1
|
Yan T, Jiang Z, Tu W, Fang K, Xu X, Huang W, Cao J, Zhang H, Yu D, Zhang S. Single‑cell RNA‑Seq reveals PBMC profile alterations in a patient following a radiation accident. Exp Ther Med 2025; 29:96. [PMID: 40165803 PMCID: PMC11956132 DOI: 10.3892/etm.2025.12846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 01/24/2025] [Indexed: 04/02/2025] Open
Abstract
Nuclear technology has been extensively used in various fields, increasing the possibility of radiation exposure to humans. Radiation exposure outcomes may be classified as whole-body irradiation or local irradiation. Clinically, local irradiation refers to the exposure of a relatively limited portion of the body, with injury confined to the directly exposed tissues. However, locally irradiated tissues can trigger systemic reactions through the release of inflammatory factors or damage to blood cells at the irradiated site. The circulating population of peripheral blood mononuclear cells (PBMCs), a component of normal tissue, is particularly sensitive to ionizing radiation. The present study applied single-cell RNA sequencing (scRNA-Seq) to profile PBMCs from one irradiated patient and 10 healthy controls matched for sex and age. In total, 6,447 and 7,892 cells were collected for analysis from the PBMCs of the irradiated patient on the 113rd and 631st days post radiation, respectively, whereas 9,101 cells were obtained from 10 healthy controls. Following scRNA-Seq, five cell types were annotated via representative markers, revealing distinct cell types whose proportions changed markedly in the irradiated patient. Trajectory analysis indicated that the dysregulation of multiple signaling pathways was associated with radiation exposure. Furthermore, single-cell regulatory network inference and clustering analysis revealed gene regulatory networks and suggested the involvement of several signaling pathways, such as those related to viral infection, in the context of radiation exposure. The present study elucidated the dynamic landscape of human blood immune responses to ionizing radiation and provides evidence of its therapeutic potential for treating radiation injury.
Collapse
Affiliation(s)
- Tao Yan
- Department of Plastic Surgery, The Second Affiliated Hospital of Chengdu Medical College (Nuclear Industry 416 Hospital), Chengdu, Sichuan 610051, P.R. China
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, Mianyang, Sichuan 621099, P.R. China
| | - Zhiqiang Jiang
- Department of Plastic Surgery, The Second Affiliated Hospital of Chengdu Medical College (Nuclear Industry 416 Hospital), Chengdu, Sichuan 610051, P.R. China
| | - Wenling Tu
- Department of Plastic Surgery, The Second Affiliated Hospital of Chengdu Medical College (Nuclear Industry 416 Hospital), Chengdu, Sichuan 610051, P.R. China
| | - Kai Fang
- Department of Plastic Surgery, The Second Affiliated Hospital of Chengdu Medical College (Nuclear Industry 416 Hospital), Chengdu, Sichuan 610051, P.R. China
| | - Xiaopeng Xu
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Wei Huang
- Department of Plastic Surgery, The Second Affiliated Hospital of Chengdu Medical College (Nuclear Industry 416 Hospital), Chengdu, Sichuan 610051, P.R. China
| | - Jianping Cao
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Huojun Zhang
- Department of Radiation Oncology, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, P.R. China
| | - Daojiang Yu
- Department of Plastic Surgery, The Second Affiliated Hospital of Chengdu Medical College (Nuclear Industry 416 Hospital), Chengdu, Sichuan 610051, P.R. China
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
- Center of Burn and Trauma, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214000, P.R. China
- Department of Burn and Plastic Surgery, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214000, P.R. China
| | - Shuyu Zhang
- Department of Plastic Surgery, The Second Affiliated Hospital of Chengdu Medical College (Nuclear Industry 416 Hospital), Chengdu, Sichuan 610051, P.R. China
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, Mianyang, Sichuan 621099, P.R. China
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
2
|
Kido T, Kong H, Lau YFC. The X-Linked Tumor Suppressor TSPX Regulates Genes Involved in the EGFR Signaling Pathway and Cell Viability to Suppress Lung Adenocarcinoma. Genes (Basel) 2025; 16:75. [PMID: 39858622 PMCID: PMC11764513 DOI: 10.3390/genes16010075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/02/2025] [Accepted: 01/09/2025] [Indexed: 01/30/2025] Open
Abstract
Background: TSPX is an X-linked tumor suppressor that was initially identified in non-small cell lung cancer (NSCLC) cell lines. However, its expression patterns and downstream mechanisms in NSCLC remain unclear. This study aims to investigate the functions of TSPX in NSCLC by identifying its potential downstream targets and their correlation with clinical outcomes. Methods: RNA-seq transcriptome and pathway enrichment analyses were conducted on the TSPX-overexpressing NSCLC cell lines, A549 and SK-MES-1, originating from lung adenocarcinoma and squamous cell carcinoma subtypes, respectively. In addition, comparative analyses were performed using the data from clinical NSCLC specimens (515 lung adenocarcinomas and 502 lung squamous cell carcinomas) in the Cancer Genome Atlas (TCGA) database. Results: TCGA data analysis revealed significant downregulation of TSPX in NSCLC tumors compared to adjacent non-cancerous tissues (Wilcoxon matched pairs signed rank test p < 0.0001). Notably, the TSPX expression levels were inversely correlated with the cancer stage, and higher TSPX levels were associated with better clinical outcomes and improved survival in lung adenocarcinoma, a subtype of NSCLC (median survival extended by 510 days; log-rank test, p = 0.0025). RNA-seq analysis of the TSPX-overexpressing NSCLC cell lines revealed that TSPX regulates various genes involved in the cancer-related signaling pathways and cell viability, consistent with the suppression of cell proliferation in cell culture assays. Notably, various potential downstream targets of TSPX that correlated with patient survival (log-rank test, p = 0.016 to 4.3 × 10-10) were identified, including EGFR pathway-related genes AREG, EREG, FOSL1, and MYC, which were downregulated. Conclusions: Our results suggest that TSPX plays a critical role in suppressing NSCLC progression by downregulating pro-oncogenic genes, particularly those in the EGFR signaling pathway, and upregulating the tumor suppressors, especially in lung adenocarcinoma. These findings suggest that TSPX is a potential biomarker and therapeutic target for NSCLC management.
Collapse
Affiliation(s)
| | | | - Yun-Fai Chris Lau
- Division of Cell and Developmental Genetics, Department of Medicine, Veterans Affairs Medical Center, and the Institute for Human Genetics, University of California, San Francisco, CA 94121, USA; (T.K.); (H.K.)
| |
Collapse
|
3
|
Rivera-Soto R, Henley B, Pulgar MA, Lehman SL, Gupta H, Perez-Vale KZ, Weindorfer M, Vijayaraghavan S, Yao TWS, Laquerre S, Moores SL. Amivantamab efficacy in wild-type EGFR NSCLC tumors correlates with levels of ligand expression. NPJ Precis Oncol 2024; 8:192. [PMID: 39242834 PMCID: PMC11379809 DOI: 10.1038/s41698-024-00682-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024] Open
Abstract
Amivantamab is an FDA-approved bispecific antibody targeting EGF and Met receptors, with clinical activity against EGFR mutant non-small cell lung cancer (NSCLC). Amivantamab efficacy has been demonstrated to be linked to three mechanisms of action (MOA): immune cell-mediated killing, receptor internalization and degradation, and inhibition of ligand binding to both EGFR and Met receptors. Among the EGFR ligands, we demonstrated that amphiregulin (AREG) is highly expressed in wild-type (WT) EGFR (EGFRWT) NSCLC primary tumors, with significantly higher circulating protein levels in NSCLC patients than in healthy volunteers. Treatment of AREG-stimulated EGFRWT cells/tumors with amivantamab or with an AREG-targeting antibody inhibited ligand-induced signaling and cell/tumor proliferation/growth. Across 11 EGFRWT NSCLC patient-derived xenograft models, amivantamab efficacy correlated with AREG RNA levels. Interestingly, in these models, amivantamab anti-tumor activity was independent of Fc engagement with immune cells, suggesting that, in this context, the ligand-blocking function is sufficient for amivantamab maximal efficacy. Finally, we demonstrated that in lung adenocarcinoma patients, high expression of AREG and EGFR mutations were mutually exclusive. In conclusion, these data 1) highlight EGFR ligand AREG as a driver of tumor growth in some EGFRWT NSCLC models, 2) illustrate the preclinical efficacy of amivantamab in ligand-driven EGFRWT NSCLC, and 3) identify AREG as a potential predictive biomarker for amivantamab activity in EGFRWT NSCLC.
Collapse
|
4
|
Bouchareb E, Dallel S, De Haze A, Damon-Soubeyrand C, Renaud Y, Baabdaty E, Vialat M, Fabre J, Pouchin P, De Joussineau C, Degoul F, Sanmukh S, Gendronneau J, Sanchez P, Gonthier-Gueret C, Trousson A, Morel L, Lobaccaro JM, Kocer A, Baron S. Liver X Receptors Enhance Epithelial to Mesenchymal Transition in Metastatic Prostate Cancer Cells. Cancers (Basel) 2024; 16:2776. [PMID: 39199549 PMCID: PMC11353074 DOI: 10.3390/cancers16162776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/12/2024] [Accepted: 07/29/2024] [Indexed: 09/01/2024] Open
Abstract
Prostate cancer (PCa) is one of the most common cancers in men. Metastasis is the leading cause of death in prostate cancer patients. One of the crucial processes involved in metastatic spread is the "epithelial-mesenchymal transition" (EMT), which allows cells to acquire the ability to invade distant organs. Liver X Receptors (LXRs) are nuclear receptors that have been demonstrated to regulate EMT in various cancers, including hepatic cancer. Our study reveals that the LXR pathway can control pro-invasive cell capacities through EMT in prostate cancer, employing ex vivo and in vivo approaches. We characterized the EMT status of the commonly used LNCaP, DU145, and PC3 prostate cancer cell lines through molecular and immunohistochemistry experiments. The impact of LXR activation on EMT function was also assessed by analyzing the migration and invasion of these cell lines in the absence or presence of an LXR agonist. Using in vivo experiments involving NSG-immunodeficient mice xenografted with PC3-GFP cells, we were able to study metastatic spread and the effect of LXRs on this process. LXR activation led to an increase in the accumulation of Vimentin and Amphiregulin in PC3. Furthermore, the migration of PC3 cells significantly increased in the presence of the LXR agonist, correlating with an upregulation of EMT. Interestingly, LXR activation significantly increased metastatic spread in an NSG mouse model. Overall, this work identifies a promoting effect of LXRs on EMT in the PC3 model of advanced prostate cancer.
Collapse
Affiliation(s)
- Erwan Bouchareb
- iGReD, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France; (E.B.); (S.D.); (C.D.-S.); (Y.R.); (E.B.); (M.V.); (J.F.); (P.P.); (C.D.J.); (F.D.); (S.S.); (J.G.); (P.S.); (C.G.-G.); (A.T.); (L.M.); (J.M.L.)
- Groupe Cancer Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France
| | - Sarah Dallel
- iGReD, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France; (E.B.); (S.D.); (C.D.-S.); (Y.R.); (E.B.); (M.V.); (J.F.); (P.P.); (C.D.J.); (F.D.); (S.S.); (J.G.); (P.S.); (C.G.-G.); (A.T.); (L.M.); (J.M.L.)
- Groupe Cancer Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France
- Service d’Endocrinologie, Diabétologie et Maladies Métaboliques, CHU Clermont Ferrand, Hôpital Gabriel Montpied, 63003 Clermont-Ferrand, France
| | - Angélique De Haze
- iGReD, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France; (E.B.); (S.D.); (C.D.-S.); (Y.R.); (E.B.); (M.V.); (J.F.); (P.P.); (C.D.J.); (F.D.); (S.S.); (J.G.); (P.S.); (C.G.-G.); (A.T.); (L.M.); (J.M.L.)
- Groupe Cancer Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France
| | - Christelle Damon-Soubeyrand
- iGReD, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France; (E.B.); (S.D.); (C.D.-S.); (Y.R.); (E.B.); (M.V.); (J.F.); (P.P.); (C.D.J.); (F.D.); (S.S.); (J.G.); (P.S.); (C.G.-G.); (A.T.); (L.M.); (J.M.L.)
- Groupe Cancer Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France
| | - Yoan Renaud
- iGReD, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France; (E.B.); (S.D.); (C.D.-S.); (Y.R.); (E.B.); (M.V.); (J.F.); (P.P.); (C.D.J.); (F.D.); (S.S.); (J.G.); (P.S.); (C.G.-G.); (A.T.); (L.M.); (J.M.L.)
- Groupe Cancer Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France
| | - Elissa Baabdaty
- iGReD, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France; (E.B.); (S.D.); (C.D.-S.); (Y.R.); (E.B.); (M.V.); (J.F.); (P.P.); (C.D.J.); (F.D.); (S.S.); (J.G.); (P.S.); (C.G.-G.); (A.T.); (L.M.); (J.M.L.)
- Groupe Cancer Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France
| | - Marine Vialat
- iGReD, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France; (E.B.); (S.D.); (C.D.-S.); (Y.R.); (E.B.); (M.V.); (J.F.); (P.P.); (C.D.J.); (F.D.); (S.S.); (J.G.); (P.S.); (C.G.-G.); (A.T.); (L.M.); (J.M.L.)
- Groupe Cancer Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France
| | - Julien Fabre
- iGReD, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France; (E.B.); (S.D.); (C.D.-S.); (Y.R.); (E.B.); (M.V.); (J.F.); (P.P.); (C.D.J.); (F.D.); (S.S.); (J.G.); (P.S.); (C.G.-G.); (A.T.); (L.M.); (J.M.L.)
- Groupe Cancer Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France
| | - Pierre Pouchin
- iGReD, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France; (E.B.); (S.D.); (C.D.-S.); (Y.R.); (E.B.); (M.V.); (J.F.); (P.P.); (C.D.J.); (F.D.); (S.S.); (J.G.); (P.S.); (C.G.-G.); (A.T.); (L.M.); (J.M.L.)
- Groupe Cancer Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France
| | - Cyrille De Joussineau
- iGReD, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France; (E.B.); (S.D.); (C.D.-S.); (Y.R.); (E.B.); (M.V.); (J.F.); (P.P.); (C.D.J.); (F.D.); (S.S.); (J.G.); (P.S.); (C.G.-G.); (A.T.); (L.M.); (J.M.L.)
- Groupe Cancer Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France
| | - Françoise Degoul
- iGReD, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France; (E.B.); (S.D.); (C.D.-S.); (Y.R.); (E.B.); (M.V.); (J.F.); (P.P.); (C.D.J.); (F.D.); (S.S.); (J.G.); (P.S.); (C.G.-G.); (A.T.); (L.M.); (J.M.L.)
- Groupe Cancer Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France
| | - Swapnil Sanmukh
- iGReD, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France; (E.B.); (S.D.); (C.D.-S.); (Y.R.); (E.B.); (M.V.); (J.F.); (P.P.); (C.D.J.); (F.D.); (S.S.); (J.G.); (P.S.); (C.G.-G.); (A.T.); (L.M.); (J.M.L.)
- Groupe Cancer Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France
| | - Juliette Gendronneau
- iGReD, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France; (E.B.); (S.D.); (C.D.-S.); (Y.R.); (E.B.); (M.V.); (J.F.); (P.P.); (C.D.J.); (F.D.); (S.S.); (J.G.); (P.S.); (C.G.-G.); (A.T.); (L.M.); (J.M.L.)
- Groupe Cancer Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France
| | - Phelipe Sanchez
- iGReD, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France; (E.B.); (S.D.); (C.D.-S.); (Y.R.); (E.B.); (M.V.); (J.F.); (P.P.); (C.D.J.); (F.D.); (S.S.); (J.G.); (P.S.); (C.G.-G.); (A.T.); (L.M.); (J.M.L.)
- Groupe Cancer Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France
| | - Céline Gonthier-Gueret
- iGReD, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France; (E.B.); (S.D.); (C.D.-S.); (Y.R.); (E.B.); (M.V.); (J.F.); (P.P.); (C.D.J.); (F.D.); (S.S.); (J.G.); (P.S.); (C.G.-G.); (A.T.); (L.M.); (J.M.L.)
- Groupe Cancer Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France
| | - Amalia Trousson
- iGReD, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France; (E.B.); (S.D.); (C.D.-S.); (Y.R.); (E.B.); (M.V.); (J.F.); (P.P.); (C.D.J.); (F.D.); (S.S.); (J.G.); (P.S.); (C.G.-G.); (A.T.); (L.M.); (J.M.L.)
- Groupe Cancer Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France
| | - Laurent Morel
- iGReD, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France; (E.B.); (S.D.); (C.D.-S.); (Y.R.); (E.B.); (M.V.); (J.F.); (P.P.); (C.D.J.); (F.D.); (S.S.); (J.G.); (P.S.); (C.G.-G.); (A.T.); (L.M.); (J.M.L.)
