1
|
Cooksey LC, Friesen DC, Mangan ED, Mathew PA. Prospective Molecular Targets for Natural Killer Cell Immunotherapy against Glioblastoma Multiforme. Cells 2024; 13:1567. [PMID: 39329751 PMCID: PMC11429815 DOI: 10.3390/cells13181567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/06/2024] [Accepted: 09/15/2024] [Indexed: 09/28/2024] Open
Abstract
Glioblastoma multiforme (GBM) is the most common type of primary malignant brain tumor and has a dismal overall survival rate. To date, no GBM therapy has yielded successful results in survival for patients beyond baseline surgical resection, radiation, and chemotherapy. Immunotherapy has taken the oncology world by storm in recent years and there has been movement from researchers to implement the immunotherapy revolution into GBM treatment. Natural killer (NK) cell-based immunotherapies are a rising candidate to treat GBM from multiple therapeutic vantage points: monoclonal antibody therapy targeting tumor-associated antigens (TAAs), immune checkpoint inhibitors, CAR-NK cell therapy, Bi-specific killer cell engagers (BiKEs), and more. NK therapies often focus on tumor antigens for targeting. Here, we reviewed some common targets analyzed in the fight for GBM immunotherapy relevant to NK cells: EGFR, HER2, CD155, and IL-13Rα2. We further propose investigating the Lectin-like Transcript 1 (LLT1) and cell surface proliferating cell nuclear antigen (csPCNA) as targets for NK cell-based immunotherapy.
Collapse
Affiliation(s)
- Luke C. Cooksey
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (L.C.C.); (D.C.F.); (E.D.M.)
- Department of Microbiology, Immunology and Genetics, School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Derek C. Friesen
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (L.C.C.); (D.C.F.); (E.D.M.)
| | - Enrique D. Mangan
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (L.C.C.); (D.C.F.); (E.D.M.)
| | - Porunelloor A. Mathew
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (L.C.C.); (D.C.F.); (E.D.M.)
- Department of Microbiology, Immunology and Genetics, School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
2
|
Alekseeva ON, Hoa LT, Vorobyev PO, Kochetkov DV, Gumennaya YD, Naberezhnaya ER, Chuvashov DO, Ivanov AV, Chumakov PM, Lipatova AV. Receptors and Host Factors for Enterovirus Infection: Implications for Cancer Therapy. Cancers (Basel) 2024; 16:3139. [PMID: 39335111 PMCID: PMC11430599 DOI: 10.3390/cancers16183139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/29/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Enteroviruses, with their diverse clinical manifestations ranging from mild or asymptomatic infections to severe diseases such as poliomyelitis and viral myocarditis, present a public health threat. However, they can also be used as oncolytic agents. This review shows the intricate relationship between enteroviruses and host cell factors. Enteroviruses utilize specific receptors and coreceptors for cell entry that are critical for infection and subsequent viral replication. These receptors, many of which are glycoproteins, facilitate virus binding, capsid destabilization, and internalization into cells, and their expression defines virus tropism towards various types of cells. Since enteroviruses can exploit different receptors, they have high oncolytic potential for personalized cancer therapy, as exemplified by the antitumor activity of certain enterovirus strains including the bioselected non-pathogenic Echovirus type 7/Rigvir, approved for melanoma treatment. Dissecting the roles of individual receptors in the entry of enteroviruses can provide valuable insights into their potential in cancer therapy. This review discusses the application of gene-targeting techniques such as CRISPR/Cas9 technology to investigate the impact of the loss of a particular receptor on the attachment of the virus and its subsequent internalization. It also summarizes the data on their expression in various types of cancer. By understanding how enteroviruses interact with specific cellular receptors, researchers can develop more effective regimens of treatment, offering hope for more targeted and efficient therapeutic strategies.
Collapse
Affiliation(s)
- Olga N Alekseeva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Le T Hoa
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Pavel O Vorobyev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Dmitriy V Kochetkov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Yana D Gumennaya
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | | | - Denis O Chuvashov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexander V Ivanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Peter M Chumakov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Anastasia V Lipatova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
3
|
Assal RA, Elemam NM, Mekky RY, Attia AA, Soliman AH, Gomaa AI, Efthimiadou EK, Braoudaki M, Fahmy SA, Youness RA. A Novel Epigenetic Strategy to Concurrently Block Immune Checkpoints PD-1/PD-L1 and CD155/TIGIT in Hepatocellular Carcinoma. Transl Oncol 2024; 45:101961. [PMID: 38631259 PMCID: PMC11040172 DOI: 10.1016/j.tranon.2024.101961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/29/2024] [Accepted: 04/05/2024] [Indexed: 04/19/2024] Open
Abstract
Tumor microenvironment is an intricate web of stromal and immune cells creating an immune suppressive cordon around the tumor. In hepatocellular carcinoma (HCC), Tumor microenvironment is a formidable barrier towards novel immune therapeutic approaches recently evading the oncology field. In this study, the main aim was to identify the intricate immune evasion tactics mediated by HCC cells and to study the epigenetic modulation of the immune checkpoints; Programmed death-1 (PD-1)/ Programmed death-Ligand 1 (PD-L1) and T cell immunoreceptor with Ig and ITIM domains (TIGIT)/Cluster of Differentiation 155 (CD155) at the tumor-immune synapse. Thus, liver tissues, PBMCs and sera were collected from Hepatitis C Virus (HCV), HCC as well as healthy individuals. Screening was performed to PD-L1/PD-1 and CD155/TIGIT axes in HCC patients. PDL1, CD155, PD-1 and TIGIT were found to be significantly upregulated in liver tissues and peripheral blood mononuclear cells (PBMCs) of HCC patients. An array of long non-coding RNAs (lncRNAs) and microRNAs validated to regulate such immune checkpoints were screened. The lncRNAs; CCAT-1, H19, and MALAT-1 were all significantly upregulated in the sera, PBMCs, and tissues of HCC patients as compared to HCV patients and healthy controls. However, miR-944-5p, miR-105-5p, miR-486-5p, miR-506-5p, and miR-30a-5p were downregulated in the sera and liver tissues of HCC patients. On the tumor cell side, knocking down of lncRNAs-CCAT-1, MALAT-1, or H19-markedly repressed the co-expression of PD-L1 and CD155 and accordingly induced the cytotoxicity of co-cultured primary immune cells. On the immune side, ectopic expression of the under-expressed microRNAs; miR-486-5p, miR-506-5p, and miR-30a-5p significantly decreased the transcript levels of PD-1 in PBMCs with no effect on TIGIT. On the other hand, ectopic expression of miR-944-5p and miR-105-5p in PBMCs dramatically reduced the co-expression of PD-1 and TIGIT. Finally, all studied miRNAs enhanced the cytotoxic effects of PBMCs against Huh7 cells. However, miR-105-5p showed the highest augmentation for PBMCs cytotoxicity against HCC cells. In conclusion, this study highlights a novel co-targeting strategy using miR-105-5p mimics, MALAT-1, CCAT-1 and H19 siRNAs to efficiently hampers the immune checkpoints; PD-L1/PD-1 and CD155/TIGIT immune evasion properties in HCC.
Collapse
Affiliation(s)
- Reem A Assal
- Department of Pharmacology and Toxicology, Heliopolis University for Sustainable Development, Cairo-Ismailia Desert Road, 11785, Cairo, Egypt
| | - Noha M Elemam
- Clinical Sciences Department, College of Medicine, University of Sharjah, 27272, Sharjah, United Arab Emirates; Research Institute for Medical and Health Sciences, University of Sharjah, 27272, Sharjah, United Arab Emirates
| | - Radwa Y Mekky
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA University), Cairo, Egypt
| | - Abdelrahman A Attia
- General Surgery Department, Ain Shams University, Demerdash Hospital, Cairo, Egypt
| | - Aya Hesham Soliman
- Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, 11835, Cairo, Egypt
| | - Asmaa Ibrahim Gomaa
- Department of Hepatology, National Liver Institute, Menoufiya University, Shebin El-Kom, Egypt
| | - Eleni K Efthimiadou
- Inorganic Chemistry Laboratory, Chemistry Department, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Braoudaki
- Department of Clinical, Pharmaceutical, and Biological Science, School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - Sherif Ashraf Fahmy
- Chemistry Department, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, New Administrative Capital, 11835, Cairo, Egypt
| | - Rana A Youness
- Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, 11835, Cairo, Egypt; Molecular Biology and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU), New Administrative Capital, 11835, Cairo, Egypt.
| |
Collapse
|
4
|
Pan C, Zhai Y, Wang C, Liao Z, Wang D, Yu M, Wu F, Yin Y, Shi Z, Li G, Jiang T, Zhang W. Poliovirus receptor-based chimeric antigen receptor T cells combined with NK-92 cells exert potent activity against glioblastoma. J Natl Cancer Inst 2024; 116:389-400. [PMID: 37944044 PMCID: PMC10919341 DOI: 10.1093/jnci/djad226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/23/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Poliovirus receptor interacts with 3 receptors: T-cell immunoglobulin immunoreceptor tyrosine-based inhibitory motif, CD96, and DNAX accessory molecule 1, which are predominantly expressed on T cells and natural killer (NK) cells. Many solid tumors, including IDH wild-type glioblastoma, have been reported to overexpress poliovirus receptor, and this overexpression is associated with poor prognosis. However, there are no preclinical or clinical trials investigating the use of cell-based immunotherapies targeting poliovirus receptor in IDH wild-type glioblastoma. METHODS We analyzed poliovirus receptor expression in transcriptome sequencing databases and specimens from IDH wild-type glioblastoma patients. We developed poliovirus receptor targeting chimeric antigen receptor T cells using lentivirus. The antitumor activity of chimeric antigen receptor T cells was demonstrated in patient-derived glioma stem cells, intracranial and subcutaneous mouse xenograft models. RESULTS We verified poliovirus receptor expression in primary glioma stem cells, surgical specimens from IDH wild-type glioblastoma patients, and organoids. Accordingly, we developed poliovirus receptor-based second-generation chimeric antigen receptor T cells. The antitumor activity of chimeric antigen receptor T cells was demonstrated in glioma stem cells and xenograft models. Tumor recurrence occurred in intracranial xenograft models because of antigen loss. The combinational therapy of tyrosine-based inhibitory motif extracellular domain-based chimeric antigen receptor T cells and NK-92 cells markedly suppressed tumor recurrence and prolonged survival. CONCLUSIONS Poliovirus receptor-based chimeric antigen receptor T cells were capable of killing glioma stem cells and suppressing tumor recurrence when combined with NK-92 cells.
Collapse
Affiliation(s)
- Changqing Pan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - You Zhai
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, PR China
| | - Chen Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - Zhiyi Liao
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, PR China
| | - Di Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - Mingchen Yu
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, PR China
| | - Fan Wu
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, PR China
| | - Yiyun Yin
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, PR China
| | - Zhongfang Shi
- Department of Pathophysiology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, PR China
| | - Guanzhang Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, PR China
- Chinese Glioma Genome Atlas Network and Asian Glioma Genome Atlas Network, Beijing, PR China
| | - Tao Jiang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, PR China
- Chinese Glioma Genome Atlas Network and Asian Glioma Genome Atlas Network, Beijing, PR China
- China National Clinical Research Center for Neurological Diseases, Beijing, PR China
- Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, PR China
- Research Unit of Accurate Diagnosis, Treatment, and Translational Medicine of Brain Tumors, Chinese Academy of Medical Sciences, Beijing, PR China
| | - Wei Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, PR China
- Chinese Glioma Genome Atlas Network and Asian Glioma Genome Atlas Network, Beijing, PR China
- China National Clinical Research Center for Neurological Diseases, Beijing, PR China
- Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, PR China
| |
Collapse
|
5
|
Wu M, Dong H, Xu C, Sun M, Gao H, Bu F, Chen J. The Wnt-dependent and Wnt-independent functions of BCL9 in development, tumorigenesis, and immunity: Implications in therapeutic opportunities. Genes Dis 2024; 11:701-710. [PMID: 37692512 PMCID: PMC10491870 DOI: 10.1016/j.gendis.2023.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 02/27/2023] [Accepted: 03/05/2023] [Indexed: 09/12/2023] Open
Abstract
B-cell CLL/lymphoma 9 (BCL9) is considered a key developmental regulator and a well-established oncogenic driver in multiple cancer types, mainly through potentiating the Wnt/β-catenin signaling. However, increasing evidences indicate that BCL9 also plays multiple Wnt-independent roles. Herein, we summarized the updates of the canonical and non-canonical functions of BCL9 in cellular, physiological, or pathological processes. Moreover, we also concluded that the targeted inhibitors disrupt the interaction of β-catenin with BCL9 reported recently.
Collapse
Affiliation(s)
- Minjie Wu
- College of Pharmacy and Department of Hepatology, Institute of Hepatology and Metabolic Diseases, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Heng Dong
- College of Pharmacy and Department of Hepatology, Institute of Hepatology and Metabolic Diseases, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Chao Xu
- College of Pharmacy and Department of Hepatology, Institute of Hepatology and Metabolic Diseases, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Mengqing Sun
- College of Pharmacy and Department of Hepatology, Institute of Hepatology and Metabolic Diseases, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Haojin Gao
- College of Pharmacy and Department of Hepatology, Institute of Hepatology and Metabolic Diseases, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Fangtian Bu
- College of Pharmacy and Department of Hepatology, Institute of Hepatology and Metabolic Diseases, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Jianxiang Chen
- College of Pharmacy and Department of Hepatology, Institute of Hepatology and Metabolic Diseases, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Laboratory of Cancer Genomics, Division of Cellular and Molecular Research, National Cancer Centre, Singapore 169610, Singapore
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| |
Collapse
|
6
|
Xie W, Yu S, Hou NY, Yan L, Cao QX, Dan ZJ, Yuan XM, Lu HJ, Liu J, Pang MH. Relationship between expression of CD155 and TIGIT and clinicopathological features in gastrointestinal neuroendocrine tumors. WORLD CHINESE JOURNAL OF DIGESTOLOGY 2024; 32:123-133. [DOI: 10.11569/wcjd.v32.i2.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
|
7
|
Schweiger MW, Amoozgar Z, Repiton P, Morris R, Maksoud S, Hla M, Zaniewski E, Noske DP, Haas W, Breyne K, Tannous BA. Glioblastoma extracellular vesicles modulate immune PD-L1 expression in accessory macrophages upon radiotherapy. iScience 2024; 27:108807. [PMID: 38303726 PMCID: PMC10831876 DOI: 10.1016/j.isci.2024.108807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/10/2023] [Accepted: 01/02/2024] [Indexed: 02/03/2024] Open
Abstract
Glioblastoma (GBM) is the most aggressive brain tumor, presenting major challenges due to limited treatment options. Standard care includes radiation therapy (RT) to curb tumor growth and alleviate symptoms, but its impact on GBM is limited. In this study, we investigated the effect of RT on immune suppression and whether extracellular vesicles (EVs) originating from GBM and taken up by the tumor microenvironment (TME) contribute to the induced therapeutic resistance. We observed that (1) ionizing radiation increases immune-suppressive markers on GBM cells, (2) macrophages exacerbate immune suppression in the TME by increasing PD-L1 in response to EVs derived from GBM cells which is further modulated by RT, and (3) RT increases CD206-positive macrophages which have the most potential in inducing a pro-oncogenic environment due to their increased uptake of tumor-derived EVs. In conclusion, RT affects GBM resistance by immuno-modulating EVs taken up by myeloid cells in the TME.
