1
|
Hu S, Radosevich AT. Electrophilic C(sp 2)-H Cyanation with Inorganic Cyanate (OCN -) by P III/P V=O-Catalyzed Phase Transfer Activation. Angew Chem Int Ed Engl 2024; 63:e202409854. [PMID: 38950149 PMCID: PMC11412784 DOI: 10.1002/anie.202409854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/29/2024] [Accepted: 06/30/2024] [Indexed: 07/03/2024]
Abstract
An organophosphorus -catalyzed method for the direct electrophilic cyanation of C(sp2)-H nucleophiles with sodium cyanate (NaOCN) is reported. The catalytic deoxyfunctionalization of the OCN- anion is enabled by the use of a small-ring phosphacyclic (phosphetane) catalyst in combination with a terminal hydrosilane O-atom acceptor and a malonate-derived bromenium donor. In situ spectroscopy under single-turnover conditions demonstrate that insoluble inorganic cyanate anion is activated by bromide displacement on a bromophosphonium catalytic intermediate to give a reactive N-bound isocyanatophosphonium ion, which delivers electrophilic "CN+" equivalents to nucleophilic (hetero)arenes and alkenes with loss of a phosphine oxide. These results demonstrate the feasibility of deoxyfunctionalization of insoluble inorganic salts by PIII/PV=O catalyzed phase transfer activation.
Collapse
Affiliation(s)
- Shicheng Hu
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alexander T Radosevich
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
2
|
Abdelmegeed H, Abdel Ghany LMA, Youssef A, El-Etrawy AAS, Ryad N. Exploring the antitumor potential of novel quinoline derivatives via tubulin polymerization inhibition in breast cancer; design, synthesis and molecular docking. RSC Adv 2024; 14:22092-22112. [PMID: 39005243 PMCID: PMC11240139 DOI: 10.1039/d4ra04371e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
A series of quinoline derivatives was designed and synthesized as novel tubulin inhibitors targeting the colchicine binding site. All the rationalized compounds 3a-e, 4a-e, 5a-e, and 6a-e have been chosen for screening their cytotoxic activity against 60 cell lines by NCI. Compounds 3b, 3c, 4c, 5c and 6c demonstrated the most notable antitumor activity against almost all cell lines. Compound 4c emerged as the most potent compound as an antiproliferative agent. This compound was subsequently chosen for five-dose testing and it exhibited remarkable broad-spectrum efficacy with strong antitumor activity against several cell lines. Compound 4c significantly induced cell cycle arrest in MDA-MB-231 cells at G2 and M phases where the cell population increased dramatically to 22.84% compared to the untreated cells at 10.42%. It also increased the population in MDA-MB-231 cells at both early and late stages of apoptosis. Compound 4c can successfully inhibit tubulin polymerization with an IC50 value of 17 ± 0.3 μM. The β-tubulin mRNA levels were notably reduced in MDA-MB-231 cells treated with compound 4c which is similar to the effect observed with colchicine treatment. Docking studies revealed that compound 4c interacted well with crucial amino acids in the active site.
Collapse
Affiliation(s)
- Heba Abdelmegeed
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre Giza 12622 Egypt
| | - Lina M A Abdel Ghany
- Pharmaceutical Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST) 6th of October City, P.O. Box 77 Giza Egypt
| | - Amira Youssef
- Pharmaceutical Organic Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST) 6th of October City, P.O. Box 77 Giza Egypt
| | - Abd-Allah S El-Etrawy
- Pharmaceutical Organic Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST) 6th of October City, P.O. Box 77 Giza Egypt
- Department of Chemistry, Basic Science, Misr University for Science and Technology (MUST) 6th of October City, P.O. Box 77 Giza Egypt
| | - Noha Ryad
- Pharmaceutical Organic Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST) 6th of October City, P.O. Box 77 Giza Egypt
| |
Collapse
|
3
|
Long J, Wang L, Liu X, Liu J, Luo SP, Fang X. Palladium-Catalyzed Hydrocyanation of Ynoates: En Route to the Stereodivergent Synthesis of β-Cyanated α,β-Unsaturated Esters via Ligand Controlled Regio- and Stereoselectivity. Org Lett 2024; 26:3945-3950. [PMID: 38679885 DOI: 10.1021/acs.orglett.4c01192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
A Pd-catalyzed highly regio- and stereoselective hydrocyanation was developed, providing a novel approach to the stereodivergent synthesis of β-cyano-substituted acrylates in good yields with a wide substrate scope. The judicious selection of ligands was crucial for elegant control over the stereodivergence. Furthermore, the success of the E-hydrocyanation hinges on the right matching of Pd and L1, which not only ensured the catalytic activity but also prevented the formation of α-cyanation products.
Collapse
Affiliation(s)
- Jinguo Long
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Lingna Wang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xuefen Liu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Jie Liu
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - Shu-Ping Luo
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xianjie Fang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
4
|
Zhang Y, Shi S, Yang Z. Thiourea-Mediated Stereospecific Deoxygenation of Cyanoepoxides to Access Highly Diastereopure Alkenyl Nitriles. J Org Chem 2024; 89:2748-2758. [PMID: 38277233 DOI: 10.1021/acs.joc.3c02869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
A practical and efficient protocol for synthesis of >99% diastereopure Z- and E-alkenyl nitriles is developed, through tetramethylthiourea-mediated stereospecific deoxygenation of respective cis- and trans-cyanoepoxides in ethanol. The desired products are obtained in excellent yields.
Collapse
Affiliation(s)
- Yujie Zhang
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Shukui Shi
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P.R. China
- College of Chemistry and Pharmacy Engineering, Nanyang Normal University, Nanyang 473061, P.R. China
| | - Zhanhui Yang
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| |
Collapse
|
5
|
Bera S, Datta HK, Dastidar P. Nitrile-Containing Terpyridyl Zn(II)-Coordination Polymer-Based Metallogelators Displaying Helical Structures: Synthesis, Structures, and "Druglike" Action against B16-F10 Melanoma Cells. ACS APPLIED MATERIALS & INTERFACES 2023; 15:25098-25109. [PMID: 35723469 DOI: 10.1021/acsami.2c05338] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
An attempt has been made to develop a self-drug-delivery system against melanoma from a series of metallogelators derived from coordination polymers. Thus, a series of coordination polymers (CP1-CP6) derived from a nitrile-containing terpyridyl ligand (L) and transition metal salts (Cu(I)/Zn(II)) have been synthesized and thoroughly characterized by a number of physicochemical techniques including single crystal X-ray diffraction. Reactions of the ingredients of the coordination polymers guided by their single crystal structures produced four metallogels (CPG2-CPG5) which were characterized by dynamic rheology and TEM. The metallogelator CPG3 turned out to be the best suited for further studies as revealed from MTT assay against melanoma (B16-F10) and macrophage (RAW 264.7) cells. Various experiments (scratch, cell cycle, nuclear condensation, annexin V-FITC/PI, mitochondrial membrane potential, Ho-efflux assays) not only supported the "druglike" action against melanoma B16-F10 cells but also suggested that the mechanism of cancer cell death was via mitochondrial membrane potential depolarization-driven apoptosis. Because melanoma B16-F10 is a model cell line for human skin cancer, the metallogel CPG3 may, therefore, be further developed for such treatment.