- Groupe Cancer Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France
| | - Jean Marc Lobaccaro
- iGReD, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France; (E.B.); (S.D.); (C.D.-S.); (Y.R.); (E.B.); (M.V.); (J.F.); (P.P.); (C.D.J.); (F.D.); (S.S.); (J.G.); (P.S.); (C.G.-G.); (A.T.); (L.M.); (J.M.L.)
- Groupe Cancer Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France
| | - Ayhan Kocer
- iGReD, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France; (E.B.); (S.D.); (C.D.-S.); (Y.R.); (E.B.); (M.V.); (J.F.); (P.P.); (C.D.J.); (F.D.); (S.S.); (J.G.); (P.S.); (C.G.-G.); (A.T.); (L.M.); (J.M.L.)
- Groupe Cancer Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France
| | - Silvère Baron
- iGReD, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France; (E.B.); (S.D.); (C.D.-S.); (Y.R.); (E.B.); (M.V.); (J.F.); (P.P.); (C.D.J.); (F.D.); (S.S.); (J.G.); (P.S.); (C.G.-G.); (A.T.); (L.M.); (J.M.L.)
- Groupe Cancer Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France
| |
Collapse
|
5
|
Qi YC, Bai H, Hu SL, Li SJ, Li QZ. Coregulatory effects of multiple histone modifications in key ferroptosis-related genes for lung adenocarcinoma. Epigenomics 2024; 16:609-633. [PMID: 38511238 PMCID: PMC11160448 DOI: 10.2217/epi-2023-0403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 02/22/2024] [Indexed: 03/22/2024] Open
Abstract
Aim: The present study was designed to investigate the coregulatory effects of multiple histone modifications (HMs) on gene expression in lung adenocarcinoma (LUAD). Materials & methods: Ten histones for LUAD were analyzed using ChIP-seq and RNA-seq data. An innovative computational method is proposed to quantify the coregulatory effects of multiple HMs on gene expression to identify strong coregulatory genes and regions. This method was applied to explore the coregulatory mechanisms of key ferroptosis-related genes in LUAD. Results: Nine strong coregulatory regions were identified for six ferroptosis-related genes with diverse coregulatory patterns (CA9, PGD, CDKN2A, PML, OTUB1 and NFE2L2). Conclusion: This quantitative method could be used to identify important HM coregulatory genes and regions that may be epigenetic regulatory targets in cancers.
Collapse
Affiliation(s)
- Ye-Chen Qi
- Laboratory of Theoretical Biophysics, School of Physical Science & Technology, Inner Mongolia University, Hohhot, 010021, China
| | - Hui Bai
- Laboratory of Theoretical Biophysics, School of Physical Science & Technology, Inner Mongolia University, Hohhot, 010021, China
| | - Si-Le Hu
- Laboratory of Theoretical Biophysics, School of Physical Science & Technology, Inner Mongolia University, Hohhot, 010021, China
| | - Shu-Juan Li
- Laboratory of Theoretical Biophysics, School of Physical Science & Technology, Inner Mongolia University, Hohhot, 010021, China
| | - Qian-Zhong Li
- Laboratory of Theoretical Biophysics, School of Physical Science & Technology, Inner Mongolia University, Hohhot, 010021, China
- The State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010070, China
| |
Collapse
|
6
|
Shaban N, Raevskiy M, Zakharova G, Shipunova V, Deyev S, Suntsova M, Sorokin M, Buzdin A, Kamashev D. Human Blood Serum Counteracts EGFR/HER2-Targeted Drug Lapatinib Impact on Squamous Carcinoma SK-BR-3 Cell Growth and Gene Expression. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:487-506. [PMID: 38648768 DOI: 10.1134/s000629792403009x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/17/2024] [Accepted: 02/20/2024] [Indexed: 04/25/2024]
Abstract
Lapatinib is a targeted therapeutic inhibiting HER2 and EGFR proteins. It is used for the therapy of HER2-positive breast cancer, although not all the patients respond to it. Using human blood serum samples from 14 female donors (separately taken or combined), we found that human blood serum dramatically abolishes the lapatinib-mediated inhibition of growth of the human breast squamous carcinoma SK-BR-3 cell line. This antagonism between lapatinib and human serum was associated with cancelation of the drug induced G1/S cell cycle transition arrest. RNA sequencing revealed 308 differentially expressed genes in the presence of lapatinib. Remarkably, when combined with lapatinib, human blood serum showed the capacity of restoring both the rate of cell growth, and the expression of 96.1% of the genes expression of which were altered by the lapatinib treatment alone. Co-administration of EGF with lapatinib also restores the cell growth and cancels alteration of expression of 95.8% of the genes specific to lapatinib treatment of SK-BR-3 cells. Differential gene expression analysis also showed that in the presence of human serum or EGF, lapatinib was unable to inhibit the Toll-Like Receptor signaling pathway and alter expression of genes linked to the Gene Ontology term of Focal adhesion.
Collapse
Affiliation(s)
- Nina Shaban
- Moscow Institute of Physics and Technology, Dolgoprudny, 141701, Russia.
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia
- The National Medical Research Center for Endocrinology, Moscow, 117036, Russia
| | - Mikhail Raevskiy
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University, Moscow, 119991, Russia.
| | - Galina Zakharova
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University, Moscow, 119991, Russia.
| | - Victoria Shipunova
- Moscow Institute of Physics and Technology, Dolgoprudny, 141701, Russia.
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia
| | - Sergey Deyev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia.
- "Biomarker" Research Laboratory, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, 420008, Russia
| | - Maria Suntsova
- The National Medical Research Center for Endocrinology, Moscow, 117036, Russia.
- Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - Maksim Sorokin
- Moscow Institute of Physics and Technology, Dolgoprudny, 141701, Russia.
- Sechenov First Moscow State Medical University, Moscow, 119991, Russia
- PathoBiology Group, European Organization for Research and Treatment of Cancer (EORTC), Brussels, 1200, Belgium
| | - Anton Buzdin
- Moscow Institute of Physics and Technology, Dolgoprudny, 141701, Russia.
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia
- The National Medical Research Center for Endocrinology, Moscow, 117036, Russia
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - Dmitri Kamashev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia.
- The National Medical Research Center for Endocrinology, Moscow, 117036, Russia
- Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| |
Collapse
|
7
|
Hsu CY, Faisal Mutee A, Porras S, Pineda I, Ahmed Mustafa M, J Saadh M, Adil M, H A Z. Amphiregulin in infectious diseases: Role, mechanism, and potential therapeutic targets. Microb Pathog 2024; 186:106463. [PMID: 38036111 DOI: 10.1016/j.micpath.2023.106463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/02/2023]
Abstract
Amphiregulin (AREG) serves as a ligand for the epidermal growth factor receptor (EGFR) and is involved in vital biological functions, including inflammatory responses, tissue regeneration, and immune system function. Upon interaction with the EGFR, AREG initiates a series of signaling cascades necessary for several physiological activities, such as metabolism, cell cycle regulation, and cellular proliferation. Recent findings have provided evidence for the substantial role of AREG in maintaining the equilibrium of homeostasis in damaged tissues and preserving epithelial cell structure in the context of viral infections affecting the lungs. The development of resistance to influenza virus infection depends on the presence of type 1 cytokine responses. Following the eradication of the pathogen, the lungs are subsequently colonized by several cell types that are linked with type 2 immune responses. These cells contribute to the process of repairing and resolving the tissue injury and inflammation caused by infections. Following influenza infection, the activation of AREG promotes the regeneration of bronchial epithelial cells, enhancing the tissue's structural integrity and increasing the survival rate of infected mice. In the same manner, mice afflicted with influenza experience rapid mortality due to a subsequent bacterial infection in the pulmonary region when both bacterial and viral infections manifest concurrently inside the same host. The involvement of AREG in bacterial infections has been demonstrated. The gene AREG experiences increased transcriptional activity inside host cells in response to bacterial infections caused by pathogens such as Escherichia coli and Neisseria gonorrhea. In addition, AREG has been extensively studied as a mitogenic stimulus in epithelial cell layers. Consequently, it is regarded as a prospective contender that might potentially contribute to the observed epithelial cell reactions in helminth infection. Consistent with this finding, mice that lack the AREG gene exhibit a delay in the eradication of the intestinal parasite Trichuris muris. The observed delay is associated with a reduction in the proliferation rate of colonic epithelial cells compared to the infected animals in the control group. The aforementioned findings indicate that AREG plays a pivotal role in facilitating the activation of defensive mechanisms inside the epithelial cells of the intestinal tissue. The precise cellular sources of AREG in this specific context have not yet been determined. However, it is evident that the increased proliferation of the epithelial cell layer in infected mice is reliant on CD4+ T cells. The significance of this finding lies in its demonstration of the crucial role played by the interaction between immunological and epithelial cells in regulating the AREG-EGFR pathway. Additional research is necessary to delve into the cellular origins and signaling mechanisms that govern the synthesis of AREG and its tissue-protective properties, independent of infection.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan City 71710, Taiwan
| | | | - Sandra Porras
- Facultad de Mecánica, Escuela Superior Politécnica de Chimborazo (ESPOCH), Panamericana Sur km 1 1/2, Riobamba, 060155, Ecuador
| | - Indira Pineda
- Facultad de Salud Pública, Escuela Superior Politécnica de Chimborazo (ESPOCH), Panamericana Sur km 1 1/2, Riobamba, 060155, Ecuador
| | - Mohammed Ahmed Mustafa
- Department of Medical Laboratory Technology, Imam Jaafar AL-Sadiq University, Iraq; Department of Pathological Analyzes, College of Applied Sciences, University of Samarra, Iraq.
| | - Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan; Applied Science Research Center, Applied Science Private University, Amman, Jordan
| | | | - Zainab H A
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| |
Collapse
|
8
|
Kamashev D, Shaban N, Lebedev T, Prassolov V, Suntsova M, Raevskiy M, Gaifullin N, Sekacheva M, Garazha A, Poddubskaya E, Sorokin M, Buzdin A. Human Blood Serum Can Diminish EGFR-Targeted Inhibition of Squamous Carcinoma Cell Growth through Reactivation of MAPK and EGFR Pathways. Cells 2023; 12:2022. [PMID: 37626832 PMCID: PMC10453612 DOI: 10.3390/cells12162022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Regardless of the presence or absence of specific diagnostic mutations, many cancer patients fail to respond to EGFR-targeted therapeutics, and a personalized approach is needed to identify putative (non)responders. We found previously that human peripheral blood and EGF can modulate the activities of EGFR-specific drugs on inhibiting clonogenity in model EGFR-positive A431 squamous carcinoma cells. Here, we report that human serum can dramatically abolish the cell growth rate inhibition by EGFR-specific drugs cetuximab and erlotinib. We show that this phenomenon is linked with derepression of drug-induced G1S cell cycle transition arrest. Furthermore, A431 cell growth inhibition by cetuximab, erlotinib, and EGF correlates with a decreased activity of ERK1/2 proteins. In turn, the EGF- and human serum-mediated rescue of drug-treated A431 cells restores ERK1/2 activity in functional tests. RNA sequencing revealed 1271 and 1566 differentially expressed genes (DEGs) in the presence of cetuximab and erlotinib, respectively. Erlotinib- and cetuximab-specific DEGs significantly overlapped. Interestingly, the expression of 100% and 75% of these DEGs restores to the no-drug level when EGF or a mixed human serum sample, respectively, is added along with cetuximab. In the case of erlotinib, EGF and human serum restore the expression of 39% and 83% of DEGs, respectively. We further assessed differential molecular pathway activation levels and propose that EGF/human serum-mediated A431 resistance to EGFR drugs can be largely explained by reactivation of the MAPK signaling cascade.
Collapse
Affiliation(s)
- Dmitri Kamashev
- I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia;
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia; (N.S.); (A.B.)
- Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia;
| | - Nina Shaban
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia; (N.S.); (A.B.)
- Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia;
| | - Timofey Lebedev
- Engelhardt Institute of Molecular Biology, Moscow 119991, Russia; (T.L.); (V.P.)
| | - Vladimir Prassolov
- Engelhardt Institute of Molecular Biology, Moscow 119991, Russia; (T.L.); (V.P.)
| | - Maria Suntsova
- Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia;
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (M.R.); (E.P.)
| | - Mikhail Raevskiy
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (M.R.); (E.P.)
| | - Nurshat Gaifullin
- Department of Pathology, Faculty of Medicine, Lomonosov Moscow State University, Moscow 119992, Russia;
| | - Marina Sekacheva
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (M.R.); (E.P.)
| | - Andrew Garazha
- Oncobox Ltd., Moscow 121205, Russia;
- Omicsway Corp., Walnut, CA 91789, USA
| | - Elena Poddubskaya
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (M.R.); (E.P.)
| | - Maksim Sorokin
- I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia;
- Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia;
- PathoBiology Group, European Organization for Research and Treatment of Cancer (EORTC), 1200 Brussels, Belgium
| | - Anton Buzdin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia; (N.S.); (A.B.)
- Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia;
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (M.R.); (E.P.)
- PathoBiology Group, European Organization for Research and Treatment of Cancer (EORTC), 1200 Brussels, Belgium
| |
Collapse
|
9
|
Nectin-4 as Blood-Based Biomarker Enables Detection of Early Ovarian Cancer Stages. Cancers (Basel) 2022; 14:cancers14235867. [PMID: 36497350 PMCID: PMC9739558 DOI: 10.3390/cancers14235867] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 11/30/2022] Open
Abstract
Ovarian cancer is the third most common gynecological malignancy and has the highest mortality rate. Owing to unspecific symptoms, ovarian cancer is not detected until an advanced stage in about two-thirds of cases. Therefore, it is crucial to establish reliable biomarkers for the early stages to improve the patients’ prognosis. The aim of this study is to investigate whether the ADAM17 substrates Nectin-4, Heparin-binding EGF-like growth factor (HB-EGF) and Amphiregulin (AREG) could function as potential tumor markers for ovarian cancer. In this study a set of 231 sera consisting of 131 ovarian cancer patients and 100 healthy age-matched controls were assembled. Nectin-4, HB-EGF and AREG levels of preoperatively collected sera were determined by enzyme-linked immunosorbent assay (ELISA). Our analysis revealed that Nectin-4 and HB-EGF were significantly increased compared to the age-matched control group (p < 0.0001, p = 0.016). Strikingly, significantly higher Nectin-4 and HB-EGF levels were detected in early-stage FIGO I/II (p <0.001; p = 0.025) compared to healthy controls. Eighty-four percent (16/19) of patients with low Ca-125 levels showed increased Nectin-4 levels. Our study proposes Nectin-4 and HB-EGF as promising blood-based biomarkers for the detection of early stages of ovarian cancer patients that would not have been detected by Ca-125.
Collapse
|
10
|
Maille E, Levallet J, Dubois F, Antoine M, Danel C, Creveuil C, Mazieres J, Margery J, Greillier L, Gounant V, Moro‐Sibilot D, Molinier O, Léna H, Monnet I, Bergot E, Langlais A, Morin F, Scherpereel A, Zalcman G, Levallet G. A Defect of Amphiregulin Release Predicted Longer Survival Independently of YAP Expression in Patients with Pleural Mesothelioma in the IFCT-0701 MAPS Phase 3 Trial. Int J Cancer 2022; 150:1889-1904. [PMID: 35262190 PMCID: PMC9545369 DOI: 10.1002/ijc.33997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 02/12/2022] [Accepted: 02/22/2022] [Indexed: 11/07/2022]
Abstract
The Hippo pathway effector YAP is dysregulated in malignant pleural mesothelioma (MPM). YAP's target genes include the secreted growth factor amphiregulin (AREG), which is overexpressed in a wide range of epithelial cancers and plays an elusive role in MPM. We assayed the expression of YAP and AREG in MPM pathology samples and that of AREG additionally in plasma samples of patients from the randomized phase 3 IFCT‐0701 Mesothelioma Avastin Cisplatin Pemetrexed Study (MAPS) using immunohistochemistry and ELISA assays, respectively. MPM patients frequently presented high levels of tumor AREG (64.3%), a high cytosolic AREG expression being predictive of a better prognosis with longer median overall and progression‐free survival. Surprisingly, tumor AREG cytosolic expression was not correlated with secreted plasma AREG. By investigating the AREG metabolism and function in MPM cell lines H2452, H2052, MSTO‐211H and H28, in comparison with the T47D ER+ breast cancer cell line used as a positive control, we confirm that AREG is important for cell invasion, growth without anchorage, proliferation and apoptosis in mesothelioma cells. Yet, most of these MPM cell lines failed to correctly execute AREG posttranslational processing by metalloprotease ADAM17/tumor necrosis factor‐alpha‐converting enzyme (TACE) and extracell secretion. The favorable prognostic value of high cytosolic AREG expression in MPM patients could therefore be sustained by default AREG posttranslational processing and release. Thus, the determination of mesothelioma cell AREG content could be further investigated as a prognostic marker for MPM patients and used as a stratification factor in future clinical trials.