Collapse
Affiliation(s)
- Markus W. Schweiger
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
- Neuroscience Program, Harvard Medical School, Boston, MA 02129, USA
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Neurosurgery, 1081 HV Amsterdam, the Netherlands
- Cancer Center Amsterdam, Brain Tumor Center and Liquid Biopsy Center, 1081 HV Amsterdam, the Netherlands
| | - Zohreh Amoozgar
- Department of Radiation Oncology, Edwin L. Steele Laboratories, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Pierre Repiton
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
- Neuroscience Program, Harvard Medical School, Boston, MA 02129, USA
- Section of Pharmaceutical Sciences, Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1205 Geneva, Switzerland
| | - Robert Morris
- Massachusetts General Hospital Cancer Center, Boston, MA 02129, USA
| | - Semer Maksoud
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
- Neuroscience Program, Harvard Medical School, Boston, MA 02129, USA
| | - Michael Hla
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
- Neuroscience Program, Harvard Medical School, Boston, MA 02129, USA
| | - Eric Zaniewski
- Massachusetts General Hospital Cancer Center, Boston, MA 02129, USA
| | - David P. Noske
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Neurosurgery, 1081 HV Amsterdam, the Netherlands
- Cancer Center Amsterdam, Brain Tumor Center and Liquid Biopsy Center, 1081 HV Amsterdam, the Netherlands
| | - Wilhelm Haas
- Massachusetts General Hospital Cancer Center, Boston, MA 02129, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02129, USA
| | - Koen Breyne
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
- Neuroscience Program, Harvard Medical School, Boston, MA 02129, USA
| | - Bakhos A. Tannous
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
- Neuroscience Program, Harvard Medical School, Boston, MA 02129, USA
| |
Collapse
|
8
|
Adhikari E, Liu Q, Johnson J, Stewart P, Marusyk V, Fang B, Izumi V, Bowers K, Guzman KM, Koomen JM, Marusyk A, Lau EK. Brain metastasis-associated fibroblasts secrete fucosylated PVR/CD155 that induces breast cancer invasion. Cell Rep 2023; 42:113463. [PMID: 37995180 DOI: 10.1016/j.celrep.2023.113463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/19/2023] [Accepted: 11/03/2023] [Indexed: 11/25/2023] Open
Abstract
Brain metastasis cancer-associated fibroblasts (bmCAFs) are emerging as crucial players in the development of breast cancer brain metastasis (BCBM), but our understanding of the underlying molecular mechanisms is limited. In this study, we aim to elucidate the pathological contributions of fucosylation (the post-translational modification of proteins by the dietary sugar L-fucose) to tumor-stromal interactions that drive the development of BCBM. Here, we report that patient-derived bmCAFs secrete high levels of polio virus receptor (PVR), which enhance the invasive capacity of BC cells. Mechanistically, we find that HIF1α transcriptionally upregulates fucosyltransferase 11, which fucosylates PVR, triggering its secretion from bmCAFs. Global phosphoproteomic analysis of BC cells followed by functional verification identifies cell-cell junction and actin cytoskeletal signaling as modulated by bmCAF-secreted, -fucosylated PVR. Our findings delineate a hypoxia- and fucosylation-regulated mechanism by which bmCAFs contribute to the invasiveness of BCBM in the brain.
Collapse
Affiliation(s)
- Emma Adhikari
- Department of Tumor Microenvironment & Metastasis, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL 33612, USA; Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Qian Liu
- Department of Tumor Microenvironment & Metastasis, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL 33612, USA; Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Joseph Johnson
- Department of Analytic Microscopy, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Paul Stewart
- Biostatistics and Bioinformatics Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Viktoriya Marusyk
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Bin Fang
- Proteomics and Metabolomics Core, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Victoria Izumi
- Proteomics and Metabolomics Core, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Kiah Bowers
- Proteomics and Metabolomics Core, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Kelly M Guzman
- Department of Analytic Microscopy, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - John M Koomen
- Proteomics and Metabolomics Core, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Andriy Marusyk
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Eric K Lau
- Department of Tumor Microenvironment & Metastasis, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA.
| |
Collapse
|
9
|
Shah S. Novel Therapies in Glioblastoma Treatment: Review of Glioblastoma; Current Treatment Options; and Novel Oncolytic Viral Therapies. Med Sci (Basel) 2023; 12:1. [PMID: 38249077 PMCID: PMC10801585 DOI: 10.3390/medsci12010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Abstract
One of the most prevalent primary malignant brain tumors is glioblastoma (GB). About 6 incidents per 100,000 people are reported annually. Most frequently, these tumors are linked to a poor prognosis and poor quality of life. There has been little advancement in the treatment of GB. In recent years, some innovative medicines have been tested for the treatment of newly diagnosed cases of GB and recurrent cases of GB. Surgery, radiotherapy, and alkylating chemotherapy are all common treatments for GB. A few of the potential alternatives include immunotherapy, tumor-treating fields (TTFs), and medications that target specific cellular receptors. To provide new multimodal therapies that focus on the molecular pathways implicated in tumor initiation and progression in GB, novel medications, delivery technologies, and immunotherapy approaches are being researched. Of these, oncolytic viruses (OVs) are among the most recent. Coupling OVs with certain modern treatment approaches may have significant benefits for GB patients. Here, we discuss several OVs and how they work in conjunction with other therapies, as well as virotherapy for GB. The study was based on the PRISMA guidelines. Systematic retrieval of information was performed on PubMed. A total of 307 articles were found in a search on oncolytic viral therapies for glioblastoma. Out of these 83 articles were meta-analyses, randomized controlled trials, reviews, and systematic reviews. A total of 42 articles were from the years 2018 to 2023. Appropriate studies were isolated, and important information from each of them was understood and entered into a database from which the information was used in this article. One of the most prevalent malignant brain tumors is still GB. Significant promise and opportunity exist for oncolytic viruses in the treatment of GB and in boosting immune response. Making the most of OVs in the treatment of GB requires careful consideration and evaluation of a number of its application factors.
Collapse
Affiliation(s)
- Siddharth Shah
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA
| |
Collapse
|
10
|
Imazu Y, Nishiwada S, Yasuda S, Nagai M, Nakamura K, Matsuo Y, Terai T, Yoshida C, Kohara Y, Sho M. Identification of Nectin Family Interactive Gene Panel and Stratification of Clinical Outcomes in Patients with Pancreatic Cancer. J Am Coll Surg 2023; 237:719-730. [PMID: 37503950 DOI: 10.1097/xcs.0000000000000808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
BACKGROUND Although patient-risk stratification is important for selecting individualized treatment for pancreatic ductal adenocarcinoma (PDAC), predicting the oncologic outcomes after surgery remains a challenge. In this study, we identified a nectin family gene panel (NFGP) that can accurately stratify oncologic outcomes in patients with PDAC. STUDY DESIGN Comprehensive analysis of the expression of 9 nectin family genes identified the NFGP, which was assessed for predictive performance in 2 independent public cohorts (The Cancer Genome Atlas [TCGA] n = 176; International Cancer Genome Consortium [ICGC] n = 89). It was subsequently trained and validated for the in-house training cohort without neo-adjuvant therapy (NAT, n = 213) and the validation cohort with NAT (n = 307). RESULTS Using the Cox regression model, NFGP derived from 9 nectin family genes accurately stratified overall survival (OS) in TCGA (p = 0.038) and ICGC (p = 0.005). We subsequently optimized NFGP, which robustly discriminated postoperative prognosis, OS (p = 0.014) and relapse-free survival ([RFS] p = 0.006) in the training cohort. The NFGP was successfully validated in an independent validation cohort (OS: p < 0.001; RFS: p = 0.004). Multivariate analysis demonstrated the NFGP was an independent prognostic factor for OS and RFS in the training (p = 0.028 and 0.008, respectively) and validation (p < 0.001 and 0.013, respectively) cohorts. The subcohort analyses showed that the predictive performance of NFGP is applicable to the patients' subcohort according to resectability or adjuvant therapy status. Additionally, a combination model of NFGP score and CA19-9 level emerged with improved accuracy for predicting prognosis. CONCLUSIONS This study established the predictive significance of NFGP for oncologic outcomes after surgery in PDAC. Our data demonstrate its clinical impact as a potent biomarker for optimal patient selection for individualized treatment strategies.
Collapse
Affiliation(s)
- Yuki Imazu
- From the Department of Surgery, Nara Medical University, Nara, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Sadasivam M, Jie C, Hamad ARA. Renal tubular epithelial cells are constitutive non-cognate stimulators of resident T cells. Cell Rep 2023; 42:113210. [PMID: 37796661 PMCID: PMC11259314 DOI: 10.1016/j.celrep.2023.113210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/06/2023] [Accepted: 09/18/2023] [Indexed: 10/07/2023] Open
Abstract
Understanding the roles of different cell types in regulating T cell homeostasis in various tissues is critical for understanding adaptive immunity. Here, we show that RTECs (renal tubular epithelial cells) are intrinsically programmed to polyclonally stimulate proliferation of kidney αβ T cells by a cell-cell contact mechanism that is major histocompatibility complex (MHC) independent and regulated by CD155, αVβ3-integrin, and vitronectin. Peripheral CD4 and CD8 are resistant to RTEC-mediated stimulation, while the minor subset of double-negative (DN) T cells are responsive. This functional property of RTEC is discovered by using a coculture system that recapitulates spontaneous in vivo polyclonal proliferation of kidney T cells, which are mainly comprised of central memory T (TCM) and effector memory T (TEM) cells. This robust cell-intrinsic stimulatory role of RTECs could be underlying the steady-state spontaneous proliferation of kidney T cells. The results have conceptual implications for understanding roles of different cell types in regulating systemic and organ-specific T cell homeostasis.
Collapse
Affiliation(s)
- Mohanraj Sadasivam
- Department of Pathology, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 664G, Baltimore, MD 21205, USA
| | - Chunfa Jie
- Department of Biochemistry and Nutrition, Des Moines University, 3200 Grand Avenue, Ryan Hall 230, Des Moines, IA 50266, USA
| | - Abdel Rahim A Hamad
- Department of Pathology, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 664G, Baltimore, MD 21205, USA; Department of Medicine, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 664G, Baltimore, MD 21205, USA.
| |
Collapse
|
12
|
Fu C, Liu Z, An T, Li H, Hu X, Li X, Liu X, Wu D, Zhang R, Li K, Qiu Y, Wang H. Poliovirus receptor (PVR) mediates carboplatin-induced PD-L1 expression in non-small-cell lung cancer cells. Biochim Biophys Acta Gen Subj 2023; 1867:130439. [PMID: 37516256 DOI: 10.1016/j.bbagen.2023.130439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/04/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
Programmed death-ligand-1 (PD-L1) is an immune suppressor that inhibits T cell based immunity. Anti-PD-L1/PD-1 immunotherapy benefits those patients receiving platinum-based combinational chemotherapy. However, the underlying mechanism is still largely unknown. In this study, we found that carboplatin could induce PD-L1 expression in NSCLC H292, A549 and H1299 cells in a dose-dependent manner. mRNA sequencing and the subsequent validation assays found that carboplatin significantly induced PVR expression, which is considered as an immuno-adhesion molecule. Mechanistically, PVR knockdown significantly abrogated carboplatin-induced PD-L1 expression. Functionally, knockdown of PVR significantly reversed the CD3+ T cells proliferation inhibition caused by carboplatin increased PD-L1. Moreover, the carboplatin-induced PVR and subsequent up-regulation of PD-L1 might be mediated via the EGFR, PI3K/AKT, and ERK signaling pathways. Immunohistochemical staining results showed that the PD-L1 expression was positively associated with PVR expression in clinical NSCLC samples. Our study reveals a novel regulatory mechanism of PD-L1 expression, provides evidence that carboplatin inhibits tumor immune response by up-regulating PD-L1 expression and explains the rationale for combining platinum-based chemotherapy with PD-L1/PD-1 inhibitors.
Collapse
Affiliation(s)
- Chen Fu
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, China
| | - Zongcai Liu
- The Laboratory of Endocrinology and Metabolism, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Taixue An
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Haixia Li
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xiumei Hu
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xin Li
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xinyao Liu
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Danjuan Wu
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ruyi Zhang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Kui Li
- Guangzhou Huayinkang Medical Laboratory Center Co., Ltd., Guangzhou 510515, China.
| | - Yurong Qiu
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangzhou Huayinkang Medical Laboratory Center Co., Ltd., Guangzhou 510515, China.
| | - Haifang Wang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
13
|
Paolini R, Molfetta R. CD155 and Its Receptors as Targets for Cancer Therapy. Int J Mol Sci 2023; 24:12958. [PMID: 37629138 PMCID: PMC10455395 DOI: 10.3390/ijms241612958] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/11/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
CD155, also known as the poliovirus receptor, is an adhesion molecule often overexpressed in tumors of different origins where it promotes cell migration and proliferation. In addition to this pro-tumorigenic function, CD155 plays an immunomodulatory role during tumor progression since it is a ligand for both the activating receptor DNAM-1 and the inhibitory receptor TIGIT, expressed on cytotoxic innate and adaptative lymphocytes. DNAM-1 is a well-recognized receptor involved in anti-tumor immune surveillance. However, in advanced tumor stages, TIGIT is up-regulated and acts as an immune checkpoint receptor, counterbalancing DNAM-1-mediated cancer cell clearance. Pre-clinical studies have proposed the direct targeting of CD155 on tumor cells as well as the enhancement of DNAM-1-mediated anti-tumor functions as promising therapeutic approaches. Moreover, immunotherapeutic use of anti-TIGIT blocking antibody alone or in combined therapy has already been included in clinical trials. The aim of this review is to summarize all these potential therapies, highlighting the still controversial role of CD155 during tumor progression.
