 44:e66-e79. [PMID: 32205480 PMCID: PMC7289140 DOI: 10.1097/pas.0000000000001465] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The International Society of Urological Pathology (ISUP) organized a Consultation Conference in March 2019 dealing with applications of molecular pathology in Urogenital Pathology, including testicular tumors (with a focus on germ cell tumors [GCTs]), preceded by a survey among its members to get insight into current practices in testicular germ cell tumor (TGCT) diagnostics and adoption of the ISUP immunohistochemical guidelines published in 2014. On the basis of the premeeting survey, the most commonly used immunomarker panel includes OCT3/4, placental alkaline phosphate, D2-40, SALL4, CD117, and CD30 for GCTs and the documentation of germ cell neoplasia in situ (GCNIS). Molecular testing, specifically 12p copy gain, is informative to distinguish non-GCNIS versus GCNIS related GCTs, and establishing germ cell origin of tumors both in the context of primary and metastatic lesions. Other molecular methodologies currently available but not widely utilized for TGCTs include genome-wide and targeted approaches for specific genetic anomalies, P53 mutations, genomic MDM2 amplification, and detection of the p53 inactivating miR-371a-3p. The latter also holds promise as a serum marker for malignant TGCTs. This manuscript provides an update on the classification of TGCTs, and describes the current and future role of molecular-genetic testing. The following recommendations are made: (1) Presence of GCNIS should be documented in all cases along with extent of spermatogenesis; (2) Immunohistochemical staining is optional in the following scenarios: identification of GCNIS, distinguishing embryonal carcinoma from seminoma, confirming presence of yolk sac tumor and/or choriocarcinoma, and differentiating spermatocytic tumor from potential mimics; (3) Detection of gain of the short arm of chromosome 12 is diagnostic to differentiate between non-GCNIS versus GCNIS related GCTs and supportive to the germ cell origin of both primary and metastatic tumors.
Collapse
Affiliation(s)
| | | | | | - Lars Egevad
- Department of Oncology and Pathology, Karolinska Institutet Sweden, Solna, Sweden
| | - Glen Kristiansen
- Department of Pathology, University Hospital Bonn, Bonn, Germany
| | - Chia-Sui Kao
- Department of Pathology, Stanford University School of Medicine, Stanford, CA
| | | |
Collapse
|
15
|
Guerra F, Quintana S, Giustina S, Mendeluk G, Jufe L, Avagnina MA, Díaz LB, Palaoro LA. Investigation of EGFR/pi3k/Akt signaling pathway in seminomas. Biotech Histochem 2020; 96:125-137. [PMID: 32597316 DOI: 10.1080/10520295.2020.1776393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Activation of the receptor for epidermal growth factor (EGFR) in some testicular tumors activates several signaling pathways. Some components of these pathways are phosphorylated or mutated in testicular germ tumors (TCGT), including EGFR, Kirstein ras oncogen (KRAS) and cell surface protein of the germ cell (KIT). The latter two activate RAF ⁄MEK⁄ERK and PI3 K⁄AKT, and interconnect with the EGFR/pI3 k/Akt pathway. We investigated the expression of EGFR/pI3 k/Akt pathway proteins in seminomas and in their precursor lesion, germinal cell neoplasia in situ (GCNIS) and related genetic mutations. We used immunohistochemistry for pEGFR, pI3 k and pAkt expression with a scoring system for 46 seminoma surgical specimens: 36 classical and 10 GCNIS. In 17 samples, the mutations of EGFR (exons 19 - 21), KIT (exons 11, 17) and KRAS (exons 2, 3) were investigated using qPCR and sequencing. Of the 36 seminomas studied, 22 (61%) expressed pEGFR. Ten samples exhibited high scores for pEGFR, pI3 k and pAkt. In 5 of 17 cases (33%) some mutation was exhibited in the exons studied: 21 of EGFR (2), 17 of EGFR (1), 3 of KRAS (1) and 11 of KIT (1). Six cases exhibited nuclear translocation of EGFR; of these, four exhibited mutations of EGFR, KRAS and KIT. Eight of ten of the GCNIS expressed a high pEGFR score (80%). In 2 of 6 cases (33%), mutation was detected in exon 21 of EGFR and one smear showed EGFR translocation to the nucleus. The translocation represents a subpopulation with worse prognosis for TCGT. The EGFR/pI3 k/Akt signaling pathway is linked to TDRG1, which regulates chemosensitivity to cisplatin; this is a mechanism of resistance to treatment. TDRG1 and the EGFR/pI3 k/pAkt pathway could be therapeutic targets for seminomas resistant to cisplatin.
Collapse
Affiliation(s)
- F Guerra
- Department of Clinical Biochemistry, Clinical Hospital (UBA), C.A.B.A., INFIBIOC , Córdoba, Argentina
| | - S Quintana
- Fares Taie Institute , Mar Del Plata, Buenos Aires, Argentina
| | - S Giustina
- Fares Taie Institute , Mar Del Plata, Buenos Aires, Argentina
| | - G Mendeluk
- Department of Clinical Biochemistry, Clinical Hospital (UBA), C.A.B.A., INFIBIOC , Córdoba, Argentina
| | - L Jufe
- Laboratory of Pathology, Ramos Mejía Hospital, C.A.B.A ., Argentina
| | - M A Avagnina
- Department of Pathology, Clinical Hospital (UBA), C.A.B.A ., Córdoba, Argentina
| | - L B Díaz
- Department of Pathology, Clinical Hospital (UBA), C.A.B.A ., Córdoba, Argentina
| | - L A Palaoro
- Department of Clinical Biochemistry, Clinical Hospital (UBA), C.A.B.A., INFIBIOC , Córdoba, Argentina
| |
Collapse
|
16
|
de Vries G, Rosas-Plaza X, van Vugt MATM, Gietema JA, de Jong S. Testicular cancer: Determinants of cisplatin sensitivity and novel therapeutic opportunities. Cancer Treat Rev 2020; 88:102054. [PMID: 32593915 DOI: 10.1016/j.ctrv.2020.102054] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 12/23/2022]
Abstract
Testicular cancer (TC) is the most common solid tumor among men aged between 15 and 40 years. TCs are highly aneuploid and the 12p isochromosome is the most frequent chromosomal abnormality. The mutation rate is of TC is low, with recurrent mutations in KIT and KRAS observed only at low frequency in seminomas. Overall cure rates are high, even in a metastatic setting, resulting from excellent cisplatin sensitivity of TCs. Factors contributing to the observed cisplatin sensitivity include defective DNA damage repair and a hypersensitive apoptotic response to DNA damage. Nonetheless, around 10-20% of TC patients with metastatic disease cannot be cured by cisplatin-based chemotherapy. Resistance mechanisms include downregulation of OCT4 and failure to induce PUMA and NOXA, elevated levels of MDM2, and hyperactivity of the PI3K/AKT/mTOR pathway. Several pre-clinical approaches have proven successful in overcoming cisplatin resistance, including specific targeting of PARP, MDM2 or AKT/mTOR combined with cisplatin. Finally, patient-derived xenograft models hold potential for mechanistic studies and pre-clinical validation of novel therapeutic strategies in TC. While clinical trials investigating targeted drugs have been disappointing, pre-clinical successes with chemotherapy and targeted drug combinations fuel the need for further investigation in clinical setting.
Collapse
Affiliation(s)
- Gerda de Vries
- Department of Medical Oncology, Cancer Research Center Groningen, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ximena Rosas-Plaza
- Department of Medical Oncology, Cancer Research Center Groningen, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marcel A T M van Vugt
- Department of Medical Oncology, Cancer Research Center Groningen, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jourik A Gietema
- Department of Medical Oncology, Cancer Research Center Groningen, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Steven de Jong
- Department of Medical Oncology, Cancer Research Center Groningen, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
17
|
Kim JO, Kim HN, Kim KH, Baek EJ, Park JY, Ha K, Heo DR, Seo MD, Park SG. Development and characterization of a fully human antibody targeting SCF/c-kit signaling. Int J Biol Macromol 2020; 159:66-78. [PMID: 32437800 DOI: 10.1016/j.ijbiomac.2020.05.045] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/06/2020] [Accepted: 05/06/2020] [Indexed: 12/23/2022]
Abstract
CD117/c-kit, a tyrosine kinase receptor, plays a critical role in hematopoiesis, pigmentation, and fertility. The overexpression and activation of c-kit are thought to promote tumor growth and have been reported in various cancers, including leukemia, glioblastoma and mastocytosis. To disrupt the SCF/c-kit signaling axis in cancer, we generated a c-kit antagonist human antibody (NN2101) that binds to domain 2/3 of c-kit. This completely blocked the SCF-mediated phosphorylation of c-kit and inhibited TF-1 cell proliferation, erythroleukemia. In addition, the examination of binding affinity using surface plasmon resonance (SPR) assay showed that NN2101 can bind to c-kit of monkeys (KD = 2.92 × 10-10 M), rats (KD = 1.68 × 10-6 M), mice (KD = 11.5 × 10-9 M), and humans (KD = 2.83 × 10-12 M). We showed that NN2101 does not cause antibody-dependent cell-mediated cytotoxicity and complement-dependent cytotoxicity. The immunogenicity of NN2101 was similar to that of bevacizumab. Furthermore, the crystal structure of NN2101 Fab was determined and the structure of NN2101 Fab:c-kit complex was modeled. Structural information, as well as mutagenesis results, revealed that NN2101 can bind to the SCF-binding regions of c-kit. Collectively, we generated a c-kit neutralizing human antibody (NN2101) for the treatment of erythroleukemia and characterized its biophysical properties. NN2101 can potentially be used as a therapeutic antibody to treat different cancers.