Collapse
Affiliation(s)
- Elodie Maille
- Normandie Univ, UNICAEN, CNRS, ISTCT‐UMR6030CaenGIP CYCERONFrance
| | - Jérôme Levallet
- Normandie Univ, UNICAEN, CNRS, ISTCT‐UMR6030CaenGIP CYCERONFrance
| | - Fatéméh Dubois
- Normandie Univ, UNICAEN, CNRS, ISTCT‐UMR6030CaenGIP CYCERONFrance
- Department of PathologyCHU de CaenCaenFrance
| | | | - Claire Danel
- Department of PathologyHôpital Bichat‐Claude Bernard, AP‐HP, Université Paris‐DiderotParisFrance
| | - Christian Creveuil
- Normandie Univ, UNICAEN, CNRS, ISTCT‐UMR6030CaenGIP CYCERONFrance
- Biomedical Research UnitCHU de CaenCaenFrance
| | - Julien Mazieres
- Department of PulmonologyHôpital Larrey, CHU de ToulouseToulouseFrance
| | - Jacques Margery
- Department of Medical OncologyInstitut Gustave RoussyVillejuifFrance
| | - Laurent Greillier
- Department of Multidisciplinary Oncology and Therapeutic InnovationsAssistance Publique Hôpitaux de Marseille, Université Aix‐Marseille UM015MarseilleFrance
| | - Valérie Gounant
- Department of PulmonologyHôpital Tenon, AP‐HPParisFrance
- Department of Thoracic Oncology & CIC 1425University Hospital Bichat‐Claude Bernard, AP‐HP, Université de ParisParisFrance
| | - Denis Moro‐Sibilot
- Pôle Thorax et Vaisseaux, University Hospital of Grenoble‐AlpesLa TroncheFrance
| | - Olivier Molinier
- Department of PulmonologyCentre Hospitalier Le MansLe MansFrance
| | - Hervé Léna
- Department of PulmonologyUniversity Hospital PontchaillouRennesFrance
| | - Isabelle Monnet
- Department of PulmonologyCentre Hospitalier Intercommunal de CréteilCréteilFrance
| | - Emmanuel Bergot
- Normandie Univ, UNICAEN, CNRS, ISTCT‐UMR6030CaenGIP CYCERONFrance
- Department of Pulmonology and Thoracic OncologyUniversity Hospital of CaenCaenFrance
| | | | - Franck Morin
- Intergroupe Francophone de Cancérologie Thoracique (IFCT)ParisFrance
| | - Arnaud Scherpereel
- Department of Pulmonary and Thoracic OncologyCentre Hospitalier Universitaire Lille, University of Lille, U1019 INSERM, Center of Infection and Immunity of LilleLilleFrance
| | - Gérard Zalcman
- Department of Thoracic Oncology & CIC 1425University Hospital Bichat‐Claude Bernard, AP‐HP, Université de ParisParisFrance
- U830 INSERM, “Cancer, Hétérogénéité, Instabilité et Plasticité” Centre de Recherche, Institut CurieParisFrance
| | - Guénaëlle Levallet
- Normandie Univ, UNICAEN, CNRS, ISTCT‐UMR6030CaenGIP CYCERONFrance
- Department of PathologyCHU de CaenCaenFrance
| |
Collapse
|
11
|
Singh SS, Chauhan SB, Kumar A, Kumar S, Engwerda CR, Sundar S, Kumar R. Amphiregulin in cellular physiology, health, and disease: Potential use as a biomarker and therapeutic target. J Cell Physiol 2021; 237:1143-1156. [PMID: 34698381 DOI: 10.1002/jcp.30615] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/02/2021] [Accepted: 10/06/2021] [Indexed: 12/18/2022]
Abstract
Amphiregulin (AREG), which acts as one of the ligands for epidermal receptor growth factor receptor (EGFR), plays a crucial role in tissue repair, inflammation, and immunity. AREG is synthesized as membrane-anchored pre-protein, and is excreted after proteolytic cleavage, and serves as an autocrine or paracrine factor. After engagement with the EGFR, AREG triggers a cascade of signaling events required for many cellular physiological processes including metabolism, cell cycle, and proliferation. Under different inflammatory and pathogenic conditions, AREG is expressed by various activated immune cells that orchestrate both tolerance and host resistance mechanisms. Several factors including xenobiotics, cytokines, and inflammatory lipids have been shown to trigger AREG gene expression and release. In this review, we discuss the structure, function, and regulation of AREG, its role in tissue repair, inflammation, and homeostasis as well as the potential of AREG as a biomarker and therapeutic target.
Collapse
Affiliation(s)
- Siddharth S Singh
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Shashi B Chauhan
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Awnish Kumar
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Shashi Kumar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Christian R Engwerda
- Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Shyam Sundar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Rajiv Kumar
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
12
|
Kim C, Ceresa BP. Using In Vitro Models to Dissect the Molecular Effects of Arsenic Exposure in Skin and Lung Cell Lines. APPLIED IN VITRO TOXICOLOGY 2021; 7:71-88. [DOI: 10.1089/aivt.2020.0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Affiliation(s)
- Christine Kim
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA
| | - Brian P. Ceresa
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
13
|
Perez Verdaguer M, Zhang T, Paulo JA, Gygi S, Watkins SC, Sakurai H, Sorkin A. Mechanism of p38 MAPK-induced EGFR endocytosis and its crosstalk with ligand-induced pathways. J Cell Biol 2021; 220:212181. [PMID: 34032851 PMCID: PMC8155814 DOI: 10.1083/jcb.202102005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/21/2021] [Accepted: 04/27/2021] [Indexed: 11/22/2022] Open
Abstract
Ligand binding triggers clathrin-mediated and, at high ligand concentrations, clathrin-independent endocytosis of EGFR. Clathrin-mediated endocytosis (CME) of EGFR is also induced by stimuli activating p38 MAPK. Mechanisms of both ligand- and p38-induced endocytosis are not fully understood, and how these pathways intermingle when concurrently activated remains unknown. Here we dissect the mechanisms of p38-induced endocytosis using a pH-sensitive model of endogenous EGFR, which is extracellularly tagged with a fluorogen-activating protein, and propose a unifying model of the crosstalk between multiple EGFR endocytosis pathways. We found that a new locus of p38-dependent phosphorylation in EGFR is essential for the receptor dileucine motif interaction with the σ2 subunit of clathrin adaptor AP2 and concomitant receptor internalization. p38-dependent endocytosis of EGFR induced by cytokines was additive to CME induced by picomolar EGF concentrations but constrained to internalizing ligand-free EGFRs due to Grb2 recruitment by ligand-activated EGFRs. Nanomolar EGF concentrations rerouted EGFR from CME to clathrin-independent endocytosis, primarily by diminishing p38-dependent endocytosis.
Collapse
Affiliation(s)
| | - Tian Zhang
- Department of Cell Biology, Harvard University Medical School, Boston, MA
| | - Joao A Paulo
- Department of Cell Biology, Harvard University Medical School, Boston, MA
| | - Steven Gygi
- Department of Cell Biology, Harvard University Medical School, Boston, MA
| | - Simon C Watkins
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Hiroaki Sakurai
- Department of Cancer Cell Biology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Alexander Sorkin
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| |
Collapse
|
14
|
Epiregulin confers EGFR-TKI resistance via EGFR/ErbB2 heterodimer in non-small cell lung cancer. Oncogene 2021; 40:2596-2609. [PMID: 33750895 DOI: 10.1038/s41388-021-01734-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 02/17/2021] [Accepted: 02/24/2021] [Indexed: 11/08/2022]
Abstract
Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) are effective against non-small cell lung cancer (NSCLC) with EGFR-activating mutations. The mechanisms underlying EGFR-TKI resistance are not fully understood. This study aimed to analyze the effects of seven EGFR ligands on EGFR-TKI sensitivity in NSCLC cells and patients. Cells with EGFR E746-A750del mutation were treated with recombinant EGFR ligands, and analyzed for cell viability, proliferation, and apoptosis. shRNA knockdown of endogenous Epiregulin (EREG) or overexpression of exogenous EREG and immunofluorescence experiments were carried out. Public gene expression datasets were used for tumor microenvironment and clinical assessment. Among the EGFR ligands, EREG significantly diminished cellular sensitivity to TKIs and was associated with decreased response to erlotinib in NSCLC patients. EREG induced AKT phosphorylation and attenuated TKI-induced cellular apoptosis in an ErbB2-dependent manner. EREG induced the formation of the EGFR/ErbB2 heterodimer regardless of gefitinib treatment. However, overexpression or knockdown of EREG in cancer cells had little impact on TKI sensitivity. Single-cell RNA sequencing data revealed that EREG was predominantly expressed in macrophages in the tumor microenvironment. In addition, EREG-enriched macrophage conditional medium induced EGFR-TKI resistance. These findings shed new light on the mechanism underlying EGFR-TKI resistance, and suggest macrophage-produced intratumoral EREG as a novel regulator and biomarker for EGFR-TKI therapy in NSCLC.
Collapse
|
15
|
Urbanavičiūtė R, Skauminas K, Skiriutė D. The Evaluation of AREG, MMP-2, CHI3L1, GFAP, and OPN Serum Combined Value in Astrocytic Glioma Patients' Diagnosis and Prognosis. Brain Sci 2020; 10:brainsci10110872. [PMID: 33227903 PMCID: PMC7699177 DOI: 10.3390/brainsci10110872] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 02/06/2023] Open
Abstract
Gliomas account for approximately 70% of primary brain tumors in adults. Of all gliomas, grade IV astrocytoma, also called glioblastoma, has the poorest overall survival, with <5% of patients surviving five years after diagnosis. Due to the aggressiveness, lethal nature, and impaired surgical accessibility of the tumor, early diagnosis of the tumor and, in addition, prediction of the patient's survival time are important. We hypothesize that combining the protein level values of highly recognizable glioblastoma serum biomarkers could help to achieve higher specificity and sensitivity in predicting glioma patient outcome as compared to single markers. The aim of this study was to select the most promising astrocytoma patient overall survival prediction variables from five secretory proteins-glial fibrillary acidic protein (GFAP), matrix metalloproteinase-2 (MMP-2), chitinase 3-like 1 (CHI3L1), osteopontin (OPN), and amphiregulin (AREG)-combining them with routinely used tumor markers to create a Patient Survival Score calculation tool. The study group consisted of 70 astrocytoma patients and 31 healthy controls. We demonstrated that integrating serum CHI3L1 and OPN protein level values and tumor isocitrate dehydrogenase 1 IDH1 mutational status into one parameter could predict low-grade astrocytoma patients' two-year survival with 93.8% accuracy.
Collapse
|
16
|
Prognostic impact of serum levels of EGFR and EGFR ligands in early-stage breast cancer. Sci Rep 2020; 10:16558. [PMID: 33024132 PMCID: PMC7538553 DOI: 10.1038/s41598-020-72944-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/08/2020] [Indexed: 12/23/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) and its ligands are involved in cancer pathogenesis. The emerging role of treatments co-targeting the EGFR system in breast cancer has increased the need to identify companion biomarkers. The aim of this study is to investigate whether pretreatment serum levels of EGFR and EGFR ligands in early-stage breast cancer patients might provide prognostic information as a stepping stone for further investigation. The study, which included 311 early-stage breast cancer patients, investigated associations between preoperative serum levels of EGFR and EGFR ligands (epidermal growth factor, heparin-binding epidermal growth factor (HBEGF), amphiregulin, transforming growth factor-α and betacellulin) and survival. Cutoffs were determined using Youden’s method, and overall survival (OS) and invasive disease-free survival (IDFS) were evaluated using Cox regression. Preoperative S-EGFR < 60.3 ng/mL was associated with shorter OS and IDFS in both univariate analyses and when adjusting for standard prognostic factors (p < 0.05). Preoperative S-HBEGF < 21.4 pg/mL was associated with shorter OS in both univariate and multivariate analyses, whereas association with shorter IDFS could only be demonstrated in the univariate analysis. In conclusion, our study demonstrated shorter survival in early-stage breast cancer patients who had low pretreatment levels of either S-EGFR or S-HBEGF.
Collapse
|
17
|
Kjær IM, Olsen DA, Alnor A, Brandslund I, Bechmann T, Madsen JS. EGFR and EGFR ligands in serum in healthy women; reference intervals and age dependency. Clin Chem Lab Med 2020; 57:1948-1955. [PMID: 31323001 DOI: 10.1515/cclm-2019-0376] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 06/17/2019] [Indexed: 11/15/2022]
Abstract
Background The epidermal growth factor receptor (EGFR) system is involved in cancer pathogenesis and serves as an important target for multiple cancer treatments. EGFR and its ligands epidermal growth factor (EGF), heparin-binding epidermal growth factor (HB-EGF), betacellulin (BTC), amphiregulin (AREG) and transforming growth factor α (TGF-α) have potential applications as prognostic or predictive serological biomarkers in cancer. The aim was to establish EGFR and EGFR ligand reference intervals in healthy women. Methods EGFR and EGFR ligands were measured in serum from 419 healthy women aged 26-78 years. The need for age partitioned reference intervals was evaluated using Lahti's method. EGFR and EGF were analyzed using ELISA assays, whereas HB-EGF, BTC, AREG and TGF-α were analyzed using the highly sensitive automated single molecule array (Simoa) enabling detection below the lower reference limit for all six biomarkers. Results Reference intervals for EGFR and the EGFR ligands were determined as the 2.5th and 97.5th percentiles. All six biomarkers were detectable in all serum samples. For EGFR, EGF, HB-EGF and TGF-α, reference intervals were established for women <55 years and for women >55 years, whilst common reference intervals were established for AREG and BTC including women aged 26-78 years. Conclusions Age specific reference intervals were determined for EGFR, EGF, HB-EGF, BTC, AREG and TGF-α.
Collapse
Affiliation(s)
- Ina Mathilde Kjær
- Department of Biochemistry and Immunology, Lillebaelt Hospital, University Hospital of Southern Denmark, Vejle, Denmark
- Department of Regional Health Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Dorte Aalund Olsen
- Department of Biochemistry and Immunology, Lillebaelt Hospital, University Hospital of Southern Denmark, Vejle, Denmark
| | - Anne Alnor
- Department of Biochemistry and Immunology, Lillebaelt Hospital, University Hospital of Southern Denmark, Vejle, Denmark
| | - Ivan Brandslund
- Department of Biochemistry and Immunology, Lillebaelt Hospital, University Hospital of Southern Denmark, Vejle, Denmark
- Department of Regional Health Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Troels Bechmann
- Department of Regional Health Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
- Department of Oncology, Lillebaelt Hospital, University Hospital of Southern Denmark, Vejle, Denmark
| | - Jonna Skov Madsen
- Department of Biochemistry and Immunology, Lillebaelt Hospital, University Hospital of Southern Denmark, Vejle, Denmark
- Department of Regional Health Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
18
|
Fukui F, Hayashi SI, Yamaguchi Y. Heregulin controls ERα and HER2 signaling in mammospheres of ERα-positive breast cancer cells and interferes with the efficacy of molecular targeted therapy. J Steroid Biochem Mol Biol 2020; 201:105698. [PMID: 32404282 DOI: 10.1016/j.jsbmb.2020.105698] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/27/2020] [Accepted: 05/07/2020] [Indexed: 12/24/2022]
Abstract
Estrogen receptor (ER)α and the human epidermal growth factor receptor (HER) family are inversely expressed in ERα-positive cancer in association with resistance to hormonal therapy, but the mechanism underlying their relationship remains unknown. We analyzed the effect of HER family ligands on the expression of ER and the HER family in ERα-positive MCF-7 and T47D breast cancer cell lines in 3D spheroid culture. Here, we demonstrated for the first time that heregulin-1β (HRG), a HER3 and HER4 ligand, most effectively regulated ER/HER family expression by decreasing ERα mRNA expression and increasing HER family mRNA expression. HRG treatment attenuated fulvestrant-mediated growth inhibition, and promoted the migration of MCF-7 cells. Moreover, HRG increased the CD44+/CD24- cell fraction and side population cells, both of which are recognized as prospective breast cancer stem cell markers. HRG activated both phosphatidylinositol 3-kinase/AKT/mammalian target of rapamycin (PI3K/AKT/mTOR) and mitogen-activated protein kinase (MAPK) pathways. Inhibitors of these pathways reduced the growth of MCF-7 cells, but the addition of HRG has different effects on these pathways. HRG blocked the inhibitory effect of mTOR inhibitors, such as rapamycin and everolimus, on cell growth but not that of a PI3K inhibitor. Furthermore, HRG slightly decreased the inhibitory effect of an AKT inhibitor on cell growth. In contrast, HRG enhanced the MEK inhibitor-induced inhibition of cell growth. These findings suggest that HRG-stimulated signaling pathways allow ERα-positive breast cancer cells to escape from growth inhibition caused by everolimus, via MAPK signaling and/or other signaling pathways. Everolimus improves progression-free survival in combination with exemestane as second-line therapy for metastatic hormone receptor-positive breast cancer. Our study suggests that HRG is a novel target for ERα-positive breast cancer therapy.