Collapse
Affiliation(s)
- Sourabh Bera
- School of Chemical Sciences, Indian Association for the Cultivation of Science (IACS), 2A and 2B Raja S.C. Mullick Road, Jadavpur, Kolkata-700032, West Bengal, India
| | - Hemanta Kumar Datta
- School of Chemical Sciences, Indian Association for the Cultivation of Science (IACS), 2A and 2B Raja S.C. Mullick Road, Jadavpur, Kolkata-700032, West Bengal, India
| | - Parthasarathi Dastidar
- School of Chemical Sciences, Indian Association for the Cultivation of Science (IACS), 2A and 2B Raja S.C. Mullick Road, Jadavpur, Kolkata-700032, West Bengal, India
| |
Collapse
|
6
|
Kumar M, Goswami A. Tunable Regio- and Stereoselective Synthesis of Z-Acrylonitrile Indoles and 3-Cyanoquinolines from 2-Alkynylanilines and Alkynylnitriles. Org Lett 2023; 25:3254-3259. [PMID: 37126068 DOI: 10.1021/acs.orglett.3c00987] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The merger of two bifunctional moieties, 2-alkynylaniline and alkynylnitriles, in the presence of ZnBr2 offers the tunable synthesis of two biologically important motifs: acrylonitrile indoles and 3-cyanoquinolines. The group present on the terminal alkyne of 2-alkynylaniline regulates the reaction pathways, intra- versus intermolecular, which thereby adds stereoselectivity and regioselectivity in this protocol. The conversion of an acrylonitrile indole ring to quinoline is an intriguing synthetic utility of this methodology.
Collapse
Affiliation(s)
- Madan Kumar
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Avijit Goswami
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| |
Collapse
|
7
|
Jiang Y, Wang B, Liu D, Xia D, Liu Z, Li L, Deng G, Yang X. Aryl acrylonitriles synthesis enabled by palladium-catalyzed α-alkenylation of arylacetonitriles with vinyl halides/triflates. Front Chem 2022; 10:1091566. [PMID: 36590282 PMCID: PMC9798101 DOI: 10.3389/fchem.2022.1091566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Aryl acrylonitriles are an important subclass of acrylonitriles in the medicinal chemistry and pharmaceutical industry. Herein, an efficient synthesis of aryl acrylonitrile derivatives using a Palladium/NIXANTPHOS-based catalyst system was developed. This approach furnishes a variety of substituted and functionalized aryl acrylonitriles (up to 95% yield). The scalability of the transformation and the synthetic versatility of aryl acrylonitrile were demonstrated.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Guogang Deng
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming, China
| | - Xiaodong Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming, China
| |
Collapse
|
8
|
Song W, Du Q, Li X, Wang S, Song G. Sustainable Production of Bioactive Molecules from C-Lignin-Derived Propenylcatechol. CHEMSUSCHEM 2022; 15:e202200646. [PMID: 35548878 DOI: 10.1002/cssc.202200646] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Catechyl lignin (C-lignin) is a naturally occurring linear homogeneous biopolymer composed solely of caffeyl alcohol subunits with cleavable benzodioxane linkages. The inherent structural features of propenylcatechol, a direct depolymerized product of castor seed coats C-lignin, render it a sustainable and promising platform for the synthesis of bioactive molecules. Herein, diversified transformations of propenylcatechol, including C=C bond difunctionalization, β-modification, β,γ-rearrangement, and γ-methyl derivatization, were reported based on known or developed methods. A series of functional molecular skeletons involved in the current synthetic routes for the preparation of pharmaceuticals and bioactive molecules were obtained. Starting from castor seed coats, annuloline (natural product) and CC-5079 (antitumor) were synthesized using facile and inexpensive reagents in only four- and five-sequence reactions, respectively, thereby demonstrating a superior step-efficiency to that of reported synthetic routes. Almost all atoms in the C-lignin biopolymer were incorporated into the final products owing to the intrinsic structures of naturally occurring C-lignin. Bioactive molecules produced from C-lignin integrate a low-carbon footprint with high-quality and economical manufacture of pharmaceuticals.
Collapse
Affiliation(s)
- Weihong Song
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, P. R. China
- Institute of Drug Discovery Technology Institution, Ningbo University, Ningbo, 315000, P. R. China
| | - Qinglian Du
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, P. R. China
| | - Xiancheng Li
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, P. R. China
| | - Shuizhong Wang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, P. R. China
| | - Guoyong Song
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, P. R. China
| |
Collapse
|
9
|
Bukhari SNA, Ejaz H, Elsherif MA, Junaid K, Zaki I, Masoud RE. Design and Synthesis of Some New Furan-Based Derivatives and Evaluation of In Vitro Cytotoxic Activity. Molecules 2022; 27:molecules27082606. [PMID: 35458804 PMCID: PMC9024937 DOI: 10.3390/molecules27082606] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 02/05/2023] Open
Abstract
New furan-based derivatives have been, designed, synthesized, and evaluated for their cytotoxic and tubulin polymerization inhibitory activities. DNA flow cytometric study of pyridine carbohydrazide 4 and N-phenyl triazinone 7 demonstrated G2/M phase cell cycle disruptions. Accumulation of cells in the pre-G1 phase and positive annexin V/PI staining, which may be caused by degeneration or fragmentation of the genetic components, suggested that cell death occurs via an apoptotic cascade. Furthermore, compounds 4 and 7 had a strong pro-apoptotic impact through inducing the intrinsic mitochondrial mechanism of apoptosis. This mechanistic route was verified by an ELISA experiment that indicated a considerable rise in the levels of p53 and Bax and a drop in the level of Bcl-2 when compared with the control.
Collapse
Affiliation(s)
- Syed Nasir Abbas Bukhari
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72388, Saudi Arabia
- Correspondence: (S.N.A.B.); (I.Z.); Tel.: +20-1153436140 (I.Z.)
| | - Hasan Ejaz
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia; (H.E.); (K.J.)
| | - Mervat A. Elsherif
- Chemistry Department, College of Science, Jouf University, Sakaka 72388, Saudi Arabia;
| | - Kashaf Junaid
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia; (H.E.); (K.J.)
| | - Islam Zaki
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Port Said University, Port Said 42526, Egypt
- Correspondence: (S.N.A.B.); (I.Z.); Tel.: +20-1153436140 (I.Z.)
| | - Reham E. Masoud
- Clinical Pharmacology Department, Faculty of Medicine, Port Said University, Port Said 42526, Egypt;
| |
Collapse
|
10
|
Synthesis and characterization of novel combretastatin analogues of 1,1-diaryl vinyl sulfones, with antiproliferative potential via in-silico and in-vitro studies. Sci Rep 2022; 12:1901. [PMID: 35115623 PMCID: PMC8814031 DOI: 10.1038/s41598-022-05958-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 01/14/2022] [Indexed: 11/08/2022] Open
Abstract
Novel 1,1-diaryl vinyl-sulfones analogues of combretastatin CA-4 were synthesized via Suzuki-Miyaura coupling method and screened for in-vitro antiproliferative activity against four human cancer cell lines: MDA-MB 231(breast cancer), HeLa (cervical cancer), A549 (lung cancer), and IMR-32 (neuroblast cancer), along with a normal cell line HEK-293 (human embryonic kidney cell) by employing 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay. The compounds synthesised had better cytotoxicity against the A549 and IMR-32 cell lines compared to HeLa and MDA-MB-231 cell lines. The synthesized compounds also showed significant activity on MDA-MB-231 cancer cell line with IC50 of 9.85-23.94 µM, and on HeLa cancer cell line with IC50 of 8.39-11.70 µM relative to doxorubicin having IC50 values 0.89 and 1.68 µM respectively for MDA-MB-231 and HeLa cell lines. All the synthesized compounds were not toxic to the growth of normal cells, HEK-293. They appear to have a higher binding affinity for the target protein, tubulin, PDB ID = 5LYJ (beta chain), relative to the reference compounds, CA4 (- 7.1 kcal/mol) and doxorubicin (- 7.2 kcal/mol) except for 4E, 4M, 4N and 4O. The high binding affinity for beta-tubulin did not translate into enhanced cytotoxicity but the compounds (4G, 4I, 4J, 4M, 4N, and 4R, all having halogen substituents) that have a higher cell permeability (as predicted in-silico) demonstrated an optimum cytotoxicity against the tested cell lines in an almost uniform manner for all tested cell lines. The in-silico study provided insight into the role that cell permeability plays in enhancing the cytotoxicity of this class of compounds and as potential antiproliferative agents.