Collapse
Affiliation(s)
- Jin-Ock Kim
- College of Pharmacy and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16499, Republic of Korea
| | - Ha-Neul Kim
- College of Pharmacy and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16499, Republic of Korea; Department of Molecular Science and Technology, Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16499, Republic of Korea
| | - Kwang-Hyeok Kim
- College of Pharmacy and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16499, Republic of Korea
| | - Eun Ji Baek
- College of Pharmacy and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16499, Republic of Korea
| | - Jeong-Yang Park
- College of Pharmacy and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16499, Republic of Korea; Department of Molecular Science and Technology, Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16499, Republic of Korea
| | - Kyungsoo Ha
- New Drug Development Center, Osong Medical Innovation Foundation, Osong 28160, Republic of Korea
| | - Deok Rim Heo
- New Drug Development Center, Osong Medical Innovation Foundation, Osong 28160, Republic of Korea; College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro, Osong 28160, Republic of Korea
| | - Min-Duk Seo
- College of Pharmacy and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16499, Republic of Korea; Department of Molecular Science and Technology, Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16499, Republic of Korea; Novelty Nobility, 227 Unjung-ro, Seongnam-si, Gyeonggi-do 13477, Republic of Korea.
| | - Sang Gyu Park
- College of Pharmacy and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16499, Republic of Korea; Novelty Nobility, 227 Unjung-ro, Seongnam-si, Gyeonggi-do 13477, Republic of Korea.
| |
Collapse
|
18
|
Pal S, Paul S. Understanding The Role of Reline, a Natural DES, on Temperature-Induced Conformational Changes of C-Kit G-Quadruplex DNA: A Molecular Dynamics Study. J Phys Chem B 2020; 124:3123-3136. [PMID: 32207949 DOI: 10.1021/acs.jpcb.0c00644] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The noncanonical guanine-rich DNAs have drawn particular attention to the scientific world due to their controllable diverse and polymorphic structures. Apart from biological and medical significance, G-quadruplex DNAs are widely used in various fields such as nanotechnology, nanomachine, biosensors, and biocatalyst. So far, the applications of the G-quadruplex DNA are mainly limited in the water medium. Recently, a new generation of solvent named deep eutectic solvent (DES) has become very popular and has been widely used as a reaction medium of biocatalytic reactions and long-term storage medium for nucleic acids, even at high temperature. Hence, it is essential to understand the role of DES on temperature-induced conformational changes of a G-quadruplex DNA. In this research work, we have explored the temperature-mediated conformational dynamics of c-kit oncogene promoter G-quadruplex DNA in reline medium in the temperature range of 300-500 K, using a total of 10 μs unbiased all-atom molecular dynamics simulation. Here, from RMSD, RMSF, Rg and principal component analyses, we notice that the c-kit G-quadruplex DNA is stable up to 450 K in reline medium. However, it unfolds in water medium at 450 K. It is found that the hydrogen bonding interactions between c-kit G-quadruplex DNA and reline play a key role in the stabilization of the G-quadruplex DNA even at high temperature. Furthermore, in this work we have observed a very interesting and distinctive phenomenon of the central cation of the G-quadruplex DNA. Its position was seen to fluctuate between the two tetrad cores, that is, the region between tetrad-1 and tetrad-2 and that between tetrad-2 and tetrad-3 and vice versa at 450 and 500 K in reline medium which is absent in water medium at 450 K. Moreover, the rate of its oscillation is increased when temperature is increased.
Collapse
Affiliation(s)
- Saikat Pal
- Department of Chemistry, Indian Institute of Technology, Guwahati Assam, India, 781039
| | - Sandip Paul
- Department of Chemistry, Indian Institute of Technology, Guwahati Assam, India, 781039
| |
Collapse
|
19
|
Integrated Molecular Characterization of Testicular Germ Cell Tumors. Cell Rep 2019; 23:3392-3406. [PMID: 29898407 PMCID: PMC6075738 DOI: 10.1016/j.celrep.2018.05.039] [Citation(s) in RCA: 287] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 03/09/2018] [Accepted: 05/14/2018] [Indexed: 12/11/2022] Open
Abstract
We studied 137 primary testicular germ cell tumors (TGCTs) using high-dimensional assays of genomic, epigenomic, transcriptomic, and proteomic features. These tumors exhibited high aneuploidy and a paucity of somatic mutations. Somatic mutation of only three genes achieved significance-KIT, KRAS, and NRAS-exclusively in samples with seminoma components. Integrated analyses identified distinct molecular patterns that characterized the major recognized histologic subtypes of TGCT: seminoma, embryonal carcinoma, yolk sac tumor, and teratoma. Striking differences in global DNA methylation and microRNA expression between histology subtypes highlight a likely role of epigenomic processes in determining histologic fates in TGCTs. We also identified a subset of pure seminomas defined by KIT mutations, increased immune infiltration, globally demethylated DNA, and decreased KRAS copy number. We report potential biomarkers for risk stratification, such as miRNA specifically expressed in teratoma, and others with molecular diagnostic potential, such as CpH (CpA/CpC/CpT) methylation identifying embryonal carcinomas.
Collapse
|
20
|
Predicting Gonadal Germ Cell Cancer in People with Disorders of Sex Development; Insights from Developmental Biology. Int J Mol Sci 2019; 20:ijms20205017. [PMID: 31658757 PMCID: PMC6834166 DOI: 10.3390/ijms20205017] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/03/2019] [Accepted: 10/05/2019] [Indexed: 01/03/2023] Open
Abstract
The risk of gonadal germ cell cancer (GGCC) is increased in selective subgroups, amongst others, defined patients with disorders of sex development (DSD). The increased risk is due to the presence of part of the Y chromosome, i.e., GonadoBlastoma on Y chromosome GBY region, as well as anatomical localization and degree of testicularization and maturation of the gonad. The latter specifically relates to the germ cells present being at risk when blocked in an embryonic stage of development. GGCC originates from either germ cell neoplasia in situ (testicular environment) or gonadoblastoma (ovarian-like environment). These precursors are characterized by presence of the markers OCT3/4 (POU5F1), SOX17, NANOG, as well as TSPY, and cKIT and its ligand KITLG. One of the aims is to stratify individuals with an increased risk based on other parameters than histological investigation of a gonadal biopsy. These might include evaluation of defined susceptibility alleles, as identified by Genome Wide Association Studies, and detailed evaluation of the molecular mechanism underlying the DSD in the individual patient, combined with DNA, mRNA, and microRNA profiling of liquid biopsies. This review will discuss the current opportunities as well as limitations of available knowledge in the context of predicting the risk of GGCC in individual patients.
Collapse
|
21
|
Abstract
Human germ cell tumours (GCTs) are derived from stem cells of the early embryo and the germ line. They occur in the gonads (ovaries and testes) and also in extragonadal sites, where migrating primordial germ cells are located during embryogenesis. This group of heterogeneous neoplasms is unique in that their developmental potential is in effect determined by the latent potency state of their cells of origin, which are reprogrammed to omnipotent, totipotent or pluripotent stem cells. Seven GCT types, defined according to their developmental potential, have been identified, each with distinct epidemiological and (epi)genomic features. Heritable predisposition factors affecting the cells of origin and their niches likely explain bilateral, multiple and familial occurrences of the different types of GCTs. Unlike most other tumour types, GCTs are rarely caused by somatic driver mutations, but arise through failure to control the latent developmental potential of their cells of origin, resulting in their reprogramming. Consistent with their non-mutational origin, even the malignant tumours of the group are characterized by wild-type TP53 and high sensitivity for DNA damage. However, tumour progression and the rare occurrence of treatment resistance are driven by embryonic epigenetic state, specific (sub)chromosomal imbalances and somatic mutations. Thus, recent progress in understanding GCT biology supports a comprehensive developmental pathogenetic model for the origin of all GCTs, and provides new biomarkers, as well as potential targets for treatment of resistant disease.