Collapse
Affiliation(s)
- Fumiyo Fukui
- Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, Japan; Department of Molecular and Functional Dynamics, Graduate School of Medicine, Tohoku University, Sendai, Japan.
| | - Shin-Ichi Hayashi
- Department of Molecular and Functional Dynamics, Graduate School of Medicine, Tohoku University, Sendai, Japan.
| | - Yuri Yamaguchi
- Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, Japan.
| |
Collapse
|
19
|
Popa X, García B, Fuentes KP, Huerta V, Alvarez K, Viada CE, Neninger E, Rodríguez PC, González Z, González A, Crombet T, Mazorra Z. Anti-EGF antibodies as surrogate biomarkers of clinical efficacy in stage IIIB/IV non-small-cell lung cancer patients treated with an optimized CIMAvax-EGF vaccination schedule. Oncoimmunology 2020; 9:1762465. [PMID: 32923124 PMCID: PMC7458606 DOI: 10.1080/2162402x.2020.1762465] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
We previously reported that CIMAvax-EGF vaccine is safe, immunogenic and efficacious to treat advanced non-small-cell lung cancer (NSCLC) patients. A phase III trial was designed using an optimized immunization schedule. It included higher antigen dose and injections at multiple sites. Immune response and circulating biomarkers were studied in a subset of patients. EGF-specific antibody titers, IgG subclasses, peptide immunodominance and circulating biomarkers were assessed by ELISA. In vitro EGF-neutralization capacity of immune sera and EGF-IgG binding kinetics was evaluated by Western Blot and Surface Plasmon Resonance (SPR) technology, respectively. We show that CIMAvax-EGF elicited mainly IgG3/IgG4 antibodies at titers exceeding 1:4000 in 80% of vaccinated patients after 3 months of treatment. The EGF-specific humoral response was directed against the central region of the EGF molecule. For the first time, the kinetic constants of EGF-specific antibodies were measured evidencing affinity maturation of antibody repertoire up to month 12 of vaccination. Notably, the capacity of post-immune sera to inhibit EGFR phosphorylation significantly increased during the course of the immunization scheme and was related to clinical outcome (P = .013, log-rank test). Basal concentrations of EGF and TGFα in the serum were affected by EGF-based immunization. In conclusion, the CIMAvax-EGF vaccine induces an EGF-specific protective humoral response in a high percent of NSCLC vaccinated patients, the quantity and quality of which were associated with clinical benefit (clinical trial registration number: RPCEC00000161, http://registroclinico.sld.cu/). Abbreviations EGF: epidermal growth factor; EGFR: epidermal growth factor receptor; Ab: antibody; AR: amphiregulin; NSCLC: non-small-cell lung cancer; rhEGF: recombinant human epidermal growth factor; BSC: best supportive care; TGFα: tumor growth factor alpha; IL-8: interleukin 8; MAb: monoclonal antibody; SPR: surface plasmon resonance
Collapse
Affiliation(s)
- Xitlally Popa
- Clinical Research Direction, Center of Molecular Immunology, Havana, Cuba
| | - Beatriz García
- Clinical Research Direction, Center of Molecular Immunology, Havana, Cuba
| | - Karla P Fuentes
- Clinical Research Direction, Center of Molecular Immunology, Havana, Cuba
| | - Vivian Huerta
- Systems Biology, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Karen Alvarez
- Systems Biology, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Carmen E Viada
- Clinical Research Direction, Center of Molecular Immunology, Havana, Cuba
| | - Elia Neninger
- Oncology Department, Hermanos Ameijeiras University Hospital, Havana, Cuba
| | - Pedro C Rodríguez
- Clinical Research Direction, Center of Molecular Immunology, Havana, Cuba
| | - Zuyen González
- Clinical Research Direction, Center of Molecular Immunology, Havana, Cuba
| | - Amnely González
- Clinical Research Direction, Center of Molecular Immunology, Havana, Cuba
| | - Tania Crombet
- Clinical Research Direction, Center of Molecular Immunology, Havana, Cuba
| | - Zaima Mazorra
- Clinical Research Direction, Center of Molecular Immunology, Havana, Cuba
| |
Collapse
|
20
|
Nakamura M, Takano A, Thang PM, Tsevegjav B, Zhu M, Yokose T, Yamashita T, Miyagi Y, Daigo Y. Characterization of KIF20A as a prognostic biomarker and therapeutic target for different subtypes of breast cancer. Int J Oncol 2020; 57:277-288. [PMID: 32467984 DOI: 10.3892/ijo.2020.5060] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/06/2020] [Indexed: 11/05/2022] Open
Abstract
The aim of the present study was to identify novel prognostic biomarkers and therapeutic targets for breast cancer; thus, genes that are frequently overexpressed in several types of breast cancer were screened. Kinesin family member 20A (KIF20A) was identified as a candidate molecule during this process. Immunohistochemical staining performed using tissue microarrays from 257 samples of different breast cancer subtypes revealed that KIF20A was expressed in 195 (75.9%) of these samples, whereas it was seldom expressed in normal breast tissue. KIF20A protein was expressed in all types of breast cancer observed. However, it was more frequently expressed in human epidermal growth factor receptor 2 (HER2)‑positive and triple‑negative breast cancer than in the luminal type. Moreover, KIF20A expression was significantly associated with the poor prognosis of patients with breast cancer. A multivariate analysis indicated that KIF20A expression was an independent prognostic factor for patients with breast cancer. The suppression of endogenous KIF20A expression using small interfering ribonucleic acids or via treatment with paprotrain, a selective inhibitor of KIF20A, significantly inhibited breast cancer cell growth through cell cycle arrest at the G2/M phase and subsequent mitotic cell death. These results suggest that KIF20A is a candidate prognostic biomarker and therapeutic target for different types of breast cancer.
Collapse
Affiliation(s)
- Masako Nakamura
- Department of Medical Oncology and Cancer Center, Shiga University of Medical Science, Otsu, Shiga 520‑2192, Japan
| | - Atsushi Takano
- Department of Medical Oncology and Cancer Center, Shiga University of Medical Science, Otsu, Shiga 520‑2192, Japan
| | - Phung Manh Thang
- Department of Medical Oncology and Cancer Center, Shiga University of Medical Science, Otsu, Shiga 520‑2192, Japan
| | - Bayarbat Tsevegjav
- Department of Medical Oncology and Cancer Center, Shiga University of Medical Science, Otsu, Shiga 520‑2192, Japan
| | - Ming Zhu
- Department of Medical Oncology and Cancer Center, Shiga University of Medical Science, Otsu, Shiga 520‑2192, Japan
| | - Tomoyuki Yokose
- Department of Pathology, Kanagawa Cancer Center, Yokohama, Kanagawa 241‑8515, Japan
| | - Toshinari Yamashita
- Department of Breast and Endocrine Surgery, Kanagawa Cancer Center, Yokohama, Kanagawa 241‑8515, Japan
| | - Yohei Miyagi
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Kanagawa 241‑8515, Japan
| | - Yataro Daigo
- Department of Medical Oncology and Cancer Center, Shiga University of Medical Science, Otsu, Shiga 520‑2192, Japan
| |
Collapse
|
21
|
Hsiao TF, Wang CL, Wu YC, Feng HP, Chiu YC, Lin HY, Liu KJ, Chang GC, Chien KY, Yu JS, Yu CJ. Integrative Omics Analysis Reveals Soluble Cadherin-3 as a Survival Predictor and an Early Monitoring Marker of EGFR Tyrosine Kinase Inhibitor Therapy in Lung Cancer. Clin Cancer Res 2020; 26:3220-3229. [PMID: 32156745 DOI: 10.1158/1078-0432.ccr-19-3972] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/04/2020] [Accepted: 03/05/2020] [Indexed: 12/24/2022]
Abstract
PURPOSE EGFR tyrosine kinase inhibitors (EGFR-TKI) benefit patients with advanced lung adenocarcinoma (ADC) harboring activating EGFR mutations. We aimed to identify biomarkers to monitor and predict the progression of patients receiving EGFR-TKIs via a comprehensive omic analysis. EXPERIMENTAL DESIGN We applied quantitative proteomics to generate the TKI resistance-associated pleural effusion (PE) proteome from patients with ADC with or without EGFR-TKI resistance. Candidates were selected from integrated genomic and proteomic datasets. The PE (n = 33) and serum (n = 329) levels of potential biomarkers were validated with ELISAs. Western blotting was applied to detect protein expression in tissues, PEs, and a cell line. Gene knockdown, TKI treatment, and proliferation assays were used to determine EGFR-TKI sensitivity. Progression-free survival (PFS) and overall survival (OS) were assessed to evaluate the prognostic values of the potential biomarkers. RESULTS Fifteen proteins were identified as potential biomarkers of EGFR-TKI resistance. Cadherin-3 (CDH3) was overexpressed in ADC tissues compared with normal tissues. CDH3 knockdown enhanced EGFR-TKI sensitivity in ADC cells. The PE level of soluble CDH3 (sCDH3) was increased in patients with resistance. The altered sCDH3 serum level reflected the efficacy of EGFR-TKI after 1 month of treatment (n = 43). Baseline sCDH3 was significantly associated with PFS and OS in patients with ADC after EGFR-TKI therapy (n = 76). Moreover, sCDH3 was positively associated with tumor stage in non-small cell lung cancer (n = 272). CONCLUSIONS We provide useful marker candidates for drug resistance studies. sCDH3 is a survival predictor and real-time indicator of treatment efficacy in patients with ADC treated with EGFR-TKIs.
Collapse
Affiliation(s)
- Ting-Feng Hsiao
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chih-Liang Wang
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Division of Pulmonary Oncology and Interventional Bronchoscopy, Department of Thoracic Medicine, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Yi-Cheng Wu
- Department of Thoracic Surgery, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Hsiang-Pu Feng
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yen-Chuan Chiu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hao-Yu Lin
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ko-Jiunn Liu
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan.,School of Medical Laboratory Science and Biotechnology, Taipei Medical University, Taipei, Taiwan
| | - Gee-Chen Chang
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan.,Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Kun-Yi Chien
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Jau-Song Yu
- Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan.,Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan.,Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Chia-Jung Yu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan. .,Division of Pulmonary Oncology and Interventional Bronchoscopy, Department of Thoracic Medicine, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan.,Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
22
|
Wang L, Wang L, Zhang H, Lu J, Zhang Z, Wu H, Liang Z. AREG mediates the epithelial‑mesenchymal transition in pancreatic cancer cells via the EGFR/ERK/NF‑κB signalling pathway. Oncol Rep 2020; 43:1558-1568. [PMID: 32323797 PMCID: PMC7107775 DOI: 10.3892/or.2020.7523] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 01/21/2020] [Indexed: 12/13/2022] Open
Abstract
Amphiregulin (AREG) is a member of the epidermal growth factor (EGF) family and is expressed in a plethora of cancers. The biological roles of AREG in the regulation of the epithelial‑mesenchymal transition (EMT) in pancreatic cancer remain unclear. To investigate the expression of epidermal growth factor receptor (EGFR) and AREG in pancreatic cancer cell lines, RT‑qPCR, western blot analysis, and ELISA were performed. RNAi and exogenous AREG treatment were used to alter AREG expression. Wound‑healing and Transwell assays were performed to evaluate cell migration and invasion abilities. Western blot analysis and immunofluorescence staining were utilized to detect the expression of EMT markers. The protein expression of potential key factors involved in EMT, as well as those of the ERK, AKT, STAT3 and NF‑κB pathways, were analysed by western blotting. The role of AREG in tumour growth in vivo was further determined using an orthotopic model of pancreatic cancer. Knockdown of AREG inhibited AsPC‑1 cell migration and invasion. AREG knockdown upregulated E‑cadherin but downregulated vimentin, Snail and Slug expression in AsPC‑1 cells. In addition, AREG stimulation increased cell migration, invasion and EMT in PANC‑1 cells, and an NF‑κB inhibitor decreased AREG‑induced cell migration, invasion and EMT in PANC‑1 cells. AREG stimulation increased the nuclear accumulation of NF‑κB through the EGFR/ERK signalling pathway to induce EMT. Tumour growth and metastasis were decreased by AREG silencing in an orthotopic model of pancreatic cancer. AREG may play a critical role in cell migration, invasion, and EMT by activating the EGFR/ERK/NF‑κB signalling pathway in pancreatic cancer cells.
Collapse
Affiliation(s)
- Li Wang
- Department of Pathology, Peking Union Medical College Hospital, Research Center for Molecular Pathology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Lili Wang
- Department of Pathology, Peking Union Medical College Hospital, Research Center for Molecular Pathology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Hui Zhang
- Department of Pathology, Peking Union Medical College Hospital, Research Center for Molecular Pathology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Junliang Lu
- Department of Pathology, Peking Union Medical College Hospital, Research Center for Molecular Pathology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Zhiwen Zhang
- Department of Pathology, Peking Union Medical College Hospital, Research Center for Molecular Pathology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Huanwen Wu
- Department of Pathology, Peking Union Medical College Hospital, Research Center for Molecular Pathology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Zhiyong Liang
- Department of Pathology, Peking Union Medical College Hospital, Research Center for Molecular Pathology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| |
Collapse
|
23
|
Hsieh MJ, Chen YH, Lee IN, Huang C, Ku YJ, Chen JC. Secreted amphiregulin promotes vincristine resistance in oral squamous cell carcinoma. Int J Oncol 2019; 55:949-959. [PMID: 31485602 DOI: 10.3892/ijo.2019.4866] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 08/01/2019] [Indexed: 11/06/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the most common type of oral cancer. Despite advances in surgery, radiotherapy and chemotherapy, the overall 5‑year survival rate of patients with OSCC has not significantly improved. In addition, the prognosis of patients with advanced‑stage OSCC remains poor. Therefore, it is necessary to develop novel therapeutic modalities. Vincristine (VCR), a naturally occurring vinca alkaloid, is a classical microtubule‑destabilizing agent and is widely used in the treatment of a number of cancers. Despite the proven antitumor benefits of VCR treatment, one of the major reasons for the failure of treatment is drug resistance. Changes in the tumor microenvironment are responsible for cross‑talk between cells, which may facilitate drug resistance in cancers; secreted proteins may promote communication between cancer cells to induce the development of resistance. To identify the secreted proteins involved in VCR resistance, conditioned media was obtained, and an antibody array was conducted to screen a comprehensive secretion profile between VCR‑resistant (SAS‑VCR) and parental (SAS) OSCC cell lines. The results showed that amphiregulin (AREG) was highly expressed and secreted in SAS‑VCR cells. Pretreatment with exogenous recombinant AREG markedly increased drug resistance against VCR in OSCC cells, as assessed by an MTT assay. Colony formation, MTT and western blot assays were performed to investigate the effects of AREG knockdown on VCR sensitivity. The results indicated that AREG expression can regulate VCR resistance in OSCC cells; overexpression of AREG increased VCR resistance in parental cells, whereas AREG knockdown decreased the VCR resistance of resistant cells. In addition, it was also demonstrated that the glycogen synthase kinase‑3β pathway may be involved in AREG‑induced VCR resistance. These findings may provide rationale to combine VCR with blockade of AREG‑related pathways for the effective treatment of OSCC.