Collapse
|
11
|
Guo B, Vries JG, Otten E. Selective α‐Deuteration of Cinnamonitriles using D
2
O as Deuterium Source. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202101093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Beibei Guo
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Johannes G. Vries
- Leibniz Institute für Katalyse e. V. Albert-Einstein-Strasse 29a 18059 Rostock Germany
| | - Edwin Otten
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| |
Collapse
|
12
|
Lu X, Huang Y. Stereospecific cyanation of the olefinic C–H bond enabled by 1,4-rhodium migration. Org Chem Front 2021. [DOI: 10.1039/d1qo00232e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Rhodium-catalyzed stereospecific cyanation of the olefinic C–H bond for the synthesis of β,β-disubstituted acrylonitriles has been developed.
Collapse
Affiliation(s)
- Xiaosa Lu
- College of Materials
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 311121
- China
| | - Yinhua Huang
- College of Materials
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 311121
- China
| |
Collapse
|
13
|
Abdel-Rahman SA, El-Damasy AK, Hassan GS, Wafa EI, Geary SM, Maarouf AR, Salem AK. Cyclohepta[ b]thiophenes as Potential Antiproliferative Agents: Design, Synthesis, In Vitro, and In Vivo Anticancer Evaluation. ACS Pharmacol Transl Sci 2020; 3:965-977. [PMID: 33073194 DOI: 10.1021/acsptsci.0c00096] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Indexed: 01/10/2023]
Abstract
Several thiophene featuring compounds are known for their promising antiproliferative activity. Prompted by the urgent need to identify new potent anticancer agents, 16 compounds of benzamides, benzylamines, and urea analogues incorporating a cyclohepta[b]thiophene scaffold were synthesized and biologically evaluated with a cell proliferation assay using the A549 nonsmall cell lung cancer cell line. Compound 17 demonstrated both potent and broad-spectrum anticancer activity with submicromolar 50% growth inhibition (GI50) values. It also showed superior antiproliferative activity (vs nocodazole) in OVACAR-4, OVACAR-5, CAKI-1, and T47D cell lines with GI50 values of 2.01 (vs 22.28), 2.27 (vs 20.75), 0.69 (vs 1.11), and 0.362 (vs 81.283) μM, respectively. Additionally, compound 17 displayed minimal cytotoxicity based on 50% lethal concentration (LC50) values toward all tested cell lines. Further cell-based mechanistic studies of compound 17 revealed its ability to induce cell cycle arrest of A549 cells as evidenced by dose dependent G2/M accumulation. Furthermore, induction of early apoptosis along with activation of caspase 3, 8, and 9 were confirmed in A549 cells treated with compound 17. Targeting tubulin polymerization may explain the mechanism of the antiproliferative activity of compound 17 based on cell cycle analysis, detected apoptosis, and in vitro inhibition of tubulin polymerization. In vitro data were further supported by in vivo antitumor efficacy studies of compound 17 in a CT26 murine model for which the results showed a reduction in the tumor growth compared to untreated mice. Overall, compound 17 has the potential to function as a promising candidate for further development of potent anticancer chemotherapeutics.
Collapse
Affiliation(s)
- Somaya A Abdel-Rahman
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa 52242, United States.,Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Ashraf K El-Damasy
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Ghada S Hassan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Emad I Wafa
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa 52242, United States
| | - Sean M Geary
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa 52242, United States
| | - Azza R Maarouf
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Aliasger K Salem
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
14
|
Reddy L, Dharmabalan ST, Manupati K, Yeeravalli R, Vijay LD, Donthiboina K, Naik VL, Das A. Concise Synthesis of 1,1-Diarylvinyl Sulfones and Investigations on their Antiproliferative Activity <i>via</i> Tubulin Inhibition. Anticancer Agents Med Chem 2020; 20:1469-1474. [PMID: 32324523 DOI: 10.2174/1871520620666200423075630] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 11/10/2019] [Accepted: 01/12/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Discovery of small molecules that inhibit tubulin polymerization is an attractive strategy for the development of new and improved anti-proliferative agents. OBJECTIVE A series of novel 2-sulfonyl-1,1-diarylethenes were designed towards this end keeping in view the favorable chemical and pharmacological virtues of unsaturated sulfones. METHODS Rapid, convenient and efficient two-step assembly of the designed molecules was achieved by the vicinal iodo-sulfonylation-Suzuki coupling sequence. RESULTS As hypothesized, these compounds showed good anti-proliferative activity against different tissuespecific cancer cell lines: MCF-7, DU-145, A-549, HepG2, and HeLa. The most active compound, pnitrophenyl ring-bearing analog, exhibited an IC50 value of 0.90μM against A-549 cells. Flow cytometry studies on this derivative revealed that it arrests the cell cycle of A-549 cells at the G2/M phase. This compound exhibited molecular binding to tubulin as well as tubulin polymerization inhibition comparable to that of colchicine. CONCLUSION A new class of potent, tubulin binding anticancer agents based on 1,1,-diarylvinyl sulfone scaffold has been designed and synthesized.
Collapse
Affiliation(s)
- Lavanya Reddy
- Medicinal Chemistry and Pharmacology Division, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500 007, Telangana, India
| | - Suja T Dharmabalan
- Deen Dayal Upadhyay Kaushal Kendra (DDU KK), Central University of Haryana, Mahendergarh 123 029, Haryana, India
| | - Kanakaraju Manupati
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500 007, Telangana, India
| | - Ragini Yeeravalli
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500 007, Telangana, India
| | - Lakshmi D Vijay
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500 007, Telangana, India
| | - Kavitha Donthiboina
- Medicinal Chemistry and Pharmacology Division, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500 007, Telangana, India
| | - Vadithe Lakshma Naik
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500 007, Telangana, India
| | - Amitava Das
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500 007, Telangana, India
| |
Collapse
|
15
|
Maklad RM, AbdelHafez ESMN, Abdelhamid D, Aly OM. Tubulin inhibitors: Discovery of a new scaffold targeting extra-binding residues within the colchicine site through anchoring substituents properly adapted to their pocket by a semi-flexible linker. Bioorg Chem 2020; 99:103767. [PMID: 32325332 DOI: 10.1016/j.bioorg.2020.103767] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 03/06/2020] [Accepted: 03/15/2020] [Indexed: 02/08/2023]
Abstract
Bis-hydrazides 13a-h were designed and synthesized as potential tubulin inhibitors selectively targeting the colchicine site between α- and β-tubulin subunits. The newly designed ring-B substituents were assisted at their ends by 'anchor groups' which are expected to exert binding interaction(s) with new additional amino acid residues in the colchicine site (beyond those amino acids previously reported to interact with reference inhibitors as CA-4 and colchicine). Conformational flexibility of bis-hydrazide linker assisted these 'extra-binding' properties through reliving ligands' strains in the final ligand-receptor complexes. Compound 13f displayed the most promising computational and biological study results in the series: MM/GBSA binding energy of -62.362 kcal/mol (extra-binding to Arg α:221, Thr β:353 & Lys β:254); 34% NCI-H522 cells' death (at 10 µM), IC50 = 0.073 µM (MTT assay); significant cell cycle arrest at G2/M phase; 11.6% preG1 apoptosis induction and 83.1% in vitro tubulin inhibition (at concentration = IC50). Future researchers in bis-hydrazide tubulin inhibitors are advised to consider the 2-chloro-N-(4-substituted-phenyl)acetamide derivatives as compound 13f due to extra-binding properties of their ring B.