Collapse
Affiliation(s)
- J Wolter Oosterhuis
- Laboratory for Experimental Patho-Oncology, Department of Pathology, Erasmus MC Cancer Institute, Rotterdam, Netherlands.
| | - Leendert H J Looijenga
- Laboratory for Experimental Patho-Oncology, Department of Pathology, Erasmus MC Cancer Institute, Rotterdam, Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| |
Collapse
|
22
|
Selfe J, Shipley JM. IGF signalling in germ cells and testicular germ cell tumours: roles and therapeutic approaches. Andrology 2019; 7:536-544. [PMID: 31179642 PMCID: PMC6771568 DOI: 10.1111/andr.12658] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/01/2019] [Accepted: 05/05/2019] [Indexed: 02/06/2023]
Abstract
The insulin-like growth factor (IGF) axis plays key roles in normal tissue growth and development as well as in the progression of several tumour types and their subsequent growth and progression to a metastatic phenotype. This review explores the role of IGF system in normal germ cell development and function in addition to examining the evidence for deregulation of IGF signalling in cancer, with particular relevance to evidence supporting a role in testicular germ cell tumours (TGCTs). Despite the clear preclinical rationale for targeting the IGF axis in cancer, there has been a lack of progress in identifying which patients may benefit from such therapy. Future employment of agents targeting the IGF pathway is expected to concentrate on their use in combination with other treatments to prevent resistance and exploit their potential as chemo- and radiosensitizers.
Collapse
Affiliation(s)
- J Selfe
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - J M Shipley
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London, UK
| |
Collapse
|
23
|
Lafin JT, Bagrodia A, Woldu S, Amatruda JF. New insights into germ cell tumor genomics. Andrology 2019; 7:507-515. [PMID: 30896089 DOI: 10.1111/andr.12616] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/27/2019] [Accepted: 03/04/2019] [Indexed: 11/30/2022]
Abstract
BACKGROUND Testicular germ cell tumors (GCTs) represent the most common malignancy in young men. While GCTs represent a model for curable solid tumors due to exquisite chemosensitivity, mortality for patients with GCT comprises the most life years lost for non-pediatric malignancies. Given limited options for patients with platinum-resistant disease, improved insight into GCT biology could identify novel therapeutic options for patients with platinum-resistant disease. Recent studies into molecular characteristics of both early stage and advanced germ cell tumors suggest a role for rationally targeted agents and potentially immunotherapy. RECENT DEVELOPMENTS Recent GWAS meta-analyses have uncovered additional susceptibility loci for GCT and provide further evidence that GCT risk is polygenic. Chromosome arm level amplifications and reciprocal loss of heterozygosity have been described as significantly enriched in GCT compared to other cancer types. Contemporary analyses confirm ubiquitous gain of isochromosome 12 and mutations in addition to previously described GCT-associated genes such as KIT and KRAS. Alterations within the TP53-MDM2 signal transduction pathway appear to be enriched among patients with platinum-resistant disease. Potentially actionable targets, including alterations in TP53-MDM2, Wnt/β-catenin, PI3K, and MAPK signaling, are present in significant proportions of patients with platinum-resistant disease and may be exploited as therapeutic options. Pre-clinical and early clinical data also suggest a potential role for immunotherapy among patients with GCTs. CONCLUSION Molecular characterization of GCT patients may provide biologic rationale for novel treatment options in patients with platinum-resistant disease.
Collapse
Affiliation(s)
- J T Lafin
- Department of Urology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - A Bagrodia
- Department of Urology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - S Woldu
- Department of Urology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - J F Amatruda
- Department of Pediatrics, Division of Hematology/Oncology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| |
Collapse
|
24
|
Clonal analyses of refractory testicular germ cell tumors. PLoS One 2019; 14:e0213815. [PMID: 30870501 PMCID: PMC6417677 DOI: 10.1371/journal.pone.0213815] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 02/28/2019] [Indexed: 12/15/2022] Open
Abstract
Testicular germ cell tumors (TGCTs) are unique amongst solid tumors in terms of the high cure rates using chemotherapy for metastatic disease. Nevertheless, TGCTs still kill approximately 400 men per year, at a median age of 30 years, in the United States. This young age of mortality dramatically amplifies the impact of these deaths for the patients and their often young families. Furthermore the high cure rate makes it difficult to conduct further clinical trials of non curable disease. TGCTs are characterized by a marked aneuploidy and the presence of gain of chromosomal region 12p. Genomic testing may offer the ability to identify potentially lethal TGCTs at the time of initial diagnosis. However sequencing based studies have shown a paucity of somatic mutations in TGCT genomes including those that drive refractory disease. Furthermore these studies may be limited by genetic heterogeneity in primary tumors and the evolution of sub populations during disease progression. Herein we applied a systematic approach combining DNA content flow cytometry, whole genome copy number and whole exome sequence analyses to interrogate tumor heterogeneity in primary and metastatic refractory TGCTs. We identified both known and novel somatic copy number aberrations (12p, MDM2, and RHBDD1) and mutations (XRCC2, PIK3CA, RITA1) including candidate markers for platinum resistance that were present in a primary tumor of mixed histology and that remained after tandem autologous stem cell transplant.
Collapse
|
25
|
Shared and unique genomic structural variants of different histological components within testicular germ cell tumours identified with mate pair sequencing. Sci Rep 2019; 9:3586. [PMID: 30837548 PMCID: PMC6400951 DOI: 10.1038/s41598-019-39956-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 02/01/2019] [Indexed: 12/12/2022] Open
Abstract
Post-pubertal testicular germ-cell tumours (TGCTs) can present with a variety of distinct histologies which are nevertheless lineage related and often co-occurring. The exact lineage relationships and developmental pathways leading to the different histologies is debated. In order to investigate the relationship of histologic populations, mate-pair sequencing (MPseq) and exome sequencing (ExomeSeq) were conducted on different histological populations within the same tumour. Ten TGCTs with 1–3 histologic types/tumour were sequenced. Junctions of somatic chromosomal rearrangements were identified on a per genome basis, with germ cell neoplasia in situ possessing the least (median 1, range 0–4) and embryonal carcinoma the most (median 8.5, range 6–12). Copy number variation revealed gains and losses, including isoform 12p (i12p) (10/10 samples), and chromosomes 7, 8, and 21 gains (7/10 samples). Mapping of shared junctions within a tumour revealed lineage relationships, but only i12p was shared between patients. ExomeSeq from two cases demonstrated a high level of copy-neutral loss of heterozygosity. Parallel assessment of separate histologies within a single TGCT demonstrated cumulative and divergent changes, suggesting the importance of parallel sequencing for detection of relevant biomarkers.
Collapse
|
26
|
Molecular heterogeneity and early metastatic clone selection in testicular germ cell cancer development. Br J Cancer 2019; 120:444-452. [PMID: 30739914 PMCID: PMC6461884 DOI: 10.1038/s41416-019-0381-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 12/27/2018] [Indexed: 02/07/2023] Open
Abstract
Background Testicular germ cell cancer (TGCC), being the most frequent malignancy in young Caucasian males, is initiated from an embryonic germ cell. This study determines intratumour heterogeneity to unravel tumour progression from initiation until metastasis. Methods In total, 42 purified samples of four treatment-resistant nonseminomatous (NS) TGCC were investigated, including the precursor germ cell neoplasia in situ (GCNIS) and metastatic specimens, using whole-genome and targeted sequencing. Their evolution was reconstructed. Results Intratumour molecular heterogeneity did not correspond to the supposed primary tumour histological evolution. Metastases after systemic treatment could be derived from cancer stem cells not identified in the primary cancer. GCNIS mostly lacked the molecular marks of the primary NS and comprised dominant clones that failed to progress. A BRCA-like mutational signature was observed without evidence for direct involvement of BRCA1 and BRCA2 genes. Conclusions Our data strongly support the hypothesis that NS is initiated by whole-genome duplication, followed by chromosome copy number alterations in the cancer stem cell population, and accumulation of low numbers of somatic mutations, even in therapy-resistant cases. These observations of heterogeneity at all stages of tumourigenesis should be considered when treating patients with GCNIS-only disease, or with clinically overt NS.
Collapse
|
27
|
Hearn JM, Hughes GM, Romero-Canelón I, Munro AF, Rubio-Ruiz B, Liu Z, Carragher NO, Sadler PJ. Pharmaco-genomic investigations of organo-iridium anticancer complexes reveal novel mechanism of action. Metallomics 2019; 10:93-107. [PMID: 29131211 DOI: 10.1039/c7mt00242d] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Resistance to platinum drugs (used in >50% of cancer chemotherapies) is a clinical problem. Other precious metal complexes with distinct mechanisms of action might overcome this. Half-sandwich organometallic complexes containing arene or cyclopentadienyl (Cp) ligands show promise. We screened two iridium(iii) complexes [Ir(CpXbiph)(ppy)Cl] (ZL49, 1, ppy = phenylpyridine) and [Ir(CpXph)(azpyNMe2)Cl]PF6 (ZL109, 2, azpyNMe2 = N,N-dimethylphenylazopyridine) in 916 cancer cell lines from 28 tissue types. On average, complex 2 was 78× more potent than 1, 36× more active than cisplatin (CDDP), and strongly active (nanomolar) in patient-derived ovarian cancer cell lines. RNA sequencing of A2780 ovarian cells revealed upregulation of antioxidant responses (NRF2, AP-1) consistent with observed induction of reactive oxygen species (ROS). Protein microarrays, high content imaging and cell cycle analysis showed S/G2 arrest, and late-stage DNA damage response without p53 requirement. The triple-negative breast cancer cell line OCUB-M was highly sensitive to 2 as were cell lines with KIT mutations. Complex 2 exhibits a markedly different pattern of antiproliferative activity compared to the 253 drugs in the Sanger Cancer Genome database, but is most similar to osmium(ii) arene complexes which share the same azopyridine ligand. Redox modulation and DNA damage can provide a multi-targeting strategy, allowing compounds such as 2 to overcome cellular resistance to platinum anticancer drugs.
