1
|
Hashem M, Mohandesi Khosroshahi E, Aliahmady M, Ghanei M, Soofi Rezaie Y, alsadat Jafari Y, rezaei F, Khodaparast eskadehi R, Kia Kojoori K, jamshidian F, Nabavi N, Rashidi M, Hasani Sadi F, Taheriazam A, Entezari M. Non-coding RNA transcripts, incredible modulators of cisplatin chemo-resistance in bladder cancer through operating a broad spectrum of cellular processes and signaling mechanism. Noncoding RNA Res 2024; 9:560-582. [PMID: 38515791 PMCID: PMC10955558 DOI: 10.1016/j.ncrna.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/12/2024] [Accepted: 01/14/2024] [Indexed: 03/23/2024] Open
Abstract
Bladder cancer (BC) is a highly frequent neoplasm in correlation with significant rate of morbidity, mortality, and cost. The onset of BC is predominantly triggered by environmental and/or occupational exposures to carcinogens, such as tobacco. There are two distinct pathways by which BC can be developed, including non-muscle-invasive papillary tumors (NMIBC) and non-papillary (or solid) muscle-invasive tumors (MIBC). The Cancer Genome Atlas project has further recognized key genetic drivers of MIBC along with its subtypes with particular properties and therapeutic responses; nonetheless, NMIBC is the predominant BC presentation among the suffering individuals. Radical cystoprostatectomy, radiotherapy, and chemotherapy have been verified to be the common therapeutic interventions in metastatic tumors, among which chemotherapeutics are more conventionally utilized. Although multiple chemo drugs have been broadly administered for BC treatment, cisplatin is reportedly the most effective chemo drug against the corresponding malignancy. Notwithstanding, tumor recurrence is usually occurred following the consumption of cisplatin regimens, particularly due to the progression of chemo-resistant trait. In this framework, non-coding RNAs (ncRNAs), as abundant RNA transcripts arise from the human genome, are introduced to serve as crucial contributors to tumor expansion and cisplatin chemo-resistance in bladder neoplasm. In the current review, we first investigated the best-known ncRNAs, i.e. microRNAs (miRNAs), long ncRNAs (lncRNAs), and circular RNAs (circRNAs), correlated with cisplatin chemo-resistance in BC cells and tissues. We noticed that these ncRNAs could mediate the BC-related cisplatin-resistant phenotype through diverse cellular processes and signaling mechanisms, reviewed here. Eventually, diagnostic and prognostic potential of ncRNAs, as well as their therapeutic capabilities were highlighted in regard to BC management.
Collapse
Affiliation(s)
- Mehrdad Hashem
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elaheh Mohandesi Khosroshahi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Melika Aliahmady
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Morvarid Ghanei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Yasamin Soofi Rezaie
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Yasamin alsadat Jafari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Biology, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Fatemeh rezaei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Biology, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Ramtin Khodaparast eskadehi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Biology, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Kimia Kia Kojoori
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Biology, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - faranak jamshidian
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Biology, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada
| | - Mohsen Rashidi
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Farzaneh Hasani Sadi
- General Practitioner, Kerman University of Medical Sciences, Kerman, 7616913555, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
2
|
Farhadi S, Mohammadi-Yeganeh S, Kiani J, Hashemi SM, Koochaki A, Sharifi K, Ghanbarian H. Exosomal delivery of 7SK long non-coding RNA suppresses viability, proliferation, aggressiveness and tumorigenicity in triple negative breast cancer cells. Life Sci 2023; 322:121646. [PMID: 37011870 DOI: 10.1016/j.lfs.2023.121646] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
AIMS RN7SK (7SK), a highly conserved non-coding RNA, serves as a transcription regulator via interaction with a few proteins. Despite increasing evidences which support the cancer-promoting roles of 7SK-interacting proteins, limited reports address the direct link between 7SK and cancer. To test the hypothetic suppression of cancer by overexpression of 7SK, the effects of exosomal 7SK delivery on cancer phenotypes were studied. MATERIALS AND METHODS Exosomes derived from human mesenchymal stem cells were loaded with 7SK (Exo-7SK). MDA-MB-231, triple negative breast cancer (TNBC), cell line was treated with Exo-7sk. Expression levels of 7SK were evaluated by qPCR. Cell viability was assessed via MTT and Annexin V/PI assays as well as qPCR assessment of apoptosis-regulating genes. Cell proliferation was evaluated by growth curve analysis, colony formation and cell cycle assays. Aggressiveness of TNBCs was evaluated via transwell migration and invasion assays and qPCR assessment of genes regulating epithelial to mesenchymal transition (EMT). Moreover, tumor formation ability was assessed using a nude mice xenograft model. KEY FINDINGS Treatment of MDA-MB-231 cells with Exo-7SK resulted in efficient overexpression of 7SK; reduced viability; altered transcription levels of apoptosis-regulating genes; reduced proliferation; reduced migration and invasion; altered transcription of EMT-regulating genes; and reduced in vivo tumor formation ability. Finally, Exo-7SK reduced mRNA levels of HMGA1, a 7SK interacting protein with master gene regulatory and cancer promoting roles, and its bioinformatically-selected cancer promoting target genes. SIGNIFICANCE Altogether, as a proof of the concept, our findings suggest that exosomal delivery of 7SK may suppress cancer phenotypes via downregulation of HMGA1.
Collapse
|
3
|
Su Y, Dang NM, Depypere H, Santucci-Pereira J, Gutiérrez-Díez PJ, Kanefsky J, Janssens JP, Russo J. Recombinant human chorionic gonadotropin induces signaling pathways towards cancer prevention in the breast of BRCA1/2 mutation carriers. Eur J Cancer Prev 2023; 32:126-138. [PMID: 35881946 PMCID: PMC9800649 DOI: 10.1097/cej.0000000000000763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Strategies for breast cancer prevention in women with germline BRCA1/2 mutations are limited. We previously showed that recombinant human chorionic gonadotropin (r-hCG) induces mammary gland differentiation and inhibits mammary tumorigenesis in rats. The present study investigated hCG-induced signaling pathways in the breast of young nulliparous women carrying germline BRCA1/2 mutations. METHODS We performed RNA-sequencing on breast tissues from 25 BRCA1/2 mutation carriers who received r-hCG treatment for 3 months in a phase II clinical trial, we analyzed the biological processes, reactome pathways, canonical pathways, and upstream regulators associated with genes differentially expressed after r-hCG treatment, and validated genes of interest. RESULTS We observed that r-hCG induces remarkable transcriptomic changes in the breast of BRCA1/2 carriers, especially in genes related to cell development, cell differentiation, cell cycle, apoptosis, DNA repair, chromatin remodeling, and G protein-coupled receptor signaling. We revealed that r-hCG inhibits Wnt/β-catenin signaling, MYC, HMGA1 , and HOTAIR , whereas activates TGFB/TGFBR-SMAD2/3/4, BRCA1, TP53, and upregulates BRCA1 protein. CONCLUSION Our data suggest that the use of r-hCG at young age may reduce the risk of breast cancer in BRCA1/2 carriers by inhibiting pathways associated with stem/progenitor cell maintenance and neoplastic transformation, whereas activating genes crucial for breast epithelial differentiation and lineage commitment, and DNA repair.
Collapse
Affiliation(s)
- Yanrong Su
- The Irma H Russo, MD, Breast Cancer Research Laboratory at the Fox Chase Cancer Center-Temple Health, 333 Cottman Avenue, Philadelphia, PA 19111, USA
- These authors contributed equally: Yanrong Su, Nhi M. Dang, and Herman Depypere
| | - Nhi M. Dang
- The Irma H Russo, MD, Breast Cancer Research Laboratory at the Fox Chase Cancer Center-Temple Health, 333 Cottman Avenue, Philadelphia, PA 19111, USA
- These authors contributed equally: Yanrong Su, Nhi M. Dang, and Herman Depypere
| | - Herman Depypere
- Department of Gynecology, Breast and Menopause clinic, University Hospital of Ghent, Corneel Heymanslaan 10, 9000 Ghent, Belgium
- These authors contributed equally: Yanrong Su, Nhi M. Dang, and Herman Depypere
| | - Julia Santucci-Pereira
- The Irma H Russo, MD, Breast Cancer Research Laboratory at the Fox Chase Cancer Center-Temple Health, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | | | - Joice Kanefsky
- The Irma H Russo, MD, Breast Cancer Research Laboratory at the Fox Chase Cancer Center-Temple Health, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | - Jaak Ph. Janssens
- European Cancer Prevention Organization, University of Hasselt, Klein Hilststraat 5, 3500 Hasselt, Belgium
| | - Jose Russo
- The Irma H Russo, MD, Breast Cancer Research Laboratory at the Fox Chase Cancer Center-Temple Health, 333 Cottman Avenue, Philadelphia, PA 19111, USA
- Dr. Russo conceived the study and supervised the work. Dr. Russo passed away on September 24, 2021
| |
Collapse
|
4
|
Usher ET, Showalter SA. Biophysical insights into glucose-dependent transcriptional regulation by PDX1. J Biol Chem 2022; 298:102623. [PMID: 36272648 PMCID: PMC9691942 DOI: 10.1016/j.jbc.2022.102623] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/22/2022] Open
Abstract
The pancreatic and duodenal homeobox 1 (PDX1) is a central regulator of glucose-dependent transcription of insulin in pancreatic β cells. PDX1 transcription factor activity is integral to the development and sustained health of the pancreas; accordingly, deciphering the complex network of cellular cues that lead to PDX1 activation or inactivation is an important step toward understanding the etiopathologies of pancreatic diseases and the development of novel therapeutics. Despite nearly 3 decades of research into PDX1 control of Insulin expression, the molecular mechanisms that dictate the function of PDX1 in response to glucose are still elusive. The transcriptional activation functions of PDX1 are regulated, in part, by its two intrinsically disordered regions, which pose a barrier to its structural and biophysical characterization. Indeed, many studies of PDX1 interactions, clinical mutations, and posttranslational modifications lack molecular level detail. Emerging methods for the quantitative study of intrinsically disordered regions and refined models for transactivation now enable us to validate and interrogate the biochemical and biophysical features of PDX1 that dictate its function. The goal of this review is to summarize existing PDX1 studies and, further, to generate a comprehensive resource for future studies of transcriptional control via PDX1.