Collapse
Affiliation(s)
- Raed M Maklad
- Institute of Drug Discovery and Development, Kafrelsheikh University, Kafrelsheikh, Egypt; Pharmaceutical Chemistry Department, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt; Zewail City of Science and Technology, 6th of October, Giza, Egypt.
| | | | - Dalia Abdelhamid
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Omar M Aly
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minia, Egypt
| |
Collapse
|
16
|
Colchicine-Binding Site Inhibitors from Chemistry to Clinic: A Review. Pharmaceuticals (Basel) 2020; 13:ph13010008. [PMID: 31947889 PMCID: PMC7168938 DOI: 10.3390/ph13010008] [Citation(s) in RCA: 185] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 02/07/2023] Open
Abstract
It is over 50 years since the discovery of microtubules, and they have become one of the most important drug targets for anti-cancer therapies. Microtubules are predominantly composed of the protein tubulin, which contains a number of different binding sites for small-molecule drugs. There is continued interest in drug development for compounds targeting the colchicine-binding site of tubulin, termed colchicine-binding site inhibitors (CBSIs). This review highlights CBSIs discovered through diverse sources: from natural compounds, rational design, serendipitously and via high-throughput screening. We provide an update on CBSIs reported in the past three years and discuss the clinical status of CBSIs. It is likely that efforts will continue to develop CBSIs for a diverse set of cancers, and this review provides a timely update on recent developments.
Collapse
|
17
|
Stanković T, Dinić J, Podolski-Renić A, Musso L, Burić SS, Dallavalle S, Pešić M. Dual Inhibitors as a New Challenge for Cancer Multidrug Resistance Treatment. Curr Med Chem 2019; 26:6074-6106. [PMID: 29874992 DOI: 10.2174/0929867325666180607094856] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/28/2018] [Accepted: 05/28/2018] [Indexed: 12/23/2022]
Abstract
BACKGROUND Dual-targeting in cancer treatment by a single drug is an unconventional approach in relation to drug combinations. The rationale for the development of dualtargeting agents is to overcome incomplete efficacy and drug resistance frequently present when applying individual targeting agents. Consequently, -a more favorable outcome of cancer treatment is expected with dual-targeting strategies. METHODS We reviewed the literature, concentrating on the association between clinically relevant and/or novel dual inhibitors with the potential to modulate multidrug resistant phenotype of cancer cells, particularly the activity of P-glycoprotein. A balanced analysis of content was performed to emphasize the most important findings and optimize the structure of this review. RESULTS Two-hundred and forty-five papers were included in the review. The introductory part was interpreted by 9 papers. Tyrosine kinase inhibitors' role in the inhibition of Pglycoprotein and chemosensitization was illustrated by 87 papers. The contribution of naturalbased compounds in overcoming multidrug resistance was reviewed using 92 papers, while specific dual inhibitors acting against microtubule assembling and/or topoisomerases were described with 55 papers. Eleven papers gave an insight into a novel and less explored approach with hybrid drugs. Their influence on P-glycoprotein and multidrug resistance was also evaluated. CONCLUSION These findings bring into focus rational anticancer strategies with dual-targeting agents. Most evaluated synthetic and natural drugs showed a great potential in chemosensitization. Further steps in this direction are needed for the optimization of anticancer treatment.
Collapse
Affiliation(s)
- Tijana Stanković
- Department of Neurobiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
| | - Jelena Dinić
- Department of Neurobiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
| | - Ana Podolski-Renić
- Department of Neurobiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
| | - Loana Musso
- DeFENS, Department of Food, Environmental and Nutritional Sciences, Universita degli Studi di Milano, Milano, Italy
| | - Sonja Stojković Burić
- Department of Neurobiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
| | - Sabrina Dallavalle
- DeFENS, Department of Food, Environmental and Nutritional Sciences, Universita degli Studi di Milano, Milano, Italy
| | - Milica Pešić
- Department of Neurobiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
| |
Collapse
|
18
|
Levrier C, Rockstroh A, Gabrielli B, Kavallaris M, Lehman M, Davis RA, Sadowski MC, Nelson CC. Discovery of thalicthuberine as a novel antimitotic agent from nature that disrupts microtubule dynamics and induces apoptosis in prostate cancer cells. Cell Cycle 2019; 17:652-668. [PMID: 28749250 PMCID: PMC5976206 DOI: 10.1080/15384101.2017.1356512] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We report for the first time the mechanism of action of the natural product thalicthuberine (TH) in prostate and cervical cancer cells. TH induced a strong accumulation of LNCaP cells in mitosis, severe mitotic spindle defects, and asymmetric cell divisions, ultimately leading to mitotic catastrophe accompanied by cell death through apoptosis. However, unlike microtubule-binding drugs (vinblastine and paclitaxel), TH did not directly inhibit tubulin polymerization when tested in a cell-free system, whereas it reduced cellular microtubule polymer mass in LNCaP cells. This suggests that TH indirectly targets microtubule dynamics through inhibition of a critical regulator or tubulin-associated protein. Furthermore, TH is not a major substrate for P-glycoprotein (Pgp), which is responsible for multidrug resistance in numerous cancers, providing a rationale to further study TH in cancers with Pgp-mediated treatment resistance. The identification of TH's molecular target in future studies will be of great value to the development of TH as potential treatment of multidrug-resistant tumors.
Collapse
Affiliation(s)
- Claire Levrier
- a Australian Prostate Cancer Research Centre-Queensland , School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Princess Alexandra Hospital, Translational Research Institute , Brisbane , QLD , Australia.,b Griffith Institute for Drug Discovery, Griffith University , Brisbane , QLD , Australia
| | - Anja Rockstroh
- a Australian Prostate Cancer Research Centre-Queensland , School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Princess Alexandra Hospital, Translational Research Institute , Brisbane , QLD , Australia
| | - Brian Gabrielli
- c The University of Queensland Diamantina Institute; Translational Research Institute ; Brisbane , QLD , Australia
| | - Maria Kavallaris
- d Tumour Biology and Targeting Program , Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Australia , Sydney , NSW , Australia.,e ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Australian Centre for NanoMedicine , UNSW Australia , Sydney , NSW , Australia
| | - Melanie Lehman
- a Australian Prostate Cancer Research Centre-Queensland , School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Princess Alexandra Hospital, Translational Research Institute , Brisbane , QLD , Australia.,f Vancouver Prostate Centre, Department of Urologic Sciences , University of British Columbia , Vancouver , Canada
| | - Rohan A Davis
- a Australian Prostate Cancer Research Centre-Queensland , School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Princess Alexandra Hospital, Translational Research Institute , Brisbane , QLD , Australia.,b Griffith Institute for Drug Discovery, Griffith University , Brisbane , QLD , Australia
| | - Martin C Sadowski
- a Australian Prostate Cancer Research Centre-Queensland , School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Princess Alexandra Hospital, Translational Research Institute , Brisbane , QLD , Australia
| | - Colleen C Nelson
- a Australian Prostate Cancer Research Centre-Queensland , School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Princess Alexandra Hospital, Translational Research Institute , Brisbane , QLD , Australia
| |
Collapse
|
19
|
E- and Z-, di- and tri-substituted alkenyl nitriles through catalytic cross-metathesis. Nat Chem 2019; 11:478-487. [PMID: 30936524 PMCID: PMC6538264 DOI: 10.1038/s41557-019-0233-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 02/12/2019] [Indexed: 02/07/2023]
Abstract
Nitriles are found in many bioactive compounds, and are among the most versatile functional groups in organic chemistry. Despite many notable recent advances, however, there are no approaches that may be used for preparation of di- or trisubstituted alkenyl nitriles. Related approaches which are broad in scope and can deliver the desired products in high stereoisomeric purity are especially scarce. Here, we describe the development of several efficient catalytic cross-metathesis strategies, which provide direct access to a considerable range of Z- or E-disubstituted cyano-substituted alkenes or their corresponding trisubstituted variants. Depending on the reaction type, a molybdenum-based monoaryloxide pyrrolide (MAP) or chloride (MAC) complex may be the optimal choice. The utility of the approach, enhanced by an easy-to-apply protocol for utilization of substrates bearing an alcohol or a carboxylic acid moiety, is highlighted in the context of applications to synthesis of biologically active compounds.