Collapse
|
28
|
Chovanec M, Cheng L. Molecular characterization of testicular germ cell tumors: chasing the underlying pathways. Future Oncol 2019; 15:227-229. [DOI: 10.2217/fon-2018-0617] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Michal Chovanec
- Second Department of Oncology, Faculty of Medicine, Comenius University & National Cancer Institute, Klenova 1, 83310 Bratislava, Slovakia
- Division of Hematology Oncology, Indiana University Simon Cancer Center, Indianapolis, 535 Barnhill drive, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Liang Cheng
- Departments of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Urology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
29
|
Chovanec M, Albany C, Mego M, Montironi R, Cimadamore A, Cheng L. Emerging Prognostic Biomarkers in Testicular Germ Cell Tumors: Looking Beyond Established Practice. Front Oncol 2018; 8:571. [PMID: 30547014 PMCID: PMC6280583 DOI: 10.3389/fonc.2018.00571] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 11/14/2018] [Indexed: 11/21/2022] Open
Abstract
Testicular germ cell tumors are unique among solid cancers. Historically, this disease was deadly if progressed beyond the stage I. The implementation of cisplatin-based chemotherapy regimens has drastically changed the clinical outcome of metastatic testicular cancer. Several biomarkers were established to refine the prognosis by International Germ Cell Collaborative Group in 1997. Among these, the most significant were primary tumor site; metastatic sites, such as non-pulmonary visceral metastases; and the amplitude of serum tumor markers α-fetoprotein, β-chorionic gonadotropin, and lactate dehydrogenase. Since then, oncology has experienced discoveries of various molecular biomarkers to further refine the prognosis and treatment of malignancies. However, the ability to predict the prognosis and treatment response in germ cell tumors did not improve for many years. Clinical trials with novel targeting agents that were conducted in refractory germ cell tumor patients have proven to have negative outcomes. With the recent advances and developments, novel biomarkers emerge in the field of germ cell tumor oncology. This review article aims to summarize the current knowledge in the research of novel prognostic biomarkers in testicular germ cell tumors.
Collapse
Affiliation(s)
- Michal Chovanec
- 2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, Bratislava, Slovakia
- Division of Hematology and Oncology, Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN, United States
| | - Costantine Albany
- Division of Hematology and Oncology, Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN, United States
| | - Michal Mego
- 2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, Bratislava, Slovakia
| | - Rodolfo Montironi
- Section of Pathological Anatomy, Polytechnic University of the Marche Region, School of Medicine, United Hospitals, Ancona, Italy
| | - Alessia Cimadamore
- Section of Pathological Anatomy, Polytechnic University of the Marche Region, School of Medicine, United Hospitals, Ancona, Italy
| | - Liang Cheng
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Urology, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
30
|
Lewin J, Soltan Ghoraie L, Bedard PL, Hamilton RJ, Chung P, Moore M, Jewett MA, Anson-Cartwright L, Virtanen C, Winegarden N, Tsao J, Warde P, Sweet J, Haibe-Kains B, Hansen AR. Gene expression signatures prognostic for relapse in stage I testicular germ cell tumours. BJU Int 2018; 122:814-822. [DOI: 10.1111/bju.14372] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jeremy Lewin
- Division of Medical Oncology and Hematology; Princess Margaret Cancer Centre; Toronto ON Canada
| | - Laleh Soltan Ghoraie
- Bioinformatics and Computational Genomics Laboratory; Princess Margaret Cancer Centre; Toronto ON Canada
| | - Philippe L. Bedard
- Division of Medical Oncology and Hematology; Princess Margaret Cancer Centre; Toronto ON Canada
| | - Robert J. Hamilton
- Departments of Surgery (Urology) and Surgical Oncology; University Health Network; Princess Margaret Cancer Centre; University of Toronto; Toronto ON Canada
| | - Peter Chung
- Department of Radiation Oncology; Princess Margaret Cancer Centre; Toronto ON Canada
| | | | - Michael A.S. Jewett
- Departments of Surgery (Urology) and Surgical Oncology; University Health Network; Princess Margaret Cancer Centre; University of Toronto; Toronto ON Canada
| | - Lynn Anson-Cartwright
- Department of Radiation Oncology; Princess Margaret Cancer Centre; Toronto ON Canada
| | - Carl Virtanen
- Microarray Centre; University Health Network; Toronto ON Canada
| | - Neil Winegarden
- Princess Margaret Genomics Centre; University Health Network; Toronto ON Canada
| | - Julie Tsao
- Princess Margaret Genomics Centre; University Health Network; Toronto ON Canada
| | - Padraig Warde
- Department of Radiation Oncology; Princess Margaret Cancer Centre; Toronto ON Canada
| | - Joan Sweet
- Department of Pathology; University Health Network; Toronto ON Canada
| | - Benjamin Haibe-Kains
- Bioinformatics and Computational Genomics Laboratory; Princess Margaret Cancer Centre; Toronto ON Canada
| | - Aaron R. Hansen
- Division of Medical Oncology and Hematology; Princess Margaret Cancer Centre; Toronto ON Canada
| |
Collapse
|
31
|
Głuszyńska A, Juskowiak B, Kuta-Siejkowska M, Hoffmann M, Haider S. Carbazole Derivatives' Binding to c-KIT G-Quadruplex DNA. Molecules 2018; 23:E1134. [PMID: 29747481 PMCID: PMC6099540 DOI: 10.3390/molecules23051134] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 04/25/2018] [Accepted: 05/07/2018] [Indexed: 11/17/2022] Open
Abstract
The binding affinities of three carbazole derivatives to the intramolecular G-quadruplex (GQ) DNA formed by the sequence 5′-AGGGAGGGCGCTGGGAGGAGGG-3′, derived from the c-KIT 1 oncogene region, were investigated. All carbazole cationic ligands that differed in the substituents on the nitrogen atom were able to stabilize G-quadruplex, as demonstrated using UV-Vis, fluorescence and CD spectroscopic techniques as well as molecular modeling. The spectrophotometric titration results showed spectral features characteristic of these ligands-bathochromic shifts and initial hypochromicity followed by hyperchromicity at higher GQ concentrations. All free carbazole ligands exhibited modest fluorescent properties, but after binding to the DNA the fluorescence intensity increased significantly. The binding affinities of carbazole ligands to the c-KIT 1 DNA were comparable showing values in the order of 10⁵ M−1. Molecular modeling highlights the differences in interactions between each particular ligand and studied G-quadruplex, which potentially influenced binding strength. Obtained results relevant that all three investigated ligands have stabilization properties on studied G-quadruplex.
Collapse
Affiliation(s)
- Agata Głuszyńska
- Laboratory of Bioanalytical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Umultowska Street 89b, 61-614 Poznań, Poland.
| | - Bernard Juskowiak
- Laboratory of Bioanalytical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Umultowska Street 89b, 61-614 Poznań, Poland.
| | - Martyna Kuta-Siejkowska
- Laboratory of Quantum Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Umultowska Street 89b, 61-614 Poznań, Poland.
| | - Marcin Hoffmann
- Laboratory of Quantum Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Umultowska Street 89b, 61-614 Poznań, Poland.
| | - Shozeb Haider
- School of Pharmacy, University College London, London WC1N 1AX, UK.
| |
Collapse
|
32
|
Koli S, Mukherjee A, Reddy KVR. Retinoic acid triggers c-kit gene expression in spermatogonial stem cells through an enhanceosome constituted between transcription factor binding sites for retinoic acid response element (RARE), spleen focus forming virus proviral integration oncogene (SPFI1) (PU.1) and E26 transformation-specific (ETS). Reprod Fertil Dev 2018; 29:521-543. [PMID: 28442062 DOI: 10.1071/rd15145] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 08/14/2015] [Indexed: 12/19/2022] Open
Abstract
Restricted availability of retinoic acid (RA) in the testicular milieu regulates transcriptional activity of c-kit (KIT, CD117), which aids in the determination of spermatogonial stem-cell differentiation. The effect of RA on c-kit has been reported previously, but its mode of genomic action remains unresolved. We studied the molecular machinery guiding RA responsiveness to the c-kit gene using spermatogonial stem-cell line C18-4 and primary spermatogonial cells. A novel retinoic acid response element (RARE) positioned at -989 nucleotides upstream of the transcription start site (TSS) was identified, providing a binding site for a dimeric RA receptor (i.e. retinoic acid receptor gamma (RARγ) and retinoic X receptor). RA treatment influenced c-kit promoter activity, along with endogenous c-kit expression in C18-4 cells. A comprehensive promoter deletion assay using the pGL3B reporter system characterised the region spanning -271bp and -1011bp upstream of the TSS, which function as minimal promoter and maximal promoter, respectively. In silico analysis predicted that the region -1011 to +58bp comprised the distal enhancer RARE and activators such as spleen focus forming virus proviral integration oncogene (SPFI1) (PU.1), specificity protein 1 (SP1) and four E26 transformation-specific (ETS) tandem binding sites at the proximal region. Gel retardation and chromatin immunoprecipitation (ChIP) assays showed binding for RARγ, PU.1 and SP1 to the predicted consensus binding sequences, whereas GABPα occupied only two out of four ETS binding sites within the c-kit promoter region. We propose that for RA response, an enhanceosome is orchestrated through scaffolding of a CREB-binding protein (CBP)/p300 molecule between RARE and elements in the proximal promoter region, controlling germ-line expression of the c-kit gene. This study outlines the fundamental role played by RARγ, along with other non-RAR transcription factors (PU.1, SP1 and GABPα), in the regulation of c-kit expression in spermatogonial stem cells in response to RA.