Collapse
Affiliation(s)
| | - Rosa Molfetta
- Department of Molecular Medicine, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161 Rome, Italy;
| |
Collapse
|
14
|
CD155 is a putative therapeutic target in medulloblastoma. Clin Transl Oncol 2023; 25:696-705. [PMID: 36301489 DOI: 10.1007/s12094-022-02975-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/05/2022] [Indexed: 10/31/2022]
Abstract
BACKGROUND Medulloblastoma is the most common pediatric malignant brain tumor, consisting of four molecular subgroups (WNT, SHH, Group 3, Group 4) and 12 subtypes. Expression of the cell surface poliovirus receptor (PVR), CD155, is necessary for entry of the viral immunotherapeutic agent, PVSRIPO, a polio:rhinovirus chimera. CD155, physiologically expressed in the mononuclear phagocytic system, is widely expressed ectopically in solid tumors. The objective of this study is to elucidate CD155 expression as both a receptor for PVSRIPO and a therapeutic target in medulloblastoma. METHODS PVR mRNA expression was determined in several patient cohorts and human medulloblastoma cell lines. Patient samples were also analyzed for CD155 expression using immunohistochemistry and cell lines were analyzed using Western Blots. CD155 was blocked using a monoclonal antibody and cell viability, invasion, and migration were assessed. RESULTS AND DISCUSSION PVR mRNA expression was highest in the WNT subgroup and lowest in Group 4. PVR expression in the subgroups of medulloblastoma were similar to other pediatric brain and non-brain tumors. PVR expression was largely not associated with subgroup or subtype. Neither PVR protein expression intensity nor frequency were associated with overall survival. PVR expression was elevated in Group 3 patients with metastases but there was no difference in paired primary and metastatic medulloblastoma. Blocking PVR resulted in dose-dependent cell death, decreased invasion in vitro, and modestly inhibited cell migration. CONCLUSIONS CD155 is expressed across medulloblastoma subgroups and subtypes. Blocking CD155 results in cell death and decreased cellular invasion. This study provides rationale for CD155-targeting agents including PVSRIPO and antibody-mediated blockade of CD155.
Collapse
|
15
|
Hamad A, Yusubalieva GM, Baklaushev VP, Chumakov PM, Lipatova AV. Recent Developments in Glioblastoma Therapy: Oncolytic Viruses and Emerging Future Strategies. Viruses 2023; 15:547. [PMID: 36851761 PMCID: PMC9958853 DOI: 10.3390/v15020547] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/24/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
Glioblastoma is the most aggressive form of malignant brain tumor. Standard treatment protocols and traditional immunotherapy are poorly effective as they do not significantly increase the long-term survival of glioblastoma patients. Oncolytic viruses (OVs) may be an effective alternative approach. Combining OVs with some modern treatment options may also provide significant benefits for glioblastoma patients. Here we review virotherapy for glioblastomas and describe several OVs and their combination with other therapies. The personalized use of OVs and their combination with other treatment options would become a significant area of research aiming to develop the most effective treatment regimens for glioblastomas.
Collapse
Affiliation(s)
- Azzam Hamad
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Gaukhar M. Yusubalieva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies, Federal Medical and Biological Agency of Russia, 115682 Moscow, Russia
| | - Vladimir P. Baklaushev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies, Federal Medical and Biological Agency of Russia, 115682 Moscow, Russia
| | - Peter M. Chumakov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Anastasiya V. Lipatova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
16
|
Lin Y, Wilk U, Pöhmerer J, Hörterer E, Höhn M, Luo X, Mai H, Wagner E, Lächelt U. Folate Receptor-Mediated Delivery of Cas9 RNP for Enhanced Immune Checkpoint Disruption in Cancer Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205318. [PMID: 36399647 DOI: 10.1002/smll.202205318] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/17/2022] [Indexed: 06/16/2023]
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system offers great opportunities for the treatment of numerous diseases by precise modification of the genome. The functional unit of the system is represented by Cas9/sgRNA ribonucleoproteins (RNP), which mediate sequence-specific cleavage of DNA. For therapeutic applications, efficient and cell-specific transport into target cells is essential. Here, Cas9 RNP nanocarriers are described, which are based on lipid-modified oligoamino amides and folic acid (FolA)-PEG to realize receptor-mediated uptake and gene editing in cancer cells. In vitro studies confirm strongly enhanced potency of receptor-mediated delivery, and the nanocarriers enable efficient knockout of GFP and two immune checkpoint genes, PD-L1 and PVR, at low nanomolar concentrations. Compared with non-targeted nanoparticles, FolA-modified nanocarriers achieve substantially higher gene editing including dual PD-L1/PVR gene disruption after injection into CT26 tumors in vivo. In the syngeneic mouse model, dual disruption of PD-L1 and PVR leads to CD8+ T cell recruitment and distinct CT26 tumor growth inhibition, clearly superior to the individual knockouts alone. The reported Cas9 RNP nanocarriers represent a versatile platform for potent and receptor-specific gene editing. In addition, the study demonstrates a promising strategy for cancer immunotherapy by permanent and combined immune checkpoint disruption.
Collapse
Affiliation(s)
- Yi Lin
- Department of Pharmacy and Center for NanoScience (CeNS), LMU Munich, 81377, Munich, Germany
| | - Ulrich Wilk
- Department of Pharmacy and Center for NanoScience (CeNS), LMU Munich, 81377, Munich, Germany
| | - Jana Pöhmerer
- Department of Pharmacy and Center for NanoScience (CeNS), LMU Munich, 81377, Munich, Germany
| | - Elisa Hörterer
- Department of Pharmacy and Center for NanoScience (CeNS), LMU Munich, 81377, Munich, Germany
| | - Miriam Höhn
- Department of Pharmacy and Center for NanoScience (CeNS), LMU Munich, 81377, Munich, Germany
| | - Xianjin Luo
- Department of Pharmacy and Center for NanoScience (CeNS), LMU Munich, 81377, Munich, Germany
| | - Hongcheng Mai
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Zentrum München, 85764, Neuherberg, Germany
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, 81377, Munich, Germany
| | - Ernst Wagner
- Department of Pharmacy and Center for NanoScience (CeNS), LMU Munich, 81377, Munich, Germany
| | - Ulrich Lächelt
- Department of Pharmacy and Center for NanoScience (CeNS), LMU Munich, 81377, Munich, Germany
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, 1090, Austria
| |
Collapse
|
17
|
Farhangnia P, Akbarpour M, Yazdanifar M, Aref AR, Delbandi AA, Rezaei N. Advances in therapeutic targeting of immune checkpoints receptors within the CD96-TIGIT axis: clinical implications and future perspectives. Expert Rev Clin Immunol 2022; 18:1217-1237. [PMID: 36154551 DOI: 10.1080/1744666x.2022.2128107] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION The development of therapeutic antibodies targeting immune checkpoint molecules (ICMs) that induce long-term remissions in cancer patients has revolutionized cancer immunotherapy. However, a major drawback is that relapse after an initial response may be attributed to innate and acquired resistance. Additionally, these treatments are not beneficial to all patients. Therefore, the discovery and targeting of novel ICMs and their combination with other immunotherapeutics are urgently needed. AREAS COVERED There has been increasing evidence of the CD96-TIGIT axis as ICMs in cancer immunotherapy in the last five years. This review will highlight and discuss the current knowledge about the role of CD96 and TIGIT in hematological and solid tumor immunotherapy in the context of empirical studies and clinical trials, and provide a comprehensive list of ongoing cancer clinical trials on the blockade of these ICMs, as well as the rationale behind combinational therapies with anti-PD-1/PD-L1 agents, chemotherapy drugs, and radiotherapy. Moreover, we share our perspectives on anti-CD96/TIGIT-related combination therapies. EXPERT OPINION CD96-TIGIT axis regulates anti-tumor immune responses. Thus, the receptors within this axis are the potential candidates for cancer immunotherapy. Combining the inhibition of CD96-TIGIT with anti-PD-1/PD-L1 mAbs and chemotherapy drugs has shown relatively effective results in the context of preclinical studies and tumor models.
Collapse
Affiliation(s)
- Pooya Farhangnia
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Immunology Board for Transplantation and Cell-Based Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mahzad Akbarpour
- Immunology Board for Transplantation and Cell-Based Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Advanced Cellular Therapeutics Facility (ACTF), Hematopoietic Cellular Therapy Program, Section of Hematology & Oncology, Department of Medicine, University of Chicago Medical Center, Chicago, IL, USA
| | - Mahboubeh Yazdanifar
- Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Ali-Akbar Delbandi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Immunology Research Center, Institute of Immunology and Infectious Disease, Iran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Zeng J, Li M, Dai K, Zuo B, Guo J, Zang L. A Novel Glycolysis-Related Long Noncoding RNA Signature for Predicting Overall Survival in Gastric Cancer. Pathol Oncol Res 2022; 28:1610643. [PMID: 36419649 PMCID: PMC9676246 DOI: 10.3389/pore.2022.1610643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/25/2022] [Indexed: 04/23/2024]
Abstract
Background: The aim of this study was to construct a glycolysis-related long noncoding RNA (lncRNA) signature to predict the prognosis of patients with gastric cancer (GC). Methods: Glycolysis-related genes were obtained from the Molecular Signatures Database (MSigDB), lncRNA expression profiles and clinical data of GC patients were obtained from The Cancer Genome Atlas database (TCGA). Furthermore, univariate Cox regression analysis, Least Absolute Shrinkage and Selection Operator (LASSO) and multivariate Cox regression analysis were used to construct prognostic glycolysis-related lncRNA signature. The specificity and sensitivity of the signature was verified by receiver operating characteristic (ROC) curves. We constructed a nomogram to predict the 1-year, 3-year, and 5-year survival rates of GC patients. Besides, the relationship between immune infiltration and the risk score was analyzed in the high and low risk groups. Multi Experiment Matrix (MEM) was used to analyze glycolysis-related lncRNA target genes. R "limma" package was used to analyze the mRNA expression levels of the glycolysis-related lncRNA target genes in TCGA. Gene set enrichment analysis (GSEA) was employed to further explore the biological pathways in the high-risk group and the glycolysis-related lncRNA target gene. Results: A prognostic signature was conducted based on nine glycolysis-related lncRNAs, which are AL391152.1, AL590705.3, RHOXF1-AS1, CFAP61-AS1, LINC00412, AC005165.1, AC110995.1, AL355574.1 and SCAT1. The area under the ROC curve (AUC) values at 1-year, 3-year, and 5-year were 0.765, 0.828 and 0.707 in the training set, and 0.669, 740 and 0.807 in the testing set, respectively. In addition, the nomogram could efficaciously predict the 1-year, 3-year, and 5-year survival rates of the GC patients. Then, we discovered that GC patients with high-risk scores were more likely to respond to immunotherapy. GSEA revealed that the signature was mainly associated with the calcium signaling pathway, extracellular matrix (ECM) receptor interaction, and focal adhesion in high-risk group, also indicated that SBSPON is related to aminoacyl-tRNA biosynthesis, citrate cycle, fructose and mannose metabolism, pentose phosphate pathway and pyrimidine metabolism. Conclusion: Our study shows that the signature can predict the prognosis of GC and may provide new insights into immunotherapeutic strategies.
Collapse
Affiliation(s)
- Jianmin Zeng
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- The Affiliated Hospital of Kunming University of Science and Technology, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Man Li
- The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Kefan Dai
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bingyu Zuo
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianhui Guo
- Second Department of General Surgery, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Lu Zang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
19
|
Choi H, Lee Y, Park SA, Lee JH, Park J, Park JH, Lee HK, Kim TG, Jeun SS, Ahn S. Human allogenic γδ T cells kill patient-derived glioblastoma cells expressing high levels of DNAM-1 ligands. Oncoimmunology 2022; 11:2138152. [PMID: 36338147 PMCID: PMC9629076 DOI: 10.1080/2162402x.2022.2138152] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Adoptive transfer of γδ T cells is a novel immunotherapeutic approach to glioblastoma. Few recent studies have shown the efficacy of γδ T cells against glioblastoma, but no previous studies have identified the ligand-receptor interactions between γδ T cells and glioblastoma cells. Here, we identify those ligand-receptor interactions and provide a basis for using γδ T cells to treat glioblastoma. Vγ9Vδ2 T cells were generated from peripheral blood mononuclear cells of healthy donors using artificial antigen presenting cells. MICA, ULBP, PVR and Nectin-2 expression in 10 patient-derived glioblastoma (PDG) cells were analyzed. The in vitro cytokine secretion from the γδ T cells and their cytotoxicity toward the PDG cells were also analyzed. The in vivo anti-tumor effects were evaluated using a U87 orthotopic xenograft glioblastoma model. Expression of ligands and cytotoxicity of the γδ T cells varied among the PDG cells. IFN-γ and Granzyme B secretion levels were significantly higher when γδ Tcells were co-cultured with high-susceptible PDG cells than when they were co-cultured with low-susceptible PDG cells. Cytotoxicity correlated significantly with the expression levels of DNAM-1 ligands of the PDG cells. Blocking DNAM-1 resulted in a decrease in γδ T cell-mediated cytotoxicity and cytokine secretion. Intratumoral injection of γδ T cells showed anti-tumor effects in an orthotopic mouse model. Allogenic γδ T cells showed potent anti-tumor effects on glioblastoma in a DNAM-1 axis dependent manner. Our findings will facilitate the development of clinical strategies using γδ T cells for glioblastoma treatment.
Collapse
Affiliation(s)
- Haeyoun Choi
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yunkyung Lee
- Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Soon A Park
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ji Hyeon Lee
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Junseong Park
- Precision Medicine Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jang Hyun Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Heung Kyu Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Tai-Gyu Kim
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea,Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sin-Soo Jeun
- Department of Neurosurgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Stephen Ahn
- Department of Neurosurgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea,CONTACT Stephen Ahn Department of Neurosurgery, Seoul St. Mary’s Hospital, College of Medicine, the Catholic University of Korea, 222 Banpodae-ro, Seocho-gu, Seoul06591, Republic of Korea
| |
Collapse
|
20
|
Giotta Lucifero A, Luzzi S. Emerging immune-based technologies for high-grade gliomas. Expert Rev Anticancer Ther 2022; 22:957-980. [PMID: 35924820 DOI: 10.1080/14737140.2022.2110072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The selection of a tailored and successful strategy for high-grade gliomas (HGGs) treatment is still a concern. The abundance of aberrant mutations within the heterogenic genetic landscape of glioblastoma strongly influences cell expansion, proliferation, and therapeutic resistance. Identification of immune evasion pathways opens the way to novel immune-based strategies. This review intends to explore the emerging immunotherapies for HGGs. The immunosuppressive mechanisms related to the tumor microenvironment and future perspectives to overcome glioma immunity barriers are also debated. AREAS COVERED An extensive literature review was performed on the PubMed/Medline and ClinicalTrials.gov databases. Only highly relevant articles in English and published in the last 20 years were selected. Data about immunotherapies coming from preclinical and clinical trials were summarized. EXPERT OPINION The overall level of evidence about the efficacy and safety of immunotherapies for HGGs is noteworthy. Monoclonal antibodies have been approved as second-line treatment, while peptide vaccines, viral gene strategies, and adoptive technologies proved to boost a vivid antitumor immunization. Malignant brain tumor-treating fields are ever-changing in the upcoming years. Constant refinements and development of new routes of drug administration will permit to design of novel immune-based treatment algorithms thus improving the overall survival.