Collapse
Affiliation(s)
- Emery T Usher
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Scott A Showalter
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, USA.
| |
Collapse
|
5
|
Cao L, Morgun E, Genardi S, Visvabharathy L, Cui Y, Huang H, Wang CR. METTL14-dependent m 6A modification controls iNKT cell development and function. Cell Rep 2022; 40:111156. [PMID: 35926466 PMCID: PMC9495716 DOI: 10.1016/j.celrep.2022.111156] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 06/06/2022] [Accepted: 07/13/2022] [Indexed: 11/25/2022] Open
Abstract
N6-methyladenosine (m6A), the most common form of RNA modification, controls CD4+ T cell homeostasis by targeting the IL-7/STAT5/SOCS signaling pathways. The role of m6A modification in unconventional T cell development remains unknown. Using mice with T cell-specific deletion of RNA methyltransferase METTL14 (T-Mettl14−/−), we demonstrate that m6A modification is indispensable for iNKT cell homeostasis. Loss of METTL14-dependent m6A modification leads to the upregulation of apoptosis in double-positive thymocytes, which in turn decreases Vα14-Jα18 gene rearrangements, resulting in drastic reduction of iNKT numbers in the thymus and periphery. Residual T-Mettl14−/− iNKT cells exhibit increased apoptosis, impaired maturation, and decreased responsiveness to IL-2/IL-15 and TCR stimulation. Furthermore, METTL14 knockdown in mature iNKT cells diminishes their cytokine production, correlating with increased Cish expression and decreased TCR signaling. Collectively, our study highlights a critical role for METTL14-dependent-m6A modification in iNKT cell development and function. Cao et al. show that T cell-specific deletion of METTL14, a component of RNA m6A writer complex, leads to severe defects in iNKT cell development, survival, and function. Mechanistically, METTL14-dependent m6A modification controls iNKT cell development in a cell-intrinsic manner by regulating the apoptosis pathway and TCR signaling pathway.
Collapse
Affiliation(s)
- Liang Cao
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, 320 E. Superior Street, Searle 3-401, Chicago, IL 60611, USA
| | - Eva Morgun
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, 320 E. Superior Street, Searle 3-401, Chicago, IL 60611, USA
| | - Samantha Genardi
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, 320 E. Superior Street, Searle 3-401, Chicago, IL 60611, USA
| | - Lavanya Visvabharathy
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, 320 E. Superior Street, Searle 3-401, Chicago, IL 60611, USA
| | - Yongyong Cui
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, 320 E. Superior Street, Searle 3-401, Chicago, IL 60611, USA
| | - Haochu Huang
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Chyung-Ru Wang
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, 320 E. Superior Street, Searle 3-401, Chicago, IL 60611, USA.
| |
Collapse
|
6
|
Wang L, Zhang J, Xia M, Liu C, Zu X, Zhong J. High Mobility Group A1 (HMGA1): Structure, Biological Function, and Therapeutic Potential. Int J Biol Sci 2022; 18:4414-4431. [PMID: 35864955 PMCID: PMC9295051 DOI: 10.7150/ijbs.72952] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/24/2022] [Indexed: 11/26/2022] Open
Abstract
High mobility group A1 (HMGA1) is a nonhistone chromatin structural protein characterized by no transcriptional activity. It mainly plays a regulatory role by modifying the structure of DNA. A large number of studies have confirmed that HMGA1 regulates genes related to tumours in the reproductive system, digestive system, urinary system and haematopoietic system. HMGA1 is rare in adult cells and increases in highly proliferative cells such as embryos. After being stimulated by external factors, it will produce effects through the Wnt/β-catenin, PI3K/Akt, Hippo and MEK/ERK pathways. In addition, HMGA1 also affects the ageing, apoptosis, autophagy and chemotherapy resistance of cancer cells, which are linked to tumorigenesis. In this review, we summarize the mechanisms of HMGA1 in cancer progression and discuss the potential clinical application of targeted HMGA1 therapy, indicating that targeted HMGA1 is of great significance in the diagnosis and treatment of malignancy.
Collapse
Affiliation(s)
- Lu Wang
- Institute of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Ji Zhang
- Department of Clinical Laboratory, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen 518033, Guangdong, China
| | - Min Xia
- Institute of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China.,Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Chang Liu
- Department of Endocrinology and Metabolism, The First People's Hospital of Chenzhou, First School of Clinical Medicine, University of Southern Medical, Guangzhou 510515, Guangdong, China
| | - Xuyu Zu
- Institute of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China.,Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Jing Zhong
- Institute of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China.,Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| |
Collapse
|
7
|
Proteomic analysis of hypothalamus in prepubertal and pubertal female goat. J Proteomics 2022; 251:104411. [PMID: 34728423 DOI: 10.1016/j.jprot.2021.104411] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/28/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022]
Abstract
The functions of proteins at the onset of puberty in goats remain largely unexplored. To identify the proteins regulating puberty in goats, we analysed protein abundance and pathways in the hypothalamus of female goats. We applied tandem mass tag (TMT) labelling, liquid chromatography-tandem mass spectrometry (LC-MS/MS), and parallel reaction monitoring (PRM) to examine hypothalamus of pubertal (cases; n = 3) and prepubertal (controls; n = 3) goats. We identified 5119 proteins, including 69 differentially abundant proteins (DAPs), of which 35 were upregulated and 34 were downregulated. Fourteen DAPs were randomly selected to verify these results using PRM, and the results were consistent with the TMT quantitative results. DAPs were enriched in MAPK signalling pathway, Ras signalling pathway, Autophagy-animal, Endocytosis, and PI3K/Akt/mTOR signalling pathway categories. These pathways are related to embryogenesis, cell proliferation, cell differentiation, and promoting the release of gonadotropin-releasing hormone (GnRH) in the hypothalamus. In particular, PDGFRβ and MAP3K7 occupied important locations in the protein-protein interaction network. The results demonstrate that DAPs and their related signalling pathways are crucial in regulating puberty in goats. However, further research is needed to explore the functions of DAPs and their pathways to provide new insights into the mechanism of puberty onset. SIGNIFICANCE: In domestic animals, reaching the age of puberty is an event that contributes significantly to lifetime reproductive potential. And the hypothalamus functions directly in the complex systemic changes that control puberty. Our study was the first TMT proteomics analysis on hypothalamus tissues of pubertal goats, which revealed the changes of protein and pathways that are related to the onset of puberty. We identified 69 DAPs, which were enriched in the MAPK signaling pathway, the Ras signaling pathway, and the IGF-1/PI3K/Akt/mTOR pathway, suggesting that these processes were probably involved in the onset of puberty.
Collapse
|
8
|
Wei YG, Yang CK, Wei ZL, Liao XW, He YF, Zhou X, Huang HS, Lan CL, Han CY, Peng T. High-Mobility Group AT-Hook 1 Served as a Prognosis Biomarker and Associated with Immune Infiltrate in Hepatocellular Carcinoma. Int J Gen Med 2022; 15:609-621. [PMID: 35058711 PMCID: PMC8765458 DOI: 10.2147/ijgm.s344858] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 12/23/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The protein high-mobility group AT-hook 1 (HMGA1) has been demonstrated that modulated cellular proliferation, invasion, and apoptosis with a poor prognosis in miscellaneous carcinomas. However, the mechanism of circumstantial carcinogenesis and association with the immune microenvironment of HMGA1 in hepatocellular carcinoma (HCC) had not been extensively explored. METHODS The gene expression, clinicopathological correlation, and prognosis analysis were performed in the data obtained from TCGA. The results were further validated by ICGC and GEO database and external validation cohort from Guangxi. The HMGA1 protein expression was further examined in the HPA database. Biological function analyses were conducted by GSEA, STRING database, and Coexpedia online tool. Using TIMER and CIBERSORT method, the relationship between immune infiltrate and HMGA1 was investigated. RESULTS In HCC, HMGA1 had much higher transcriptional and proteomic expression than in corresponding paraneoplastic tissue. Patients with high HMGA1 expression had a poor prognosis and unpromising clinicopathological features. High HMGA1 expression was closely related to the cell cycle, tumorigenesis, substance metabolism, and immune processes by regulating complex signaling pathways. Notably, HMGA1 may be associated with TP53 mutational carcinogenesis. Moreover, increased HMGA1 expression may lead to an increase in immune infiltration and a decrease in tumor purity in HCC. CIBERSORT analysis elucidated that the amount of B cell naive, B cell memory, T cells gamma delta, macrophages M2, and mast cell resting decreased when HMGA1 expression was high, whereas T cells follicular helper, macrophages M0, and Dendritic cells resting increased. CONCLUSION In conclusions, HMGA1 is a potent prognostic biomarker and a sign of immune infiltration in HCC, which may be a potential immunotherapy target for HCC.
Collapse
Affiliation(s)
- Yong-Guang Wei
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Cheng-Kun Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Zhong-Liu Wei
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Xi-Wen Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Yong-Fei He
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Xin Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Hua-Sheng Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Chen-Lu Lan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Chuang-Ye Han
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Tao Peng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People’s Republic of China
| |
Collapse
|
9
|
Zhang YH, Zeng T, Chen L, Huang T, Cai YD. Determining protein-protein functional associations by functional rules based on gene ontology and KEGG pathway. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2021; 1869:140621. [PMID: 33561576 DOI: 10.1016/j.bbapap.2021.140621] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/26/2022]
Abstract
Protein-protein interactions (PPIs) describe the direct physical contact of two proteins that usually results in specific biological functions or regulatory processes. The characterization and study of PPIs through the investigation of their pattern and principle have remained a question in biological studies. Various experimental and computational methods have been used for PPI studies, but most of them are based on the sequence similarity with current validated PPI participators or cellular localization patterns. Most methods ignore the fact that PPIs are defined by their specific biological functions. In this study, we constructed a novel rule-based computational method using gene ontology and KEGG pathway annotation of PPI participators that correspond to the complicated biological effects of PPIs. Our newly presented computational method identified a group of biological functions that are tightly associated with PPIs and provided a new function-based tool for PPI studies in a rule manner.