Collapse
Affiliation(s)
- Swanand Koli
- Division of Molecular Immunology and Microbiology, National Institute for Research in Reproductive Health, Indian Council of Medical Research, J.M Street, Parel, Mumbai-400 012, India
| | - Ayan Mukherjee
- Department of Biological Science, Kent State University, Kent, OH 44240, USA
| | - Kudumula Venkata Rami Reddy
- Division of Molecular Immunology and Microbiology, National Institute for Research in Reproductive Health, Indian Council of Medical Research, J.M Street, Parel, Mumbai-400 012, India
| |
Collapse
|
33
|
Selfe J, Goddard NC, McIntyre A, Taylor KR, Renshaw J, Popov SD, Thway K, Summersgill B, Huddart RA, Gilbert DC, Shipley JM. IGF1R signalling in testicular germ cell tumour cells impacts on cell survival and acquired cisplatin resistance. J Pathol 2018; 244:242-253. [PMID: 29160922 PMCID: PMC5817239 DOI: 10.1002/path.5008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 11/07/2017] [Accepted: 11/14/2017] [Indexed: 12/03/2022]
Abstract
Testicular germ cell tumours (TGCTs) are the most frequent malignancy and cause of death from solid tumours in the 20‐ to 40‐year age group. Although most cases show sensitivity to cis‐platinum‐based chemotherapy, this is associated with long‐term toxicities and chemo‐resistance. Roles for receptor tyrosine kinases other than KIT are largely unknown in TGCT. We therefore conducted a phosphoproteomic screen and identified the insulin growth factor receptor‐1 (IGF1R) as both highly expressed and activated in TGCT cell lines representing the nonseminomatous subtype. IGF1R was also frequently expressed in tumour samples from patients with nonseminomas. Functional analysis of cell line models showed that long‐term shRNA‐mediated IGF1R silencing leads to apoptosis and complete ablation of nonseminoma cells with active IGF1R signalling. Cell lines with high levels of IGF1R activity also showed reduced AKT signalling in response to decreased IGF1R expression as well as sensitivity to the small‐molecule IGF1R inhibitor NVP‐AEW541. These results were in contrast to those in the seminoma cell line TCAM2 that lacked IGF1R signalling via AKT and was one of the two cell lines least sensitive to the IGF1R inhibitor. The dependence on IGF1R activity in the majority of nonseminomas parallels the known role of IGF signalling in the proliferation, migration, and survival of primordial germ cells, the putative cell of origin for TGCT. Upregulation of IGF1R expression and signalling was also found to contribute to acquired cisplatin resistance in an in vitro nonseminoma model, providing a rationale for targeting IGF1R in cisplatin‐resistant disease. © 2017 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Joanna Selfe
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, Institute of Cancer Research, London, UK
| | - Neil C Goddard
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, Institute of Cancer Research, London, UK
| | - Alan McIntyre
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, Institute of Cancer Research, London, UK
| | - Kathryn R Taylor
- Glioma Team, Divisions of Molecular Pathology and Cancer Therapeutics, Institute of Cancer Research, London, UK
| | - Jane Renshaw
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, Institute of Cancer Research, London, UK
| | - Sergey D Popov
- Glioma Team, Divisions of Molecular Pathology and Cancer Therapeutics, Institute of Cancer Research, London, UK
| | - Khin Thway
- Sarcoma Unit, Department of Histopathology, The Royal Marsden NHS Foundation Trust, London, UK
| | - Brenda Summersgill
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, Institute of Cancer Research, London, UK
| | - Robert A Huddart
- Department of Clinical Oncology, The Royal Marsden NHS Foundation Trust, Sutton, UK
| | - Duncan C Gilbert
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, Institute of Cancer Research, London, UK.,Sussex Cancer Centre, Royal Sussex County Hospital, Brighton, UK
| | - Janet M Shipley
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, Institute of Cancer Research, London, UK
| |
Collapse
|
34
|
Plant AS, Chi SN, Frazier L. Pediatric malignant germ cell tumors: A comparison of the neuro-oncology and solid tumor experience. Pediatr Blood Cancer 2016; 63:2086-2095. [PMID: 27554756 DOI: 10.1002/pbc.26165] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 06/30/2016] [Accepted: 07/01/2016] [Indexed: 12/11/2022]
Abstract
Malignant germ cell tumors (GCT) arise from abnormal migration of primordial germ cells and are histologically identical whether they occur inside or outside the central nervous system (CNS). However, the treatment strategy for GCTs varies greatly depending on the location of the tumor. These differences are in part due to the increased morbidity of surgery in the CNS but may also reflect differential sensitivity of the tumors to chemotherapy and radiation therapy (RT) or not-yet-understood biologic differences between these tumors. Historically, specialists caring for extracranial and intracranial GCT in the United States have practiced separately without much cross communication. The focus of this review is a discussion of differences between the management of CNS and extra-CNS GCTs and opportunities for collaboration and future research.
Collapse
Affiliation(s)
- Ashley S Plant
- Pediatric Hematology/Oncology, Brain Tumors Center, Dana Farber Cancer Institute, Boston, Massachusetts.
| | - Susan N Chi
- Pediatric Hematology/Oncology, Solid Tumor Center, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Lindsay Frazier
- Pediatric Hematology/Oncology, Brain Tumors Center, Dana Farber Cancer Institute, Boston, Massachusetts
| |
Collapse
|
35
|
Abstract
This article reviews the most frequently encountered tumor of the testis; pure and mixed malignant testicular germ cell tumors (TGCT), with emphasis on adult (postpubertal) TGCTs and their differential diagnoses. We additionally review TGCT in the postchemotherapy setting, and findings to be integrated into the surgical pathology report, including staging of testicular tumors and other problematic issues. The clinical features, gross pathologic findings, key histologic features, common differential diagnoses, the use of immunohistochemistry, and molecular alterations in TGCTs are discussed.
Collapse
|
36
|
The genomic landscape of testicular germ cell tumours: from susceptibility to treatment. Nat Rev Urol 2016; 13:409-19. [PMID: 27296647 DOI: 10.1038/nrurol.2016.107] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The genomic landscape of testicular germ cell tumour (TGCT) can be summarized using four overarching hypotheses. Firstly, TGCT risk is dominated by inherited genetic factors, which determine nearly half of all disease risk and are highly polygenic in nature. Secondly KIT-KITLG signalling is currently the major pathway that is implicated in TGCT formation, both as a predisposition risk factor and a somatic driver event. Results from genome-wide association studies have also consistently suggested that other closely related pathways involved in male germ cell development and sex determination are associated with TGCT risk. Thirdly, the method of disease formation is unique, with tumours universally stemming from a noninvasive precursor lesion, probably of fetal origin, which lies dormant through childhood into adolescence and then eventually begins malignant growth in early adulthood. Formation of a 12p isochromosome, a hallmark of TGCT observed in nearly all tumours, is likely to be a key triggering event for malignant transformation. Finally, TGCT have been shown to have a distinctive somatic mutational profile, with a low rate of point mutations contrasted with frequent large-scale chromosomal gains. These four hypotheses by no means constitute a complete model that explains TGCT tumorigenesis, but advances in genomic technologies have enabled considerable progress in describing and understanding the disease. Further advancing our understanding of the genomic basis of TGCT offers a clear opportunity for clinical benefit in terms of preventing invasive cancer arising in young men, decreasing the burden of chemotherapy-related survivorship issues and reducing mortality in the minority of patients who have treatment-refractory disease.