Collapse
Affiliation(s)
- Alice Giotta Lucifero
- Neurosurgery Unit, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Sabino Luzzi
- Neurosurgery Unit, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy.,Neurosurgery Unit, Department of Surgical Sciences, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
21
|
Wang D, Gu Y, Yan X, Huo C, Wang G, Zhao Y, Teng M, Li Y. Role of CD155/TIGIT in Digestive Cancers: Promising Cancer Target for Immunotherapy. Front Oncol 2022; 12:844260. [PMID: 35433470 PMCID: PMC9005749 DOI: 10.3389/fonc.2022.844260] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/04/2022] [Indexed: 12/19/2022] Open
Abstract
The tumor microenvironment restricts the function and survival of various immune cells by up-regulating inhibitory immune checkpoints, and participates in the immune escape of tumors. The development of immunotherapies targeting immune checkpoints, such as programmed cell death receptor 1 antibody and anti-cytotoxic T lymphocyte-associated antigen 4 antibody, has provided many options for cancer treatment. The efficacy of other immune checkpoint inhibitors is also under development and research. Among them, T cell immunoreceptor with Ig and ITIM domains (TIGIT) has shown excellent clinical application prospects. Correspondingly, poliovirus receptor (PVR, CD155), one of the main ligands of TIGIT, is mainly expressed in various human malignant tumors and myeloid cells. CD155 interacts with TIGIT on natural killer cells and T cells, mediating inhibitory immunomodulatory regulation. This study summarized the mechanism of CD155/TIGIT in regulating immune cells and its role in the occurrence and development of digestive system tumors, aiming to provide a new perspective for immunotherapy of digestive cancers.
Collapse
Affiliation(s)
- Daijun Wang
- The Second Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, China
| | - Yanmei Gu
- The Second Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, China
| | - Xin Yan
- The Second Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, China
| | - Chengdong Huo
- The Second Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, China
| | - Guan Wang
- The Second Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, China
| | - Yang Zhao
- The Second Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, China.,Key Laboratory of Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| | - Muzhou Teng
- The Second Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, China.,Key Laboratory of Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| | - Yumin Li
- The Second Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, China.,Key Laboratory of Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
22
|
Jin A, Zhang C, Zheng W, Xian J, Yang W, Liu T, Chen W, Li T, Wang B, Pan B, Li Q, Cheng J, Wang P, Hu B, Zhou J, Fan J, Yang X, Guo W. CD155/SRC complex promotes hepatocellular carcinoma progression via inhibiting the p38 MAPK signalling pathway and correlates with poor prognosis. Clin Transl Med 2022; 12:e794. [PMID: 35384345 PMCID: PMC8982318 DOI: 10.1002/ctm2.794] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a prevalent malignancy with poor prognosis. As a cell adhesion molecule, poliovirus receptor (PVR/CD155) is abnormally overexpressed in tumour cells, and related to tumour proliferation and invasion. However, the potential role and mechanism of CD155 have not yet been elucidated in HCC. METHODS Immunohistochemistry, RT-PCR and Western blot assays were used to determine CD155 expression in HCC cell lines and tissues. Cell Counting Kit-8 and colony formation assays were used to examine cell proliferation. Transwell and wound healing assays were used to evaluate cell migration and invasion. Cell apoptosis and cycle distribution were assessed by flow cytometry. Cox regression and Kaplan-Meier analyses were performed to explore the clinical significance of CD155. The role of CD155 in vivo was evaluated by establishing liver orthotropic xenograft mice model. RNA sequencing, bioinformatics analysis and co-immunoprecipitation assay were used to explore the downstream signalling pathway of CD155. RESULTS CD155 was upregulated in HCC tissues and represented a promising prognostic indicator for HCC patients (n = 189) undergoing curative resection. High CD155 expression enhanced cell proliferation, migration and invasion, and contributed to cell survival in HCC. CD155 overexpression also induced epithelial-mesenchymal transition in HCC cells. CD155 function in HCC involved SRC/p38 MAPK signalling pathway. CD155 interacted with SRC homology-2 domain of SRC and promoted SRC activation, further inhibiting the downstream p38 MAPK signalling pathway in HCC. CONCLUSIONS CD155 promotes HCC progression via the SRC/p38 MAPK signalling pathway. CD155 may represent a predictor for poor postsurgery prognosis in HCC patients.
Collapse
Affiliation(s)
- An‐Li Jin
- Department of Laboratory MedicineZhongshan HospitalFudan UniversityShanghaiP. R. China
| | - Chun‐Yan Zhang
- Department of Laboratory MedicineZhongshan HospitalFudan UniversityShanghaiP. R. China
- Department of Laboratory MedicineXiamen BranchZhongshan HospitalFudan UniversityXiamenP. R. China
| | - Wen‐Jing Zheng
- Department of Liver Surgery & TransplantationLiver Cancer InstituteZhongshan HospitalFudan UniversityKey Laboratory of Carcinogenesis and Cancer InvasionMinistry of EducationShanghaiP. R. China
- Department of Hepatobiliary SurgeryShenzhen Key LaboratoryGuangdong Provincial Key Laboratory of Regional Immunity and DiseasesInternational Cancer CenterShenzhen University General HospitalShenzhen University Clinical Medical AcademyShenzhen UniversityShenzhenGuangdongP.R. China
| | - Jing‐Rong Xian
- Department of Laboratory MedicineZhongshan HospitalFudan UniversityShanghaiP. R. China
| | - Wen‐Jing Yang
- Department of Laboratory MedicineZhongshan HospitalFudan UniversityShanghaiP. R. China
| | - Te Liu
- Department of Laboratory MedicineZhongshan HospitalFudan UniversityShanghaiP. R. China
- Shanghai Geriatric Institute of Chinese MedicineShanghai University of Traditional Chinese MedicineShanghaiP. R. China
| | - Wei Chen
- Department of Laboratory MedicineZhongshan HospitalFudan UniversityShanghaiP. R. China
| | - Tong Li
- Department of Laboratory MedicineZhongshan HospitalFudan UniversityShanghaiP. R. China
| | - Bei‐Li Wang
- Department of Laboratory MedicineZhongshan HospitalFudan UniversityShanghaiP. R. China
- Department of Laboratory MedicineXiamen BranchZhongshan HospitalFudan UniversityXiamenP. R. China
- Department of Laboratory MedicineWusong BranchZhongshan HospitalFudan UniversityShanghaiP. R. China
| | - Bai‐Shen Pan
- Department of Laboratory MedicineZhongshan HospitalFudan UniversityShanghaiP. R. China
- Department of Laboratory MedicineWusong BranchZhongshan HospitalFudan UniversityShanghaiP. R. China
| | - Qian Li
- Department of Laboratory MedicineZhongshan HospitalFudan UniversityShanghaiP. R. China
- Department of Laboratory MedicineWusong BranchZhongshan HospitalFudan UniversityShanghaiP. R. China
| | - Jian‐Wen Cheng
- Department of Liver Surgery & TransplantationLiver Cancer InstituteZhongshan HospitalFudan UniversityKey Laboratory of Carcinogenesis and Cancer InvasionMinistry of EducationShanghaiP. R. China
| | - Peng‐Xiang Wang
- Department of Liver Surgery & TransplantationLiver Cancer InstituteZhongshan HospitalFudan UniversityKey Laboratory of Carcinogenesis and Cancer InvasionMinistry of EducationShanghaiP. R. China
| | - Bo Hu
- Department of Liver Surgery & TransplantationLiver Cancer InstituteZhongshan HospitalFudan UniversityKey Laboratory of Carcinogenesis and Cancer InvasionMinistry of EducationShanghaiP. R. China
| | - Jian Zhou
- Department of Liver Surgery & TransplantationLiver Cancer InstituteZhongshan HospitalFudan UniversityKey Laboratory of Carcinogenesis and Cancer InvasionMinistry of EducationShanghaiP. R. China
| | - Jia Fan
- Department of Liver Surgery & TransplantationLiver Cancer InstituteZhongshan HospitalFudan UniversityKey Laboratory of Carcinogenesis and Cancer InvasionMinistry of EducationShanghaiP. R. China
| | - Xin‐Rong Yang
- Department of Liver Surgery & TransplantationLiver Cancer InstituteZhongshan HospitalFudan UniversityKey Laboratory of Carcinogenesis and Cancer InvasionMinistry of EducationShanghaiP. R. China
| | - Wei Guo
- Department of Laboratory MedicineZhongshan HospitalFudan UniversityShanghaiP. R. China
- Cancer CenterZhongshan HospitalFudan UniversityShanghaiP. R. China
- Department of Laboratory MedicineXiamen BranchZhongshan HospitalFudan UniversityXiamenP. R. China
- Department of Laboratory MedicineWusong BranchZhongshan HospitalFudan UniversityShanghaiP. R. China
| |
Collapse
|
23
|
Capdeville C, Russo L, Penton D, Migliavacca J, Zecevic M, Gries A, Neuhauss SC, Grotzer MA, Baumgartner M. Spatial proteomics finds CD155 and Endophilin-A1 as mediators of growth and invasion in medulloblastoma. Life Sci Alliance 2022; 5:5/6/e202201380. [PMID: 35296518 PMCID: PMC8926928 DOI: 10.26508/lsa.202201380] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 11/24/2022] Open
Abstract
The composition of the plasma membrane (PM)-associated proteome of tumor cells determines cell-cell and cell-matrix interactions and the response to environmental cues. Whether the PM-associated proteome impacts the phenotype of Medulloblastoma (MB) tumor cells and how it adapts in response to growth factor cues is poorly understood. Using a spatial proteomics approach, we observed that hepatocyte growth factor (HGF)-induced activation of the receptor tyrosine kinase c-MET in MB cells changes the abundance of transmembrane and membrane-associated proteins. The depletion of MAP4K4, a pro-migratory effector kinase downstream of c-MET, leads to a specific decrease of the adhesion and immunomodulatory receptor CD155 and of components of the fast-endophilin-mediated endocytosis (FEME) machinery in the PM-associated proteome of HGF-activated MB cells. The decreased surface expression of CD155 or of the fast-endophilin-mediated endocytosis effector endophilin-A1 reduces growth and invasiveness of MB tumor cells in the tissue context. These data thus describe a novel function of MAP4K4 in the control of the PM-associated proteome of tumor cells and identified two downstream effector mechanisms controlling proliferation and invasiveness of MB cells.
Collapse
Affiliation(s)
- Charles Capdeville
- Pediatric Molecular Neuro-Oncology Lab, Children's Research Center, University Children's Hospital Zürich, Zürich, Switzerland
| | - Linda Russo
- Pediatric Molecular Neuro-Oncology Lab, Children's Research Center, University Children's Hospital Zürich, Zürich, Switzerland
| | - David Penton
- Department of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
| | - Jessica Migliavacca
- Pediatric Molecular Neuro-Oncology Lab, Children's Research Center, University Children's Hospital Zürich, Zürich, Switzerland
| | - Milica Zecevic
- Pediatric Molecular Neuro-Oncology Lab, Children's Research Center, University Children's Hospital Zürich, Zürich, Switzerland
| | - Alexandre Gries
- Pediatric Molecular Neuro-Oncology Lab, Children's Research Center, University Children's Hospital Zürich, Zürich, Switzerland
| | - Stephan Cf Neuhauss
- Department of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
| | - Michael A Grotzer
- Department of Oncology, University Children's Hospital Zürich, Zürich, Switzerland
| | - Martin Baumgartner
- Pediatric Molecular Neuro-Oncology Lab, Children's Research Center, University Children's Hospital Zürich, Zürich, Switzerland
| |
Collapse
|
24
|
Li H, Wang G, Wang W, Pan J, Zhou H, Han X, Su L, Ma Z, Hou L, Xue X. A Focal Adhesion-Related Gene Signature Predicts Prognosis in Glioma and Correlates With Radiation Response and Immune Microenvironment. Front Oncol 2021; 11:698278. [PMID: 34631528 PMCID: PMC8493301 DOI: 10.3389/fonc.2021.698278] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 09/01/2021] [Indexed: 12/17/2022] Open
Abstract
Background Glioma is the most frequent brain malignancy presenting very poor prognosis and high recurrence rate. Focal adhesion complexes play pivotal roles in cell migration and act as hubs of several signaling pathways. Methods We used bioinformatic databases (CGGA, TCGA, and GEO) and identified a focal adhesion-related differential gene expression (FADG) signature by uniCox and LASSO regression analysis. We calculated the risk score of every patient using the regression coefficient value and expression of each gene. Survival analysis, receiver operating characteristic curve (ROC), principal component analysis (PCA), and stratified analysis were used to validate the FADG signature. Then, we conducted GSEA to identify the signaling pathways related to the FADG signature. Correlation analysis of risk scores between the immune checkpoint was performed. In addition, the correlation of risk scores and genes related with DNA repair was performed. CIBERSORT and ssGSEA were used to explore the tumor microenvironment (TME). A nomogram that involved our FADG signature was also constructed. Results In total, 1,726 (528 patients diagnosed with WHO II, 591 WHO III, and 603 WHO IV) cases and 23 normal samples were included in our study. We identified 29 prognosis-related genes in the LASSO analysis and constructed an eight FADG signature. The results from the survival analysis, stratified analysis, ROC curve, and univariate and multivariate regression analysis revealed that the prognosis of the high-risk group was significantly worse than the low-risk group. Correlation analysis between risk score and genes that related with DNA repair showed that the risk score was positively related with BRCA1, BRCA2, RAD51, TGFB1, and TP53. Besides, we found that the signature could predict the prognosis of patients who received radiation therapy. SsGSEA indicated that the high-risk score was positively correlated with the ESTIMATE, immune, and stromal scores but negatively correlated with tumor purity. Notably, patients in the high-risk group had a high infiltration of immunocytes. The correlation analysis revealed that the risk score was positively correlated with B7-H3, CTLA4, LAG3, PD-L1, and TIM3 but inversely correlated with PD-1. Conclusion The FADG signature we constructed could provide a sensitive prognostic model for patients with glioma and contribute to improve immunotherapy management guidelines.