Collapse
Affiliation(s)
- Yu-Hang Zhang
- School of Life Sciences, Shanghai University, Shanghai 200444, China; Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Tao Zeng
- CAS Key Laboratory of Computational Biology, Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Lei Chen
- College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China.
| | - Tao Huang
- Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
10
|
Wei T, Liu H, Chu B, Blasco P, Liu Z, Tian R, Li DX, Li X. Phosphorylation-regulated HMGA1a-P53 interaction unveils the function of HMGA1a acidic tail phosphorylations via synthetic proteins. Cell Chem Biol 2021; 28:722-732.e8. [PMID: 33545070 DOI: 10.1016/j.chembiol.2021.01.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/13/2020] [Accepted: 01/06/2021] [Indexed: 01/10/2023]
Abstract
As a typical member of intrinsically disordered proteins (IDPs), HMGA1a carries many post-translational modifications (PTMs). To study the undefined function of acidic tail phosphorylations, seven HMGA1a proteins with site-specific modification(s) were chemically synthesized via Ser/Thr ligation. We found that the phosphorylations significantly inhibit HMGA1a-P53 interaction and the phosphorylations can induce conformational change of HMGA1a from an "open state" to a "close state." Notably, the positively charged lysine-arginine (KR) clusters are responsible for modulating HMGA1a conformation via electrostatic interaction with the phosphorylated acidic tail. Finally, we used a synthetic protein-affinity purification mass spectrometry (SP-AP-MS) methodology to profile the specific interactors, which further supported the function of HMGA1a phosphorylation. Collectively, this study highlights a mechanism for regulating IDPs' conformation and function by phosphorylation of non-protein-binding domain and showcases that the protein chemical synthesis in combination with mass spectrometry can serve as an efficient tool to study the IDPs' PTMs.
Collapse
Affiliation(s)
- Tongyao Wei
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, P. R. China
| | - Heng Liu
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, P. R. China
| | - Bizhu Chu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, P. R. China
| | - Pilar Blasco
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, P. R. China
| | - Zheng Liu
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, P. R. China
| | - Ruijun Tian
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, P. R. China
| | - David Xiang Li
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, P. R. China
| | - Xuechen Li
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, P. R. China.
| |
Collapse
|
11
|
Meireles Da Costa N, Palumbo A, De Martino M, Fusco A, Ribeiro Pinto LF, Nasciutti LE. Interplay between HMGA and TP53 in cell cycle control along tumor progression. Cell Mol Life Sci 2021; 78:817-831. [PMID: 32920697 PMCID: PMC11071717 DOI: 10.1007/s00018-020-03634-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/05/2020] [Accepted: 09/03/2020] [Indexed: 01/27/2023]
Abstract
The high mobility group A (HMGA) proteins are found to be aberrantly expressed in several tumors. Studies (in vitro and in vivo) have shown that HMGA protein overexpression has a causative role in carcinogenesis process. HMGA proteins regulate cell cycle progression through distinct mechanisms which strongly influence its normal dynamics along malignant transformation. Tumor protein p53 (TP53) is the most frequently altered gene in cancer. The loss of its activity is recognized as the fall of a barrier that enables neoplastic transformation. Among the different functions, TP53 signaling pathway is tightly involved in control of cell cycle, with cell cycle arrest being the main biological outcome observed upon p53 activation, which prevents accumulation of damaged DNA, as well as genomic instability. Therefore, the interaction and opposing effects of HMGA and p53 proteins on regulation of cell cycle in normal and tumor cells are discussed in this review. HMGA proteins and p53 may reciprocally regulate the expression and/or activity of each other, leading to the counteraction of their regulation mechanisms at different stages of the cell cycle. The existence of a functional crosstalk between these proteins in the control of cell cycle could open the possibility of targeting HMGA and p53 in combination with other therapeutic strategies, particularly those that target cell cycle regulation, to improve the management and prognosis of cancer patients.
Collapse
Affiliation(s)
- Nathalia Meireles Da Costa
- Programa de Carcinogênese Molecular, Instituto Nacional de Câncer-INCA, Rua André Cavalcanti, 37-6th floor-Centro, 20231-050, Rio de Janeiro, RJ, Brazil.
| | - Antonio Palumbo
- Laboratório de Interações Celulares, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro Prédio de Ciências da Saúde-Cidade Universitária, Ilha do Fundão, A. Carlos Chagas, 373-Bloco F, Sala 26, 21941-902, Rio de Janeiro, RJ, Brazil
| | - Marco De Martino
- Istituto di Endocrinologia e Oncologia Sperimentale-CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Alfredo Fusco
- Istituto di Endocrinologia e Oncologia Sperimentale-CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Luis Felipe Ribeiro Pinto
- Programa de Carcinogênese Molecular, Instituto Nacional de Câncer-INCA, Rua André Cavalcanti, 37-6th floor-Centro, 20231-050, Rio de Janeiro, RJ, Brazil
| | - Luiz Eurico Nasciutti
- Laboratório de Interações Celulares, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro Prédio de Ciências da Saúde-Cidade Universitária, Ilha do Fundão, A. Carlos Chagas, 373-Bloco F, Sala 26, 21941-902, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
12
|
Chen Z, Zhao M, Li M, Sui Q, Bian Y, Liang J, Hu Z, Zheng Y, Lu T, Huang Y, Zhan C, Jiang W, Wang Q, Tan L. Identification of differentially expressed genes in lung adenocarcinoma cells using single-cell RNA sequencing not detected using traditional RNA sequencing and microarray. J Transl Med 2020; 100:1318-1329. [PMID: 32327726 DOI: 10.1038/s41374-020-0428-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/28/2020] [Accepted: 03/28/2020] [Indexed: 01/08/2023] Open
Abstract
Lung adenocarcinoma (LUAD) is the leading cause of cancer-related deaths worldwide. Traditional RNA sequencing data fails to detect the exact cellular and molecular changes in tumor cells as they make up only a small proportion of tumor tissue. 10× genomics single-cell RNA sequencing (10× scRNA-seq) and gene expression data of LUAD patients was obtained from the Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, ArrayExpress, TCGA, and GEO databases. Differentially expressed genes (DEGs) were identified in LUAD and alveolar cells (DEGs-scRNA-cancer_cell), tumor- and normal tissue-derived cells (DEGs-scRNA-sample), and normal and LUAD patients (DEGs-Bulk). Flow cytometry and qRT-PCR were performed to validate the significantly differentially expressed ligand-receptor pairs. We selected 159,219 cells and 594 samples in the scRNA-seq data and traditional RNA sequencing, respectively. A total of 1042 DEGs-scRNA-cancer_cell, 788 DEGs-scRNA-sample, and 2510 DEGs-Bulk were identified in this study. We also identified 57 DEGs that were only detected in DEGs-scRNA-cancer_cell (only-DEGs-scRNA-cancer_cell). To explore the relationship between only-DEGs-scRNA-cancer_cell and survival in LUAD, 14 and 22 only-DEGs-scRNA-cancer_cell, which were closely related with survival in TCGA and GEO cohorts were identified. Functional enrichment analyses showed these DEGs-scRNA-cancer_cells were mainly related to cell proliferation and immunoregulation. Our study detected and compared DEGs at different levels and revealed genes that may regulate tumor development. Our results provide a potential new protocol to determine the contribution of DEGs to cancer progression and to help identify potential therapeutic targets.
Collapse
Affiliation(s)
- Zhencong Chen
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, 200032, Shanghai, China
| | - Mengnan Zhao
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, 200032, Shanghai, China
| | - Ming Li
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, 200032, Shanghai, China
| | - Qihai Sui
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, 200032, Shanghai, China
| | - Yunyi Bian
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, 200032, Shanghai, China
| | - Jiaqi Liang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, 200032, Shanghai, China
| | - Zhengyang Hu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, 200032, Shanghai, China
| | - Yuansheng Zheng
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, 200032, Shanghai, China
| | - Tao Lu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, 200032, Shanghai, China
| | - Yiwei Huang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, 200032, Shanghai, China
| | - Cheng Zhan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, 200032, Shanghai, China.
| | - Wei Jiang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, 200032, Shanghai, China.
| | - Qun Wang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, 200032, Shanghai, China
| | - Lijie Tan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, 200032, Shanghai, China
| |
Collapse
|
13
|
Liu X, Zhou Z, Wang Y, Zhu K, Deng W, Li Y, Zhou X, Chen L, Li Y, Xie A, Zeng T, Wang G, Fu B. Downregulation of HMGA1 Mediates Autophagy and Inhibits Migration and Invasion in Bladder Cancer via miRNA-221/TP53INP1/p-ERK Axis. Front Oncol 2020; 10:589. [PMID: 32477928 PMCID: PMC7235162 DOI: 10.3389/fonc.2020.00589] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/31/2020] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) have been implicated in regulating the development and metastasis of human cancers. MiR-221 is reported to be an oncogene in multiple cancers, including bladder cancer (BC). Deregulation of autophagy is associated with multiple human malignant cancers. Whether and how miR-221 regulates autophagy and how miR-221 has been regulated in BC are poorly understood. This study explored the potential functions and mechanisms of miR-221 in the autophagy and tumorigenesis of BC. We showed that the downregulation of miR-221 induces autophagy via increasing TP53INP1 (tumor protein p53 inducible nuclear protein 1) and inhibits migration and invasion of BC cells through suppressing activation of extracellular signal-regulated kinase (ERK). Furthermore, the expression of miR-221 is regulated by high-mobility group AT-hook 1 (HMGA1) which is overexpressed in BC. And both miR-221 and HMGA1 are correlated with poor patient survival in BC. Finally, the downregulation of HMGA1 suppressed the proliferative, migrative, and invasive property of BC by inducing toxic autophagy via miR-221/TP53INP1/p-ERK axis. Collectively, our findings demonstrate that the downregulation of miR-221 and HMGA1 mediates autophagy in BC, and both of them are valuable therapeutic targets for BC.