Collapse
Affiliation(s)
- Ming-Ju Hsieh
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan, R.O.C
| | - Yin-Hong Chen
- Department of Otorhinolaryngology‑Head and Neck Surgery, Changhua Christian Hospital, Changhua 500, Taiwan, R.O.C
| | - I-Neng Lee
- Department of Medical Research, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan, R.O.C
| | - Cheng Huang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang‑Ming University, Taipei 112, Taiwan, R.O.C
| | - Yu-Ju Ku
- The Center for General Education of China Medical University, China Medical University, Taichung 404, Taiwan, R.O.C
| | - Jui-Chieh Chen
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi 60004, Taiwan, R.O.C
| |
Collapse
|
24
|
Saad MI, Rose-John S, Jenkins BJ. ADAM17: An Emerging Therapeutic Target for Lung Cancer. Cancers (Basel) 2019; 11:E1218. [PMID: 31438559 PMCID: PMC6769596 DOI: 10.3390/cancers11091218] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/07/2019] [Accepted: 08/17/2019] [Indexed: 12/23/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related mortality, which histologically is classified into small-cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC). NSCLC accounts for approximately 85% of all lung cancer diagnoses, with the majority of patients presenting with lung adenocarcinoma (LAC). KRAS mutations are a major driver of LAC, and are closely related to cigarette smoking, unlike mutations in the epidermal growth factor receptor (EGFR) which arise in never-smokers. Although the past two decades have seen fundamental progress in the treatment and diagnosis of NSCLC, NSCLC still is predominantly diagnosed at an advanced stage when therapeutic interventions are mostly palliative. A disintegrin and metalloproteinase 17 (ADAM17), also known as tumour necrosis factor-α (TNFα)-converting enzyme (TACE), is responsible for the protease-driven shedding of more than 70 membrane-tethered cytokines, growth factors and cell surface receptors. Among these, the soluble interleukin-6 receptor (sIL-6R), which drives pro-inflammatory and pro-tumourigenic IL-6 trans-signaling, along with several EGFR family ligands, are the best characterised. This large repertoire of substrates processed by ADAM17 places it as a pivotal orchestrator of a myriad of physiological and pathological processes associated with the initiation and/or progression of cancer, such as cell proliferation, survival, regeneration, differentiation and inflammation. In this review, we discuss recent research implicating ADAM17 as a key player in the development of LAC, and highlight the potential of ADAM17 inhibition as a promising therapeutic strategy to tackle this deadly malignancy.
Collapse
Affiliation(s)
- Mohamed I Saad
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
- Department of Molecular and Translational Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria 3168, Australia
| | - Stefan Rose-John
- Institute of Biochemistry, Christian-Albrechts-University, D-24098 Kiel, Germany
| | - Brendan J Jenkins
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia.
- Department of Molecular and Translational Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria 3168, Australia.
| |
Collapse
|
25
|
Chen JC, Lee IN, Huang C, Wu YP, Chung CY, Lee MH, Lin MHC, Yang JT. Valproic acid-induced amphiregulin secretion confers resistance to temozolomide treatment in human glioma cells. BMC Cancer 2019; 19:756. [PMID: 31370819 PMCID: PMC6670223 DOI: 10.1186/s12885-019-5843-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 06/16/2019] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is the most severe type of primary brain tumor with a high mortality rate. Although extensive treatments for GBM, including resection, irradiation, chemotherapy and immunotherapy, have been tried, the prognosis is still poor. Temozolomide (TMZ), an alkylating agent, is a front-line chemotherapeutic drug for the clinical treatment of GBM; however, its effects are very limited because of the chemoresistance. Valproic acid (VPA), an antiepileptic agent with histone deacetylase inhibitor activity, has been shown to have synergistic effects with TMZ against GBM. The mechanism of action of VPA on TMZ combination therapy is still unclear. Accumulating evidence has shown that secreted proteins are responsible for the cross talking among cells in the tumor microenvironment, which may play a critical role in the regulation of drug responses. METHODS To understand the effect of VPA on secreted proteins in GBM cells, we first used the antibody array to analyze the cell culture supernatant from VPA-treated and untreated GBM cells. The results were further confirmed by lentivirus-mediated knockdown and exogenous recombinant administration. RESULTS Our results showed that amphiregulin (AR) was highly secreted in VPA-treated cells. Knockdown of AR can sensitize GBM cells to TMZ. Furthermore, pretreatment of exogenous recombinant AR significantly increased EGFR activation and conferred resistance to TMZ. To further verify the effect of AR on TMZ resistance, cells pre-treated with AR neutralizing antibody markedly increased sensitivity to TMZ. In addition, we also observed that the expression of AR was positively correlated with the resistance of TMZ in different GBM cell lines. CONCLUSIONS The present study aimed to identify the secreted proteins that contribute to the modulation of drug response. Understanding the full set of secreted proteins present in glial cells might help reveal potential therapeutic opportunities. The results indicated that AR may potentially serve as biomarker and therapeutic approach for chemotherapy regimens in GBM.
Collapse
Affiliation(s)
- Jui-Chieh Chen
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi City, 60004 Taiwan
| | - I-Neng Lee
- Department of Medical Research, Chang Gung Memorial Hospital, Chiayi, 61363 Taiwan
| | - Cheng Huang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Earth and Life Sciences, University of Taipei, Taipei, Taiwan
| | - Yu-Ping Wu
- Department of Medical Research, Chang Gung Memorial Hospital, Chiayi, 61363 Taiwan
| | - Chiu-Yen Chung
- Department of Neurosurgery, Chang Gung Memorial Hospital, Chiayi, 61363 Taiwan
| | - Ming-Hsueh Lee
- Department of Neurosurgery, Chang Gung Memorial Hospital, Chiayi, 61363 Taiwan
| | - Martin Hsiu-Chu Lin
- Department of Neurosurgery, Chang Gung Memorial Hospital, Chiayi, 61363 Taiwan
| | - Jen-Tsung Yang
- Department of Neurosurgery, Chang Gung Memorial Hospital, Chiayi, 61363 Taiwan
- College of Medicine, Chang Gung University, Tao-Yuan, 33302 Taiwan
| |
Collapse
|
26
|
Lin HH, Peng YJ, Tsai MJ, Wu YY, Tsai TN, Huang HH, Shih YL, Chang WK, Hsieh TY. Upregulation of amphiregulin by retinoic acid and Wnt signalling promotes liver cancer cell proliferation. J Cell Physiol 2019; 235:1689-1699. [PMID: 31298420 DOI: 10.1002/jcp.29088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 06/21/2019] [Indexed: 11/10/2022]
Abstract
Activated hepatic stellate cells promote hepatocellular carcinoma (HCC) progression. Hepatic stellate cells play a key role in retinoid metabolism, and activation of stellate cells increases retinoic acid (RA) in the liver. However, the role of RA in HCC proliferation remains unclear. We aimed to analyse the mechanism of RA in HCC proliferation. Thirty-eight patients who had undergone hepatic resection for HCCs were recruited. Paired non-tumour tissues, adjacent and distal to HCCs, were collected, and the RA levels in the tissues were analysed. The mechanisms of RA and HCC proliferation were assessed in liver cancer cell lines by protein and gene expression analyses. Early recurrence of HCC was significantly higher in patients with a higher RA concentration than in those with a lower RA concentration in tissues adjacent to HCCs (61.1% vs. 20%, p = .010). RA promoted HCC cell proliferation and activated the expression of Amphiregulin, a growth factor in hepatocarcinogenesis. The promoter of Amphiregulin contained the binding sites of the RA receptor, RXRα. Wnt signalling also activated the expression of Amphiregulin, and the RA and Wnt pathways acted synergistically to increase the expression of Amphiregulin. Furthermore, RXRα interacted with β-catenin and then translocated to the nucleus to activate Amphiregulin. An increased RA concentration in the tissues adjacent to the tumour was associated with an early recurrence of HCC. RA activated the expression of Amphiregulin, and then promoted HCC proliferation, which might partly contribute to early recurrence of HCC after hepatic resection.
Collapse
Affiliation(s)
- Hsuan-Hwai Lin
- Division of Gastroenterology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Centre, Taipei, Taiwan
| | - Yi-Jen Peng
- Division of Experimental Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Centre, Taipei, Taiwan
| | - Ming-Jiun Tsai
- Division of Gastroenterology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Centre, Taipei, Taiwan
| | - Yi-Ying Wu
- Division of Haematology/Oncology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Centre, Taipei, Taiwan
| | - Tsung-Neng Tsai
- Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Centre, Taipei, Taiwan
| | - Hsin-Hung Huang
- Division of Gastroenterology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Centre, Taipei, Taiwan
| | - Yu-Lueng Shih
- Division of Gastroenterology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Centre, Taipei, Taiwan
| | - Wei-Kuo Chang
- Division of Gastroenterology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Centre, Taipei, Taiwan
| | - Tsai-Yuan Hsieh
- Division of Gastroenterology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Centre, Taipei, Taiwan
| |
Collapse
|
27
|
Larsen MB, Perez Verdaguer M, Schmidt BF, Bruchez MP, Watkins SC, Sorkin A. Generation of endogenous pH-sensitive EGF receptor and its application in high-throughput screening for proteins involved in clathrin-mediated endocytosis. eLife 2019; 8:46135. [PMID: 31066673 PMCID: PMC6533059 DOI: 10.7554/elife.46135] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/07/2019] [Indexed: 12/15/2022] Open
Abstract
Previously we used gene-editing to label endogenous EGF receptor (EGFR) with GFP and demonstrate that picomolar concentrations of EGFR ligand drive signaling and endocytosis of EGFR in tumors in vivo (Pinilla-Macua et al., 2017). We now use gene-editing to insert a fluorogen activating protein (FAP) in the EGFR extracellular domain. Binding of the tandem dye pair MG-Bis-SA to FAP-EGFR provides a ratiometric pH-sensitive model with dual fluorescence excitation and a single far-red emission. The excitation ratio of fluorescence intensities was demonstrated to faithfully report the fraction of FAP-EGFR located in acidic endosomal/lysosomal compartments. Coupling native FAP-EGFR expression with the high method sensitivity has allowed development of a high-throughput assay to measure the rates of clathrin-mediated FAP-EGFR endocytosis stimulated with physiological EGF concentrations. The assay was utilized to screen a phosphatase siRNA library. These studies highlight the utility of endogenous pH-sensitive FAP-receptor chimeras in high-throughput analysis of endocytosis.
Collapse
Affiliation(s)
- Mads Breum Larsen
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, United States
| | - Mireia Perez Verdaguer
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, United States
| | - Brigitte F Schmidt
- Molecular Biosensor and Imaging Center, Carnegie Mellon University, Pittsburgh, United States
| | - Marcel P Bruchez
- Molecular Biosensor and Imaging Center, Carnegie Mellon University, Pittsburgh, United States.,Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, United States.,Department of Chemistry, Carnegie Mellon University, Pittsburgh, United States.,Sharp Edge Laboratories, Pittsburgh, United States
| | - Simon C Watkins
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, United States
| | - Alexander Sorkin
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, United States
| |
Collapse
|
28
|
Kjaer IM, Bechmann T, Brandslund I, Madsen JS. Prognostic and predictive value of EGFR and EGFR-ligands in blood of breast cancer patients: a systematic review. Clin Chem Lab Med 2019; 56:688-701. [PMID: 29194036 DOI: 10.1515/cclm-2017-0592] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 10/19/2017] [Indexed: 12/14/2022]
Abstract
Epidermal growth factor receptor (EGFR) serves as a co-target for dual/pan-EGFR-inhibitors in breast cancer. Findings suggest that EGFR and EGFR-ligands are involved in resistance towards certain breast cancer treatments. The aim is to explore the validity of EGFR and EGFR-ligands in blood as prognostic and predictive biomarkers in breast cancer. The systematic review was conducted in accordance to the PRISMA guidelines. Literature searches were conducted to identify publications exploring correlations between EGFR/EGFR-ligands in serum/plasma of breast cancer patients and prognostic/predictive outcome measures. Sixteen publications were eligible for inclusion. Twelve studies evaluated EGFR, whereas five studies evaluated one or more of the EGFR-ligands. Current evidence indicates associations between low baseline serum-EGFR and shorter survival or reduced response to treatment in patients with advanced breast cancer, especially in patients with estrogen and/or progesterone receptor positive tumors. The prognostic and predictive value of EGFR and EGFR-ligands in blood has only been investigated in highly selected subsets of breast cancer patients and most studies were small. This is the first systematic review evaluating the utility of EGFR and EGFR-ligands as predictive and prognostic biomarkers in blood in breast cancer. Further exploration in large well-designed studies is needed.
Collapse
Affiliation(s)
- Ina Mathilde Kjaer
- Department of Biochemistry and Immunology, Lillebaelt Hospital, Vejle, Denmark.,Department of Regional Health Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Troels Bechmann
- Department of Regional Health Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark.,Department of Oncology, Lillebaelt Hospital, Vejle, Denmark
| | - Ivan Brandslund
- Department of Biochemistry and Immunology, Lillebaelt Hospital, Vejle, Denmark.,Department of Regional Health Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Jonna Skov Madsen
- Department of Biochemistry and Immunology, Lillebaelt Hospital, Vejle, Denmark.,Department of Regional Health Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
29
|
Steponaitis G, Kazlauskas A, Skiriute D, Vaitkiene P, Skauminas K, Tamasauskas A. Significance of Amphiregulin (AREG) for the Outcome of Low and High Grade Astrocytoma Patients. J Cancer 2019; 10:1479-1488. [PMID: 31031857 PMCID: PMC6485216 DOI: 10.7150/jca.29282] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 12/05/2018] [Indexed: 12/31/2022] Open
Abstract
Background: Amphiregulin (AREG) is one of the ligands of the epidermal growth factor receptor which levels was shown to have a tight coherence with various types of cancer. AREG was also designated to be a promising marker for several types of cancer however precious little data about AREG role in the most frequent and generally lethal human brain tumours - astrocytomas reported up to date. The aim of the study was to investigate how AREG changes at epigenetic and expression levels reflect on astrocytoma malignancy and patient outcome. Methods: In total 205 low and high grade astrocytoma samples (15 pilocytic astrocytomas, 56 diffuse astrocytomas, 32 anaplastic astrocytomas and 102 glioblastomas) were used for target mRNA, protein expression and DNA methylation analysis applying qRT-PCR, Western-Blot and MS-PCR assays, respectively. Results: Present research revealed that AREG expression level and methylation in cancer tissue is dependent on the grade of astrocytoma. GBM tissue disclosed elevated AREG mRNA expression but reduced AREG protein level as compared to grade II and grade III astrocytomas (p<0.001). Increased methylation frequency was also more abundant in GBM (74%) than grade I, II and III astrocytomas (25%, 34%, and 36%, respectively). The survival analysis revealed relevant differences in patient overall survival between AREG methylation, mRNA and protein expression groups. Kaplan-Meier analysis encompassing only malignant tumours showed similar results indicating that AREG is associated with astrocytoma patient survival independently from astrocytoma grade. Conclusions: Current findings demonstrate that AREG appearance is associated with patient survival as well as astrocytomas malignancy indicating its influence on tumour progression and suggest its applicability as a promising marker.
Collapse
Affiliation(s)
- Giedrius Steponaitis
- Laboratory of Molecular Neurooncology, Neuroscience Institute, Lithuanian University of Health Sciences, Eiveniu str. 4, Kaunas, LT 50161, Lithuania
| | - Arunas Kazlauskas
- Laboratory of Molecular Neurooncology, Neuroscience Institute, Lithuanian University of Health Sciences, Eiveniu str. 4, Kaunas, LT 50161, Lithuania
| | - Daina Skiriute
- Laboratory of Molecular Neurooncology, Neuroscience Institute, Lithuanian University of Health Sciences, Eiveniu str. 4, Kaunas, LT 50161, Lithuania
| | - Paulina Vaitkiene
- Laboratory of Molecular Neurooncology, Neuroscience Institute, Lithuanian University of Health Sciences, Eiveniu str. 4, Kaunas, LT 50161, Lithuania
| | - Kestutis Skauminas
- Laboratory of Molecular Neurooncology, Neuroscience Institute, Lithuanian University of Health Sciences, Eiveniu str. 4, Kaunas, LT 50161, Lithuania
| | - Arimantas Tamasauskas
- Laboratory of Molecular Neurooncology, Neuroscience Institute, Lithuanian University of Health Sciences, Eiveniu str. 4, Kaunas, LT 50161, Lithuania
| |
Collapse
|
30
|
AhR controls redox homeostasis and shapes the tumor microenvironment in BRCA1-associated breast cancer. Proc Natl Acad Sci U S A 2019; 116:3604-3613. [PMID: 30733286 DOI: 10.1073/pnas.1815126116] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cancer cells have higher reactive oxygen species (ROS) than normal cells, due to genetic and metabolic alterations. An emerging scenario is that cancer cells increase ROS to activate protumorigenic signaling while activating antioxidant pathways to maintain redox homeostasis. Here we show that, in basal-like and BRCA1-related breast cancer (BC), ROS levels correlate with the expression and activity of the transcription factor aryl hydrocarbon receptor (AhR). Mechanistically, ROS triggers AhR nuclear accumulation and activation to promote the transcription of both antioxidant enzymes and the epidermal growth factor receptor (EGFR) ligand, amphiregulin (AREG). In a mouse model of BRCA1-related BC, cancer-associated AhR and AREG control tumor growth and production of chemokines to attract monocytes and activate proangiogenic function of macrophages in the tumor microenvironment. Interestingly, the expression of these chemokines as well as infiltration of monocyte-lineage cells (monocyte and macrophages) positively correlated with ROS levels in basal-like BC. These data support the existence of a coordinated link between cancer-intrinsic ROS regulation and the features of tumor microenvironment. Therapeutically, chemical inhibition of AhR activity sensitizes human BC models to Erlotinib, a selective EGFR tyrosine kinase inhibitor, suggesting a promising combinatorial anticancer effect of AhR and EGFR pathway inhibition. Thus, AhR represents an attractive target to inhibit redox homeostasis and modulate the tumor promoting microenvironment of basal-like and BRCA1-associated BC.