Collapse
|
20
|
An efficient one-pot three-component synthesis of 2-(4-(2-oxo-2H-chromen-3-yl)thiazol-2-yl)-3-arylacrylonitriles and their cytotoxic activity evaluation with molecular docking. JOURNAL OF SAUDI CHEMICAL SOCIETY 2019. [DOI: 10.1016/j.jscs.2018.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Arnst KE, Banerjee S, Chen H, Deng S, Hwang DJ, Li W, Miller DD. Current advances of tubulin inhibitors as dual acting small molecules for cancer therapy. Med Res Rev 2019; 39:1398-1426. [PMID: 30746734 DOI: 10.1002/med.21568] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 01/16/2019] [Accepted: 01/19/2019] [Indexed: 12/25/2022]
Abstract
Microtubule (MT)-targeting agents are highly successful drugs as chemotherapeutic agents, and this is attributed to their ability to target MT dynamics and interfere with critical cellular functions, including, mitosis, cell signaling, intracellular trafficking, and angiogenesis. Because MT dynamics vary in the different stages of the cell cycle, these drugs tend to be the most effective against mitotic cells. While this class of drug has proven to be effective against many cancer types, significant hurdles still exist and include overcoming aspects such as dose limited toxicities and the development of resistance. Newer generations of developed drugs attack these problems and alternative approaches such as the development of dual tubulin and kinase inhibitors are being investigated. This approach offers the potential to show increased efficacy and lower toxicities. This review covers different categories of MT-targeting agents, recent advances in dual inhibitors, and current challenges for this drug target.
Collapse
Affiliation(s)
- Kinsie E Arnst
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Souvik Banerjee
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Hao Chen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Shanshan Deng
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Dong-Jin Hwang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Wei Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Duane D Miller
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
22
|
Zhai M, Wang L, Liu S, Wang L, Yan P, Wang J, Zhang J, Guo H, Guan Q, Bao K, Wu Y, Zhang W. Synthesis and biological evaluation of (1-aryl-1H-pyrazol-4-yl) (3,4,5-trimethoxyphenyl)methanone derivatives as tubulin inhibitors. Eur J Med Chem 2018; 156:137-147. [DOI: 10.1016/j.ejmech.2018.05.058] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/30/2018] [Accepted: 05/31/2018] [Indexed: 10/14/2022]
|
23
|
Liu P, Clark RJ, Zhu L. Synthesis of 1-Cyanoalkynes and Their Ruthenium(II)-Catalyzed Cycloaddition with Organic Azides to Afford 4-Cyano-1,2,3-triazoles. J Org Chem 2018; 83:5092-5103. [DOI: 10.1021/acs.joc.8b00424] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Peiye Liu
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306-4390, United States
| | - Ronald J. Clark
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306-4390, United States
| | - Lei Zhu
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306-4390, United States
| |
Collapse
|
24
|
Prim-O-glucosylcimifugin induces cell cycle arrest and apoptosis in acute lymphoblastic leukemia cells. Anticancer Drugs 2017; 28:943-951. [DOI: 10.1097/cad.0000000000000543] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
Dicitrinone D, an antimitotic polyketide isolated from the marine-derived fungus Penicillium citrinum. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.08.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
26
|
A Reusable Palladium/Cationic 2,2′-Bipyridyl System-Catalyzed Double Mizoroki-Heck Reaction in Water. Catalysts 2017. [DOI: 10.3390/catal7060177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
27
|
Shaik TB, Hussaini SMA, Nayak VL, Sucharitha ML, Malik MS, Kamal A. Rational design and synthesis of 2-anilinopyridinyl-benzothiazole Schiff bases as antimitotic agents. Bioorg Med Chem Lett 2017; 27:2549-2558. [PMID: 28400235 DOI: 10.1016/j.bmcl.2017.03.089] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 03/27/2017] [Accepted: 03/29/2017] [Indexed: 01/11/2023]
Abstract
Based on our previous results and literature precedence, a series of 2-anilinopyridinyl-benzothiazole Schiff bases were rationally designed by performing molecular modeling experiments on some selected molecules. The binding energies of the docked molecules were better than the E7010, and the Schiff base with trimethoxy group on benzothiazole moiety, 4y was the best. This was followed by the synthesis of a series of the designed molecules by a convenient synthetic route and evaluation of their anticancer potential. Most of the compounds have shown significant growth inhibition against the tested cell lines and the compound 4y exhibited good antiproliferative activity with a GI50 value of 3.8µM specifically against the cell line DU145. In agreement with the docking results, 4y exerted cytotoxicity by the disruption of the microtubule dynamics by inhibiting tubulin polymerization via effective binding into colchicine domain, comparable to E7010. Detailed binding modes of 4y with colchicine binding site of tubulin were studied by molecular docking. Furthermore, 4y induced apoptosis as evidenced by biological studies like mitochondrial membrane potential, caspase-3, and Annexin V-FITC assays.
Collapse
Affiliation(s)
- Thokhir B Shaik
- Medicinal Chemistry and Pharmacology, CSIR - Indian Institute of Chemical Technology, Hyderabad 500 007, India; Department of Biotechnology, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur 522510, India
| | - S M Ali Hussaini
- Medicinal Chemistry and Pharmacology, CSIR - Indian Institute of Chemical Technology, Hyderabad 500 007, India
| | - V Lakshma Nayak
- Medicinal Chemistry and Pharmacology, CSIR - Indian Institute of Chemical Technology, Hyderabad 500 007, India
| | - M Lakshmi Sucharitha
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education & Research (NIPER), Hyderabad 500 037, India
| | - M Shaheer Malik
- Medicinal Chemistry and Pharmacology, CSIR - Indian Institute of Chemical Technology, Hyderabad 500 007, India
| | - Ahmed Kamal
- Medicinal Chemistry and Pharmacology, CSIR - Indian Institute of Chemical Technology, Hyderabad 500 007, India; Department of Medicinal Chemistry, National Institute of Pharmaceutical Education & Research (NIPER), Hyderabad 500 037, India.
| |
Collapse
|
28
|
Zhang Q, Zhang L, Tang C, Luo H, Cai X, Chai Y. Cascade reaction of propargylic alcohols with hydroxylamine hydrochloride: facile synthesis of α,β-unsaturated oximes and nitriles. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.09.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Levrier C, Sadowski MC, Rockstroh A, Gabrielli B, Kavallaris M, Lehman M, Davis RA, Nelson CC. 6α-Acetoxyanopterine: A Novel Structure Class of Mitotic Inhibitor Disrupting Microtubule Dynamics in Prostate Cancer Cells. Mol Cancer Ther 2016; 16:3-15. [DOI: 10.1158/1535-7163.mct-16-0325] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 09/16/2016] [Accepted: 10/11/2016] [Indexed: 11/16/2022]
|
30
|
Zhang J, Xu C, Wu W, Cao S. Mild and Copper-Free Stereoselective Cyanation of gem
-Difluoroalkenes by Using Benzyl Nitrile as a Cyanating Reagent. Chemistry 2016; 22:9902-8. [DOI: 10.1002/chem.201601483] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Indexed: 01/10/2023]
Affiliation(s)
- Juan Zhang
- Shanghai Key Laboratory of Chemical Biology; School of Pharmacy; East China University of Science and Technology (ECUST); Shanghai 200237 China
| | - Chengyuan Xu
- Shanghai Key Laboratory of Chemical Biology; School of Pharmacy; East China University of Science and Technology (ECUST); Shanghai 200237 China
| | - Wei Wu
- Shanghai Key Laboratory of Chemical Biology; School of Pharmacy; East China University of Science and Technology (ECUST); Shanghai 200237 China
| | - Song Cao
- Shanghai Key Laboratory of Chemical Biology; School of Pharmacy; East China University of Science and Technology (ECUST); Shanghai 200237 China
| |
Collapse
|
31
|
Kamal A, Subba Rao AV, Vishnuvardhan MVPS, Srinivas Reddy T, Swapna K, Bagul C, Subba Reddy NV, Srinivasulu V. Synthesis of 2-anilinopyridyl-triazole conjugates as antimitotic agents. Org Biomol Chem 2015; 13:4879-95. [PMID: 25765224 DOI: 10.1039/c5ob00232j] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A series of 2-anilinopyridyl–triazole conjugates (6a–t) were prepared and evaluated for their cytotoxic activity against a panel of three human cancer cell lines. Among them compounds 6q, 6r and 6s showed significant cytotoxic activity with IC50 values ranging from 0.1 to 4.1 μM. Structure–activity relationships were elucidated with various substitutions on these conjugates. Flow cytometric analysis revealed that these compounds arrest the cell cycle at the G2/M phase and induce cell death by apoptosis. The tubulin polymerization assay and immunofluorescence analysis showed that these compounds (6q, 6r and 6s) effectively inhibited the microtubule assembly in human prostate cancer cells (DU-145). The docking studies showed that 6s interacts and binds efficiently with the tubulin protein at the colchicine binding site. This was further confirmed by the colchicine competitive binding assay. Moreover, compounds 6q, 6r and 6s possess anti-tubulin activity both in vitro and within cells as demonstrated by the ratio of soluble versus polymerized tubulin. Further the apoptotic effects of compounds were confirmed by Hoechst staining, caspase 3 activation, annexin-V FITC, mitochondrial membrane potential and DNA fragmentation analysis. Interestingly, these compounds did not affect the normal human embryonic kidney cells, HEK-293.