Collapse
Affiliation(s)
- Xiaoqiang Liu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Institute of Urology, Nanchang, China
| | - Zhengtao Zhou
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yibing Wang
- Department of Emergency, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ke Zhu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Institute of Urology, Nanchang, China
| | - Wen Deng
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yulei Li
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaochen Zhou
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Luyao Chen
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yu Li
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - An Xie
- Jiangxi Institute of Urology, Nanchang, China
| | - Tao Zeng
- Department of Urology, The People's Hospital of Jiangxi Province, Nanchang, China
| | - Gongxian Wang
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Institute of Urology, Nanchang, China
| | - Bin Fu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Institute of Urology, Nanchang, China
| |
Collapse
|
14
|
Coexisting Germline CHEK2 and Somatic BRAFV600E Mutations in Papillary Thyroid Cancer and Their Association with Clinicopathological Features and Disease Course. Cancers (Basel) 2019; 11:cancers11111744. [PMID: 31703344 PMCID: PMC6896084 DOI: 10.3390/cancers11111744] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/01/2019] [Accepted: 11/05/2019] [Indexed: 01/26/2023] Open
Abstract
BRAFV600E is the most common somatic mutation in papillary thyroid carcinoma (PTC) and the majority of evidence indicates that it is associated with an aggressive clinical course. Germline mutations of the CHEK2 gene impair the DNA damage repair process and increase the risk of PTC. Coexistence of both mutations is expected to be associated with poorer clinical course. We evaluated the prevalence of concomitant CHEK2 and BRAFV600E mutations and their associations with clinicopathological features, treatment response, and disease course in PTC patients. The study included 427 unselected PTC patients (377 women and 50 men) from one center. Relationships among clinicopathological features, mutation status, treatment response, and disease outcomes were assessed. Mean follow-up was 10 years. CHEK2 mutations were detected in 15.2% and BRAFV600E mutations in 64.2% patients. Neither mutation was present in 31.4% cases and both BRAFV600E and CHEK2 mutations coexisted in 10.8% patients. No significant differences in clinicopathological features, initial risk, treatment response, or disease outcome were detected among these patient groups. CHEK2 mutations were significantly associated with older age, while BRAFV600E was significantly associated with older age and extrathyroidal extension. The coexistence of both mutations was not associated with more aggressive clinicopathological features of PTC, poorer treatment response, or disease outcome.
Collapse
|
15
|
Bioinformatics analysis of circulating miRNAs related to cancer following spinal cord injury. Biosci Rep 2019; 39:BSR20190989. [PMID: 31444279 PMCID: PMC6753324 DOI: 10.1042/bsr20190989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 08/09/2019] [Accepted: 08/21/2019] [Indexed: 12/14/2022] Open
Abstract
Patients with spinal cord injury (SCI) have an increased risk of developing esophageal, bladder and hematologic malignancies compared with the normal population. In the present study, we aimed to identify, through in silico analysis, miRNAs and their target genes related to the three most frequent types of cancer in individuals with SCI. In a previous study, we reported a pattern of expression of miRNAs in 17 sedentary SCI males compared with 22 healthy able-bodied males by TaqMan OpenArray. This list of miRNAs deregulated in SCI patients was uploaded to miRWALK2.0 to predict the target genes and pathways of selected miRNAs. We used Cytoscape software to construct the network displaying the miRNAs and their gene targets. Among the down-regulated miRNAs in SCI, 21, 19 and 20 miRNAs were potentially associated with hematological, bladder and esophageal cancer, respectively, and three target genes (TP53, CCND1 and KRAS) were common to all three types of cancer. The three up-regulated miRNAs were potentially targeted by 18, 15 and 10 genes associated with all three types of cancer. Our current bioinformatics analysis suggests the potential influence of several miRNAs on the development of cancer in SCI. In general, these data may provide novel information regarding potential molecular mechanisms involved in the development of cancer among individuals with SCI. Further studies aiming at understanding how miRNAs contribute to the development of the major cancers that affect patients after SCI may help elucidate the role of these molecules in the pathophysiology of the disease.
Collapse
|
16
|
HMGA1 Modulates Gene Transcription Sustaining a Tumor Signalling Pathway Acting on the Epigenetic Status of Triple-Negative Breast Cancer Cells. Cancers (Basel) 2019; 11:cancers11081105. [PMID: 31382504 PMCID: PMC6721465 DOI: 10.3390/cancers11081105] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/19/2019] [Accepted: 07/29/2019] [Indexed: 01/17/2023] Open
Abstract
Chromatin accessibility plays a critical factor in regulating gene expression in cancer cells. Several factors, including the High Mobility Group A (HMGA) family members, are known to participate directly in chromatin relaxation and transcriptional activation. The HMGA1 oncogene encodes an architectural chromatin transcription factor that alters DNA structure and interacts with transcription factors favouring their landing onto transcription regulatory sequences. Here, we provide evidence of an additional mechanism exploited by HMGA1 to modulate transcription. We demonstrate that, in a triple-negative breast cancer cellular model, HMGA1 sustains the action of epigenetic modifiers and in particular it positively influences both histone H3S10 phosphorylation by ribosomal protein S6 kinase alpha-3 (RSK2) and histone H2BK5 acetylation by CREB-binding protein (CBP). HMGA1, RSK2, and CBP control the expression of a set of genes involved in tumor progression and epithelial to mesenchymal transition. These results suggest that HMGA1 has an effect on the epigenetic status of cancer cells and that it could be exploited as a responsiveness predictor for epigenetic therapies in triple-negative breast cancers.
Collapse
|
17
|
Johnson T, Payne S, Grove R, McCarthy S, Oeltjen E, Mach C, Adamec J, Wilson MA, Van Cott K, Blum P. Methylation deficiency of chromatin proteins is a non-mutational and epigenetic-like trait in evolved lines of the archaeon Sulfolobus solfataricus. J Biol Chem 2019; 294:7821-7832. [PMID: 30918025 PMCID: PMC6514617 DOI: 10.1074/jbc.ra118.006469] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 03/01/2019] [Indexed: 11/06/2022] Open
Abstract
Archaea are a distinct and deeply rooted lineage that harbor eukaryotic-like mechanisms, including several that manage chromosome function. In previous work, the thermoacidophilic crenarchaeon, Sulfolobus solfataricus, was subjected to adaptive laboratory evolution to produce three strains, called SARC, with a new heritable trait of super acid resistance. These strains acquired heritable conserved transcriptomes, yet one strain contained no mutations. Homologous recombination without allele replacement at SARC acid resistance genes caused changes in both phenotype and expression of the targeted gene. As recombination displaces chromatin proteins, their involvement was predicted in the SARC trait. Native chromatin proteins are basic and highly abundant and undergo post-translational modification through lysine monomethylation. In this work, their modification states were investigated. In all SARC lines, two chromatin proteins, Cren7 and Sso7d, were consistently undermethylated, whereas other chromatin proteins were unaltered. This pattern was heritable in the absence of selection and independent of transient exposure to acid stress. The bulk of Sso7d was undermethylated at three contiguous N-terminal lysine residues but not at central or C-terminal regions. The N-terminal region formed a solvent-exposed patch located on the opposite side of the binding domain associated with the DNA minor groove. By analogy to eukaryotic histones, this patch could interact with other chromosomal proteins and be modulated by differential post-translational modification. Previous work established an epigenetic-like mechanism of adaptation and inheritance in S. solfataricus The identification of heritable epigenetic marks in this work further supports the occurrence of an epigenetic process in archaea.
Collapse
Affiliation(s)
- Tyler Johnson
- From the Beadle Center for Genetics, School of Biological Sciences
| | - Sophie Payne
- From the Beadle Center for Genetics, School of Biological Sciences
| | - Ryan Grove
- the Department of Biochemistry and Redox Biology Center, and
| | - Samuel McCarthy
- From the Beadle Center for Genetics, School of Biological Sciences
| | - Erin Oeltjen
- From the Beadle Center for Genetics, School of Biological Sciences
| | - Collin Mach
- From the Beadle Center for Genetics, School of Biological Sciences
| | - Jiri Adamec
- the Department of Biochemistry and Redox Biology Center, and
| | - Mark A Wilson
- the Department of Biochemistry and Redox Biology Center, and
| | - Kevin Van Cott
- the Department of Chemical and Biomolecular Engineering, University of Nebraska, Lincoln, Nebraska 68588, and
| | - Paul Blum
- From the Beadle Center for Genetics, School of Biological Sciences,
- the Department of Microbiology and Toxicology, University of California, Santa Cruz, California 95064
| |
Collapse
|
18
|
Wang Y, Hu L, Zheng Y, Guo L. HMGA1 in cancer: Cancer classification by location. J Cell Mol Med 2019; 23:2293-2302. [PMID: 30614613 PMCID: PMC6433663 DOI: 10.1111/jcmm.14082] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 07/19/2018] [Accepted: 11/16/2018] [Indexed: 12/23/2022] Open
Abstract
The high mobility group A1 (HMGA1) gene plays an important role in numerous malignant cancers. HMGA1 is an oncofoetal gene, and we have a certain understanding of the biological function of HMGA1 based on its activities in various neoplasms. As an architectural transcription factor, HMGA1 remodels the chromatin structure and promotes the interaction between transcriptional regulatory proteins and DNA in different cancers. Through analysis of the molecular mechanism of HMGA1 and clinical studies, emerging evidence indicates that HMGA1 promotes the occurrence and metastasis of cancer. Within a similar location or the same genetic background, the function and role of HMGA1 may have certain similarities. In this paper, to characterize HMGA1 comprehensively, research on various types of tumours is discussed to further understanding of the function and mechanism of HMGA1. The findings provide a more reliable basis for classifying HMGA1 function according to the tumour location. In this review, we summarize recent studies related to HMGA1, including its structure and oncogenic properties, its major functions in each cancer, its upstream and downstream regulation associated with the tumourigenesis and metastasis of cancer, and its potential as a biomarker for clinical diagnosis of cancer.