Collapse
|
31
|
Hussain S, Saxena S, Shrivastava S, Mohanty AK, Kumar S, Singh RJ, Kumar A, Wani SA, Gandham RK, Kumar N, Sharma AK, Tiwari AK, Singh RK. Gene expression profiling of spontaneously occurring canine mammary tumours: Insight into gene networks and pathways linked to cancer pathogenesis. PLoS One 2018; 13:e0208656. [PMID: 30517191 PMCID: PMC6281268 DOI: 10.1371/journal.pone.0208656] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/20/2018] [Indexed: 11/24/2022] Open
Abstract
Spontaneously occurring canine mammary tumours (CMTs) are the most common neoplasms of unspayed female dogs leading to thrice higher mortality rates than human breast cancer. These are also attractive models for human breast cancer studies owing to clinical and molecular similarities. Thus, they are important candidates for biomarker studies and understanding cancer pathobiology. The study was designed to explore underlying molecular networks and pathways in CMTs for deciphering new prognostic factors and therapeutic targets. To gain an insight into various pathways and networks associated with the development and pathogenesis of CMTs, comparative cDNA microarray expression profiling was performed using CMT tissues and healthy mammary gland tissues. Upon analysis, 1700 and 1287 differentially expressed genes (DEGs, P ≤ 0.05) were identified in malignant and benign tissues, respectively. DEGs identified from microarray analysis were further annotated using the Ingenuity Systems Pathway Analysis (IPA) tool for detection of deregulated canonical pathways, upstream regulators, and networks associated with malignant, as well as, benign disease. Top scoring key networks in benign and malignant mammary tumours were having central nodes of VEGF and BUB1B, respectively. Cyclins & cell cycle regulation and TREM1 signalling were amongst the top activated canonical pathways in CMTs. Other cancer related significant pathways like apoptosis signalling, dendritic cell maturation, DNA recombination and repair, Wnt/β-catenin signalling, etc. were also found to be altered. Furthermore, seven proteins (ANXA2, APOCII, CDK6, GATC, GDI2, GNAQ and MYH9) highly up-regulated in malignant tissues were identified by two-dimensional gel electrophoresis (2DE) and MALDI-TOF PMF studies which were in concordance with microarray data. Thus, the study has uncovered ample number of candidate genes associated with CMTs which need to be further validated as therapeutic targets and prognostic markers.
Collapse
Affiliation(s)
- Shahid Hussain
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute [Deemed University], Izatnagar, Bareilly, UP, India
| | - Sonal Saxena
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute [Deemed University], Izatnagar, Bareilly, UP, India
- * E-mail: (SON); (SAM); (RKS)
| | - Sameer Shrivastava
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute [Deemed University], Izatnagar, Bareilly, UP, India
- * E-mail: (SON); (SAM); (RKS)
| | - Ashok Kumar Mohanty
- Animal Biotechnology Division, ICAR-National Dairy Research Institute [Deemed University], Karnal, Haryana, India
| | - Sudarshan Kumar
- Animal Biotechnology Division, ICAR-National Dairy Research Institute [Deemed University], Karnal, Haryana, India
| | - Rajkumar James Singh
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute [Deemed University], Izatnagar, Bareilly, UP, India
| | - Abhinav Kumar
- Department of Computer Science and Engineering, Indian Institute of Technology (IIT) BHU, Varanasi, India
| | | | - Ravi Kumar Gandham
- National Institute of Animal Biotechnology, Miyapur, Hyderabad, Telangana, India
| | - Naveen Kumar
- Division of Veterinary Surgery, ICAR-Indian Veterinary Research Institute [Deemed University], Izatnagar, Bareilly, UP, India
| | - Anil Kumar Sharma
- Division of Veterinary Pathology, ICAR-Indian Veterinary Research Institute [Deemed University], Izatnagar, Bareilly, UP, India
| | - Ashok Kumar Tiwari
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute [Deemed University], Izatnagar, Bareilly, UP, India
| | - Raj Kumar Singh
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute [Deemed University], Izatnagar, Bareilly, UP, India
- * E-mail: (SON); (SAM); (RKS)
| |
Collapse
|
32
|
Chen JC, Huang C, Lee IN, Wu YP, Tang CH. Amphiregulin enhances cell migration and resistance to doxorubicin in chondrosarcoma cells through the MAPK pathway. Mol Carcinog 2018; 57:1816-1824. [DOI: 10.1002/mc.22899] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/24/2018] [Accepted: 08/31/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Jui-Chieh Chen
- Department of Biochemical Science and Technology; National Chiayi University; Chiayi City Taiwan
| | - Cheng Huang
- Department of Biotechnology and Laboratory Science in Medicine; National Yang-Ming University; Taipei Taiwan
- Department of Earth and Life Sciences; University of Taipei; Taipei Taiwan
| | - I-Neng Lee
- Department of Medical Research; Chang Gung Memorial Hospital; Chiayi Taiwan
| | - Yu-Ping Wu
- Department of Biochemical Science and Technology; National Chiayi University; Chiayi City Taiwan
- Department of Medical Research; Chang Gung Memorial Hospital; Chiayi Taiwan
| | - Chih-Hsin Tang
- Department of Pharmacology; School of Medicine; China Medical University; Taichung Taiwan
- Chinese Medicine Research Center; China Medical University; Taichung Taiwan
- Department of Biotechnology; College of Medical and Health Science; Asia University; Taichung Taiwan
| |
Collapse
|
33
|
Nagathihalli NS, Castellanos JA, Lamichhane P, Messaggio F, Shi C, Dai X, Rai P, Chen X, VanSaun MN, Merchant NB. Inverse Correlation of STAT3 and MEK Signaling Mediates Resistance to RAS Pathway Inhibition in Pancreatic Cancer. Cancer Res 2018; 78:6235-6246. [PMID: 30154150 DOI: 10.1158/0008-5472.can-18-0634] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 07/05/2018] [Accepted: 08/22/2018] [Indexed: 12/12/2022]
Abstract
Major contributors to therapeutic resistance in pancreatic ductal adenocarcinoma (PDAC) include Kras mutations, a dense desmoplastic stroma that prevents drug delivery to the tumor, and activation of redundant signaling pathways. We have previously identified a mechanistic rationale for targeting STAT3 signaling to overcome therapeutic resistance in PDAC. In this study, we investigate the molecular mechanisms underlying the heterogeneous response to STAT3 and RAS pathway inhibition in PDAC. Effects of JAK/STAT3 inhibition (STAT3i) or MEK inhibition (MEKi) were established in Ptf1acre/+; LSL-KrasG12D/+ ; and Tgfbr2flox/flox (PKT) mice and patient-derived xenografts (PDX). Amphiregulin (AREG) levels were determined in serum from human patients with PDAC, LSL-KrasG12D/+;Trp53R172H/+;Pdx1Cre/+ (KPC), and PKT mice. MEKi/STAT3i-treated tumors were analyzed for integrity of the pancreas and the presence of cancer stem cells (CSC). We observed an inverse correlation between ERK and STAT3 phosphorylation. MEKi resulted in an immediate activation of STAT3, whereas STAT3i resulted in TACE-induced, AREG-dependent activation of EGFR and ERK. Combined MEKi/STAT3i sustained blockade of ERK, EGFR, and STAT3 signaling, overcoming resistance to individual MEKi or STAT3i. This combined inhibition attenuated tumor growth in PDX and increased survival of PKT mice while reducing serum AREG levels. Furthermore, MEKi/STAT3i altered the PDAC tumor microenvironment by depleting tumor fibrosis, maintaining pancreatic integrity, and downregulating CD44+ and CD133+ CSCs. These results demonstrate that resistance to MEKi is mediated through activation of STAT3, whereas TACE-AREG-EGFR-dependent activation of RAS pathway signaling confers resistance to STAT3 inhibition. Combined MEKi/STAT3i overcomes these resistances and provides a novel therapeutic strategy to target the RAS and STAT3 pathway in PDAC.Significance: This report describes an inverse correlation between MEK and STAT3 signaling as key mechanisms of resistance in PDAC and shows that combined inhibition of MEK and STAT3 overcomes this resistance and provides an improved therapeutic strategy to target the RAS pathway in PDAC.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/78/21/6235/F1.large.jpg Cancer Res; 78(21); 6235-46. ©2018 AACR.
Collapse
Affiliation(s)
- Nagaraj S Nagathihalli
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida.,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Jason A Castellanos
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee
| | | | - Fanuel Messaggio
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Chanjuan Shi
- Department of Pathology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Xizi Dai
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Priyamvada Rai
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida.,Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | - Xi Chen
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida.,Department of Public Health, University of Miami Miller School of Medicine, Miami, Florida
| | - Michael N VanSaun
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida.,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Nipun B Merchant
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida. .,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
34
|
Borlak J, Länger F, Chatterji B. Serum proteome mapping of EGF transgenic mice reveal mechanistic biomarkers of lung cancer precursor lesions with clinical significance for human adenocarcinomas. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3122-3144. [PMID: 29960043 DOI: 10.1016/j.bbadis.2018.06.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/12/2018] [Accepted: 06/25/2018] [Indexed: 12/18/2022]
Abstract
Atypical adenomatous hyperplasia (AAH) of the lung is a pre-invasive lesion (PL) with high risk of progression to lung cancer (LC). However, the pathways involved are uncertain. We searched for novel mechanistic biomarkers of AAH in an EGF transgenic disease model of lung cancer. Disease regulated proteins were validated by Western immunoblotting and immunohistochemistry (IHC) of control and morphologically altered respiratory epithelium. Translational work involved clinical resection material. Collectively, 68 unique serum proteins were identified by 2DE-MALDI-TOF mass spectrometry and 13 reached statistical significance (p < 0.05). EGF, amphiregulin and the EGFR endosomal sorting protein VPS28 were induced up to 5-fold while IHC confirmed strong induction of these proteins. Furthermore, ApoA1, α-2-macroglobulin, and vitamin-D binding protein were nearly 6- and 2-fold upregulated in AAH; however, ApoA1 was oppositely regulated in LC to evidence disease stage dependent regulation of this tumour suppressor. Conversely, plasminogen and transthyretin were highly significantly repressed by 3- and 20-fold. IHC confirmed induced ApoA1, Fetuin-B and transthyretin expression to influence calcification, inflammation and tumour-infiltrating macrophages. Moreover, serum ApoA4, ApoH and ApoM were 2-, 2- and 6-fold repressed; however tissue ApoM and sphingosine-1-phosphate receptor expression was markedly induced to suggest a critical role of sphingosine-1-phosphate signalling in PL and malignant transformation. Finally, a comparison of three different LC models revealed common and unique serum biomarkers mechanistically linked to EGFR, cMyc and cRaf signalling. Their validation by IHC on clinical resection material established relevance for distinct human lung pathologies. In conclusion, we identified mechanistic biomarker candidates recommended for in-depth clinical evaluation.
Collapse
Affiliation(s)
- Jürgen Borlak
- Hannover Medical School, Centre for Pharmacology and Toxicology, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| | - Florian Länger
- Hannover Medical School, Institute of Pathology, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Bijon Chatterji
- Hannover Medical School, Centre for Pharmacology and Toxicology, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| |
Collapse
|
35
|
Development of a three-plex single molecule immunoassay enabling measurement of the EGFR ligands amphiregulin, betacellulin and transforming growth factor α simultaneously in human serum samples. J Immunol Methods 2018; 459:63-69. [PMID: 29803775 DOI: 10.1016/j.jim.2018.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/20/2018] [Accepted: 05/09/2018] [Indexed: 11/20/2022]
Abstract
BACKGROUND Prior to large studies in breast cancer patients and healthy individuals we established a sensitive three-plex immunoassay to measure the EGFR ligands amphiregulin (AR), betacellulin (BTC) and transforming growth factor α (TGF-α) simultaneously in human serum samples. METHOD The three-plex immunoassay was developed using single molecule array (Simoa) technology and requires only 20 μL of serum. RESULTS AR, BTC and TGF-α were first established as three single-plex assays. Multiplexing the three single-plex assays showed no significant cross reactivity between the reagents. The concentrations of the ligands in serum samples showed correlations r2 ≥ 0.84 between the single-plex and three-plex methods. The three-plex assay demonstrated limit of detection levels at 0.16 ng/L for AR, 0.23 ng/L for BTC and 0.22 ng/L for TGF-α. Total coefficients of variations were 8.5%-31% for AR, 11%-21.8% for BTC and 12.4%-16.2% for TGF-α. Spiking experiments showed a mean recovery of 97% for AR, 86% for BTC and 81% for TGF-α. The concentrations of the EGFR ligands did not change significantly after series of freeze thaw cycles or incubation at 22 °C for up to 24 h. CONCLUSION This robust three-plex assay with up to 40-fold increase in sensitivity relative to conventional ELISA is the first published method that has the required sensitivity to measure AR, BTC and TGF-α simultaneously in human blood samples.
Collapse
|
36
|
Anti-Epidermal Growth Factor Vaccine Antibodies Enhance the Efficacy of Tyrosine Kinase Inhibitors and Delay the Emergence of Resistance in EGFR Mutant Lung Cancer Cells. J Thorac Oncol 2018; 13:1324-1337. [PMID: 29751136 DOI: 10.1016/j.jtho.2018.04.030] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/10/2018] [Accepted: 04/25/2018] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Mutations in EGFR correlate with impaired response to immune checkpoint inhibitors and the development of novel immunotherapeutic approaches for EGFR mutant NSCLC is of particular interest. Immunization against epidermal growth factor (EGF) has shown efficacy in a phase III trial including unselected NSCLC patients, but little was known about the mechanisms involved in the effects of the anti-EGF antibodies generated by vaccination (anti-EGF VacAbs) or their activity in tumor cells with EGFR mutations. METHODS The EGFR-mutant, NSCLC cell lines H1975, and PC9, together with several gefitinib and osimertinib-resistant cells derived from PC9, were treated with anti-EGF VacAbs and/or EGFR tyrosine kinase inhibitors (TKIs). Cell viability was analyzed by proliferation assays, cell cycle by fluorescence-activated cell sorting analysis, and levels of RNA and proteins by quantitative retro-transcription polymerase chain reaction and Western blotting. RESULTS Anti-EGF VacAbs generated in rabbits suppressed EGF-induced cell proliferation and cycle progression and inhibited downstream EGFR signaling in EGFR-mutant cells. Sera from patients immunized with an EGF vaccine were also able to block activation of EGFR effectors. In combination, the anti-EGF VacAbs significantly enhanced the antitumor activity of all TKIs tested, suppressed Erk1/2 phosphorylation, blocked the activation of signal transducer and activator of transcription 3 (STAT3) and downregulated the expression of AXL receptor tyrosine kinase (AXL). Finally, anti-EGF VacAbs significantly delayed the emergence in vitro of EGFR TKI resistant clones. CONCLUSIONS EGFR-mutant patients can derive benefit from immunization against EGF, particularly if combined with EGFR TKIs. A phase I trial of an EGF vaccine in combination with afatinib has been initiated.
Collapse
|
37
|
Bazzani L, Donnini S, Finetti F, Christofori G, Ziche M. PGE2/EP3/SRC signaling induces EGFR nuclear translocation and growth through EGFR ligands release in lung adenocarcinoma cells. Oncotarget 2018; 8:31270-31287. [PMID: 28415726 PMCID: PMC5458206 DOI: 10.18632/oncotarget.16116] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 03/01/2017] [Indexed: 12/12/2022] Open
Abstract
Prostaglandin E2 (PGE2) interacts with tyrosine kinases receptor signaling in both tumor and stromal cells supporting tumor progression. Here we demonstrate that in non-small cell lung carcinoma (NSCLC) cells, A549 and GLC82, PGE2 promotes nuclear translocation of epidermal growth factor receptor (nEGFR), affects gene expression and induces cell growth. Indeed, cyclin D1, COX-2, iNOS and c-Myc mRNA levels are upregulated following PGE2 treatment. The nuclear localization sequence (NLS) of EGFR as well as its tyrosine kinase activity are required for the effect of PGE2 on nEGFR and downstream signaling activities. PGE2 binds its bona fide receptor EP3 which by activating SRC family kinases, induces ADAMs activation which, in turn, releases EGFR-ligands from the cell membrane and promotes nEGFR. Amphiregulin (AREG) and Epiregulin (EREG) appear to be involved in nEGFR promoted by the PGE2/EP3-SRC axis. Pharmacological inhibition or silencing of the PGE2/EP3/SRC-ADAMs signaling axis or EGFR ligands i.e. AREG and EREG expression abolishes nEGFR induced by PGE2. In conclusion, PGE2 induces NSCLC cell proliferation by EP3 receptor, SRC-ADAMs activation, EGFR ligands shedding and finally, phosphorylation and nEGFR. Since nuclear EGFR is a hallmark of cancer aggressiveness, our findings reveal a novel mechanism for the contribution of PGE2 to tumor progression.