Collapse
Affiliation(s)
- Haonan Li
- Department of Radiotherapy, Second Hospital of Hebei Medical University, Shijiazhuang, China.,Department of Central Laboratory, Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Guohui Wang
- Department of Radiotherapy, Second Hospital of Hebei Medical University, Shijiazhuang, China.,Department of Radiation Oncology, PekingUniversity China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Wenyan Wang
- Department of Radiotherapy, Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jie Pan
- The Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | - Huandi Zhou
- Department of Radiotherapy, Second Hospital of Hebei Medical University, Shijiazhuang, China.,Department of Central Laboratory, Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xuetao Han
- Department of Radiotherapy, Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Linlin Su
- Department of Radiotherapy, Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhenghui Ma
- Department of Radiotherapy, Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Liubing Hou
- Department of Radiotherapy, Second Hospital of Hebei Medical University, Shijiazhuang, China.,Department of Central Laboratory, Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaoying Xue
- Department of Radiotherapy, Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
25
|
Triki H, Declerck K, Charfi S, Ben Kridis W, Chaabane K, Ben Halima S, Sellami T, Rebai A, Berghe WV, Cherif B. Immune checkpoint CD155 promoter methylation profiling reveals cancer-associated behaviors within breast neoplasia. Cancer Immunol Immunother 2021; 71:1139-1155. [PMID: 34608548 DOI: 10.1007/s00262-021-03064-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 09/23/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND CD155 immune checkpoint has recently emerged as a compelling immunotherapeutic target. Epigenetic DNA methylation changes are recognized as key molecular mechanisms in cancer development. Hence, the identification of methylation markers that are sensitive and specific for breast cancer may improve early detection and predict prognosis. We speculate that CD155 promoter methylation can be a valuable epigenetic biomarker, based upon strong indications for its immunoregulatory functions. METHODS Methylation analyses were conducted on 14 CpGs sites in the CD155 promoter region by bisulfite pyrosequencing. To elucidate the related gene expression changes, a transcriptional study using RT-qPCR was performed. Statistical analyses were performed to evaluate correlations of CD155 methylation profiles with mRNA expression together with clinical-pathological features, prognosis and immune infiltrate. RESULTS CD155 promoter methylation profile was significantly associated with SBR grade, tumor size, molecular subgroups, HER2 and hormonal receptors expression status. Low CD155 methylation rates correlated with better prognosis in univariate cox proportional hazard analysis and appeared as an independent survival predictor in cox-regression multivariate analysis. Further, methylation changes at CD155 specific CpG sites were consistent with CD155 membranous mRNA isoform expression status. Statistical analyses also showed a significant association with immune Natural Killer cell infiltrate when looking at the CpG7, CpG8, CpG9 and CpG11 sites. CONCLUSION Altogether, our results contribute to a better understanding of the impact of CD155 immune checkpoint modality expression in breast tumors, revealing for the first time that specific CpG sites from CD155 promoter may be a potential biomarker in breast cancer monitoring.
Collapse
Affiliation(s)
- Hana Triki
- Laboratory of Molecular and Cellular Screening Processes, Centre de Biotechnologie de Sfax, University of Sfax, B.P 1177, 3018, Sfax, Tunisia
| | - Ken Declerck
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signaling (PPES) and Integrated Personalizedand Precision Oncology Network (IPPON), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Slim Charfi
- Department of Pathology, University Hospital Habib Bourguiba, Sfax, Tunisia
| | - Wala Ben Kridis
- Department of Medical Oncology, University Hospital Habib Bourguiba, Sfax, Tunisia
| | - Kais Chaabane
- Department of Gynecology, University Hospital Hédi Chaker, Sfax, Tunisia
| | - Sawssan Ben Halima
- Department of Gynecology, University Hospital Hédi Chaker, Sfax, Tunisia
| | - Tahya Sellami
- Department of Pathology, University Hospital Habib Bourguiba, Sfax, Tunisia
| | - Ahmed Rebai
- Laboratory of Molecular and Cellular Screening Processes, Centre de Biotechnologie de Sfax, University of Sfax, B.P 1177, 3018, Sfax, Tunisia
| | - Wim Vanden Berghe
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signaling (PPES) and Integrated Personalizedand Precision Oncology Network (IPPON), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Boutheina Cherif
- Laboratory of Molecular and Cellular Screening Processes, Centre de Biotechnologie de Sfax, University of Sfax, B.P 1177, 3018, Sfax, Tunisia.
| |
Collapse
|
26
|
Nandi SS, Gohil T, Sawant SA, Lambe UP, Ghosh S, Jana S. CD155: A Key Receptor Playing Diversified Roles. Curr Mol Med 2021; 22:594-607. [PMID: 34514998 DOI: 10.2174/1566524021666210910112906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 06/16/2021] [Accepted: 06/20/2021] [Indexed: 11/22/2022]
Abstract
Cluster of differentiation (CD155), formerly identified as poliovirus receptor (PVR) and later as immunoglobulin molecule involved in cell adhesion, proliferation, invasion and migration. It is a surface protein expressed mostly on normal and transformed malignant cells. The expression of the receptor varies based on the origin of tissue. The expression of the protein is determined by factors involved in sonic hedgehog pathway, Ras-MEK-ERK pathway and during stress conditions like DNA damage response. The protein uses alternate splicing mechanism, producing four isoforms - two being soluble (CD155β and CD155γ) and two being transmembrane protein (CD155α and CD155δ). Apart from being a viral receptor, researchers have identified CD155 having important roles in cancer research and cell signaling field. The receptor is recognized as biomarker for identifying cancerous tissue. The receptor interacts with molecules involved in cells defense mechanism. The immune-surveillance role of CD155 is being deciphered to understand the mechanistic approach it utilizes as onco-immunologic molecule. CD155 is a non-MHC-I ligand which helps in identifying non-self to NK cells via an inhibitory TIGIT ligand. The TIGIT-CD155 pathway is a novel MHC-I-independent education mechanism for cell tolerance and activation of NK cell. The receptor also has a role in metastasis of cancer and trans endothelial mechanism. In this review, authors discuss the virus-host interaction that occurs via single transmembrane receptor, the poliovirus infection pathway, which is being exploited as therapeutic pathway. The oncolytic virotherapy is now promising way for curing cancer.
Collapse
Affiliation(s)
- Shyam Sundar Nandi
- National Institute of Virology, (Mumbai unit), (Formerly Enterovirus Research Centre). Haffkine Institute Compound, Indian Council of Medical Research, A. D. Marg, Parel. Mumbai-12. India
| | - Trupti Gohil
- National Institute of Virology, (Mumbai unit), (Formerly Enterovirus Research Centre). Haffkine Institute Compound, Indian Council of Medical Research, A. D. Marg, Parel. Mumbai-12. India
| | - Sonali Ankush Sawant
- National Institute of Virology, (Mumbai unit), (Formerly Enterovirus Research Centre). Haffkine Institute Compound, Indian Council of Medical Research, A. D. Marg, Parel. Mumbai-12. India
| | - Upendra Pradeep Lambe
- National Institute of Virology, (Mumbai unit), (Formerly Enterovirus Research Centre). Haffkine Institute Compound, Indian Council of Medical Research, A. D. Marg, Parel. Mumbai-12. India
| | - Sudip Ghosh
- Molecular Biology Division, ICMR-National Institute of Nutrition, Jamai-Osmania PO, Hyderabad. India
| | - Snehasis Jana
- Trivedi Science Research Laboratory Pvt Ltd., Thane-West, Maharashtra-400604. India
| |
Collapse
|
27
|
Against the Resilience of High-Grade Gliomas: Gene Therapies (Part II). Brain Sci 2021; 11:brainsci11080976. [PMID: 34439595 PMCID: PMC8393930 DOI: 10.3390/brainsci11080976] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/12/2021] [Accepted: 07/19/2021] [Indexed: 12/29/2022] Open
Abstract
Introduction: High-grade gliomas (HGGs) still have a high rate of recurrence and lethality. Gene therapies were projected to overcome the therapeutic resilience of HGGs, due to the intrinsic genetic heterogenicity and immune evasion pathways. The present literature review strives to provide an updated overview of the novel gene therapies for HGGs treatment, highlighting evidence from clinical trials, molecular mechanisms, and future perspectives. Methods: An extensive literature review was conducted through PubMed/Medline and ClinicalTrials.gov databases, using the keywords “high-grade glioma,” “glioblastoma,” and “malignant brain tumor”, combined with “gene therapy,” “oncolytic viruses,” “suicide gene therapies,” “tumor suppressor genes,” “immunomodulatory genes,” and “gene target therapies”. Only articles in English and published in the last 15 years were chosen, further screened based on best relevance. Data were analyzed and described according to the PRISMA guidelines. Results: Viruses were the most vehicles employed for their feasibility and transduction efficiency. Apart from liposomes, other viral vehicles remain largely still experimental. Oncolytic viruses and suicide gene therapies proved great results in phase I, II preclinical, and clinical trials. Tumor suppressor, immunomodulatory, and target genes were widely tested, showing encouraging results especially for recurrent HGGs. Conclusions: Oncolytic virotherapy and suicide genes strategies are valuable second-line treatment options for relapsing HGGs. Immunomodulatory approaches, tumor suppressor, and target genes therapies may implement and upgrade standard chemoradiotherapy. Future research aims to improve safety profile and prolonging therapeutic effectiveness. Further clinical trials are needed to assess the efficacy of gene-based therapies.
Collapse
|
28
|
Shen X, Fu W, Wei Y, Zhu J, Yu Y, Lei C, Zhao J, Hu S. TIGIT-Fc Promotes Antitumor Immunity. Cancer Immunol Res 2021; 9:1088-1097. [PMID: 34244300 DOI: 10.1158/2326-6066.cir-20-0986] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/05/2021] [Accepted: 07/02/2021] [Indexed: 11/16/2022]
Abstract
T-cell immunoreceptor with Ig and ITIM domains (TIGIT) is a checkpoint receptor that mediates both T-cell and natural killer (NK)-cell exhaustion in tumors. An Fc-TIGIT fusion protein was shown to induce an immune-tolerance effect in a previous report, but the relevance of the TIGIT-Fc protein to tumor immunity is unknown. Here, we found that TIGIT-Fc promotes, rather than suppresses, tumor immunity. TIGIT-Fc treatment promoted the effector function of CD8+ T and NK cells in several tumor-bearing mouse models. TIGIT-Fc treatment resulted in potent T cell- and NK cell-mediated tumor reactivity, sustained memory-induced immunity in tumor rechallenge models, enhanced therapeutic effects via an antibody against PD-L1, and induction of Th1 development in CD4+ T cells. TIGIT-Fc showed a potent antibody-dependent cell-mediated cytotoxicity effect but had no intrinsic effect on tumor cell development. Our findings elucidate the role of TIGIT-Fc in tumor immune reprogramming, suggesting that TIGIT-Fc treatment alone or in combination with other checkpoint receptor blockers is a promising anticancer therapeutic strategy.
Collapse
MESH Headings
- Animals
- B7-H1 Antigen/genetics
- B7-H1 Antigen/metabolism
- Cell Line, Tumor
- Female
- Humans
- Immune Tolerance
- Killer Cells, Natural/immunology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred NOD
- Mice, Nude
- Mice, SCID
- Neoplasms, Experimental/immunology
- Neoplasms, Experimental/metabolism
- Receptors, Immunologic/antagonists & inhibitors
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- T-Lymphocytes/immunology
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Xian Shen
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, P.R. China
| | - Wenyan Fu
- Department of Biophysics, College of Basic Medical Sciences, Second Military Medical University, Shanghai, P.R. China
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Yongpeng Wei
- The Fifth Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, P.R. China
| | - Junle Zhu
- Department of Biophysics, College of Basic Medical Sciences, Second Military Medical University, Shanghai, P.R. China
- Department of Neurosurgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | - Yue Yu
- Department of Biophysics, College of Basic Medical Sciences, Second Military Medical University, Shanghai, P.R. China
- Department of Thyroid and Breast Surgery, First Affiliated Hospital, Second Military Medical University, Shanghai, P.R. China
| | - Changhai Lei
- Department of Biophysics, College of Basic Medical Sciences, Second Military Medical University, Shanghai, P.R. China
| | - Jian Zhao
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, P.R. China
- KOCHKOR Biotech, Inc., Shanghai, P.R. China
| | - Shi Hu
- Department of Biophysics, College of Basic Medical Sciences, Second Military Medical University, Shanghai, P.R. China.
| |
Collapse
|
29
|
Duraivelan K, Samanta D. Emerging roles of the nectin family of cell adhesion molecules in tumour-associated pathways. Biochim Biophys Acta Rev Cancer 2021; 1876:188589. [PMID: 34237351 DOI: 10.1016/j.bbcan.2021.188589] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/24/2021] [Accepted: 07/02/2021] [Indexed: 02/07/2023]
Abstract
Tumour cells achieve maximum survival by modifying cellular machineries associated with processes such as cell division, migration, survival, and apoptosis, resulting in genetically complex and heterogeneous populations. While nectin and nectin-like cell adhesion molecules control development and maintenance of multicellular organisation in higher vertebrates by mediating cell-cell adhesion and related signalling processes, recent studies indicate that they also critically regulate growth and development of different types of cancers. In this review, we detail current knowledge about the role of nectin family members in various tumours. Furthermore, we also analyse the seemingly opposing roles of some members of nectin family in tumour-associated pathways, as they function as both tumour suppressors and oncogenes. Understanding this functional duality of nectin family in tumours will further our knowledge of molecular mechanisms regulating tumour development and progression, and contribute to the advancement of tumour diagnosis and therapy.
Collapse
Affiliation(s)
- Kheerthana Duraivelan
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India.
| | - Dibyendu Samanta
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India.
| |
Collapse
|
30
|
Zhang B, Yao J, Lian X, Liu B, Wang Y, Wang H, Wang J, Zhang M, Zhao Y, Zhu Y, Liu R, Gao Y. Role of RHOC in evaluating an adverse prognosis in patients with glioma and its potential prognostic value. Mol Clin Oncol 2021; 15:171. [PMID: 34276990 PMCID: PMC8278397 DOI: 10.3892/mco.2021.2333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 06/07/2021] [Indexed: 12/09/2022] Open
Abstract
In recent years, major discoveries have indicated that Ras homology family member C (RHOC) is involved in the occurrence and pathological progression of a number of malignant tumours; nevertheless, the role served by RHOC in glioma remains unclear. The present study aimed to gain further insight into the biological function and expression of RHOC in human glioma based on the Chinese Glioma Genome Atlas (CGGA). The current study analysed ~1,000 glioma samples from the CGGA. First, RHOC expression was analysed according to the clinical features associated with the prognosis of glioma, such as clinical stage, histological type and age. Second, the Kaplan-Meier method was used, revealing that the survival rate of patients with glioma with high RHOC expression was significantly lower than that of patients with low RHOC expression. Receiver operating characteristic curve analysis indicated that RHOC had moderate diagnostic value for patients with glioma. Gene set enrichment analysis indirectly indicated that RHOC mainly participated in the pathological mechanism of glioma through p53, extracellular matrix receptor interaction and focal adhesion. Finally, the aforementioned results were further verified using The Cancer Genome Atlas data and reverse transcription-quantitative PCR technology. To the best of our knowledge, the present study was the first comprehensive in-depth analysis of RHOC, revealing the potential value of RHOC as a novel oncogene in glioma. The current study provided a novel potential biomarker for the diagnosis and prognosis of glioma, and re-examined the pathological mechanism of glioma from a new perspective.