Collapse
Affiliation(s)
- Yuhong Wang
- The First Affiliated Hospital of Soochow University Department of Pathology, Suzhou, Jiangsu, China
| | - Lin Hu
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Yushuang Zheng
- The First Affiliated Hospital of Soochow University Department of Pathology, Suzhou, Jiangsu, China
| | - Lingchuan Guo
- The First Affiliated Hospital of Soochow University Department of Pathology, Suzhou, Jiangsu, China
| |
Collapse
|
19
|
Wang Y, Hu L, Wang J, Li X, Sahengbieke S, Wu J, Lai M. HMGA2 promotes intestinal tumorigenesis by facilitating MDM2-mediated ubiquitination and degradation of p53. J Pathol 2018; 246:508-518. [DOI: 10.1002/path.5164] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/30/2018] [Accepted: 08/28/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Yuhong Wang
- Department of Pathology; Zhejiang University School of Medicine; Hangzhou Zhejiang PR China
- Key Laboratory of Disease Proteomics of Zhejiang Province; Hangzhou Zhejiang China
| | - Lin Hu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences; Soochow University; Suzhou Jiangsu PR China
| | - Jian Wang
- Department of Surgical Oncology; Second Affiliated Hospital, Zhejiang University School of Medicine; Hangzhou Zhejiang PR China
| | - Xiangwei Li
- Department of Pathology; Zhejiang University School of Medicine; Hangzhou Zhejiang PR China
- Key Laboratory of Disease Proteomics of Zhejiang Province; Hangzhou Zhejiang China
| | - Sana Sahengbieke
- Department of Pathology; Zhejiang University School of Medicine; Hangzhou Zhejiang PR China
- Key Laboratory of Disease Proteomics of Zhejiang Province; Hangzhou Zhejiang China
| | - Jingjing Wu
- Department of Pathology; Zhejiang University School of Medicine; Hangzhou Zhejiang PR China
- Key Laboratory of Disease Proteomics of Zhejiang Province; Hangzhou Zhejiang China
| | - Maode Lai
- Department of Pathology; Zhejiang University School of Medicine; Hangzhou Zhejiang PR China
- Key Laboratory of Disease Proteomics of Zhejiang Province; Hangzhou Zhejiang China
| |
Collapse
|
20
|
Chen X, Liu M, Meng F, Sun B, Jin X, Jia C. The long noncoding RNA HIF1A-AS2 facilitates cisplatin resistance in bladder cancer. J Cell Biochem 2018; 120:243-252. [PMID: 30216500 DOI: 10.1002/jcb.27327] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 06/28/2018] [Indexed: 12/11/2022]
Abstract
Chemotherapy drug resistance frequently happens in more than 50% of bladder cancer patients and is the major obstacle for the bladder cancer therapy. Recent studies have shown that long noncoding RNA (lncRNA) is involved in the development of chemoresistance. In this study, we reported hypoxia inducible factor 1α-antisense RNA 2 (HIF1A-AS2), as a subtype-specific hypoxia inducible lncRNA, is upregulated in bladder cancer cells and tissue after cisplatin (Cis) treatment. The induction of HIF1A-AS2 in bladder cancer cells rendered resistance to Cis-induced apoptosis. Silencing HIF1A-AS2 in Cis-resistant bladder cancer cells was re-sensitized to Cis-induced apoptosis. Mechanically, we found that HIF1A-AS2 suppressed the transcription activity of p53 family proteins by promoting the expression of high-mobility group A1 (HMGA1). The induction of HMGA1 physically interacts with p53, p63, and p73, and therefore constrains their transcriptional activity on Bax. Knockdown of HIF1A-AS2 or HMGA1 rescued the expression of Bax, which therefore enhanced the killing effect of Cis. Furthermore, we also found that the expression of HIF1A-AS2 was higher in the human bladder tumor tissues after Cis treatment, and was positive correlated to the expression of HIF1α and HMGA1. This study suggests that upregulated HIF1A-AS2 hampers the p53 family proteins dependent apoptotic pathway to promote Cis resistance in bladder cancer. Our data suggested that HIF1A-AS2 plays oncogenic roles and can be used as a therapeutic target for treating human bladder cancer.
Collapse
Affiliation(s)
- Xiaoliang Chen
- Department of Urology, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Meihan Liu
- Department of ultrasonography, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Fanping Meng
- Department of Urology, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Baozhen Sun
- Department of Hepatobiliary and Pancreas Surgery, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Xuefei Jin
- Department of Urology, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Chunshu Jia
- Center for Reproductive Medicine and Center for Prenatal Diagnosis, First Hospital, Jilin University, Changchun, China
| |
Collapse
|
21
|
Méndez O, Peg V, Salvans C, Pujals M, Fernández Y, Abasolo I, Pérez J, Matres A, Valeri M, Gregori J, Villarreal L, Schwartz S, Ramon Y Cajal S, Tabernero J, Cortés J, Arribas J, Villanueva J. Extracellular HMGA1 Promotes Tumor Invasion and Metastasis in Triple-Negative Breast Cancer. Clin Cancer Res 2018; 24:6367-6382. [PMID: 30135148 DOI: 10.1158/1078-0432.ccr-18-0517] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 06/14/2018] [Accepted: 08/13/2018] [Indexed: 11/16/2022]
Abstract
PURPOSE The study of the cancer secretome suggests that a fraction of the intracellular proteome could play unanticipated roles in the extracellular space during tumorigenesis. A project aimed at investigating the invasive secretome led us to study the alternative extracellular function of the nuclear protein high mobility group A1 (HMGA1) in breast cancer invasion and metastasis. EXPERIMENTAL DESIGN Antibodies against HMGA1 were tested in signaling, adhesion, migration, invasion, and metastasis assays using breast cancer cell lines and xenograft models. Fluorescence microscopy was used to determine the subcellular localization of HMGA1 in cell lines, xenograft, and patient-derived xenograft models. A cohort of triple-negative breast cancer (TNBC) patients was used to study the correlation between subcellular localization of HMGA1 and the incidence of metastasis. RESULTS Our data show that treatment of invasive cells with HMGA1-blocking antibodies in the extracellular space impairs their migration and invasion abilities. We also prove that extracellular HMGA1 (eHMGA1) becomes a ligand for the Advanced glycosylation end product-specific receptor (RAGE), inducing pERK signaling and increasing migration and invasion. Using the cytoplasmic localization of HMGA1 as a surrogate marker of secretion, we showed that eHMGA1 correlates with the incidence of metastasis in a cohort of TNBC patients. Furthermore, we show that HMGA1 is enriched in the cytoplasm of tumor cells at the invasive front of primary tumors and in metastatic lesions in xenograft models. CONCLUSIONS Our results strongly suggest that eHMGA1 could become a novel drug target in metastatic TNBC and a biomarker predicting the onset of distant metastasis.
Collapse
Affiliation(s)
- Olga Méndez
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Vicente Peg
- Pathology Department, Institut de Recerca Hospital Vall d'Hebron, Barcelona, Spain
| | - Cándida Salvans
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Mireia Pujals
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Yolanda Fernández
- CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca (VHIR), Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| | - Ibane Abasolo
- CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca (VHIR), Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| | - José Pérez
- Department of Medical Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Ana Matres
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Marta Valeri
- Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | - Josep Gregori
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain.
| | | | - Simó Schwartz
- CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca (VHIR), Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| | | | - Josep Tabernero
- Department of Medical Oncology, Vall d'Hebron University Hospital, Barcelona, Spain.,CIBERONC, Madrid, Spain
| | - Javier Cortés
- Department of Medical Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Joaquín Arribas
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain.,CIBERONC, Madrid, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Josep Villanueva
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain.,CIBERONC, Madrid, Spain
| |
Collapse
|
22
|
Giancotti V, Bergamin N, Cataldi P, Rizzi C. Epigenetic Contribution of High-Mobility Group A Proteins to Stem Cell Properties. Int J Cell Biol 2018; 2018:3698078. [PMID: 29853899 PMCID: PMC5941823 DOI: 10.1155/2018/3698078] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 03/01/2018] [Accepted: 03/18/2018] [Indexed: 02/07/2023] Open
Abstract
High-mobility group A (HMGA) proteins have been examined to understand their participation as structural epigenetic chromatin factors that confer stem-like properties to embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), and cancer stem cells (CSCs). The function of HMGA was evaluated in conjunction with that of other epigenetic factors such as histones and microRNAs (miRs), taking into consideration the posttranscriptional modifications (PTMs) of histones (acetylation and methylation) and DNA methylation. HMGA proteins were coordinated or associated with histone and DNA modification and the expression of the factors related to pluripotency. CSCs showed remarkable differences compared with ESCs and iPSCs.
Collapse
Affiliation(s)
- Vincenzo Giancotti
- Department of Life Science, University of Trieste, Trieste, Italy
- Trieste Proteine Ricerche, Palmanova, Udine, Italy
| | - Natascha Bergamin
- Division of Pathology, Azienda Ospedaliero-Universitaria, Udine, Italy
| | - Palmina Cataldi
- Division of Pathology, Azienda Ospedaliero-Universitaria, Udine, Italy
| | - Claudio Rizzi
- Division of Pathology, Azienda Ospedaliero-Universitaria, Udine, Italy
| |
Collapse
|
23
|
De Martino M, Forzati F, Arra C, Fusco A, Esposito F. HMGA1-pseudogenes and cancer. Oncotarget 2017; 7:28724-35. [PMID: 26895108 PMCID: PMC5053758 DOI: 10.18632/oncotarget.7427] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 02/05/2016] [Indexed: 12/25/2022] Open
Abstract
Pseudogenes are DNA sequences with high homology to the corresponding functional gene, but, because of the accumulation of various mutations, they have lost their initial functions to code for proteins. Consequently, pseudogenes have been considered until few years ago dysfunctional relatives of the corresponding ancestral genes, and then useless in the course of genome evolution. However, several studies have recently established that pseudogenes are owners of key biological functions. Indeed, some pseudogenes control the expression of functional genes by competitively binding to the miRNAs, some of them generate small interference RNAs to negatively modulate the expression of functional genes, and some of them even encode functional mutated proteins. Here, we concentrate our attention on the pseudogenes of the HMGA1 gene, that codes for the HMGA1a and HMGA1b proteins having a critical role in development and cancer progression. In this review, we analyze the family of HMGA1 pseudogenes through three aspects: classification, characterization, and their possible function and involvement in cancer.