Collapse
|
37
|
Boublikova L, Bakardjieva-Mihaylova V, Skvarova Kramarzova K, Kuzilkova D, Dobiasova A, Fiser K, Stuchly J, Kotrova M, Buchler T, Dusek P, Grega M, Rosova B, Vernerova Z, Klezl P, Pesl M, Zachoval R, Krolupper M, Kubecova M, Stahalova V, Abrahamova J, Babjuk M, Kodet R, Trka J. Wilms tumor gene 1 (WT1), TP53, RAS/BRAF and KIT aberrations in testicular germ cell tumors. Cancer Lett 2016; 376:367-76. [PMID: 27085458 DOI: 10.1016/j.canlet.2016.04.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 04/04/2016] [Accepted: 04/08/2016] [Indexed: 12/17/2022]
Abstract
PURPOSE Wilms tumor gene 1 (WT1), a zinc-finger transcription factor essential for testis development and function, along with other genes, was investigated for their role in the pathogenesis of testicular germ cell tumors (TGCT). METHODS In total, 284 TGCT and 100 control samples were investigated, including qPCR for WT1 expression and BRAF mutation, p53 immunohistochemistry detection, and massively parallel amplicon sequencing. RESULTS WT1 was significantly (p < 0.0001) under-expressed in TGCT, with an increased ratio of exon 5-lacking isoforms, reaching low levels in chemo-naïve relapsed TGCT patients vs. high levels in chemotherapy-pretreated relapsed patients. BRAF V600E mutation was identified in 1% of patients only. p53 protein was lowly expressed in TGCT metastases compared to the matched primary tumors. Of 9 selected TGCT-linked genes, RAS/BRAF and WT1 mutations were frequent while significant TP53 and KIT variants were not detected (p = 0.0003). CONCLUSIONS WT1 has been identified as a novel factor involved in TGCT pathogenesis, with a potential prognostic impact. Distinct biologic nature of the two types of relapses occurring in TGCT has been demonstrated. Differential mutation rate of the key TGCT-related genes has been documented.
Collapse
Affiliation(s)
- L Boublikova
- Department of Pediatric Hematology and Oncology, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic.
| | - V Bakardjieva-Mihaylova
- Department of Pediatric Hematology and Oncology, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - K Skvarova Kramarzova
- Department of Pediatric Hematology and Oncology, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - D Kuzilkova
- Department of Pediatric Hematology and Oncology, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - A Dobiasova
- Department of Pediatric Hematology and Oncology, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - K Fiser
- Department of Pediatric Hematology and Oncology, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - J Stuchly
- Department of Pediatric Hematology and Oncology, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - M Kotrova
- Department of Pediatric Hematology and Oncology, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - T Buchler
- Department of Oncology, 1st Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czech Republic
| | - P Dusek
- Department of Urology, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - M Grega
- Department of Pathology and Molecular Medicine, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - B Rosova
- Department of Pathology and Molecular Medicine, Thomayer Hospital, Prague, Czech Republic
| | - Z Vernerova
- Department of Pathology, 3rd Faculty of Medicine, Charles University and University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - P Klezl
- Department of Urology, 3rd Faculty of Medicine, Charles University and University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - M Pesl
- Department of Urology, 1st Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - R Zachoval
- Department of Urology, Thomayer Hospital, Prague, Czech Republic
| | - M Krolupper
- Department of Urology, Na Bulovce Hospital, Prague, Czech Republic
| | - M Kubecova
- Department of Oncology and Radiotherapy, 3rd Faculty of Medicine, Charles University and University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - V Stahalova
- Institute of Radiotherapy and Oncology, 1st Faculty of Medicine, Charles University and Na Bulovce Hospital, Prague, Czech Republic
| | - J Abrahamova
- Department of Oncology, 1st Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czech Republic
| | - M Babjuk
- Department of Urology, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - R Kodet
- Department of Pathology and Molecular Medicine, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - J Trka
- Department of Pediatric Hematology and Oncology, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| |
Collapse
|
38
|
Gao YP, Jiang JY, Liu Q. Expression and mutation of c-Kit in intracranial germ cell tumors: A single-centre retrospective study of 30 cases in China. Oncol Lett 2016; 11:2971-2976. [PMID: 27123048 PMCID: PMC4840541 DOI: 10.3892/ol.2016.4373] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 11/27/2015] [Indexed: 01/30/2023] Open
Abstract
Although primary central nervous system (CNS) germ cell tumors (GCTs) are one of the most treatable types of malignant brain tumor, a subset of patients remain resistant to standard chemotherapy. Gain-of-function mutations of the c-Kit gene, and KIT protein expression, have been observed in a number of GCTs, including testicular seminoma, ovarian dysgerminoma and mediastinal seminoma in various ethnic groups. Although a small number of studies have reported the role of c-Kit in CNS GCTs, few have focused on Chinese patients exhibiting CNS GCTs. In the present study, the frequency and location of c-Kit mutations and KIT protein expression levels in CNS GCTs were investigated in 30 patients, between January 1994 and October 2014. Immunohistochemical assays suggested that KIT protein expression was present in 59.1% patients (66.7% in males and 42.9% in females); however, no statistically significant correlation was identified between KIT protein expression and patient clinicopathological features. By performing PCR amplification and direct sequencing, 4 mutational hot spots of the c-Kit gene (exons 9, 11, 13 and 17) were examined, and c-Kit gene mutation was identified in 1/17 (5.9%) CNS germinoma cases. This mutation was located in exon 11 at codon 557-558 WK (Tryptophan-Lysine). No c-Kit gene mutations were detected in non-germinomatous GCTs. Imatinib, a tyrosine kinase inhibitor, may be an effective treatment against standard chemotherapy-resistant CNS germinoma patients exhibiting c-Kit mutations.
Collapse
Affiliation(s)
- Yu-Ping Gao
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Ji-Yao Jiang
- Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Qiang Liu
- Department of Pathology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| |
Collapse
|
39
|
Elzinga-Tinke JE, Dohle GR, Looijenga LH. Etiology and early pathogenesis of malignant testicular germ cell tumors: towards possibilities for preinvasive diagnosis. Asian J Androl 2016; 17:381-93. [PMID: 25791729 PMCID: PMC4430936 DOI: 10.4103/1008-682x.148079] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Malignant testicular germ cell tumors (TGCT) are the most frequent cancers in Caucasian males (20-40 years) with an 70% increasing incidence the last 20 years, probably due to combined action of (epi)genetic and (micro)environmental factors. It is expected that TGCT have carcinoma in situ(CIS) as their common precursor, originating from an embryonic germ cell blocked in its maturation process. The overall cure rate of TGCT is more than 90%, however, men surviving TGCT can present long-term side effects of systemic cancer treatment. In contrast, men diagnosed and treated for CIS only continue to live without these long-term side effects. Therefore, early detection of CIS has great health benefits, which will require an informative screening method. This review described the etiology and early pathogenesis of TGCT, as well as the possibilities of early detection and future potential of screening men at risk for TGCT. For screening, a well-defined risk profile based on both genetic and environmental risk factors is needed. Since 2009, several genome wide association studies (GWAS) have been published, reporting on single-nucleotide polymorphisms (SNPs) with significant associations in or near the genes KITLG, SPRY4, BAK1, DMRT1, TERT, ATF7IP, HPGDS, MAD1L1, RFWD3, TEX14, and PPM1E, likely to be related to TGCT development. Prenatal, perinatal, and postnatal environmental factors also influence the onset of CIS. A noninvasive early detection method for CIS would be highly beneficial in a clinical setting, for which specific miRNA detection in semen seems to be very promising. Further research is needed to develop a well-defined TGCT risk profile, based on gene-environment interactions, combined with noninvasive detection method for CIS.
Collapse
Affiliation(s)
| | | | - Leendert Hj Looijenga
- Department of Pathology, Laboratory of Experimental Patho-Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
40
|
The combination of four molecular markers improves thyroid cancer cytologic diagnosis and patient management. BMC Cancer 2015; 15:918. [PMID: 26581891 PMCID: PMC4652365 DOI: 10.1186/s12885-015-1917-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Accepted: 11/06/2015] [Indexed: 12/30/2022] Open
Abstract
Background Papillary thyroid cancer is the most common endocrine malignancy. The most sensitive and specific diagnostic tool for thyroid nodule diagnosis is fine-needle aspiration (FNA) biopsy with cytological evaluation. Nevertheless, FNA biopsy is not always decisive leading to “indeterminate” or “suspicious” diagnoses in 10 %–30 % of cases. BRAF V600E detection is currently used as molecular test to improve the diagnosis of thyroid nodules, yet it lacks sensitivity. The aim of the present study was to identify novel molecular markers/computational models to improve the discrimination between benign and malignant thyroid lesions. Methods We collected 118 pre-operative thyroid FNA samples. All 118 FNA samples were characterized for the presence of the BRAF V600E mutation (exon15) by pyrosequencing and further assessed for mRNA expression of four genes (KIT, TC1, miR-222, miR-146b) by quantitative polymerase chain reaction. Computational models (Bayesian Neural Network Classifier, discriminant analysis) were built, and their ability to discriminate benign and malignant tumors were tested. Receiver operating characteristic (ROC) analysis was performed and principal component analysis was used for visualization purposes. Results In total, 36/70 malignant samples carried the V600E mutation, while all 48 benign samples were wild type for BRAF exon15. The Bayesian neural network (BNN) and discriminant analysis, including the mRNA expression of the four genes (KIT, TC1, miR-222, miR-146b) showed a very strong predictive value (94.12 % and 92.16 %, respectively) in discriminating malignant from benign patients. The discriminant analysis showed a correct classification of 100 % of the samples in the malignant group, and 95 % by BNN. KIT and miR-146b showed the highest diagnostic accuracy of the ROC curve, with area under the curve values of 0.973 for KIT and 0.931 for miR-146b. Conclusions The four genes model proposed in this study proved to be highly discriminative of the malignant status compared with BRAF assessment alone. Its implementation in clinical practice can help in identifying malignant/benign nodules that would otherwise remain suspicious. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1917-2) contains supplementary material, which is available to authorized users.