Collapse
|
32
|
Reddy CN, Nayak VL, Mani GS, Kapure JS, Adiyala PR, Maurya RA, Kamal A. Synthesis and biological evaluation of spiro[cyclopropane-1,3′-indolin]-2′-ones as potential anticancer agents. Bioorg Med Chem Lett 2015; 25:4580-6. [DOI: 10.1016/j.bmcl.2015.08.056] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 08/12/2015] [Accepted: 08/21/2015] [Indexed: 01/11/2023]
|
33
|
Ramanivas T, Sushma B, Nayak VL, Chandra Shekar K, Srivastava AK. Design, synthesis and biological evaluations of chirally pure 1,2,3,4-tertrahydroisoquinoline analogs as anti-cancer agents. Eur J Med Chem 2015; 92:608-18. [DOI: 10.1016/j.ejmech.2015.01.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 01/13/2015] [Accepted: 01/14/2015] [Indexed: 12/27/2022]
|
34
|
Padmaja P, Koteswara Rao G, Indrasena A, Subba Reddy BV, Patel N, Shaik AB, Reddy N, Dubey PK, Bhadra MP. Synthesis and biological evaluation of novel pyrano[3,2-c]carbazole derivatives as anti-tumor agents inducing apoptosis via tubulin polymerization inhibition. Org Biomol Chem 2015; 13:1404-14. [DOI: 10.1039/c4ob02015d] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A series of novel pyrano[3,2-c]carbazole derivatives have been synthesized and antiproliferative activity of the derivatives were investigated on various cancer cell lines.
Collapse
Affiliation(s)
- Pannala Padmaja
- Department of Chemistry
- JNTUH College of Engineering
- Hyderabad (T.S)
- India
| | | | | | | | - Nibedita Patel
- CSIR – Indian Institute of Chemical Technology
- Hyderabad
- India
| | | | - Narayana Reddy
- Department of Chemistry
- Gitam School of Technology
- Gitam University
- Hyderabad (T.S)
- India
| | - Pramod K. Dubey
- Department of Chemistry
- JNTUH College of Engineering
- Hyderabad (T.S)
- India
| | | |
Collapse
|
35
|
Penthala NR, Zong H, Ketkar A, Madadi NR, Janganati V, Eoff RL, Guzman ML, Crooks PA. Synthesis, anticancer activity and molecular docking studies on a series of heterocyclic trans-cyanocombretastatin analogues as antitubulin agents. Eur J Med Chem 2014; 92:212-20. [PMID: 25557492 DOI: 10.1016/j.ejmech.2014.12.050] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Revised: 11/21/2014] [Accepted: 12/28/2014] [Indexed: 10/24/2022]
Abstract
A series of heterocyclic combretastatin analogues have been synthesized and evaluated for their anticancer activity against a panel of 60 human cancer cell lines. The most potent compounds were two 3,4,5-trimethoxy phenyl analogues containing either an (Z)-indol-2-yl (8) or (Z)-benzo[b]furan-2-yl (12) moiety; these compounds exhibited GI50 values of <10 nM against 74% and 70%, respectively, of the human cancer cell lines in the 60-cell panel. Compounds 8, and 12 and two previously reported compounds in the same structural class, i.e. 29 and 31, also showed potent anti-leukemic activity against leukemia MV4-11 cell lines with LD50 values = 44 nM, 47 nM, 18 nM, and 180 nM, respectively. From the NCI anti-cancer screening results and the data from the in vitro toxicity screening on cultured AML cells, seven compounds: 8, 12, 21, 23, 25, 29 and 31 were screened for their in vitro inhibitory activity on tubulin polymerization in MV4-11 AML cells; at 50 nM, 8 and 29 inhibited polymerization of tubulin by >50%. The binding modes of the three most active compounds (8, 12 and 29) to tubulin were also investigated utilizing molecular docking studies. All three molecules were observed to bind in the same hydrophobic pocket at the interface of α- and β-tubulin that is occupied by colchicine, and were stabilized by van der Waals' interactions with surrounding tubulin residues. The results from the tubulin polymerization and molecular docking studies indicate that compounds 8 and 29 are the most potent anti-leukemic compounds in this structural class, and are considered lead compounds for further development as anti-leukemic drugs.
Collapse
Affiliation(s)
- Narsimha Reddy Penthala
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205-7199, USA
| | - Hongliang Zong
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY 10021, USA
| | - Amit Ketkar
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205-7199, USA
| | - Nikhil Reddy Madadi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205-7199, USA
| | - Venumadav Janganati
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205-7199, USA
| | - Robert L Eoff
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205-7199, USA
| | - Monica L Guzman
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY 10021, USA
| | - Peter A Crooks
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205-7199, USA.
| |
Collapse
|
36
|
Synthesis of 2-anilinopyridine dimers as microtubule targeting and apoptosis inducing agents. Bioorg Med Chem 2014; 22:6755-67. [DOI: 10.1016/j.bmc.2014.11.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 11/01/2014] [Accepted: 11/01/2014] [Indexed: 01/11/2023]
|
37
|
Kamal A, Balakrishna M, Nayak VL, Shaik TB, Faazil S, Nimbarte VD. Design and synthesis of imidazo[2,1-b]thiazole-chalcone conjugates: microtubule-destabilizing agents. ChemMedChem 2014; 9:2766-80. [PMID: 25313981 DOI: 10.1002/cmdc.201402310] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Indexed: 01/09/2023]
Abstract
A series of chalcone conjugates featuring the imidazo[2,1-b]thiazole scaffold was designed, synthesized, and evaluated for their cytotoxic activity against five human cancer cell lines (MCF-7, A549, HeLa, DU-145 and HT-29). These new hybrid molecules have shown promising cytotoxic activity with IC50 values ranging from 0.64 to 30.9 μM. Among them, (E)-3-(6-(4-fluorophenyl)-2,3-bis(4-methoxyphenyl)imidazo[2,1-b]thiazol-5-yl)-1-(pyridin-2-yl)prop-2-en-1-one (11 x) showed potent antiproliferative activity with IC50 values ranging from 0.64 to 1.44 μM in all tested cell lines. To investigate the mechanism of action, the detailed biological aspects of this promising conjugate (11 x) were carried out on the A549 lung cancer cell line. The tubulin polymerization assay and immunofluoresence analysis results suggest that this conjugate effectively inhibits microtubule assembly in A549 cells. Flow cytometric analysis revealed that this conjugate induces cell-cycle arrest in the G2/M phase and leads to apoptotic cell death. This was further confirmed by Hoechst staining, activation of caspase-3, DNA fragmentation analysis, and Annexin V-FITC assay. Moreover, molecular docking studies indicated that this conjugate (11 x) interacts and binds efficiently with the tubulin protein.