Collapse
Affiliation(s)
- Marco De Martino
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Scuola di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Floriana Forzati
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Scuola di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Claudio Arra
- Istituto Nazionale dei Tumori, Fondazione Pascale, Naples, Italy
| | - Alfredo Fusco
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Scuola di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Francesco Esposito
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Scuola di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli "Federico II", Naples, Italy
| |
Collapse
|
24
|
Chandrasekaran KS, Sathyanarayanan A, Karunagaran D. miR-214 activates TP53 but suppresses the expression of RELA, CTNNB1, and STAT3 in human cervical and colorectal cancer cells. Cell Biochem Funct 2017; 35:464-471. [PMID: 29023799 DOI: 10.1002/cbf.3304] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 08/16/2017] [Accepted: 09/17/2017] [Indexed: 12/19/2022]
Abstract
High Mobility Group AT-hook 1 (HMGA1) was identified as a target of miR-214 in human cervical and colorectal cancers (CaCx and CRC) in a previous study. While the expression of miR-214 remains suppressed, HMGA1 behaves as a potent oncogene and plays crucial roles in several aberrant signalling pathways by interacting with intermediates like RELA, CTNNB1, STAT3, and TP53 in CaCx and CRC. Hypothetically, miR-214 should be able to regulate the stabilization of some of these intermediates through the regulation of HMGA1. This was assessed by ectopically expressing miR-214 or complementarily, by inhibiting the expression of HMGA1. In promoter luciferase assays, miR-214 inhibited NF-κB and Wnt activities but elevated TP53 activity in cancer cells. Further, miR-214 suppressed the expression of HMGA1, RELA, CTNNB1, and STAT3 while elevating TP53 levels, similar to when small interfering RNA (siRNA) against HMGA1 was used, as revealed by Western blotting. It is suggested that poor expression of miR-214, commonly reported in CaCx and CRC tissues, may not only result in the sustained expression of HMGA1 but also that of RELA, CTNNB1, and STAT3, and a congruent suppression of TP53 during cancer initiation/progression. These several states are, however, reversed when miR-214 is reintroduced and could explain the tumour suppressive functions observed in earlier studies. Further studies are, however, required to reveal how microRNA-mediated regulation of HMGA1 expression may affect individual signalling pathways in CaCx and CRC. Current results reveal that miR-214 is not only able to regulate the expression of its direct target, HMGA1, but also that of a few signalling intermediates like TP53, RELA, CTNNB1, and STAT3, with which HMGA1 interacts. These intermediates play crucial roles in signalling pathways commonly deregulated in human CaCx and CRC. Hence, it is proposed that miR-214 might act as a tumour suppressor by regulating several aberrant signalling pathways through HMGA1. This knowledge has the potential to help design novel therapeutic strategies in CaCx and CRC.
Collapse
Affiliation(s)
- Karthik Subramanian Chandrasekaran
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | - Anusha Sathyanarayanan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | - Devarajan Karunagaran
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| |
Collapse
|
25
|
Yang S, Chen L, Chan DW, Li QK, Zhang H. Protein signatures of molecular pathways in non-small cell lung carcinoma (NSCLC): comparison of glycoproteomics and global proteomics. Clin Proteomics 2017; 14:31. [PMID: 28814946 PMCID: PMC5557576 DOI: 10.1186/s12014-017-9166-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 08/05/2017] [Indexed: 12/18/2022] Open
Abstract
Background Non-small cell lung carcinoma (NSCLC) remains the leading cause of cancer deaths in the United States. More than half of NSCLC patients have clinical presentations with locally advanced or metastatic disease at the time of diagnosis. The large-scale genomic analysis of NSCLC has demonstrated that molecular alterations are substantially different between adenocarcinoma (ADC) and squamous cell carcinoma (SqCC). However, a comprehensive analysis of proteins and glycoproteins in different subtypes of NSCLC using advanced proteomic approaches has not yet been conducted. Methods We applied mass spectrometry (MS) technology featuring proteomics and glycoproteomics to analyze six primary lung SqCCs and eleven ADCs, and we compared the expression level of proteins and glycoproteins in tumors using quantitative proteomics. Glycoproteins were analyzed by enrichment using a chemoenzymatic method, solid-phase extraction of glycopeptides, and quantified by iTRAQ-LC–MS/MS. Protein quantitation was further annotated via Ingenuity Pathway Analysis. Results Over 6000 global proteins and 480 glycoproteins were quantitatively identified in both SqCC and ADC. ADC proteins (8337) consisted of enzymes (22.11%), kinases (5.11%), transcription factors (6.85%), transporters (6.79%), and peptidases (3.30%). SqCC proteins (6967) had a very similar distribution. The identified glycoproteins, in order of relative abundance, included membrane (42%) and extracellular matrix (>33%) glycoproteins. Oncogene-coded proteins (82) increased 1.5-fold among 1047 oncogenes identified in ADC, while 124 proteins from SqCC were up-regulated in tumor tissues among a total of 827 proteins. We identified 680 and 563 tumor suppressor genes from ADC and SqCC, respectively. Conclusion Our systematic analysis of proteins and glycoproteins demonstrates changes of protein and glycoprotein relative abundance in SqCC (TP53, U2AF1, and RXR) and in ADC (SMARCA4, NOTCH1, PTEN, and MST1). Among them, eleven glycoproteins were upregulated in both ADC and SqCC. Two glycoproteins (ELANE and IGFBP3) were only increased in SqCC, and six glycoproteins (ACAN, LAMC2, THBS1, LTBP1, PSAP and COL1A2) were increased in ADC. Ingenuity Pathway Analysis (IPA) showed that several crucial pathways were activated in SqCC and ADC tumor tissues. Electronic supplementary material The online version of this article (doi:10.1186/s12014-017-9166-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shuang Yang
- Department of Pathology, Johns Hopkins Medicine, Smith Bldg 4013, 400 N. Broadway, Baltimore, MD 21287 USA
| | - Lijun Chen
- Department of Pathology, Johns Hopkins Medicine, Smith Bldg 4013, 400 N. Broadway, Baltimore, MD 21287 USA
| | - Daniel W Chan
- Department of Pathology, Johns Hopkins Medicine, Smith Bldg 4013, 400 N. Broadway, Baltimore, MD 21287 USA
| | - Qing Kay Li
- Department of Pathology, Johns Hopkins Medicine, Smith Bldg 4013, 400 N. Broadway, Baltimore, MD 21287 USA
| | - Hui Zhang
- Department of Pathology, Johns Hopkins Medicine, Smith Bldg 4013, 400 N. Broadway, Baltimore, MD 21287 USA
| |
Collapse
|
26
|
Conte A, Paladino S, Bianco G, Fasano D, Gerlini R, Tornincasa M, Renna M, Fusco A, Tramontano D, Pierantoni GM. High mobility group A1 protein modulates autophagy in cancer cells. Cell Death Differ 2017; 24:1948-1962. [PMID: 28777374 PMCID: PMC5635219 DOI: 10.1038/cdd.2017.117] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 06/01/2017] [Accepted: 06/15/2017] [Indexed: 12/11/2022] Open
Abstract
High Mobility Group A1 (HMGA1) is an architectural chromatin protein whose overexpression is a feature of malignant neoplasias with a causal role in cancer initiation and progression. HMGA1 promotes tumor growth by several mechanisms, including increase of cell proliferation and survival, impairment of DNA repair and induction of chromosome instability. Autophagy is a self-degradative process that, by providing energy sources and removing damaged organelles and misfolded proteins, allows cell survival under stress conditions. On the other hand, hyper-activated autophagy can lead to non-apoptotic programmed cell death. Autophagy deregulation is a common feature of cancer cells in which has a complex role, showing either an oncogenic or tumor suppressor activity, depending on cellular context and tumor stage. Here, we report that depletion of HMGA1 perturbs autophagy by different mechanisms. HMGA1-knockdown increases autophagosome formation by constraining the activity of the mTOR pathway, a major regulator of autophagy, and transcriptionally upregulating the autophagy-initiating kinase Unc-51-like kinase 1 (ULK1). Consistently, functional experiments demonstrate that HMGA1 binds ULK1 promoter region and negatively regulates its transcription. On the other hand, the increase in autophagosomes is not associated to a proportionate increase in their maturation. Overall, the effects of HMGA1 depletion on autophagy are associated to a decrease in cell proliferation and ultimately impact on cancer cells viability. Importantly, silencing of ULK1 prevents the effects of HMGA1-knockdown on cellular proliferation, viability and autophagic activity, highlighting how these effects are, at least in part, mediated by ULK1. Interestingly, this phenomenon is not restricted to skin cancer cells, as similar results have been observed also in HeLa cells silenced for HMGA1. Taken together, these results clearly indicate HMGA1 as a key regulator of the autophagic pathway in cancer cells, thus suggesting a novel mechanism through which HMGA1 can contribute to cancer progression.