Collapse
Affiliation(s)
- Bo Zhang
- Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Jiawei Yao
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Xiaoyu Lian
- Department of Surgery of Spine and Spinal Cord, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Binfeng Liu
- Department of Surgery of Spine and Spinal Cord, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Yanbiao Wang
- Department of Surgery of Spine and Spinal Cord, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Hongbo Wang
- Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Jialin Wang
- Department of Surgery of Spine and Spinal Cord, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Mengjun Zhang
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150086, P.R. China
| | - Yaoye Zhao
- Department of Surgery of Spine and Spinal Cord, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Yongjie Zhu
- Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Runze Liu
- Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Yanzheng Gao
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, Henan International Joint Laboratory of Intelligentized Orthopedics Innovation and Transformation, Henan Key Laboratory for Intelligent Precision Orthopedics, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan 450003, P.R. China
| |
Collapse
|
31
|
Carpenter AB, Carpenter AM, Aiken R, Hanft S. Oncolytic virus in gliomas: a review of human clinical investigations. Ann Oncol 2021; 32:968-982. [PMID: 33771666 DOI: 10.1016/j.annonc.2021.03.197] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 12/15/2022] Open
Abstract
Gliomas remain one of the more frustrating targets for oncologic therapy. Glioma resistance to conventional therapeutics is a product of their immune-privileged milieu behind the blood-brain barrier, in addition to their suppressive effect on the immune response itself. Taking the lead from the growing success of immunotherapy for systemic cancers, such as lung cancer and melanoma, immunotherapeutics has emerged as a major player in the potential treatment of gliomas, with oncolytic viruses in particular showing significant promise as evidenced by the recent Breakthrough and Fast Tract Designations for PVSRIPO and DNX2401. This review serves as a useful and updated compendium of the completed human clinical investigations for several oncolytic viruses in the treatment of gliomas.
Collapse
Affiliation(s)
- A B Carpenter
- Georgetown University School of Medicine, Washington, USA.
| | - A M Carpenter
- Department of Neurological Surgery, Neurological Institute of New Jersey, Rutgers New Jersey Medical School, Newark, USA
| | - R Aiken
- Gerald J. Glasser Brain Tumor Center, Atlantic Healthcare, Summit, USA
| | - S Hanft
- Department of Neurological Surgery, Westchester Medical Center, New York Medical College, Valhalla, USA
| |
Collapse
|
32
|
Zhang H, Yang Z, Du G, Cao L, Tan B. CD155-Prognostic and Immunotherapeutic Implications Based on Multiple Analyses of Databases Across 33 Human Cancers. Technol Cancer Res Treat 2021; 20:1533033820980088. [PMID: 33576304 PMCID: PMC7887689 DOI: 10.1177/1533033820980088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Growing evidence has suggested that CD155 participates in the regulation of many biological processes ranging cell growth, invasion, and migration from regulation of immune responses in most malignances. However, the impact of prognostic value and CD115-related immune response on the survival in multiple cancers remains incompletely clear. In our study, we assessed the prognostic significance and immune-associated mechanism of CD155 based on data from multiple databases and methods, including UCSC Xena, Oncomine, PrognoScan. We identified that CD155 was commonly upregulated in most human cancers, and High expression of CD155 was closely correlated with unfavorable clinical outcomes in 10/33 of human cancers, while CD155 at low level was responsible for better survival in KICH and PAAD. More intriguingly, CD155 expression had a significant interaction with immune function in several tumors by analyzing Tumor mutational burden and microsatellite in stability, immune score and stromal score. The correlation between immune infiltration and CD155 expression also indicated that CD155 expression positively correlated with CD4+ T cells in Head and Neck squamous cell carcinoma, Lung adenocarcinoma and Colon adenocarcinoma, while had inversely interaction with CD8+ T in Kidney renal clear cell carcinoma and Head and Neck squamous cell carcinoma as well as Tregs in Skin Cutaneous Melanoma, Head and Neck squamous cell carcinoma and Bladder Urothelial Carcinoma. These findings indicate CD155 correlates with cancer immunotherapy function. In conclusions, our observations revealed CD155 might function as immune-associated system in the development of human cancers, and acted as a promising prognostic and therapeutic target against human cancers.
Collapse
Affiliation(s)
- Hongpan Zhang
- Department of Oncology, 117913Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, People's Republic of China
| | - Zhihao Yang
- BaoTou Medical College, Inner Mongolia University of Science and Technology, Baotou, People's Republic of China
| | - Guobo Du
- Department of Oncology, 117913Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, People's Republic of China
| | - Lu Cao
- Department of Oncology, 117913Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, People's Republic of China
| | - BangXian Tan
- Department of Oncology, 117913Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, People's Republic of China
| |
Collapse
|
33
|
Wang J, Liu B, Yao J, Liu Z, Wang H, Zhang B, Lian X, Ren Z, Liu L, Gao Y. Interleukin-1 receptor-associated kinase 4 as a potential biomarker: Overexpression predicts poor prognosis in patients with glioma. Oncol Lett 2021; 21:254. [PMID: 33664818 PMCID: PMC7882878 DOI: 10.3892/ol.2021.12516] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 01/12/2021] [Indexed: 12/20/2022] Open
Abstract
The undetectable onset of glioma and the difficulty of surgery lead to a poor prognosis. Appropriate biomarkers for diagnosis and treatment need to be identified. Interleukin-1 receptor-associated kinase 4 (IRAK4) is involved in the initiation and progression of cancer. However, up until now, no report has revealed the relationship between IRAK4 and glioma. The present study aimed to examine the expression of IRAK4 in glioma, and to determine if there was a relationship between IRAK4 expression and clinical outcomes or survival prognosis. Thousands of glioma tissue samples and corresponding clinical information were obtained from various databases. Then a series of bioinformatics methods were used to reveal the role of IRAK4 in glioma. Finally, reverse transcription-quantitative PCR technology was used to verify the bioinformatics results. The study found that the expression of IRAK4 was significantly increased in glioma compared with the control brain tissue samples, and IRAK4, as an independent prognostic factor, shortened the overall survival time of patients with glioma. Gene Set Enrichment Analysis showed that IRAK4 promoted the activation of cell signalling pathways, such as NOD-like and Toll-like receptor signalling pathways. Co-expression analysis showed that the expression of IRAK4 was correlated with CMTM6, MOB1A and other genes. The present study demonstrated the role of IRAK4 as an oncogene in the pathological process of glioma for the first time, and highlights the potential of IRAK4 as a biomarker for prognostic evaluation and treatment of glioma.
Collapse
Affiliation(s)
- Jialin Wang
- Department of Orthopaedics, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan 450001, P.R. China
| | - Binfeng Liu
- Department of Orthopaedics, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan 450001, P.R. China
| | - Jiawei Yao
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University and Institute of Brain Science, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Zhendong Liu
- Department of Orthopaedics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan 450001, P.R. China
| | - Hongbo Wang
- Department of Orthopaedics, Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan 450001, P.R. China
| | - Bo Zhang
- Department of Orthopaedics, Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan 450001, P.R. China
| | - Xiaoyu Lian
- Department of Orthopaedics, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan 450001, P.R. China
| | - Zhishuai Ren
- Department of Orthopaedics, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan 450001, P.R. China
| | - Liyun Liu
- Department of Orthopaedics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan 450001, P.R. China
| | - Yanzheng Gao
- Department of Orthopaedics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan 450001, P.R. China
| |
Collapse
|
34
|
Zhao K, Ma L, Feng L, Huang Z, Meng X, Yu J. CD155 Overexpression Correlates With Poor Prognosis in Primary Small Cell Carcinoma of the Esophagus. Front Mol Biosci 2021; 7:608404. [PMID: 33490104 PMCID: PMC7817973 DOI: 10.3389/fmolb.2020.608404] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/07/2020] [Indexed: 12/15/2022] Open
Abstract
CD155/TIGIT overexpression has been detected in various human malignancies; however, its expression status in primary small cell carcinoma of the esophagus (PSCCE) and its prognostic significance remain unclear. In this study, we aimed to explore the expression and prognostic value of CD155 and TIGIT in PSCCE. We detected CD155 and TIGIT expression in 114 cases of PSCCE using immunohistochemistry (IHC) and evaluated their relationship with the clinicopathological characteristics and survival of the patients. Survival analyses were performed using the Kaplan-Meier method and Cox proportional hazards model. Nomogram performance was assessed via the concordance index (C-index) and calibration plots. Decision curve analysis (DCA) was performed to evaluate the net benefit of the nomogram. We found that CD155 and TIGIT were overexpressed in PSCCE tissues, CD155 expression correlated positively with TIGIT (p < 0.001) and was significantly associated with tumor size, T stage, distant metastasis, TNM stage, and Ki-67 score. TIGIT expression was also significantly associated with T stage, distant metastasis, and TNM stage. Patients with high CD155 and TIGIT expression had a significantly shorter overall survival (OS) and progression-free survival (PFS), while the multivariate model showed that CD155 expression and the therapeutic strategy are independent prognostic factors for PSCCE. In the validation step, OS was shown to be well-calibrated (C-index = 0.724), and a satisfactory clinical utility was proven by DCA. In conclusion, our findings revealed that CD155 and TIGIT are highly expressed in patients with PSCCE and are associated with shorter OS and PFS, supporting their role as prognostic biomarker.
Collapse
Affiliation(s)
- Kaikai Zhao
- Department of Radiation Oncology, The First Affiliated Hospital of China Medical University, Shenyang, China.,Department of Radiation Oncology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Lin Ma
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lei Feng
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Zhaoqin Huang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiangjiao Meng
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jinming Yu
- Department of Radiation Oncology, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
35
|
Lombardo SD, Bramanti A, Ciurleo R, Basile MS, Pennisi M, Bella R, Mangano K, Bramanti P, Nicoletti F, Fagone P. Profiling of inhibitory immune checkpoints in glioblastoma: Potential pathogenetic players. Oncol Lett 2020; 20:332. [PMID: 33123243 PMCID: PMC7583708 DOI: 10.3892/ol.2020.12195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/06/2020] [Indexed: 12/27/2022] Open
Abstract
Glioblastoma (GBM) represents the most frequent glial tumor, with almost 3 new cases per 100,000 people per year. Despite treatment, the prognosis for GBM patients remains extremely poor, with a median survival of 14.6 months, and a 5-year survival less than 5%. It is generally believed that GBM creates a highly immunosuppressive microenvironment, sustained by the expression of immune-regulatory factors, including inhibitory immune checkpoints, on both infiltrating cells and tumor cells. However, the trials assessing the efficacy of current immune checkpoint inhibitors in GBM are still disappointing. In the present study, the expression levels of several inhibitory immune checkpoints in GBM (CD276, VTCN1, CD47, PVR, TNFRSF14, CD200, LGALS9, NECTIN2 and CD48) were characterized in order to evaluate their potential as prognostic and eventually, therapeutic targets. Among the investigated immune checkpoints, TNFRSF14 and NECTIN2 were identified as the most promising targets in GBM. In particular, a higher TNFRSF14 expression was associated with worse overall survival and disease-free survival, and with a lower Th1 response.
Collapse
Affiliation(s)
- Salvo Danilo Lombardo
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, A-1090 Vienna, Austria
| | | | - Rosella Ciurleo
- IRCCS Centro Neurolesi Bonino Pulejo, I-98124 Messina, Italy
| | | | - Manuela Pennisi
- Department of Biomedical and Biotechnological Sciences, University of Catania, I-95123 Catania, Italy
| | - Rita Bella
- Department of Medical Sciences, Surgery and Advanced Technologies, University of Catania, I-95123 Catania, Italy
| | - Katia Mangano
- Department of Biomedical and Biotechnological Sciences, University of Catania, I-95123 Catania, Italy
| | | | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, I-95123 Catania, Italy
| | - Paolo Fagone
- Department of Biomedical and Biotechnological Sciences, University of Catania, I-95123 Catania, Italy
| |
Collapse
|
36
|
Oncolytic Viruses as a Platform for the Treatment of Malignant Brain Tumors. Int J Mol Sci 2020; 21:ijms21207449. [PMID: 33050329 PMCID: PMC7589928 DOI: 10.3390/ijms21207449] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/07/2020] [Accepted: 10/07/2020] [Indexed: 12/11/2022] Open
Abstract
Malignant brain tumors remain incurable diseases. Although much effort has been devoted to improving patient outcome, multiple factors such as the high tumor heterogeneity, the strong tumor-induced immunosuppressive microenvironment, and the low mutational burden make the treatment of these tumors especially challenging. Thus, novel therapeutic strategies are urgent. Oncolytic viruses (OVs) are biotherapeutics that have been selected or engineered to infect and selectively kill cancer cells. Increasingly, preclinical and clinical studies demonstrate the ability of OVs to recruit T cells and induce durable immune responses against both virus and tumor, transforming a “cold” tumor microenvironment into a “hot” environment. Besides promising clinical results as a monotherapy, OVs can be powerfully combined with other cancer therapies, helping to overcome critical barriers through the creation of synergistic effects in the fight against brain cancer. Although many questions remain to be answered to fully exploit the therapeutic potential of OVs, oncolytic virotherapy will clearly be part of future treatments for patients with malignant brain tumors.
Collapse
|
37
|
Lupo KB, Matosevic S. CD155 immunoregulation as a target for natural killer cell immunotherapy in glioblastoma. J Hematol Oncol 2020; 13:76. [PMID: 32532329 PMCID: PMC7291472 DOI: 10.1186/s13045-020-00913-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 06/04/2020] [Indexed: 12/21/2022] Open
Abstract
Natural killer (NK) cells are powerful immune effectors, modulating their anti-tumor function through a balance activating and inhibitor ligands on their cell surface. Though still emerging, cancer immunotherapies utilizing NK cells are proving promising as a modality for the treatment of a number of solid tumors, including glioblastoma (GBM) and other gliomas, but are often limited due to complex immunosuppression associated with the GBM tumor microenvironment which includes overexpression of inhibitory receptors on GBM cells. CD155, or poliovirus receptor (PVR), has recently emerged as a pro-tumorigenic antigen, overexpressed on GBM and contributing to increased GBM migration and aggressiveness. CD155 has also been established as an immunomodulatory receptor, able to both activate NK cells through interactions with CD226 (DNAM-1) and CD96 and inhibit them through interaction with TIGIT. However, NK cell TIGIT expression has been shown to be upregulated in cancer, establishing CD155 as a predominantly inhibitory receptor within the context of GBM and other solid tumors, and rendering it of interest as a potential target for antigen-specific NK cell-based immunotherapy. This review will explore the function of CD155 within GBM as it relates to tumor migration and NK cell immunoregulation, as well as pre-clinical and clinical targeting of CD155/TIGIT and the potential that this pathway holds for the development of emerging NK cell-based immunotherapies.
Collapse
MESH Headings
- Animals
- Antigens, CD/immunology
- Antigens, CD/physiology
- Antigens, Differentiation, T-Lymphocyte/immunology
- Antigens, Differentiation, T-Lymphocyte/physiology
- Antineoplastic Agents, Immunological/therapeutic use
- Cell Adhesion
- Cell Movement
- Glioblastoma/immunology
- Glioblastoma/pathology
- Glioblastoma/therapy
- Humans
- Immunotherapy/methods
- Killer Cells, Natural/immunology
- Killer Cells, Natural/transplantation
- Mice
- Neoplasm Invasiveness/immunology
- Neoplasm Invasiveness/prevention & control
- Neoplasm Metastasis
- Oncolytic Virotherapy
- Poliovirus/physiology
- Reassortant Viruses/physiology
- Receptors, Immunologic/immunology
- Receptors, Immunologic/physiology
- Receptors, Virus/antagonists & inhibitors
- Receptors, Virus/immunology
- Rhinovirus/physiology
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Kyle B Lupo
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
| | - Sandro Matosevic
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN, 47907, USA.