Collapse
|
41
|
CD41 and CD45 expression marks the angioformative initiation of neovascularisation in human haemangioblastoma. Tumour Biol 2015; 37:3765-74. [DOI: 10.1007/s13277-015-4200-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 10/05/2015] [Indexed: 12/17/2022] Open
|
42
|
Kloth L, Gottlieb A, Helmke B, Wosniok W, Löning T, Burchardt K, Belge G, Günther K, Bullerdiek J. HMGA2 expression distinguishes between different types of postpubertal testicular germ cell tumour. JOURNAL OF PATHOLOGY CLINICAL RESEARCH 2015; 1:239-51. [PMID: 27499908 PMCID: PMC4939894 DOI: 10.1002/cjp2.26] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 07/10/2015] [Indexed: 01/07/2023]
Abstract
The group of postpubertal testicular germ cell tumours encompasses lesions with highly diverse differentiation – seminomas, embryonal carcinomas, yolk sac tumours, teratomas and choriocarcinomas. Heterogeneous differentiation is often present within individual tumours and the correct identification of the components is of clinical relevance. HMGA2 re‐expression has been reported in many tumours, including testicular germ cell tumours. This is the first study investigating HMGA2 expression in a representative group of testicular germ cell tumours with the highly sensitive method of quantitative real‐time PCR as well as with immunohistochemistry. The expression of HMGA2 and HPRT was measured using quantitative real‐time PCR in 59 postpubertal testicular germ cell tumours. Thirty specimens contained only one type of tumour and 29 were mixed neoplasms. With the exception of choriocarcinomas, at least two pure specimens from each subgroup of testicular germ cell tumour were included. In order to validate the quantitative real‐time PCR data and gather information about the localisation of the protein, additional immunohistochemical analysis with an antibody specific for HMGA2 was performed in 23 cases. Expression of HMGA2 in testicular germ cell tumours depended on the histological differentiation. Seminomas and embryonal carcinomas showed no or very little expression, whereas yolk sac tumours strongly expressed HMGA2 at the transcriptome as well as the protein level. In teratomas, the expression varied and in choriocarcinomas the expression was moderate. In part, these results contradict data from previous studies but HMGA2 seems to represent a novel marker to assist pathological subtyping of testicular germ cell tumours. The results indicate a critical role in yolk sac tumours and some forms of teratoma.
Collapse
Affiliation(s)
- Lars Kloth
- Center for Human Genetics University of Bremen Bremen Germany
| | - Andrea Gottlieb
- Center for Human Genetics University of Bremen Bremen Germany
| | - Burkhard Helmke
- Institute for Pathology, Elbe Clinic Stade-Buxtehude Buxtehude Germany
| | - Werner Wosniok
- Institute of Statistics, University of Bremen Bremen Germany
| | - Thomas Löning
- Department of Pathology Albertinen Hospital Hamburg Germany
| | - Käte Burchardt
- Department of Pathology Clinical Centre Bremen-Mitte Bremen Germany
| | - Gazanfer Belge
- Center for Human Genetics University of Bremen Bremen Germany
| | - Kathrin Günther
- Leibniz Institute for Prevention Research and Epidemiology - BIPS GmbH Bremen Germany
| | - Jörn Bullerdiek
- Center for Human GeneticsUniversity of Bremen BremenGermany; Institute for Medical Genetics, University of Rostock, University Medicine RostockGermany
| |
Collapse
|
43
|
ETV1 mRNA is specifically expressed in gastrointestinal stromal tumors. Virchows Arch 2015; 467:393-403. [PMID: 26243012 DOI: 10.1007/s00428-015-1813-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 06/17/2015] [Accepted: 07/14/2015] [Indexed: 12/15/2022]
Abstract
Gastrointestinal stromal tumors (GISTs) develop from interstitial cells of Cajal (ICCs) mainly by activating mutations in the KIT or PDGFRA genes. Immunohistochemical analysis for KIT, DOG1, and PKC-θ is used for the diagnosis of GIST. Recently, ETV1 has been shown to be a lineage survival factor for ICCs and required for tumorigenesis of GIST. We investigated the diagnostic value of ETV1expression in GIST. On fresh-frozen tissue samples, RT-PCR analysis showed that ETV1 as well as KIT, DOG1, and PKC-θ are highly expressed in GISTs. On tissue microarrays containing 407 GISTs and 120 non-GIST mesenchymal tumors of GI tract, we performed RNA in situ hybridization (ISH) for ETV1 together with immunohistochemical analysis for KIT, DOG1, PKC-θ, CD133, and CD44. Overall, 387 (95 %) of GISTs were positive for ETV1, while KIT and DOG1 were positive in 381 (94 %) and 392 (96 %) cases, respectively, showing nearly identical overall sensitivity of ETV1, KIT, and DOG1 for GISTs. In addition, ETV1 expression was positively correlated with that of KIT. Notably, ETV1 was positive in 15 of 26 (58 %) KIT-negative GISTs and even positive in 2 cases of GIST negative for KIT and DOG1, whereas only 6 (5 %) non-GIST mesenchymal GI tumors expressed ETV1. We conclude that ETV1 is specifically expressed in the majority of GISTs, even in some KIT-negative cases, suggesting that ETV1 may be useful as ancillary marker in diagnostically difficult select cases of GIST.
Collapse
|
44
|
Rijlaarsdam MA, Tax DMJ, Gillis AJM, Dorssers LCJ, Koestler DC, de Ridder J, Looijenga LHJ. Genome wide DNA methylation profiles provide clues to the origin and pathogenesis of germ cell tumors. PLoS One 2015; 10:e0122146. [PMID: 25859847 PMCID: PMC4479500 DOI: 10.1371/journal.pone.0122146] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 02/07/2015] [Indexed: 12/18/2022] Open
Abstract
The cell of origin of the five subtypes (I-V) of germ cell tumors (GCTs) are assumed to be germ cells from different maturation stages. This is (potentially) reflected in their methylation status as fetal maturing primordial germ cells are globally demethylated during migration from the yolk sac to the gonad. Imprinted regions are erased in the gonad and later become uniparentally imprinted according to fetal sex. Here, 91 GCTs (type I-IV) and four cell lines were profiled (Illumina’s HumanMethylation450BeadChip). Data was pre-processed controlling for cross hybridization, SNPs, detection rate, probe-type bias and batch effects. The annotation was extended, covering snRNAs/microRNAs, repeat elements and imprinted regions. A Hidden Markov Model-based genome segmentation was devised to identify differentially methylated genomic regions. Methylation profiles allowed for separation of clusters of non-seminomas (type II), seminomas/dysgerminomas (type II), spermatocytic seminomas (type III) and teratomas/dermoid cysts (type I/IV). The seminomas, dysgerminomas and spermatocytic seminomas were globally hypomethylated, in line with previous reports and their demethylated precursor. Differential methylation and imprinting status between subtypes reflected their presumed cell of origin. Ovarian type I teratomas and dermoid cysts showed (partial) sex specific uniparental maternal imprinting. The spermatocytic seminomas showed uniparental paternal imprinting while testicular teratomas exhibited partial imprinting erasure. Somatic imprinting in type II GCTs might indicate a cell of origin after global demethylation but before imprinting erasure. This is earlier than previously described, but agrees with the totipotent/embryonic stem cell like potential of type II GCTs and their rare extra-gonadal localization. The results support the common origin of the type I teratomas and show strong similarity between ovarian type I teratomas and dermoid cysts. In conclusion, we identified specific and global methylation differences between GCT subtypes, providing insight into their developmental timing and underlying developmental biology. Data and extended annotation are deposited at GEO (GSE58538 and GPL18809).