Collapse
Affiliation(s)
- Andrea Conte
- Department of Molecular Medicine and Medical Biotechnology, University of Naples 'Federico II' and Istituto di Endocrinologia ed Oncologia Sperimentale (IEOS) of CNR, Naples, Italy
| | - Simona Paladino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples 'Federico II' and Istituto di Endocrinologia ed Oncologia Sperimentale (IEOS) of CNR, Naples, Italy.,CEINGE Biotecnologie Avanzate, Naples, Italy
| | - Gaia Bianco
- Department of Molecular Medicine and Medical Biotechnology, University of Naples 'Federico II' and Istituto di Endocrinologia ed Oncologia Sperimentale (IEOS) of CNR, Naples, Italy
| | - Dominga Fasano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples 'Federico II' and Istituto di Endocrinologia ed Oncologia Sperimentale (IEOS) of CNR, Naples, Italy
| | - Raffaele Gerlini
- Department of Molecular Medicine and Medical Biotechnology, University of Naples 'Federico II' and Istituto di Endocrinologia ed Oncologia Sperimentale (IEOS) of CNR, Naples, Italy
| | - Mara Tornincasa
- Department of Molecular Medicine and Medical Biotechnology, University of Naples 'Federico II' and Istituto di Endocrinologia ed Oncologia Sperimentale (IEOS) of CNR, Naples, Italy
| | - Maurizio Renna
- Department of Medical Genetics, Cambridge Institute for Medical Research, Wellcome Trust, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Alfredo Fusco
- Department of Molecular Medicine and Medical Biotechnology, University of Naples 'Federico II' and Istituto di Endocrinologia ed Oncologia Sperimentale (IEOS) of CNR, Naples, Italy
| | - Donatella Tramontano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples 'Federico II' and Istituto di Endocrinologia ed Oncologia Sperimentale (IEOS) of CNR, Naples, Italy
| | - Giovanna Maria Pierantoni
- Department of Molecular Medicine and Medical Biotechnology, University of Naples 'Federico II' and Istituto di Endocrinologia ed Oncologia Sperimentale (IEOS) of CNR, Naples, Italy
| |
Collapse
|
27
|
Manzella L, Stella S, Pennisi MS, Tirrò E, Massimino M, Romano C, Puma A, Tavarelli M, Vigneri P. New Insights in Thyroid Cancer and p53 Family Proteins. Int J Mol Sci 2017. [PMID: 28635633 PMCID: PMC5486146 DOI: 10.3390/ijms18061325] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Thyroid cancers are common endocrine malignancies that comprise tumors with different clinical and histological features. Indeed, papillary and follicular thyroid cancers are slow-growing, well-differentiated tumors, whereas anaplastic thyroid cancers are undifferentiated neoplasias that behave much more aggressively. Well-differentiated thyroid carcinomas are efficiently cured by surgery and radioiodine, unlike undifferentiated tumors that fail to uptake radioactive iodine and are usually resistant to chemotherapy. Therefore, novel and more effective therapies for these aggressive neoplasias are urgently needed. Whereas most genetic events underlying the pathogenesis of well-differentiated thyroid cancers have been identified, the molecular mechanisms that generate undifferentiated thyroid carcinomas are still unclear. To date, one of the best-characterized genetic alterations leading to the development of poorly differentiated thyroid tumors is the loss of the p53 tumor suppressor gene. In addition, the existence of a complex network among p53 family members (p63 and p73) and their interactions with other factors that promote thyroid cancer progression has been well documented. In this review, we provide an update on the current knowledge of the role of p53 family proteins in thyroid cancer and their possible use as a therapeutic target for the treatment of the most aggressive variants of this disease.
Collapse
Affiliation(s)
- Livia Manzella
- Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy.
| | - Stefania Stella
- Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy.
| | - Maria Stella Pennisi
- Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy.
| | - Elena Tirrò
- Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy.
| | - Michele Massimino
- Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy.
| | - Chiara Romano
- Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy.
| | - Adriana Puma
- Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy.
| | - Martina Tavarelli
- Endocrinology, Department of Clinical and Experimental Medicine, Garibaldi Nesima Medical Center, University of Catania, 95122 Catania, Italy.
| | - Paolo Vigneri
- Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy.
| |
Collapse
|
28
|
Zhong J, Liu C, Zhang QH, Chen L, Shen YY, Chen YJ, Zeng X, Zu XY, Cao RX. TGF-β1 induces HMGA1 expression: The role of HMGA1 in thyroid cancer proliferation and invasion. Int J Oncol 2017; 50:1567-1578. [PMID: 28393241 PMCID: PMC5403427 DOI: 10.3892/ijo.2017.3958] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/30/2017] [Indexed: 12/11/2022] Open
Abstract
The role of transforming growth factor-β1 (TGF-β1) is complicated and plays a different role in the development of cancer. High mobility group A (HMGA1) participates in multiple cellular biology processes, and exerts important roles in the epithelial-mesenchymal transition (EMT). However, the correlation of TGF-β1 and HMGA1 in cancer cells is not yet fully understood. In this study, we determined the effects of TGF-β1 on HMGA1 expression in thyroid cancer cells and examined the role of HMGA1 in thyroid cancer progression. With real-time PCR and immunofluorescence staining, our study demonstrated that TGF-β1 induced the expression of HMGA1 through phosphoinositide 3-kinase (PI3K) and the extracellular signal-related kinase (ERK) signaling in thyroid cancer cells. With luciferase reported assay, the HMGA1 promoter activity was activated by TGF-β1 in the SW579 cells. Furthermore, lentivirus-mediated HMGA1 knockdown inhibits cellular oncogenic properties of thyroid cancer cells. Clinically, tissue microarray revealed that HMGA1 was expressed in thyroid carcinoma more than that in normal thyroid tissues (P<0.001); expression of HMGA1 and MMP-2 was identified to be positively correlated (P=0.017). The present study established the first link between HMGA1 and TGF-β1 in the regulation of thyroid cancer proliferation and invasion, and provided evidence for the pivotal role of HMGA1 in the progression of thyroid cancer, indicating HMGA1 to be potential biological marker for the diagnosis of thyroid cancer.
Collapse
Affiliation(s)
- Jing Zhong
- Institute of Clinical Medicine, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Chang Liu
- Institute of Clinical Medicine, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Qing-Hai Zhang
- Institute of Clinical Medicine, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Ling Chen
- Institute of Clinical Medicine, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Ying-Ying Shen
- Institute of Clinical Medicine, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Ya-Jun Chen
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xi Zeng
- Key Laboratory of Tumor Cellular and Molecular Pathology of the College of Hunan Province, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xu-Yu Zu
- Institute of Clinical Medicine, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Ren-Xian Cao
- Institute of Clinical Medicine, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
29
|
Critical role of HMGA proteins in cancer cell chemoresistance. JOURNAL OF MOLECULAR MEDICINE (BERLIN, GERMANY) 2017. [PMID: 28293697 DOI: 10.1007/s00109‐017‐1520‐x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The high-mobility group A (HMGA) proteins are frequently overexpressed in human malignancies and correlate with the presence of metastases and reduced patient survival. Here, we highlight the main studies evidencing a critical role of HMGA in chemoresistance, mainly by activating Akt signaling, impairing p53 activity, and regulating the expression of microRNAs that target genes involved in the susceptibility of cancer cells to antineoplastic agents. Therefore, these studies account for the association of HMGA overexpression with patient poor outcome, indicating the impairment of HMGA as a fascinating perspective for effectively improving cancer therapy.
Collapse
|
30
|
D’Angelo D, Mussnich P, Arra C, Battista S, Fusco A. Critical role of HMGA proteins in cancer cell chemoresistance. J Mol Med (Berl) 2017; 95:353-360. [DOI: 10.1007/s00109-017-1520-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 01/24/2017] [Accepted: 02/07/2017] [Indexed: 02/03/2023]
|
31
|
The Architectural Chromatin Factor High Mobility Group A1 Enhances DNA Ligase IV Activity Influencing DNA Repair. PLoS One 2016; 11:e0164258. [PMID: 27723831 PMCID: PMC5056749 DOI: 10.1371/journal.pone.0164258] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 09/22/2016] [Indexed: 11/30/2022] Open
Abstract
The HMGA1 architectural transcription factor is an oncogene overexpressed in the vast majority of human cancers. HMGA1 is a highly connected node in the nuclear molecular network and the key aspect of HMGA1 involvement in cancer development is that HMGA1 simultaneously confers cells multiple oncogenic hits, ranging from global chromatin structural and gene expression modifications up to the direct functional alterations of key cellular proteins. Interestingly, HMGA1 also modulates DNA damage repair pathways. In this work, we provide evidences linking HMGA1 with Non-Homologous End Joining DNA repair. We show that HMGA1 is in complex with and is a substrate for DNA-PK. HMGA1 enhances Ligase IV activity and it counteracts the repressive histone H1 activity towards DNA ends ligation. Moreover, breast cancer cells overexpressing HMGA1 show a faster recovery upon induction of DNA double-strand breaks, which is associated with a higher survival. These data suggest that resistance to DNA-damaging agents in cancer cells could be partially attributed to HMGA1 overexpression thus highlighting the relevance of considering HMGA1 expression levels in the selection of valuable and effective pharmacological regimens.
Collapse
|
32
|
Luzón-Toro B, Bleda M, Navarro E, García-Alonso L, Ruiz-Ferrer M, Medina I, Martín-Sánchez M, Gonzalez CY, Fernández RM, Torroglosa A, Antiñolo G, Dopazo J, Borrego S. Identification of epistatic interactions through genome-wide association studies in sporadic medullary and juvenile papillary thyroid carcinomas. BMC Med Genomics 2015; 8:83. [PMID: 26690675 PMCID: PMC4685628 DOI: 10.1186/s12920-015-0160-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 12/14/2015] [Indexed: 01/27/2023] Open
Abstract
Background The molecular mechanisms leading to sporadic medullary thyroid carcinoma (sMTC) and juvenile papillary thyroid carcinoma (PTC), two rare tumours of the thyroid gland, remain poorly understood. Genetic studies on thyroid carcinomas have been conducted, although just a few loci have been systematically associated. Given the difficulties to obtain single-loci associations, this work expands its scope to the study of epistatic interactions that could help to understand the genetic architecture of complex diseases and explain new heritable components of genetic risk. Methods We carried out the first screening for epistasis by Multifactor-Dimensionality Reduction (MDR) in genome-wide association study (GWAS) on sMTC and juvenile PTC, to identify the potential simultaneous involvement of pairs of variants in the disease. Results We have identified two significant epistatic gene interactions in sMTC (CHFR-AC016582.2 and C8orf37-RNU1-55P) and three in juvenile PTC (RP11-648k4.2-DIO1, RP11-648k4.2-DMGDH and RP11-648k4.2-LOXL1). Interestingly, each interacting gene pair included a non-coding RNA, providing thus support to the relevance that these elements are increasingly gaining to explain carcinoma development and progression. Conclusions Overall, this study contributes to the understanding of the genetic basis of thyroid carcinoma susceptibility in two different case scenarios such as sMTC and juvenile PTC. Electronic supplementary material The online version of this article (doi:10.1186/s12920-015-0160-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Berta Luzón-Toro
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain. .,Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain.
| | - Marta Bleda
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain. .,Computational Genomics Department, Centro de Investigación Príncipe Felipe (CIPF), C/Eduardo Primo Yúfera, 3, 46012, Valencia, Spain. .,Present Address: Department of Medicine, University of Cambridge, School of Clinical Medicine, Addenbrooke's Hospital, Hills Road, Cambridge, UK.
| | - Elena Navarro
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain. .,Department of Endocrinology, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain.
| | - Luz García-Alonso
- Computational Genomics Department, Centro de Investigación Príncipe Felipe (CIPF), C/Eduardo Primo Yúfera, 3, 46012, Valencia, Spain. .,Present Address: European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK.