Collapse
Affiliation(s)
- Ahmed Kamal
- Medicinal Chemistry & Pharmacology, Council of Science and Industrial Research, Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007 (India); Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad-500 037 (India).
| | | | | | | | | | | |
Collapse
|
38
|
Kamal A, Shaik B, Nayak VL, Nagaraju B, Kapure JS, Shaheer Malik M, Shaik TB, Prasad B. Synthesis and biological evaluation of 1,2,3-triazole linked aminocombretastatin conjugates as mitochondrial mediated apoptosis inducers. Bioorg Med Chem 2014; 22:5155-67. [PMID: 25192811 DOI: 10.1016/j.bmc.2014.08.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 07/23/2014] [Accepted: 08/11/2014] [Indexed: 12/29/2022]
Abstract
A series of 1,2,3-triazole linked aminocombretastatin conjugates were synthesized and evaluated for cytotoxicity, inhibition of tubulin polymerization and apoptosis inducing ability. Most of the conjugates exhibited significant anticancer activity against some representative human cancer cell lines and two of the conjugates 6d and 7c displayed potent cytotoxicity with IC50 values of 53 nM and 44 nM against A549 human lung cancer respectively, and were comparable to combretastatin A-4 (CA-4). SAR studies revealed that 1-benzyl substituted triazole moiety with an amide linkage at 3-position of B-ring of the combretastatin subunit are more active compared to 2-position. G2/M cell cycle arrest was induced by these conjugates 6d and 7c and the tubulin polymerization assay (IC50 of 1.16 μM and 0.95 μM for 6d and 7c, respectively) as well as immunofluorescence analysis showed that these conjugates effectively inhibit microtubule assembly at both molecular and cellular levels in A549 cells. Colchicine competitive binding assay suggested that these conjugates bind at the colchicine binding site of tubulin as also observed from the docking studies. Further, mitochondrial membrane potential, ROS generation, caspase-3 activation assay, Hoechst staining and DNA fragmentation analysis revealed that these conjugates induce cell death by apoptosis.
Collapse
Affiliation(s)
- Ahmed Kamal
- Medicinal Chemistry and Pharmacology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India; Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India.
| | - Bajee Shaik
- Medicinal Chemistry and Pharmacology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India
| | - V Lakshma Nayak
- Medicinal Chemistry and Pharmacology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India
| | - Burri Nagaraju
- Medicinal Chemistry and Pharmacology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India
| | - Jeevak Sopanrao Kapure
- Medicinal Chemistry and Pharmacology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India; Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India
| | - M Shaheer Malik
- Medicinal Chemistry and Pharmacology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India
| | - Thokhir Basha Shaik
- Medicinal Chemistry and Pharmacology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India
| | - B Prasad
- Medicinal Chemistry and Pharmacology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India
| |
Collapse
|
39
|
Synthesis of a terphenyl substituted 4-aza-2,3-didehydropodophyllotoxin analogues as inhibitors of tubulin polymerization and apoptosis inducers. Bioorg Med Chem 2014; 22:2714-23. [DOI: 10.1016/j.bmc.2014.03.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Revised: 03/08/2014] [Accepted: 03/11/2014] [Indexed: 11/23/2022]
|
40
|
Liu T, Hu W, Dalton HJ, Choi HJ, Huang J, Kang Y, Pradeep S, Miyake T, Song JH, Wen Y, Lu C, Pecot CV, Bottsford-Miller J, Zand B, Jennings NB, Ivan C, Gallick GE, Baggerly KA, Hangauer DG, Coleman RL, Frumovitz M, Sood AK. Targeting SRC and tubulin in mucinous ovarian carcinoma. Clin Cancer Res 2013; 19:6532-43. [PMID: 24100628 PMCID: PMC3852199 DOI: 10.1158/1078-0432.ccr-13-1305] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
PURPOSE To investigate the antitumor effects of targeting Src and tubulin in mucinous ovarian carcinoma. EXPERIMENTAL DESIGN The in vitro and in vivo effects and molecular mechanisms of KX-01, which inhibits Src pathway and tubulin polymerization, were examined in mucinous ovarian cancer models. RESULTS In vitro studies using RMUG-S and RMUG-L cell lines showed that KX-01 inhibited cell proliferation, induced apoptosis, arrested the cell cycle at the G2-M phase, and enhanced the cytotoxicity of oxaliplatin in the KX-01-sensitive cell line, RMUG-S. In vivo studies showed that KX-01 significantly decreased tumor burden in RMUG-S and RMUG-L mouse models relative to untreated controls, and the effects were greater when KX-01 was combined with oxaliplatin. KX-01 alone and in combination with oxaliplatin significantly inhibited tumor growth by reducing cell proliferation and inducing apoptosis in vivo. PTEN knock-in experiments in RMUG-L cells showed improved response to KX-01. Reverse phase protein array analysis showed that in addition to blocking downstream molecules of Src family kinases, KX-01 also activated acute stress-inducing molecules. CONCLUSION Our results showed that targeting both the Src pathway and tubulin with KX-01 significantly inhibited tumor growth in preclinical mucinous ovarian cancer models, suggesting that this may be a promising therapeutic approach for patients with mucinous ovarian carcinoma.
Collapse
Affiliation(s)
- Tao Liu
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of General Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Wei Hu
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Heather J. Dalton
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hyun Jin Choi
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jie Huang
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yu Kang
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Gynecology, Obstetrics and Gynecology, Hospital of Fudan University, Shanghai 20001, P.R. China
| | - Sunila Pradeep
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Takahito Miyake
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jian H. Song
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yunfei Wen
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chunhua Lu
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chad V. Pecot
- Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Justin Bottsford-Miller
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Behrouz Zand
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Nicholas B Jennings
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Cristina Ivan
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Gary E. Gallick
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Keith A Baggerly
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - David G. Hangauer
- Kinex Pharmaceuticals LLC, New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY 14203, USA
| | - Robert L. Coleman
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Michael Frumovitz
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Anil K. Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
41
|
Kamal A, Reddy NVS, Nayak VL, Reddy VS, Prasad B, Nimbarte VD, Srinivasulu V, Vishnuvardhan MVPS, Reddy CS. Synthesis and Biological Evaluation of Benzo[b]furans as Inhibitors of Tubulin Polymerization and Inducers of Apoptosis. ChemMedChem 2013; 9:117-28. [DOI: 10.1002/cmdc.201300366] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 10/17/2013] [Indexed: 11/06/2022]
|
42
|
Penthala NR, Sonar VN, Horn J, Leggas M, Yadlapalli JSKB, Crooks PA. Synthesis and evaluation of a series of benzothiophene acrylonitrile analogs as anticancer agents. MEDCHEMCOMM 2013; 4:1073-1078. [PMID: 23956835 PMCID: PMC3743125 DOI: 10.1039/c3md00130j] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new library of small molecules with structural features resembling combretastatin analogs was synthesized and evaluated for anticancer activity against a panel of 60 human cancer cell lines. Three novel acrylonitrile analogs (5, 6 and 13) caused a significant reduction in cell growth in almost all the cell lines examined, with GI50 values generally in the range 10-100 nM. Based on the structural characteristics of similar drugs, we hypothesized that the cytotoxic activity was likely due to interaction with tubulin. Furthermore, these compounds appeared to overcome cell-associated P-glycoprotein (P-gp)-mediated resistance, since they were equipotent in inhibiting OVCAR8 and NCI/ADR-Res cell growth. Given that antitubulin drugs are among the most effective agents for the treatment of advanced prostate cancer we sought to validate the results from the 60 cell panel by studying the representative analog 6 utilizing prostate cancer cell lines, as well as exploring the molecular mechanism of the cytotoxic action of this analog.