Collapse
Affiliation(s)
- Lorenzo Bazzani
- Department of Life Sciences, University of Siena, 53100, Siena, Italy.,Department of Biomedizin, University of Basel, 4058, Basel, Switzerland
| | - Sandra Donnini
- Department of Life Sciences, University of Siena, 53100, Siena, Italy
| | - Federica Finetti
- Department of Life Sciences, University of Siena, 53100, Siena, Italy
| | | | - Marina Ziche
- Department of Life Sciences, University of Siena, 53100, Siena, Italy
| |
Collapse
|
38
|
Hichert V, Scholl C, Steffens M, Paul T, Schumann C, Rüdiger S, Boeck S, Heinemann V, Kächele V, Seufferlein T, Stingl J. Predictive blood plasma biomarkers for EGFR inhibitor-induced skin rash. Oncotarget 2018; 8:35193-35204. [PMID: 28456787 PMCID: PMC5471046 DOI: 10.18632/oncotarget.17060] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 03/22/2017] [Indexed: 01/26/2023] Open
Abstract
Epidermal growth factor receptor overexpression in human cancer can be effectively targeted by drugs acting as specific inhibitors of the receptor, like erlotinib, gefitinib, cetuximab and panitumumab. A common adverse effect is a typical papulopustular acneiform rash, whose occurrence and severity are positively correlated with overall survival in several cancer types. We studied molecules involved in epidermal growth factor receptor signaling which are quantifiable in plasma, with the aim of identifying biomarkers for the severity of rash. With a predictive value for the rash these biomarkers may also have a prognostic value for survival and disease outcome. The concentrations of amphiregulin, hepatocyte growth factor (HGF) and calcidiol were determined by specific enzyme-linked immunosorbent assays in plasma samples from 211 patients. We observed a significant inverse correlation between the plasma concentration of HGF and overall survival in patients with an inhibitor-induced rash (p-value = 0.0075; mean overall survival low HGF: 299 days, high HGF: 240 days) but not in patients without rash. The concentration of HGF was also significantly inversely correlated with severity of rash (p-value = 0.00124). High levels of HGF lead to increased signaling via its receptor MET, which can activate numerous pathways which are normally also activated by epidermal growth factor receptor. Increased HGF/MET signaling might compensate the inhibitory effect of epidermal growth factor receptor inhibitors in skin as well as tumor cells, leading to less severe skin rash and decreased efficacy of the anti-tumor therapy, rendering the plasma concentration of HGF a candidate for predictive biomarkers.
Collapse
Affiliation(s)
- Vivien Hichert
- Research Division, Federal Institute for Drugs and Medical Devices, Bonn, Germany.,Centre for Translational Medicine, University Bonn Medical Faculty, Bonn, Germany
| | - Catharina Scholl
- Research Division, Federal Institute for Drugs and Medical Devices, Bonn, Germany.,Centre for Translational Medicine, University Bonn Medical Faculty, Bonn, Germany
| | - Michael Steffens
- Research Division, Federal Institute for Drugs and Medical Devices, Bonn, Germany.,Centre for Translational Medicine, University Bonn Medical Faculty, Bonn, Germany
| | - Tanusree Paul
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, University of Ulm, Ulm, Germany
| | - Christian Schumann
- Department of Internal Medicine II, University of Ulm, Ulm, Germany.,Pneumology, Thoracic Oncology, Sleep and Respiratory Critical Care Medicine, Clinics Kempten-Oberallgäu, Kempten, Germany
| | - Stefan Rüdiger
- Department of Internal Medicine II, University of Ulm, Ulm, Germany
| | - Stefan Boeck
- Department of Internal Medicine III and Comprehensive Cancer Center, Ludwig-Maximilians-University of Munich, Munich, Germany.,DKTK, German Cancer Consortium, German Cancer Research Center, (DKFZ), Heidelberg, Germany
| | - Volker Heinemann
- Department of Internal Medicine III and Comprehensive Cancer Center, Ludwig-Maximilians-University of Munich, Munich, Germany.,DKTK, German Cancer Consortium, German Cancer Research Center, (DKFZ), Heidelberg, Germany
| | - Volker Kächele
- Department of Internal Medicine I, University of Ulm, Ulm, Germany
| | | | - Julia Stingl
- Research Division, Federal Institute for Drugs and Medical Devices, Bonn, Germany.,Centre for Translational Medicine, University Bonn Medical Faculty, Bonn, Germany
| |
Collapse
|
39
|
Wen Y, Li H, Zeng Y, Wen W, Pendleton KP, Lui VWY, Egloff AM, Grandis JR. MAPK1E322K mutation increases head and neck squamous cell carcinoma sensitivity to erlotinib through enhanced secretion of amphiregulin. Oncotarget 2018; 7:23300-11. [PMID: 27004400 PMCID: PMC5029627 DOI: 10.18632/oncotarget.8188] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 03/06/2016] [Indexed: 01/19/2023] Open
Abstract
Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) have not been effective in unselected head and neck squamous cell carcinoma (HNSCC) populations. We previously reported an exceptional response to a brief course of erlotinib in a patient with advanced HNSCC whose tumor harbored a MAPK1E322K somatic mutation. MAPK1E322Kwas associated with increased p-EGFR, increased EGFR downstream signaling and increased sensitivity to erlotinib. In this study, we investigated the mechanism of MAPK1E322K-mediated EGFR activation in the context of erlotinib sensitivity. We demonstrated increased AREG secretion in HNSCC cell lines harboring endogenous or exogenous MAPK1E322K compared to wild type MAPK1. We found inhibition or knockdown of MAPK1 with siRNA resulted in reduced secretion of AREG and decreased sensitivity to erlotinib in the setting of MAPK1E322K. MAPK1E322K was associated with increased AREG secretion leading to an autocrine feedback loop involving AREG, EGFR and downstream signaling. Knockdown of AREG in HNSCC cells harboring MAPK1E322K abrogated EGFR signaling and decreased sensitivity to erlotinib in vitro and in vivo. These cumulative findings implicate increased AREG secretion and EGFR activation as contributing to increased erlotinib sensitivity in MAPK1E322K HNSCC.
Collapse
Affiliation(s)
- Yihui Wen
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China.,Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Hua Li
- Department of Otolaryngology Head and Neck Surgery, University of California at San Francisco, San Francisco, California, USA
| | - Yan Zeng
- Department of Otolaryngology Head and Neck Surgery, University of California at San Francisco, San Francisco, California, USA
| | - Weiping Wen
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
| | - Kelsey P Pendleton
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Vivian W Y Lui
- Department of Pharmacology and Pharmacy, School of Biomedical Sciences, Li-Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR
| | - Ann Marie Egloff
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Departments of Molecular and Cell Biology and Otolaryngology, Boston University, Boston, Massachusetts, USA
| | - Jennifer R Grandis
- Department of Otolaryngology Head and Neck Surgery, University of California at San Francisco, San Francisco, California, USA.,Clinical and Translational Science Institute, University of California at San Francisco, San Francisco, California, USA
| |
Collapse
|
40
|
Pinilla-Macua I, Grassart A, Duvvuri U, Watkins SC, Sorkin A. EGF receptor signaling, phosphorylation, ubiquitylation and endocytosis in tumors in vivo. eLife 2017; 6. [PMID: 29268862 PMCID: PMC5741375 DOI: 10.7554/elife.31993] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 11/14/2017] [Indexed: 12/11/2022] Open
Abstract
Despite a well-established role for the epidermal growth factor receptor (EGFR) in tumorigenesis, EGFR activities and endocytosis in tumors in vivo have not been studied. We labeled endogenous EGFR with GFP by genome-editing of human oral squamous cell carcinoma cells, which were used to examine EGFR-GFP behavior in mouse tumor xenografts in vivo. Intravital multiphoton imaging, confocal imaging of cryosections and biochemical analysis revealed that localization and trafficking patterns, as well as levels of phosphorylation and ubiquitylation of EGFR in tumors in vivo closely resemble patterns and levels observed in the same cells treated with 20–200 pM EGF in vitro. Consistent with the prediction of low ligand concentrations in tumors, EGFR endocytosis was kinase-dependent and blocked by inhibitors of clathrin-mediated internalization; and EGFR activity was insensitive to Cbl overexpression. Collectively, our data suggest that a small pool of active EGFRs is sufficient to drive tumorigenesis by signaling primarily through the Ras-MAPK pathway.
Collapse
Affiliation(s)
- Itziar Pinilla-Macua
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, United States
| | - Alexandre Grassart
- Department of Molecular Microbial Pathogenesis, Institute Pasteur, Paris, France
| | - Umamaheswar Duvvuri
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, United States
| | - Simon C Watkins
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, United States
| | - Alexander Sorkin
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, United States
| |
Collapse
|
41
|
Liu Y, Jiang H, Zhou H, Ying X, Wang Z, Yang Y, Xu W, He X, Li Y. Lentivirus-mediated silencing of HOTAIR lncRNA restores gefitinib sensitivity by activating Bax/Caspase-3 and suppressing TGF-α/EGFR signaling in lung adenocarcinoma. Oncol Lett 2017; 15:2829-2838. [PMID: 29467862 PMCID: PMC5778865 DOI: 10.3892/ol.2017.7656] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 08/24/2017] [Indexed: 12/13/2022] Open
Abstract
Secondary resistance is a major limitation in the efficacy of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor treatment of lung cancer. Previous studies have shown that expression of the long non-coding RNA HOX transcript antisense RNA (HOTAIR) is upregulated in lung cancer, which is correlated with metastasis and poor prognosis. However, the precise role of HOTAIR and its effects on gefitinib resistance in human lung adenocarcinoma are not known. To address this issue, in the present study we established a gefitinib-resistant (R)PC-9 human lung adenocarcinoma cell line and examined cell viability with the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium assay. We found that gefitinib concentrations <10 µM inhibited the viability of PC-9 but not RPC-9 cells in a dose-dependent manner. Lentivirus-mediated HOTAIR RNA interference induced cell apoptosis and S-phase arrest, as determined by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling and flow cytometry. Consistent with these observations, HOTAIR suppression was associated with tumor shrinkage and restoration of gefitinib sensitivity in RPC-9 xenograft mice. Immunohistochemical analyses and western blot revealed that HOTAIR silencing resulted in the upregulation of B cell lymphoma 2-associated X protein (Bax), Caspase-3 and transforming growth factor α (TGF-α) and downregulation of EGFR and B cell lymphoma 2 (Bcl-2) levels. These results indicate that HOTAIR normally prevents the activation of Bax/Caspase-3 while inducing TGF-α/EGFR signaling. Thus, targeting HOTAIR may be a novel therapeutic strategy for treating gefitinib-resistant lung adenocarcinoma.
Collapse
Affiliation(s)
- Yuanshun Liu
- Department of Respiratory Medicine, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Hua Jiang
- Department of Respiratory Medicine, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Hongbin Zhou
- Department of Respiratory Medicine, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Xiwang Ying
- Department of Respiratory Medicine, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Zhehua Wang
- Department of Respiratory Medicine, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Yang Yang
- Department of Respiratory Medicine, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Wulin Xu
- Department of Respiratory Medicine, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Xujun He
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Yaqing Li
- Department of Respiratory Medicine, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China.,Department of Respiratory Medicine, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| |
Collapse
|
42
|
|
43
|
Daigo K, Takano A, Thang PM, Yoshitake Y, Shinohara M, Tohnai I, Murakami Y, Maegawa J, Daigo Y. Characterization of KIF11 as a novel prognostic biomarker and therapeutic target for oral cancer. Int J Oncol 2017; 52:155-165. [PMID: 29115586 PMCID: PMC5743338 DOI: 10.3892/ijo.2017.4181] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 10/21/2017] [Indexed: 11/16/2022] Open
Abstract
Oral cancer has a high mortality rate, and its incidence is increasing gradually worldwide. As the effectiveness of standard treatments is still limited, the development of new therapeutic strategies is eagerly awaited. Kinesin family member 11 (KIF11) is a motor protein required for establishing a bipolar spindle in cell division. The role of KIF11 in oral cancer is unclear. Therefore, the present study aimed to assess the role of KIF11 in oral cancer and evaluate its role as a prognostic biomarker and therapeutic target for treating oral cancer. Immunohistochemical analysis demonstrated that KIF11 was expressed in 64 of 99 (64.6%) oral cancer tissues but not in healthy oral epithelia. Strong KIF11 expression was significantly associated with poor prognosis among oral cancer patients (P=0.034), and multivariate analysis confirmed its independent prognostic value. In addition, inhibition of KIF11 expression by transfection of siRNAs into oral cancer cells or treatment of cells with a KIF11 inhibitor significantly suppressed cell proliferation, probably through G2/M arrest and subsequent induction of apoptosis. These results suggest that KIF11 could be a potential prognostic biomarker and therapeutic target for oral cancer.