- Purdue Center for Cancer Research, West Lafayette, IN, 47906, USA.
| |
Collapse
|
38
|
Cao Q, Wang N, Ren L, Tian J, Yang S, Cheng H. miR-125a-5p post-transcriptionally suppresses GALNT7 to inhibit proliferation and invasion in cervical cancer cells via the EGFR/PI3K/AKT pathway. Cancer Cell Int 2020; 20:117. [PMID: 32308562 PMCID: PMC7147043 DOI: 10.1186/s12935-020-01209-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/06/2020] [Indexed: 02/08/2023] Open
Abstract
Background The carcinogenesis and progression of cervical cancer is a complex process in which numerous microRNAs are involved. The purpose of this study is to investigate the role of miR-125a-5p in progression of cervical cancer. Methods RT-qPCR was used to detect the expression of miR-125a-5p and GALNT7 in cervical cancer tissues and cell lines. Then, the miR-125a-5p mimic, miR-125a-5p inhibitor, GALNT7 siRNA, or/and pcDNA-GALNT7 were respectively transfected into HeLa and Caski cervical cancer cells, and Cell Counting kit-8 assay, Transwell assay and flow cytometry analysis were respectively used to observe cell proliferation, invasion and apoptosis. Subsequently, luciferase reporter gene assay was employed in confirming the target relationship between miR-125a-5p and GALNT7. MiR-125a-5p mimic or/and pcDNA-GALNT7 were transfected into the cervical cancer cells at the absence of epidermal growth factor (EGF) or not, and the pcDNA-GALNT7 was transfected into the cervical cancer cells at the absence of inhibitors of multiple kinases or not. Furthermore, the effect of miR-125a-5p on tumor growth was also studied using a xenograft model of nude mice. Results MiR-125a-5p was down-regulated in both cervical cancer tissues and cell lines and it inhibited cell proliferation and invasion of cervical cancer cells. MiR-125a-5p directly targeted and post-transcriptionally downregulated GALNT7 that was strongly upregulated in cervical cancer tissues and cell lines. Similar to the effect of miR-125a-5p mimic, silencing GALNT7 inhibited proliferation and invasion of cervical cancer cells. In addition, miR-125a-5p overexpression could counteract both GALNT7- and EGF-induced cell proliferation and invasion. GALNT7 promoted cell proliferation and invasion by activating the EGFR/PI3K/AKT kinase pathway, which could be abated by the inhibitors of the kinases. Moreover, the role of miR-125a-5p inhibited tumor formation in cervical cancer by suppressing the expression of GALNT7 in vivo. Conclusion In conclusion, miR-125a-5p suppressed cervical cancer progression by post-transcriptionally downregulating GALNT7 and inactivating the EGFR/PI3K/AKT pathway.
Collapse
Affiliation(s)
- Qinxue Cao
- Department Gynecology, Huaihe Hospital of Henan University, No.8 Baobei Road, Kaifeng, 475000 Henan Province China
| | - Ning Wang
- Department Gynecology, Huaihe Hospital of Henan University, No.8 Baobei Road, Kaifeng, 475000 Henan Province China
| | - Lu Ren
- Department Gynecology, Huaihe Hospital of Henan University, No.8 Baobei Road, Kaifeng, 475000 Henan Province China
| | - Jun Tian
- Department Gynecology, Huaihe Hospital of Henan University, No.8 Baobei Road, Kaifeng, 475000 Henan Province China
| | - Shaoqin Yang
- Department Gynecology, Huaihe Hospital of Henan University, No.8 Baobei Road, Kaifeng, 475000 Henan Province China
| | - Hailing Cheng
- Department Gynecology, Huaihe Hospital of Henan University, No.8 Baobei Road, Kaifeng, 475000 Henan Province China
| |
Collapse
|
39
|
You H, Zhang YZ, Lai HL, Li D, Liu YQ, Li RZ, Khan I, Hsiao WWL, Duan FG, Fan XX, Yao XJ, Cao YB, Wu QB, Leung ELH, Wang MF. Prognostic significance of tumor poliovirus receptor and CTLA4 expression in patients with surgically resected non-small-cell lung cancer. J Cancer Res Clin Oncol 2020; 146:1441-1450. [PMID: 32248302 DOI: 10.1007/s00432-020-03189-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 03/17/2020] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Poliovirus receptor (PVR) is a tumor promoter and a regulatory checkpoint that enhances immunosuppression. We investigated PVR expression by applying immunohistochemistry (IHC) staining. A positive association existed between PVR expression and cytotoxic T lymphocyte-associated antigen 4 (CTLA4) expression in patients with surgically resected non-small-cell lung cancer (NSCLC). PVR expression is a prognosis predictor of lung adenocarcinoma. PURPOSE To investigate the prognostic significance of PVR expression and CTLA4 expression for surgically resected NSCLC. PATIENTS AND METHODS The medical records of 108 Chinese patients with primary NSCLC who underwent surgery were retrospectively reviewed. The expression of PVR and CTLA4 were measured through IHC. Clinical characteristics, the association between PVR and CTLA4, and the prognostic significance of PVR were analyzed. RESULTS A significant positive association was observed between PVR and CTLA4 expression in NSCLC (P = 0.016). PVR had a high positive rate among females, nonsmokers, and patients with adenocarcinoma and advanced lung cancer. The overall survival (OS) of patients with negative PVR expression was significantly longer than that of patients with positive PVR expression (P = 0.049), especially among females (P = 0.03) and nonsmokers (P = 0.025). Multivariate analysis results showed that advanced tumor stage and PVR expression were independent prognosis predictors of poor OS. CONCLUSION PVR can potentially serve as a prognostic predictor and biomarker for NSCLC and cancer anti-CTLA4 immunotherapy response.
Collapse
Affiliation(s)
- Hui You
- Department of Respiratory and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Yi-Zhong Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Huan-Ling Lai
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Dan Li
- Department of Pathology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Yu-Quan Liu
- Department of Respiratory and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Run-Ze Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Imran Khan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Wendy Wen-Lun Hsiao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Fu-Gang Duan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Xing-Xing Fan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Xiao-Jun Yao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Ya-Bing Cao
- Department of Oncology, Kiang Wu Hospital, Macau (SAR), China
| | - Qi-Biao Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China.
| | - Elaine Lai-Han Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China.
| | - Mei-Fang Wang
- Department of Respiratory and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China.
- Hubei Key Laboratory of Embryonic Stem Cell Research, Shiyan, China.
| |
Collapse
|
40
|
CD155: A Multi-Functional Molecule in Tumor Progression. Int J Mol Sci 2020; 21:ijms21030922. [PMID: 32019260 PMCID: PMC7037299 DOI: 10.3390/ijms21030922] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 12/12/2022] Open
Abstract
CD155 is an adhesion molecule belonging to the Nectin/Nectin-like family often overexpressed on tumor cells and involved in many different processes such as cell adhesion, migration and proliferation. In contrast to these pro-tumorigenic functions, CD155 is also a ligand for the activating receptor DNAM-1 expressed on cytotoxic lymphocytes including Natural Killer (NK) cells and involved in anti-tumor immune response. However, during tumor progression inhibitory receptors for CD155 are up-regulated on the surface of effector cells, contributing to an impairment of their cytotoxic capacity. In this review we will focus on the roles of CD155 as a ligand for the activating receptor DNAM-1 regulating immune surveillance against cancer and as pro-oncogenic molecule favoring tumor proliferation, invasion and immune evasion. A deeper understanding of the multiple roles played by CD155 in cancer development contributes to improving anti-tumor strategies aimed to potentiate immune response against cancer.
Collapse
|
41
|
Overexpression of an Immune Checkpoint (CD155) in Breast Cancer Associated with Prognostic Significance and Exhausted Tumor-Infiltrating Lymphocytes: A Cohort Study. J Immunol Res 2020; 2020:3948928. [PMID: 32411795 PMCID: PMC7201814 DOI: 10.1155/2020/3948928] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/06/2019] [Accepted: 12/26/2019] [Indexed: 12/13/2022] Open
Abstract
Purpose The immune checkpoint inhibitor is approved for breast cancer treatment, but the low expression of PD-L1 limits the immunotherapy. CD155 is another immune checkpoint protein in cancers and interacts with ligands to regulate immune microenvironment. This study is aimed at investigating the expression of CD155 and the association with prognosis and pathological features of breast cancer. Methods 126 patients were recruited this cohort study consecutively, and CD155 expression on tumor cells was detected by immunohistochemistry. The Kaplan-Meier survival curve and Cox hazard regression model were used to estimate the association. Results 38.1% patients had an overexpression of CD155, and the proportion of tumor cells with CD155 overexpression was 17%, 39%, 37%, and 62% among Luminal A, Luminal B, HER2-positive, and triple negative breast cancer cases, respectively (p < 0.05). Patients with CD155 overexpression had the Ki-67 index significantly higher than that of patients with low expression (42% vs. 26%). Though the number of tumor-infiltrating lymphocytes was higher among patients with CD155 overexpression (144/HPF vs. 95/HPF), the number of PD-1+ lymphocytes was significantly higher (52/HPF vs. 25/HPF, p < 0.05). Patients of CD155 overexpression had the disease-free and overall survival decreased by 13 months and 9 months, respectively (p < 0.05). CD155 overexpression was associated with an increased relapse (HR = 13.93, 95% CI 2.82, 68.91) and death risk for breast cancer patients (HR = 5.47, 1.42, 20.99). Conclusions Overexpression of CD155 was correlated with more proliferative cancer cells and a dysfunctional immune microenvironment. CD155 overexpression introduced a worse relapse-free and overall survival and might be a potential immunotherapy target for breast cancer.
Collapse
|
42
|
Wang Y, Luo YL, Chen YF, Lu ZD, Wang Y, Czarna A, Shen S, Xu CF, Wang J. Dually regulating the proliferation and the immune microenvironment of melanoma via nanoparticle-delivered siRNA targeting onco-immunologic CD155. Biomater Sci 2020; 8:6683-6694. [DOI: 10.1039/d0bm01420f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Nanoparticle-delivered siRNA targeting CD155 for dual regulation of the proliferation and of the immune microenvironment of melanoma.
Collapse
Affiliation(s)
- Yan Wang
- Institutes for Life Sciences
- School of Medicine
- South China University of Technology
- Guangzhou 510006
- P.R. China
| | - Ying-Li Luo
- Institutes for Life Sciences
- School of Medicine
- South China University of Technology
- Guangzhou 510006
- P.R. China
| | - Yi-Fang Chen
- Institutes for Life Sciences
- School of Medicine
- South China University of Technology
- Guangzhou 510006
- P.R. China
| | - Zi-Dong Lu
- Institutes for Life Sciences
- School of Medicine
- South China University of Technology
- Guangzhou 510006
- P.R. China
| | - Yue Wang
- School of Biomedical Sciences and Engineering
- Guangzhou International Campus
- South China University of Technology
- Guangzhou 510006
- P.R. China
| | - Anna Czarna
- Institutes for Life Sciences
- School of Medicine
- South China University of Technology
- Guangzhou 510006
- P.R. China
| | - Song Shen
- School of Biomedical Sciences and Engineering
- Guangzhou International Campus
- South China University of Technology
- Guangzhou 510006
- P.R. China
| | - Cong-Fei Xu
- School of Biomedical Sciences and Engineering
- Guangzhou International Campus
- South China University of Technology
- Guangzhou 510006
- P.R. China
| | - Jun Wang
- School of Biomedical Sciences and Engineering
- Guangzhou International Campus
- South China University of Technology
- Guangzhou 510006
- P.R. China
| |
Collapse
|
43
|
Lam BP, Cheung SKC, Lam YW, Pang SW. Microenvironmental topographic cues influence migration dynamics of nasopharyngeal carcinoma cells from tumour spheroids. RSC Adv 2020; 10:28975-28983. [PMID: 35520045 PMCID: PMC9055862 DOI: 10.1039/d0ra03740k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 07/22/2020] [Indexed: 12/13/2022] Open
Abstract
Tumour metastasis is a complex process that strongly influences the prognosis and treatment of cancer. Apart from intracellular factors, recent studies have indicated that metastasis also depends on microenvironmental factors such as the biochemical, mechanical and topographical properties of the surrounding extracellular matrix (ECM) of tumours. In this study, as a proof of concept, we conducted tumour spheroid dissemination assay on engineered surfaces with micrograting patterns. Nasopharyngeal spheroids were generated by the 3D culture of nasopharyngeal carcinoma (NPC43) cells, a newly established cell line that maintains a high level of Epstein–Barr virus, a hallmark of NPC. Three types of collagen I-coated polydimethylsiloxane (PDMS) substrates were used, with 15 μm deep “trenches” that grated the surfaces: (a) 40/10 μm ridges (R)/trenches (T), (b) 18/18 μm (R/T) and (c) 50/50 μm (R/T). The dimensions of these patterns were designed to test how various topographical cues, different with respect to the size of tumour spheroids and individual NPC43 cells, might affect dissemination behaviours. Spreading efficiencies on all three patterned surfaces, especially 18/18 μm (R/T), were lower than that on flat PDMS surface. The outspreading cell sheets on flat and 40/10 μm (R/T) surfaces were relatively symmetrical but appeared ellipsoid and aligned with the main axes of the 18/18 μm (R/T) and 50/50 μm (R/T) grating platforms. Focal adhesions (FAs) were found to preferentially formed on the ridges of all patterns. The number of FAs per spheroid was strongly influenced by the grating pattern, with the least FAs on the 40/10 μm (R/T) and the most on the 50/50 μm (R/T) substrate. Taken together, these data indicate a previously unknown effect of surface topography on the efficiency and directionality of cancer cell spreading from tumour spheroids, suggesting that topography, like ECM biochemistry and stiffness, can influence the migration dynamics in 3D cell culture models. Investigation of collective migration of nasopharyngeal carcinoma cells from tumour spheroids on micro-engineered platforms that induced asymmetrical tumour shape.![]()
Collapse
Affiliation(s)
- Bowie P. Lam
- Department of Electrical Engineering
- City University of Hong Kong
- Hong Kong
- Centre for Biosystems, Neuroscience, and Nanotechnology
- City University of Hong Kong
| | - Sarah K. C. Cheung
- Centre for Biosystems, Neuroscience, and Nanotechnology
- City University of Hong Kong
- Hong Kong
- Department of Chemistry
- City University of Hong Kong
| | - Yun W. Lam
- Centre for Biosystems, Neuroscience, and Nanotechnology
- City University of Hong Kong
- Hong Kong
- Department of Chemistry
- City University of Hong Kong
| | - Stella W. Pang
- Department of Electrical Engineering
- City University of Hong Kong
- Hong Kong
- Centre for Biosystems, Neuroscience, and Nanotechnology
- City University of Hong Kong
| |
Collapse
|
44
|
O'Donnell JS, Madore J, Li XY, Smyth MJ. Tumor intrinsic and extrinsic immune functions of CD155. Semin Cancer Biol 2019; 65:189-196. [PMID: 31883911 DOI: 10.1016/j.semcancer.2019.11.013] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/06/2019] [Accepted: 11/19/2019] [Indexed: 12/11/2022]
Abstract
CD155 (PVR/necl5/Tage4), a member of the nectin-like family of adhesion molecules, is highly upregulated on tumor cells across multiple cancer types and has been associated with worse patient outcomes. In addition to well described cell-intrinsic roles promoting tumor progression and metastasis, CD155 has now been implicated in immune regulation. The role of CD155 as a potent immune ligand with diverse cell-extrinsic functions is now being defined. CD155 signaling to immune cells is mediated through interactions with the co-stimulatory immune receptor CD226 (DNAM-1) and the inhibitory checkpoint receptors TIGIT and CD96, which are differentially regulated at the cell surface on T cells and NK cells. The integration of signals from CD155 cognate receptors modifies the activity of tumor-infiltrating lymphocytes in a context-dependent manner, making CD155 an attractive target for immune-oncology. Preclinical studies suggest that targeting this axis can improve immune-mediated tumor control, particularly when combined with existing anti-PD-1 checkpoint therapies. In this review, we discuss the roles of CD155 on host and tumor cells in controlling tumor progression and discuss the possibility of targeting CD155 for cancer therapy.