Collapse
Affiliation(s)
- Martin A. Rijlaarsdam
- Department of Pathology, Erasmus MC Cancer Institute—University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - David M. J. Tax
- Faculty of Electrical Engineering, Mathematics and Computer Science Intelligent Systems—Delft Bioinformatics Lab, Technical University of Delft, Delft, The Netherlands
| | - Ad J. M. Gillis
- Department of Pathology, Erasmus MC Cancer Institute—University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Lambert C. J. Dorssers
- Department of Pathology, Erasmus MC Cancer Institute—University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Devin C. Koestler
- Department of Biostatistics, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Jeroen de Ridder
- Faculty of Electrical Engineering, Mathematics and Computer Science Intelligent Systems—Delft Bioinformatics Lab, Technical University of Delft, Delft, The Netherlands
| | - Leendert H. J. Looijenga
- Department of Pathology, Erasmus MC Cancer Institute—University Medical Center Rotterdam, Rotterdam, The Netherlands
- * E-mail:
| |
Collapse
|
45
|
Dong Y, Liang C, Zhang B, Ma J, He X, Chen S, Zhang X, Chen W. Bortezomib enhances the therapeutic efficacy of dasatinib by promoting c-KIT internalization-induced apoptosis in gastrointestinal stromal tumor cells. Cancer Lett 2015; 361:137-46. [PMID: 25737303 DOI: 10.1016/j.canlet.2015.02.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 02/17/2015] [Accepted: 02/26/2015] [Indexed: 12/17/2022]
Abstract
Dasatinib-based therapy is often used as a second-line therapeutic strategy for imatinib-resistance gastrointestinal stromal tumors (GISTs); however, acquired aberrant activation of dasatinib target proteins, such as c-KIT and PDGFRβ, attenuates the therapeutic efficiency of dasatinib. Combination therapy which inhibits the activation of dasatinib target proteins may enhance the cytotoxicity of dasatinib in GISTs. Bortezomib, a proteasome inhibitor, significantly inhibited cell viability and promoted apoptosis of dasatinib-treated GIST-T1 cells, whereas GIST-T1 cells showed little dasatinib cytotoxicity when treated with dasatinib alone, as the upregulation of c-KIT caused by dasatinib itself interfered with the inhibition of c-KIT and PDGFRβ phosphorylation by dasatinib. Bortezomib induced internalization and degradation of c-KIT by binding c-KIT to Cbl, an E3 ubiquitin-protein ligase, and the subsequent release of Apaf-1, which was originally bound to the c-KIT-Hsp90β-Apaf-1 complex, induced primary apoptosis in GIST-T1 cells. Combined treatment with bortezomib plus dasatinib caused cell cycle arrest in the G1 phase through inactivation of PDGFRβ and promoted bortezomib-induced apoptosis in GIST-T1 cells. Our data suggest that combination therapy exerts better efficiency for eradicating GIST cells and may be a promising strategy for the future treatment of GISTs.
Collapse
Affiliation(s)
- Ying Dong
- Department of Oncology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Chao Liang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Bo Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianjuan Ma
- Department of Internal Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Xuexin He
- Department of Oncology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Siyu Chen
- Department of Oncology, Xinhua Hospital Affiliated to Medical School of Shanghai Jiaotong University, Shanghai 200092, China
| | - Xianning Zhang
- Department of Cell Biology and Medical Genetics, Research Center of Molecular Medicine, Institute of Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Wei Chen
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China.
| |
Collapse
|
46
|
Brabrand S, Johannessen B, Axcrona U, Kraggerud SM, Berg KG, Bakken AC, Bruun J, Fosså SD, Lothe RA, Lehne G, Skotheim RI. Exome sequencing of bilateral testicular germ cell tumors suggests independent development lineages. Neoplasia 2015; 17:167-74. [PMID: 25748235 PMCID: PMC4351294 DOI: 10.1016/j.neo.2014.12.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 12/08/2014] [Indexed: 12/17/2022]
Abstract
Intratubular germ cell neoplasia, the precursor of testicular germ cell tumors (TGCTs), is hypothesized to arise during embryogenesis from developmentally arrested primordial germ cells (PGCs) or gonocytes. In early embryonal life, the PGCs migrate from the yolk sac to the dorsal body wall where the cell population separates before colonizing the genital ridges. However, whether the malignant transformation takes place before or after this separation is controversial. We have explored the somatic exome-wide mutational spectra of bilateral TGCT to provide novel insight into the in utero critical time frame of malignant transformation and TGCT pathogenesis. Exome sequencing was performed in five patients with bilateral TGCT (eight tumors), of these three patients in whom both tumors were available (six tumors) and two patients each with only one available tumor (two tumors). Selected loci were explored by Sanger sequencing in 71 patients with bilateral TGCT. From the exome-wide mutational spectra, no identical mutations in any of the three bilateral tumor pairs were identified. Exome sequencing of all eight tumors revealed 87 somatic non-synonymous mutations (median 10 per tumor; range 5-21), some in already known cancer genes such as CIITA, NEB, platelet-derived growth factor receptor α (PDGFRA), and WHSC1. SUPT6H was found recurrently mutated in two tumors. We suggest independent development lineages of bilateral TGCT. Thus, malignant transformation into intratubular germ cell neoplasia is likely to occur after the migration of PGCs. We reveal possible drivers of TGCT pathogenesis, such as mutated PDGFRA, potentially with therapeutic implications for TGCT patients.
Collapse
Affiliation(s)
- Sigmund Brabrand
- Department of Molecular Oncology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway; Center for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Bjarne Johannessen
- Department of Molecular Oncology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway; Center for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Ulrika Axcrona
- Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Sigrid M Kraggerud
- Department of Molecular Oncology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway; Center for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Kaja G Berg
- Department of Molecular Oncology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway; Center for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Anne C Bakken
- Department of Molecular Oncology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway; Center for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Jarle Bruun
- Department of Molecular Oncology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway; Center for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Sophie D Fosså
- Department of Oncology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Ragnhild A Lothe
- Department of Molecular Oncology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway; Center for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Gustav Lehne
- Department of Oncology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Rolf I Skotheim
- Department of Molecular Oncology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway; Center for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
47
|
Litchfield K, Summersgill B, Yost S, Sultana R, Labreche K, Dudakia D, Renwick A, Seal S, Al-Saadi R, Broderick P, Turner NC, Houlston RS, Huddart R, Shipley J, Turnbull C. Whole-exome sequencing reveals the mutational spectrum of testicular germ cell tumours. Nat Commun 2015; 6:5973. [PMID: 25609015 PMCID: PMC4338546 DOI: 10.1038/ncomms6973] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 11/25/2014] [Indexed: 01/01/2023] Open
Abstract
Testicular germ cell tumours (TGCTs) are the most common cancer in young men. Here we perform whole-exome sequencing (WES) of 42 TGCTs to comprehensively study the cancer's mutational profile. The mutation rate is uniformly low in all of the tumours (mean 0.5 mutations per Mb) as compared with common cancers, consistent with the embryological origin of TGCT. In addition to expected copy number gain of chromosome 12p and mutation of KIT, we identify recurrent mutations in the tumour suppressor gene CDC27 (11.9%). Copy number analysis reveals recurring amplification of the spermatocyte development gene FSIP2 (15.3%) and a 0.4 Mb region at Xq28 (15.3%). Two treatment-refractory patients are shown to harbour XRCC2 mutations, a gene strongly implicated in defining cisplatin resistance. Our findings provide further insights into genes involved in the development and progression of TGCT.
Collapse
Affiliation(s)
- Kevin Litchfield
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Brenda Summersgill
- Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Shawn Yost
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Razvan Sultana
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Karim Labreche
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75019, Paris, France
| | - Darshna Dudakia
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Anthony Renwick
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Sheila Seal
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Reem Al-Saadi
- Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Peter Broderick
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Nicholas C. Turner
- The Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Richard S. Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Robert Huddart
- Academic Radiotherapy Unit, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Janet Shipley
- Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Clare Turnbull
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
- William Harvey Research Institute, Queen Mary University London, Charterhouse Square, London EC1M 6BQ, UK
| |
Collapse
|
48
|
Litchfield K, Shipley J, Turnbull C. Common variants identified in genome-wide association studies of testicular germ cell tumour: an update, biological insights and clinical application. Andrology 2015; 3:34-46. [DOI: 10.1111/andr.304] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 10/03/2014] [Accepted: 10/06/2014] [Indexed: 01/13/2023]
Affiliation(s)
- K. Litchfield
- Division of Genetics and Epidemiology; The Institute of Cancer Research; London UK
| | - J. Shipley
- Divisions of Molecular Pathology and Cancer Therapeutics; The Institute of Cancer Research; London UK
| | - C. Turnbull
- Division of Genetics and Epidemiology; The Institute of Cancer Research; London UK
- Royal Marsden NHS Foundation Trust; London UK
| |
Collapse
|
49
|
Moghaddam KG, Hashemianzadeh SM. The effect of amino substituents on the interactions of quinazolone derivatives with c-KIT G-quadruplex: insight from molecular dynamics simulation study for rational design of ligands. RSC Adv 2015. [DOI: 10.1039/c5ra13615f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Our study provides insight into the effect of different substituents on the G-quadruplex–ligand interactions which helps us rational ligand design.
Collapse
Affiliation(s)
- Kiana Gholamjani Moghaddam
- Molecular Simulation Research Laboratory
- Department of Chemistry
- Iran University of Science & Technology
- Tehran
- Iran
| | - Seyed Majid Hashemianzadeh
- Molecular Simulation Research Laboratory
- Department of Chemistry
- Iran University of Science & Technology
- Tehran
- Iran
| |
Collapse
|
50
|
Huddart R. New insight into the aetiology of testicular germ cell tumours. Eur Urol 2014; 67:702-3. [PMID: 25497430 DOI: 10.1016/j.eururo.2014.11.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 11/15/2014] [Indexed: 11/25/2022]
Affiliation(s)
- Robert Huddart
- Department of Radiotherapy, The Institute of Cancer Reasearch and The Royal Marsden Hospital, Sutton, UK.
| |
Collapse
|