Collapse
Affiliation(s)
- Kayo Daigo
- Center for Antibody and Vaccine Therapy, Research Hospital, Institute of Medical Science Hospital, The University of Tokyo, Tokyo, Japan
| | - Atsushi Takano
- Center for Antibody and Vaccine Therapy, Research Hospital, Institute of Medical Science Hospital, The University of Tokyo, Tokyo, Japan
| | - Phung Manh Thang
- Center for Antibody and Vaccine Therapy, Research Hospital, Institute of Medical Science Hospital, The University of Tokyo, Tokyo, Japan
| | - Yoshihiro Yoshitake
- Department of Oral and Maxillofacial Surgery, Kumamoto University, Kumamoto, Japan
| | - Masanori Shinohara
- Department of Oral and Maxillofacial Surgery, Kumamoto University, Kumamoto, Japan
| | - Iwau Tohnai
- Department of Oral and Maxillofacial Surgery, Yokohama City University, Yokohama, Japan
| | - Yoshinori Murakami
- Division of Molecular Pathology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Jiro Maegawa
- Department of Plastic and Reconstructive Surgery, Yokohama City University, Yokohama, Japan
| | - Yataro Daigo
- Center for Antibody and Vaccine Therapy, Research Hospital, Institute of Medical Science Hospital, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
44
|
Li YQ, Liu YS, Ying XW, Zhou HB, Wang Z, Wu SC, Yan JP, Jing YT, Yang Y. Lentivirus-mediated disintegrin and metalloproteinase 17 RNA interference reversed the acquired resistance to gefitinib in lung adenocarcinoma cells in vitro. Biotechnol Prog 2017; 34:196-205. [PMID: 28960861 PMCID: PMC6585635 DOI: 10.1002/btpr.2564] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 06/13/2017] [Indexed: 12/12/2022]
Abstract
Objective: The aim of the study is to evaluate the effects of silencing a disintegrin and metalloproteinase 17 (ADAM17) gene expression by lentivirus‐mediated RNA interference (RNAi) in the gefitinib‐resistant lung adenocarcinoma cells, and then to explore whether the recombinant lentivirus mediated ADAM17 RNAi reversed the acquired resistance of lung adenocarcinoma to gefitinib in vitro. Methods: The gefitinib‐resistant RPC‐9 cells were established and the mutations of EGFR were detected by gene sequencing. The ADAM17 shRNA expression vectors were constructed and packaged to recombinant lentivirus. The cell proliferation viability was detected by MTT, and cellular apotosis was analyzed by flow cytometry assay. The expression levels of ADAM17, EGFR and the phosphorylated EGFR were respectively detected by reverse transcription polymerase chain reaction and western blot. TGF‐α production in the supernatant was detected by enzyme‐linked immunosorbent assay. Results: The gefitinib‐resistant RPC‐9 cells in which mutated EGFR (exon 20) carried 790T > T/M mutation were established. When the concentrations of gefitinib were less than 10μmol/L, there were no significant changes in the apoptosis and cellular proliferation of RPC‐9 with the dose‐escalation of gefitinib. The cell proliferation viability of RPC‐9 was significantly decreased by lentivirus mediated ADAM17 RNAi (P < 0.05). Gefitinib did not inhibit ADAM17 expression in both the gefitinib‐sensitive PC‐9 and gefitinib‐resistant RPC‐9 cells (P > 0.05). Gefitinib had no significant effects on TGF alpha production in the supernatants (P > 0.05). Gefitinib did not inhibit EGFR expression in gefitinib‐sensitive PC‐9 and gefitinib‐resistant RPC‐9 cells (P > 0.05). The phosphorylation of EGFR in gefitinib‐sensitive PC‐9 cells was significantly inhibited by gefitinib (P < 0.05), but that in gefitinib‐resistant RPC‐9 could not be inhibited by gefitinib (P > 0.05). Lentivirus mediated ADAM17 RNAi significantly inhibited the mRNA and protein expression of ADAM17 in gefitinib‐resistant RPC‐9 cells (P < 0.05), as well as TGF alpha production in the supernatants (P < 0.05). Also, the phosphorylation of EGFR was significantly reduced in gefitinib‐resistant RPC‐9 cells by lentivirus mediated ADAM17 RNAi (P < 0.05); however, the mRNA and protein expression of EGFR could not be inhibited. Conclusion: Lentivirus mediated ADAM17 RNAi may reverse the acquired resistance of lung adenocarcinoma to gefitinib via inhibiting the upstream of EGFR signal pathway, which may provide a new therapeutic target to solve the acquired resistance to EGFR tyrosine kinase inhibitors in lung adenocarcinoma. © 2017 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers Biotechnol. Prog., 34:196–205, 2018
Collapse
Affiliation(s)
- Ya-Qing Li
- Department of Respiratory Medicine, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, 310014, P.R. China.,People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, 310014, P.R. China.,Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Hangzhou, Zhejiang, 310014, P.R. China
| | - Yuan-Shun Liu
- Department of Respiratory Medicine, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, 310014, P.R. China.,People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, 310014, P.R. China.,Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Hangzhou, Zhejiang, 310014, P.R. China
| | - Xi-Wang Ying
- Department of Respiratory Medicine, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, 310014, P.R. China.,People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, 310014, P.R. China.,Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Hangzhou, Zhejiang, 310014, P.R. China
| | - Hong-Bin Zhou
- Department of Respiratory Medicine, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, 310014, P.R. China.,People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, 310014, P.R. China
| | - Zhehua Wang
- Department of Respiratory Medicine, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, 310014, P.R. China.,People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, 310014, P.R. China
| | - Sheng-Chang Wu
- Department of Respiratory Medicine, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, 310014, P.R. China.,People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, 310014, P.R. China
| | - Jian-Ping Yan
- Department of Respiratory Medicine, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, 310014, P.R. China.,People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, 310014, P.R. China
| | - Yu-Ting Jing
- Department of Respiratory Medicine, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, 310014, P.R. China.,People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, 310014, P.R. China
| | - Yang Yang
- Department of Respiratory Medicine, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, 310014, P.R. China.,People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, 310014, P.R. China
| |
Collapse
|
45
|
MacDonald F, Zaiss DMW. The Immune System's Contribution to the Clinical Efficacy of EGFR Antagonist Treatment. Front Pharmacol 2017; 8:575. [PMID: 28970798 PMCID: PMC5609556 DOI: 10.3389/fphar.2017.00575] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 08/10/2017] [Indexed: 12/17/2022] Open
Abstract
Epidermal Growth Factor Receptor (EGFR) antagonists were one of the first anti-cancer treatments developed targeting a Receptor Tyrosine Kinase. However, the underlying mode of action of how EGFR antagonist application can explain its clinical efficacy in different types of cancers remains largely unresolved. Numerous findings have suggested that a substantial portion of the effects attributed to EGFR antagonist treatment might not be based on direct influence on the tumor itself. Instead it may be based on indirect effects, potentially mediated via the immune system. In this review the role of the EGFR for the functioning of the immune system is discussed, alongside how EGFR antagonist treatment could be impacting tumor growth by blocking macrophage and FoxP3-expressing regulatory CD4+ T cell function. Based on these findings, we consider implications for current treatment schemes and suggest novel approaches to improve the efficacy of EGFR antagonist treatment in the future. Finally, we propose potential ways to improve EGFR antagonists, in order to enhance their clinical efficacy whilst diminishing unwanted side effects.
Collapse
Affiliation(s)
- Felicity MacDonald
- School of Biological Sciences, Institute of Immunology and Infection Research, University of EdinburghEdinburgh, United Kingdom
| | - Dietmar M W Zaiss
- School of Biological Sciences, Institute of Immunology and Infection Research, University of EdinburghEdinburgh, United Kingdom
| |
Collapse
|
46
|
Horimasu Y, Ishikawa N, Taniwaki M, Yamaguchi K, Hamai K, Iwamoto H, Ohshimo S, Hamada H, Hattori N, Okada M, Arihiro K, Ohtsuki Y, Kohno N. Gene expression profiling of idiopathic interstitial pneumonias (IIPs): identification of potential diagnostic markers and therapeutic targets. BMC MEDICAL GENETICS 2017; 18:88. [PMID: 28821283 PMCID: PMC5562997 DOI: 10.1186/s12881-017-0449-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 08/14/2017] [Indexed: 12/23/2022]
Abstract
BACKGROUND Chronic fibrosing idiopathic interstitial pneumonia (IIP) is characterized by alveolar epithelial damage, activation of fibroblast proliferation, and loss of normal pulmonary architecture and function. This study aims to investigate the genetic backgrounds of IIP through gene expression profiling and pathway analysis, and to identify potential biomarkers that can aid in diagnosis and serve as novel therapeutic targets. METHODS RNA extracted from lung specimens of 12 patients with chronic fibrosing IIP was profiled using Illumina Human WG-6 v3 BeadChips, and Ingenuity Pathway Analysis was performed to identify altered functional and canonical signaling pathways. For validating the results from gene expression analysis, immunohistochemical staining of 10 patients with chronic fibrosing IIP was performed. RESULTS Ninety-eight genes were upregulated in IIP patients relative to control subjects. Some of the upregulated genes, namely desmoglein 3 (DSG3), protocadherin gamma-A9 (PCDHGA9) and discoidin domain-containing receptor 1 (DDR1) are implicated in cell-cell interaction and/or adhesion; some, namely collagen type VII, alpha 1 (COL7A1), contactin-associated protein-like 3B (CNTNAP3B) and mucin-1 (MUC1) are encoding the extracellular matrix molecule or the molecules involved in cell-matrix interactions; and the others, namely CDC25C and growth factor independent protein 1B (GFI1B) are known to affect cell proliferation by affecting the progression of cell cycle or regulating transcription. According to pathway analysis, alternated pathways in IIP were related to cell death and survival and cellular growth and proliferation, which are more similar to cancer than to inflammatory response and immunological diseases. Using immunohistochemistry, we further validate that DSG3, the most highly upregulated gene, shows higher expression in chronic fibrosing IIP lung as compared to control lung. CONCLUSION We identified several genes upregulated in chronic fibrosing IIP patients as compared to control, and found genes and pathways implicated in cancer, rather than in inflammatory or immunological disease to play important roles in the pathogenesis of IIPs. Moreover, DSG3 is a novel potential biomarker for chronic fibrosing IIP with its significantly high expression in IIP lung.
Collapse
Affiliation(s)
- Yasushi Horimasu
- Department of Molecular and Internal Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551 Japan
| | - Nobuhisa Ishikawa
- Department of Molecular and Internal Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551 Japan
- Department of Respiratory Medicine, Hiroshima Prefectural Hospital, 1-5-54 Ujina-Kanda, Minami-ku, Hiroshima, 734-8530 Japan
| | - Masaya Taniwaki
- Department of Molecular and Internal Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551 Japan
| | - Kakuhiro Yamaguchi
- Department of Molecular and Internal Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551 Japan
| | - Kosuke Hamai
- Department of Molecular and Internal Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551 Japan
| | - Hiroshi Iwamoto
- Department of Molecular and Internal Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551 Japan
| | - Shinichiro Ohshimo
- Department of Molecular and Internal Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551 Japan
| | - Hironobu Hamada
- Department of Physical Analysis and Therapeutic Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551 Japan
| | - Noboru Hattori
- Department of Molecular and Internal Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551 Japan
| | - Morihito Okada
- Department of Surgical Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551 Japan
| | - Koji Arihiro
- Department of Anatomical Pathology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551 Japan
| | - Yuji Ohtsuki
- Division of Pathology, Matsuyama-shimin Hospital, 2-6-5 Ohtemachi, Matsuyama, 790-0067 Japan
| | - Nobuoki Kohno
- Department of Molecular and Internal Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551 Japan
| |
Collapse
|
47
|
Amphiregulin contained in NSCLC-exosomes induces osteoclast differentiation through the activation of EGFR pathway. Sci Rep 2017; 7:3170. [PMID: 28600504 PMCID: PMC5466625 DOI: 10.1038/s41598-017-03460-y] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 04/26/2017] [Indexed: 12/30/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) remains the leading cause of cancer-related deaths worldwide. The majority of patients are diagnosed in advanced disease stage. Bone metastasis is the most frequent complication in NSCLC resulting in osteolytic lesions. The perfect balance between bone-resorbing osteoclasts and bone-forming osteoblasts activity is lost in bone metastasis, inducing osteoclastogenesis. In NSCLC, the epidermal growth factor receptor (EGFR) pathway is constitutively activated. EGFR binds Amphiregulin (AREG) that is overexpressed in several cancers such as colon, breast and lung. Its levels in plasma of NSCLC patients correlate with poor prognosis and AREG was recently found as a signaling molecule in exosomes derived from cancer cell lines. Exosomes have a key role in the cell-cell communication and they were recently indicated as important actors in metastatic niche preparation. In the present work, we hypothesize a role of AREG carried by exosomes derived from NSCLC in bone metastasis induction. We observed that NSCLC-exosomes, containing AREG, induce EGFR pathway activation in pre-osteoclasts that in turn causes an increased expression of RANKL. RANKL is able to induce the expression of proteolytic enzymes, well-known markers of osteoclastogenesis, triggering a vicious cycle in osteolytic bone metastasis.
Collapse
|
48
|
Raimbourg J, Joalland MP, Cabart M, de Plater L, Bouquet F, Savina A, Decaudin D, Bennouna J, Vallette FM, Lalier L. Sensitization of EGFR Wild-Type Non-Small Cell Lung Cancer Cells to EGFR-Tyrosine Kinase Inhibitor Erlotinib. Mol Cancer Ther 2017; 16:1634-1644. [PMID: 28522592 DOI: 10.1158/1535-7163.mct-17-0075] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/07/2017] [Accepted: 05/02/2017] [Indexed: 11/16/2022]
Abstract
The benefit of EGFR-TKI in non-small cell lung cancer has been demonstrated in mutant EGFR tumors as first-line treatment but the benefit in wild-type EGFR tumors is marginal as well as restricted to maintenance therapy in pretreated patients. This work aimed at questioning the effects of cisplatin initial treatment on the EGFR pathway in non-small cell lung cancer and the functional consequences in vitro and in in vivo animal models of patient-derived xenografts (PDX). We establish here that cisplatin pretreatment specifically sensitizes wild-type EGFR-expressing cells to erlotinib, contrary to what happens in mutant EGFR cells and with a blocking EGFR antibody, both in vitro and in vivo The sensitization entails the activation of the kinase Src upstream of EGFR, thereafter transactivating EGFR through a ligand-independent activation. We propose a combination of markers that enable to discriminate between the tumors sensitized to erlotinib or not in PDX models, which should be worth testing in patients. These markers might be useful for the selection of patients who would benefit from erlotinib as a maintenance therapy. Mol Cancer Ther; 16(8); 1634-44. ©2017 AACR.
Collapse
Affiliation(s)
- Judith Raimbourg
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France.,Institut de Cancérologie de l'Ouest, Nantes-Saint Herblain, France
| | - Marie-Pierre Joalland
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France.,Institut de Cancérologie de l'Ouest, Nantes-Saint Herblain, France
| | - Mathilde Cabart
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France.,Institut Bergonié, Bordeaux, France
| | - Ludmilla de Plater
- Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, PSL University, Paris, France
| | | | | | - Didier Decaudin
- Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, PSL University, Paris, France.,Department of Medical Oncology, Institut Curie, Paris, France
| | - Jaafar Bennouna
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France.,Institut de Cancérologie de l'Ouest, Nantes-Saint Herblain, France
| | - François M Vallette
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France. .,Institut de Cancérologie de l'Ouest, Nantes-Saint Herblain, France
| | - Lisenn Lalier
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France. .,Institut de Cancérologie de l'Ouest, Nantes-Saint Herblain, France
| |
Collapse
|
49
|
Abstract
The ErbB receptor family, also known as the EGF receptor family or type I receptor family, includes the epidermal growth factor (EGF) receptor (EGFR) or ErbB1/Her1, ErbB2/Her2, ErbB3/Her3, and ErbB4/Her4. Among all RTKs, EGFR was the first RTK identified and the first one linked to cancer. Thus, EGFR has also been the most intensively studied among all RTKs. ErbB receptors are activated after homodimerization or heterodimerization. The ErbB family is unique among the various groups of receptor tyrosine kinases (RTKs) in that ErbB3 has impaired kinase activity, while ErbB2 does not have a direct ligand. Therefore, heterodimerization is an important mechanism that allows the activation of all ErbB receptors in response to ligand stimulation. The activated ErbB receptors bind to many signaling proteins and stimulate the activation of many signaling pathways. The specificity and potency of intracellular signaling pathways are determined by positive and negative regulators, the specific composition of activating ligand(s), receptor dimer components, and the diverse range of proteins that associate with the tyrosine phosphorylated C-terminal domain of the ErbB receptors. ErbB receptors are overexpressed or mutated in many cancers, especially in breast cancer, ovarian cancer, and non-small cell lung cancer. The overexpression and overactivation of ErbB receptors are correlated with poor prognosis, drug resistance, cancer metastasis, and lower survival rate. ErbB receptors, especially EGFR and ErbB2 have been the primary choices as targets for developing cancer therapies.
Collapse
Affiliation(s)
- Zhixiang Wang
- Signal Transduction Research Group, Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, 835 MSB, 114 St NW, Edmonton, AB, Canada, T6G 2H7.
| |
Collapse
|
50
|
Haghgoo SM, Khosravi A, Mortaz E, Pourabdollah-Toutkaboni M, Seifi S, Sabour S, Allameh A. Prognostic value of rare and complex mutations in EGFR and serum levels of soluble EGFR and its ligands in non-small cell lung carcinoma patients. Clin Biochem 2016; 50:293-300. [PMID: 27923629 DOI: 10.1016/j.clinbiochem.2016.11.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 11/27/2016] [Accepted: 11/29/2016] [Indexed: 12/16/2022]
Abstract
BACKGROUND A number of complex and rare mutations in epidermal growth factor receptor (EGFR) gene have been identified and the clinical implication of serum EGFR ligands has also been reported. However, the prognostic significance of these mutations and also the serum EGFR and its ligands in Non-Small Cell Lung Carcinoma (NSCLC) has remained a challenging issue. This study is aimed at finding the prognostic importance of EGFR rare mutations and serum EGFR, amphiregulin (AR), and TGF-α (Transforming Growth Factor-alpha) in NSCLC. MATERIALS AND METHOD NSCLC patients (n=98) with mean age of 59±10.5 were enrolled (M/F: 75/23). DNA was extracted from formalin fixed paraffin embedded tissues. Exons 19 and 21 were amplified using polymerase chain reaction followed by direct sequencing for identification of mutations. Serum EGFR, AR, and TGF-α were measured by ELISA. RESULTS EGFR mutation rate in patients was 37% (exon 19 deletions: 72.2%, exon 21 substitutions: 27.8%). The E872K in exon 21 mutation-positive cases was the most frequent rare mutation detected (90%; 9/10 samples). A significant relationship was found between EGFR exon 21mutations and serum EGFR and TGF-α (P<0.05). Increased serum AR (>3pg/ml) and TGF-α (>10.5pg/ml) were associated with shorter overall survival (P<0.05). CONCLUSIONS The data clearly show that elevation of serum TGF-α and AR are associated with poor prognosis of NSCLC. In addition to the close relationship between EGFR mutations and serum EGFR, serum TGF-α changes was associated with the gene mutations. These findings could be implicated in clinical decision making related to EGFR-TKIs.
Collapse
Affiliation(s)
- Seyyed Mortaza Haghgoo
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Adnan Khosravi
- Department of Oncology, Chronic Respiratory Diseases Research Center and National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Masih Daneshvari Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Esmaeil Mortaz
- Department of Immunology, Chronic Respiratory Diseases Research Center and National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Masih Daneshvari Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Airways Disease Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Mihan Pourabdollah-Toutkaboni
- Department of Pathology, Chronic Respiratory Diseases Research Center and National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Masih Daneshvari Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sharareh Seifi
- Department of Oncology, Chronic Respiratory Diseases Research Center and National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Masih Daneshvari Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Siamak Sabour
- Safety Promotion and Injury Prevention Research Center, Department of Epidemiology, School of Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abdolamir Allameh
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|