Collapse
Affiliation(s)
- Jake S O'Donnell
- Cancer Immunoregulation and Immunotherapy Laboratory, QIMR Berghofer Medical Research Institute, QLD, Australia
| | - Jason Madore
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
| | - Xian-Yang Li
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
| | - Mark J Smyth
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia.
| |
Collapse
|
45
|
Gao J, Zheng Q, Shao Y, Wang W, Zhao C. CD155 downregulation synergizes with adriamycin to induce breast cancer cell apoptosis. Apoptosis 2019; 23:512-520. [PMID: 30039180 PMCID: PMC6153518 DOI: 10.1007/s10495-018-1473-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
CD155 has been implicated in migration, invasion, proliferation and apoptosis of human cancer cells, and DNA damage response caused by chemotherapeutic agents or reactive oxygen species has been shown to attribute to CD155 induction. Adriamycin (Adr) is one of the most common chemotherapeutic drugs used to treat breast cancer. Here we reported that treatment with Adr upregulated CD155 expression on several in vitro cultured breast cancer cells and in breast cancer cell 4T1 xenografts. We also found that CD155 knockdown or Adr treatment induced apoptosis of in vitro cultured cancer cells and cancer cells in 4T1 xenografts, and a combination of CD155 knockdown with Adr treatment induced more cell death than either of them. Furthermore, we revealed that the combination of CD155 knockdown with Adr treatment suppressed the growth of 4T1 xenografts more significantly than them alone. In summary, our results demonstrate that CD155 downregulation synergizes with Adr to induce breast cancer cell apoptosis, thereby to suppress tumor growth. Our results also suggest that CD155 upregulation may be a mechanism underlying Adr resistance by breast cancer cells.
Collapse
Affiliation(s)
- Jian Gao
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China
- Center of Laboratory Technology and Experimental Medicine, China Medical University, Shenyang, China
| | - Qianqian Zheng
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yue Shao
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Wei Wang
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Chenghai Zhao
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China.
| |
Collapse
|
46
|
Ma W, Ma J, Lei T, Zhao M, Zhang M. Targeting immunotherapy for bladder cancer by using anti-CD3 × CD155 bispecific antibody. J Cancer 2019; 10:5153-5161. [PMID: 31602268 PMCID: PMC6775611 DOI: 10.7150/jca.29937] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 07/01/2019] [Indexed: 12/13/2022] Open
Abstract
To investigate whether CD155 is an attractive target for T cell-mediated immunotherapy against human bladder cancer, we examined the novel bispecific antibody anti-CD3 x anti-CD155 (CD155Bi-Ab) for its ability to redirect activated T cells (ATCs) to target bladder cancer cells was examined. Expression of CD155 was detected by flow cytometry on the surface of bladder cancer cells, including T24 and Pumc-91 cells, and their chemotherapeutic drug-resistant counterparts. ATCs generated from healthy donors were stimulated with anti-CD3 monoclonal antibody, anti-CD28 monoclonal antibody and interleukin-2 (IL-2) for 14 days. The cytotoxic activity of ATCs armed with CD155Bi-Ab against bladder cancer cells was detected by LDH and luciferase quantitative assay. Furthermore, ATCs generated from bladder cancer patients were also armed with CD155Bi-Ab to verity the cell killing by the same methods. In contrast to unarmed ATCs, CD155Bi-armed ATCs against bladder cancer cells were increased cytotoxic activity at effector/target (E/T) ratios of 5:1, 10:1, and 20:1, with more IFN-γ, TNF-α secreting. It is worth noting that in spite of the presence of immunosuppression in bladder cancer patients and the drug resistance in chemotherapeutic drug-resistant cancer cell lines, not only the anti-tumor effect of CD155Bi-armed ATCs generated from bladder cancer patients still showed significantly but only higher level of activation marker CD69 was expressed. Taken together, our results suggest that CD155 is an effective target for the CD155-positive bladder cancer. And CD155Bi-Ab-armed ATCs are promisingly to provide a novel strategy for current CD155-positive bladder cancer therapy.
Collapse
Affiliation(s)
- Wanru Ma
- Department of Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.,Peking University Ninth School of Clinical Medical, Beijing, China.,Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, China.,Collage of Medical Technique, Xuzhou Medical University, Jiangsu, China
| | - Juan Ma
- Department of Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.,Peking University Ninth School of Clinical Medical, Beijing, China.,Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, China
| | - Ting Lei
- Department of Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.,Peking University Ninth School of Clinical Medical, Beijing, China.,Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, China
| | - Man Zhao
- Department of Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.,Peking University Ninth School of Clinical Medical, Beijing, China.,Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, China
| | - Man Zhang
- Department of Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.,Peking University Ninth School of Clinical Medical, Beijing, China.,Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, China
| |
Collapse
|
47
|
DNAM-1 Activating Receptor and Its Ligands: How Do Viruses Affect the NK Cell-Mediated Immune Surveillance during the Various Phases of Infection? Int J Mol Sci 2019; 20:ijms20153715. [PMID: 31366013 PMCID: PMC6695959 DOI: 10.3390/ijms20153715] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 07/24/2019] [Accepted: 07/27/2019] [Indexed: 02/06/2023] Open
Abstract
Natural Killer (NK) cells play a critical role in host defense against viral infections. The mechanisms of recognition and killing of virus-infected cells mediated by NK cells are still only partially defined. Several viruses induce, on the surface of target cells, the expression of molecules that are specifically recognized by NK cell-activating receptors. The main NK cell-activating receptors involved in the recognition and killing of virus-infected cells are NKG2D and DNAM-1. In particular, ligands for DNAM-1 are nectin/nectin-like molecules involved also in mechanisms allowing viral infection. Viruses adopt several immune evasion strategies, including those affecting NK cell-mediated immune surveillance, causing persistent viral infection and the development of virus-associated diseases. The virus's immune evasion efficacy depends on molecules differently expressed during the various phases of infection. In this review, we overview the molecular strategies adopted by viruses, specifically cytomegalovirus (CMV), human immunodeficiency virus (HIV-1), herpes virus (HSV), Epstein-Barr virus (EBV) and hepatitis C virus (HCV), aiming to evade NK cell-mediated surveillance, with a special focus on the modulation of DNAM-1 activating receptor and its ligands in various phases of the viral life cycle. The increasing understanding of mechanisms involved in the modulation of activating ligands, together with those mediating the viral immune evasion strategies, would provide critical tools leading to design novel NK cell-based immunotherapies aiming at viral infection control, thus improving cure strategies of virus-associated diseases.
Collapse
|
48
|
Fang L, Zhao F, Iwanowycz S, Wang J, Yin S, Wang Y, Fan D. Anticancer activity of emodin is associated with downregulation of CD155. Int Immunopharmacol 2019; 75:105763. [PMID: 31325728 DOI: 10.1016/j.intimp.2019.105763] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/13/2019] [Accepted: 07/13/2019] [Indexed: 10/26/2022]
Abstract
Emodin is a Chinese herb-derived compound that exhibits a variety of pharmacological benefits. Although emodin has been shown to inhibit growth of cancer cells, its antineoplastic function is incompletely understood. CD155 is a member of poliovirus receptor-related (PRR) family of adhesion molecules; it is constitutively expressed on many tumor cell lines and tissues and has diverse functions. CD155 has been reported to mediate activation of T cells via CD226 or inhibition of T cells via T-cell immunoreceptor with Ig and ITIM domains (TIGIT). In addition, CD155 may play a critical role through non-immunological mechanisms in cancer. In this study, we tested the ability of emodin to modulate CD155 expression in cancer cells. We found that emodin significantly decreased the expression of CD155 in tumor cells and inhibited tumor cell proliferation and migration, and induced cell-cycle arrest at G2/M phase. The tumor inhibitory effects of emodin were lost with CD155 knockdown. Furthermore, emodin was used to treat mice bearing B16 melanoma. It was shown that emodin attenuated tumor growth accompanied by suppressing CD155 expression. Therefore, we propose that emodin could inhibit tumor growth, and the antineoplastic properties of emodin are at least partially CD155 dependent. Our study provides new insights into the mechanisms by which emodin inhibits tumor growth.
Collapse
Affiliation(s)
- Liang Fang
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29209, United States of America; Department of Immunology, Fourth Military Medical University, Xi'an 710032, China.
| | - Fang Zhao
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Fourth Military Medical University, Xi'an 710032, China
| | - Stephen Iwanowycz
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29209, United States of America
| | - Junfeng Wang
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29209, United States of America
| | - Sophia Yin
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29209, United States of America
| | - Yuzhen Wang
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29209, United States of America
| | - Daping Fan
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29209, United States of America.
| |
Collapse
|
49
|
Kučan Brlić P, Lenac Roviš T, Cinamon G, Tsukerman P, Mandelboim O, Jonjić S. Targeting PVR (CD155) and its receptors in anti-tumor therapy. Cell Mol Immunol 2019; 16:40-52. [PMID: 30275538 PMCID: PMC6318332 DOI: 10.1038/s41423-018-0168-y] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 08/20/2018] [Indexed: 12/22/2022] Open
Abstract
Poliovirus receptor (PVR, CD155) has recently been gaining scientific interest as a therapeutic target in the field of tumor immunology due to its prominent endogenous and immune functions. In contrast to healthy tissues, PVR is expressed at high levels in several human malignancies and seems to have protumorigenic and therapeutically attractive properties that are currently being investigated in the field of recombinant oncolytic virotherapy. More intriguingly, PVR participates in a considerable number of immunoregulatory functions through its interactions with activating and inhibitory immune cell receptors. These functions are often modified in the tumor microenvironment, contributing to tumor immunosuppression. Indeed, increasing evidence supports the rationale for developing strategies targeting these interactions, either in terms of checkpoint therapy (i.e., targeting inhibitory receptors) or in adoptive cell therapy, which targets PVR as a tumor marker.
Collapse
Affiliation(s)
- Paola Kučan Brlić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51 000, Rijeka, Croatia.
| | - Tihana Lenac Roviš
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51 000, Rijeka, Croatia
| | - Guy Cinamon
- Nectin Therapeutics Ltd., Hi-Tech Campus Givat Ram, POB 39135, 91390, Jerusalem, Israel
| | - Pini Tsukerman
- Nectin Therapeutics Ltd., Hi-Tech Campus Givat Ram, POB 39135, 91390, Jerusalem, Israel
| | - Ofer Mandelboim
- The Lautenberg Center for General and Tumor Immunology, The Faculty of Medicine, IMRIC, The Hebrew University Medical School, Jerusalem, Israel
| | - Stipan Jonjić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51 000, Rijeka, Croatia.
| |
Collapse
|
50
|
Zhao H, Ma J, Lei T, Ma W, Zhang M. The bispecific anti-CD3 × anti-CD155 antibody mediates T cell immunotherapy for human prostate cancer. Invest New Drugs 2018; 37:810-817. [PMID: 30374653 DOI: 10.1007/s10637-018-0683-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 10/16/2018] [Indexed: 11/28/2022]
Abstract
Expression of CD155 differs between tumor and normal tissues, and high expression of this molecule can promote tumor metastasis. Here, we investigate whether CD155 can serve as a target for T cell-mediated immunotherapy of human prostate cancer. We first demonstrate that prostate cancer cells, including PC-3, PC-3 M, and LNCAP cells, express CD155 at high levels. Next, the specific cytotoxic activity of activated T cells (ATCs) armed with a novel anti-CD3 × anti-CD155 bispecific antibody (CD155Bi-Ab) against tumor cells was evaluated by flow cytometry, lactate dehydrogenase assay (LDH), and ELISA. In contrast to unarmed ATCs, an increase in the cytotoxic activity of CD155Bi-armed ATCs against tumor cells was observed at an effector/target (E/T) ratio of 5:1. Moreover, CD155Bi-armed ATCs secreted more IFN-γ, TNF-α, and IL-2 and expressed higher levels of the activation marker CD69 than did unarmed ATCs. As CD155 Bi-Ab enhances the ability of ATCs to kill prostate cancer cells, CD155 is an effective target for cytotoxic T cells in human prostate cancer therapy.
Collapse
Affiliation(s)
- Huijun Zhao
- Department of Clinical Laboratory, Beijing Shijitan Hospital, Capital Medical University, 10 Tieyi Road, Haidian District, Beijing, 100038, China.,Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, 100038, China
| | - Juan Ma
- Department of Clinical Laboratory, Beijing Shijitan Hospital, Capital Medical University, 10 Tieyi Road, Haidian District, Beijing, 100038, China.,Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, 100038, China
| | - Ting Lei
- Department of Clinical Laboratory, Beijing Shijitan Hospital, Capital Medical University, 10 Tieyi Road, Haidian District, Beijing, 100038, China.,Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, 100038, China.,Department of Clinical Laboratory, Peking University Ninth School of Clinical Medicine, Beijing, 100038, China
| | - Wanru Ma
- Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, 100038, China
| | - Man Zhang
- Department of Clinical Laboratory, Beijing Shijitan Hospital, Capital Medical University, 10 Tieyi Road, Haidian District, Beijing, 100038, China. .,Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, 100038, China. .,Department of Clinical Laboratory, Peking University Ninth School of Clinical Medicine, Beijing, 100038, China.
| |
Collapse
|