Collapse
Affiliation(s)
- Narsimha Reddy Penthala
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Vijayakumar, N. Sonar
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Jamie Horn
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| | - Markos Leggas
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| | - Jai Shankar K. B. Yadlapalli
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Peter A. Crooks
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
43
|
Yamamoto Y. Copper-catalyzed Conjugate Addition of Organoboronic Acids and Esters to Electron-Deficient Alkynes. J SYN ORG CHEM JPN 2013. [DOI: 10.5059/yukigoseikyokaishi.71.296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
44
|
Lu Y, Chen J, Xiao M, Li W, Miller DD. An overview of tubulin inhibitors that interact with the colchicine binding site. Pharm Res 2012; 29:2943-71. [PMID: 22814904 DOI: 10.1007/s11095-012-0828-z] [Citation(s) in RCA: 567] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 07/05/2012] [Indexed: 12/13/2022]
Abstract
Tubulin dynamics is a promising target for new chemotherapeutic agents. The colchicine binding site is one of the most important pockets for potential tubulin polymerization destabilizers. Colchicine binding site inhibitors (CBSI) exert their biological effects by inhibiting tubulin assembly and suppressing microtubule formation. A large number of molecules interacting with the colchicine binding site have been designed and synthesized with significant structural diversity. CBSIs have been modified as to chemical structure as well as pharmacokinetic properties, and tested in order to find a highly potent, low toxicity agent for treatment of cancers. CBSIs are believed to act by a common mechanism via binding to the colchicine site on tubulin. The present review is a synopsis of compounds that have been reported in the past decade that have provided an increase in our understanding of the actions of CBSIs.
Collapse
Affiliation(s)
- Yan Lu
- Department of Pharmaceutical Sciences, Health Science Center, University of Tennessee, 847 Monroe Ave, Memphis, TN 38163, USA
| | | | | | | | | |
Collapse
|
45
|
Novel microtubule-targeted agent 6-chloro-4-(methoxyphenyl) coumarin induces G2-M arrest and apoptosis in HeLa cells. Acta Pharmacol Sin 2012; 33:407-17. [PMID: 22266726 DOI: 10.1038/aps.2011.176] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
AIM To identify a novel coumarin analogue with the highest anticancer activity and to further investigate its anticancer mechanisms. METHODS The viability of cancer cells was investigated using the MTT assay. The cell cycle progression was evaluated using both flow cytometric and Western blotting analysis. Microtubule depolymerization was observed with immunocytochemistry in vivo and a tubulin depolymerization assay in vitro. Apoptosis was demonstrated using Annexin V/Propidium Iodide (PI) double-staining and sub-G(1) analysis. RESULTS Among 36 analogues of coumarin, 6-chloro-4-(methoxyphenyl) coumarin showed the best anticancer activity (IC(50) value about 200 nmol/L) in HCT116 cells. The compound had a broad spectrum of anticancer activity against 9 cancer cell lines derived from colon cancer, breast cancer, liver cancer, cervical cancer, leukemia, epidermoid cancer with IC(50) value of 75 nmol/L-1.57 μmol/L but with low cytotocitity against WI-38 human lung fibroblasts (IC(50) value of 12.128 μmol/L). The compound (0.04-10 μmol/L) induced G(2)-M phase arrest in HeLa cells in a dose-dependent manner, which was reversible after the compound was removed. The compound (10-300 μmol/L) induced the depolymerization of purified porcine tubulin in vitro. Finally, the compound (0.04-2.5 μmol/L) induced apoptosis of HeLa cells in dose- and time-dependent manners. CONCLUSION 6-Chloro-4-(methoxyphenyl) coumarin is a novel microtubule-targeting agent that induces G(2)-M arrest and apoptosis in HeLa cells.
Collapse
|
46
|
3-Substituted 2-Phenylimidazo[2,1-b]benzothiazoles: Synthesis, Anticancer Activity, and Inhibition of Tubulin Polymerization. ChemMedChem 2012; 7:292-300. [DOI: 10.1002/cmdc.201100511] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 12/07/2011] [Indexed: 11/07/2022]
|
47
|
Kamal A, Viswanath A, Ramaiah MJ, Murty JNSRC, Sultana F, Ramakrishna G, Tamboli JR, Pushpavalli SNCVL, pal D, Kishor C, Addlagatta A, Bhadra MP. Synthesis of tetrazole–isoxazoline hybrids as a new class of tubulin polymerization inhibitors. MEDCHEMCOMM 2012. [DOI: 10.1039/c2md20085f] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
48
|
1,1-Diarylalkenes as anticancer agents: Dual inhibitors of tubulin polymerization and phosphodiesterase 4. Bioorg Med Chem 2011; 19:6356-74. [DOI: 10.1016/j.bmc.2011.08.068] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 08/24/2011] [Accepted: 08/30/2011] [Indexed: 12/19/2022]
|
49
|
Kamal A, Srikanth YVV, Ramaiah MJ, Khan MNA, Kashi Reddy M, Ashraf M, Lavanya A, Pushpavalli SNCVL, Pal-Bhadra M. Synthesis, anticancer activity and apoptosis inducing ability of bisindole linked pyrrolo[2,1-c][1,4]benzodiazepine conjugates. Bioorg Med Chem Lett 2011; 22:571-8. [PMID: 22104151 DOI: 10.1016/j.bmcl.2011.10.080] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 10/05/2011] [Accepted: 10/24/2011] [Indexed: 01/02/2023]
Abstract
A series of bisindole-pyrrolobenzodiazepine conjugates (5a-f) linked through different alkane spacers was prepared and evaluated for their anticancer activity. All compounds exhibited significant anticancer potency and the most potent compounds 5b and 5e were taken up for detailed studies on MCF-7 cell line. Cell cycle effects were examined apart from investigating the inhibition of tubulin polymerization for compounds 2a, 2b, 5b and 5e at 2μM. FACS analysis showed that at higher concentrations (4 and 8μM) there was an increase of sub-G1 phase cells and decrease of G2/M phase cells, thus indicating that compounds 5b and 5e are effective in causing apoptosis in MCF-7 cells. It was also observed that compounds 5b and 5e showed the down regulation of histone deacetylase protein levels such as HDAC1, 2, 3, 8 and increase in the levels of p21, followed by apoptotic cell death. The apoptotic nature of these compounds was further evidenced by increased expression of cleaved-PARP and active caspase-7 in MCF-7 cells.
Collapse
Affiliation(s)
- Ahmed Kamal
- Division of Organic Chemistry, Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500607, India.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Phenylimino-10H-anthracen-9-ones as novel antimicrotubule agents-synthesis, antiproliferative activity and inhibition of tubulin polymerization. Bioorg Med Chem 2011; 19:4183-91. [PMID: 21705223 DOI: 10.1016/j.bmc.2011.06.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Revised: 05/26/2011] [Accepted: 06/02/2011] [Indexed: 11/23/2022]
Abstract
A novel series of phenylimino-10H-anthracen-9-ones and 9-(phenylhydrazone)-9,10-anthracenediones were synthesized and evaluated for interaction with tubulin and for cytotoxicity against a panel of human tumor cell lines. The 10-(3-hydroxy-4-methoxy-phenylimino)-10H-anthracen-9-one 15h and its dichloro analog 16b were identified as potent inhibitors of tumor cell growth (16b, IC(50) K562 0.11 μM), including multidrug resistant phenotypes. Compound 15h had excellent activity as an inhibitor of tubulin polymerization. Concentration-dependent cell cycle analyzes by flow cytometry confirmed that KB/HeLa cells treated by 15h and 16b were arrested in the G2/M phases of the cell cycle. In competition experiments, 15h strongly displaced radiolabeled colchicine from its binding site on tubulin, showing IC(50) values similar to that of colchicine. The results obtained demonstrate that the antiproliferative activity is related to the inhibition of tubulin polymerization.
Collapse
|