| | - Macarena Ruiz-Ferrer
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain. .,Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain.
| | - Ignacio Medina
- Computational Genomics Department, Centro de Investigación Príncipe Felipe (CIPF), C/Eduardo Primo Yúfera, 3, 46012, Valencia, Spain. .,Present Address: HPC Services, University of Cambridge, Cambridge, UK.
| | - Marta Martín-Sánchez
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain. .,Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain.
| | - Cristina Y Gonzalez
- Computational Genomics Department, Centro de Investigación Príncipe Felipe (CIPF), C/Eduardo Primo Yúfera, 3, 46012, Valencia, Spain. .,Present Address: European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK.
| | - Raquel M Fernández
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain. .,Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain.
| | - Ana Torroglosa
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain. .,Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain.
| | - Guillermo Antiñolo
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain. .,Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain.
| | - Joaquin Dopazo
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain. .,Computational Genomics Department, Centro de Investigación Príncipe Felipe (CIPF), C/Eduardo Primo Yúfera, 3, 46012, Valencia, Spain. .,Functional Genomics Node, (INB) at CIPF, Valencia, Spain.
| | - Salud Borrego
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain. .,Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain.
| |
Collapse
|
33
|
HMGA1 silencing restores normal stem cell characteristics in colon cancer stem cells by increasing p53 levels. Oncotarget 2015; 5:3234-45. [PMID: 24833610 PMCID: PMC4102806 DOI: 10.18632/oncotarget.1914] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
High-mobility group A1 (HMGA1) proteins are architectural chromatinic proteins, abundantly expressed during embryogenesis and in most cancer tissues, but expressed at low levels or absent in normal adult tissues. Several studies have demonstrated that HMGA1 proteins play a causal role in neoplastic cell transformation. The aim of this study was to investigate the role of these proteins in the control of cancer stem cells (CSCs), which have emerged as a preferred target in cancer therapy, because of their role in cancer recurrence. We observed that HMGA1 is overexpressed in colon tumour stem cell (CTSC) lines compared to normal and colon cancer tissues. We demonstrated that HMGA1 silencing in CTSCs increases stem cell quiescence and reduces self-renewal and sphere-forming efficiency (SFE). The latter, together with the upregulation and asymmetric distribution of NUMB, is indicative of the recovery of an asymmetric division pattern, typical of normal stem cells. We further found that HMGA1 transcriptionally regulates p53, which is known to control the balance between symmetric and asymmetric divisions in CSCs. Therefore, our data indicate a critical role for HMGA1 in regulating both self-renewal and the symmetric/asymmetric division ratio in CSCs, suggesting that blocking HMGA1 function may be an effective anti-cancer therapy.
Collapse
|
34
|
Grandér D, Johnsson P. Pseudogene-Expressed RNAs: Emerging Roles in Gene Regulation and Disease. Curr Top Microbiol Immunol 2015; 394:111-26. [DOI: 10.1007/82_2015_442] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
35
|
Giorgi FM, Lopez G, Woo JH, Bisikirska B, Califano A, Bansal M. Inferring protein modulation from gene expression data using conditional mutual information. PLoS One 2014; 9:e109569. [PMID: 25314274 PMCID: PMC4196905 DOI: 10.1371/journal.pone.0109569] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 09/12/2014] [Indexed: 01/18/2023] Open
Abstract
Systematic, high-throughput dissection of causal post-translational regulatory dependencies, on a genome wide basis, is still one of the great challenges of biology. Due to its complexity, however, only a handful of computational algorithms have been developed for this task. Here we present CINDy (Conditional Inference of Network Dynamics), a novel algorithm for the genome-wide, context specific inference of regulatory dependencies between signaling protein and transcription factor activity, from gene expression data. The algorithm uses a novel adaptive partitioning methodology to accurately estimate the full Condition Mutual Information (CMI) between a transcription factor and its targets, given the expression of a signaling protein. We show that CMI analysis is optimally suited to dissecting post-translational dependencies. Indeed, when tested against a gold standard dataset of experimentally validated protein-protein interactions in signal transduction networks, CINDy significantly outperforms previous methods, both in terms of sensitivity and precision.
Collapse
Affiliation(s)
- Federico M. Giorgi
- Department of Systems Biology, Columbia University, New York, New York, United States of America
- Center for Computational Biology and Bioinformatics, Columbia University, New York, New York, United States of America
| | - Gonzalo Lopez
- Department of Systems Biology, Columbia University, New York, New York, United States of America
- Center for Computational Biology and Bioinformatics, Columbia University, New York, New York, United States of America
| | - Jung H. Woo
- Department of Systems Biology, Columbia University, New York, New York, United States of America
- Center for Computational Biology and Bioinformatics, Columbia University, New York, New York, United States of America
| | - Brygida Bisikirska
- Department of Systems Biology, Columbia University, New York, New York, United States of America
- Center for Computational Biology and Bioinformatics, Columbia University, New York, New York, United States of America
| | - Andrea Califano
- Department of Systems Biology, Columbia University, New York, New York, United States of America
- Center for Computational Biology and Bioinformatics, Columbia University, New York, New York, United States of America
- Columbia Genome Center, High Throughput Screening facility, Columbia University, New York, New York, United States of America
- Department of Biomedical Informatics, Columbia University, New York, New York, United States of America
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, United States of America
- Institute for Cancer Genetics, Columbia University, New York, New York, United States of America
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York, United States of America
- * E-mail: (AC); (MB)
| | - Mukesh Bansal
- Department of Systems Biology, Columbia University, New York, New York, United States of America
- Center for Computational Biology and Bioinformatics, Columbia University, New York, New York, United States of America
- * E-mail: (AC); (MB)
| |
Collapse
|
36
|
Camós S, Gubern C, Sobrado M, Rodríguez R, Romera V, Moro M, Lizasoain I, Serena J, Mallolas J, Castellanos M. The high-mobility group I-Y transcription factor is involved in cerebral ischemia and modulates the expression of angiogenic proteins. Neuroscience 2014; 269:112-30. [DOI: 10.1016/j.neuroscience.2014.03.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 03/07/2014] [Accepted: 03/18/2014] [Indexed: 12/24/2022]
|
37
|
Kentwell J, Gundara JS, Sidhu SB. Noncoding RNAs in endocrine malignancy. Oncologist 2014; 19:483-91. [PMID: 24718512 PMCID: PMC4012972 DOI: 10.1634/theoncologist.2013-0458] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 02/05/2014] [Indexed: 01/22/2023] Open
Abstract
Only recently has it been uncovered that the mammalian transcriptome includes a large number of noncoding RNAs (ncRNAs) that play a variety of important regulatory roles in gene expression and other biological processes. Among numerous kinds of ncRNAs, short noncoding RNAs, such as microRNAs, have been extensively investigated with regard to their biogenesis, function, and importance in carcinogenesis. Long noncoding RNAs (lncRNAs) have only recently been implicated in playing a key regulatory role in cancer biology. The deregulation of ncRNAs has been demonstrated to have important roles in the regulation and progression of cancer development. In this review, we describe the roles of both short noncoding RNAs (including microRNAs, small nuclear RNAs, and piwi-interacting RNAs) and lncRNAs in carcinogenesis and outline the possible underlying genetic mechanisms, with particular emphasis on clinical applications. The focus of our review includes studies from the literature on ncRNAs in traditional endocrine-related cancers, including thyroid, parathyroid, adrenal gland, and gastrointestinal neuroendocrine malignancies. The current and potential future applications of ncRNAs in clinical cancer research is also discussed, with emphasis on diagnosis and future treatment.
Collapse
|
38
|
Read ML, Seed RI, Fong JCW, Modasia B, Ryan GA, Watkins RJ, Gagliano T, Smith VE, Stratford AL, Kwan PK, Sharma N, Dixon OM, Watkinson JC, Boelaert K, Franklyn JA, Turnell AS, McCabe CJ. The PTTG1-binding factor (PBF/PTTG1IP) regulates p53 activity in thyroid cells. Endocrinology 2014; 155:1222-34. [PMID: 24506068 PMCID: PMC4759943 DOI: 10.1210/en.2013-1646] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The PTTG1-binding factor (PBF/PTTG1IP) has an emerging repertoire of roles, especially in thyroid biology, and functions as a protooncogene. High PBF expression is independently associated with poor prognosis and lower disease-specific survival in human thyroid cancer. However, the precise role of PBF in thyroid tumorigenesis is unclear. Here, we present extensive evidence demonstrating that PBF is a novel regulator of p53, a tumor suppressor protein with a key role in maintaining genetic stability, which is infrequently mutated in differentiated thyroid cancer. By coimmunoprecipitation and proximity-ligation assays, we show that PBF binds specifically to p53 in thyroid cells and significantly represses transactivation of responsive promoters. Further, we identify that PBF decreases p53 stability by enhancing ubiquitination, which appears dependent on the E3 ligase activity of Mdm2. Impaired p53 function was evident in a transgenic mouse model with thyroid-specific PBF overexpression (transgenic PBF mice), which had significantly increased genetic instability as indicated by fluorescent inter simple sequence repeat-PCR analysis. Consistent with this, approximately 40% of all DNA repair genes examined were repressed in transgenic PBF primary cultures, including genes with critical roles in maintaining genomic integrity such as Mgmt, Rad51, and Xrcc3. Our data also revealed that PBF induction resulted in up-regulation of the E2 enzyme Rad6 in murine thyrocytes and was associated with Rad6 expression in human thyroid tumors. Overall, this work provides novel insights into the role of the protooncogene PBF as a negative regulator of p53 function in thyroid tumorigenesis, in which PBF is generally overexpressed and p53 mutations are rare compared with other tumor types.
Collapse
Affiliation(s)
- Martin L Read
- School of Clinical and Experimental Medicine (M.L.R., R.I.S., J.C.W.F., B.M., G.A.R., R.J.W., V.E.S., P.K.K., N.S., O.M.D., K.B., J.A.F., C.J.M.) and School of Cancer Sciences (A.S.T.), University of Birmingham, Birmingham, United Kingdom; Department of Medical Sciences (T.G.), University of Ferrara, Ferrara, Italy; Department of Pediatrics (A.L.S.), University of British Columbia, Vancouver, British Columbia, Canada; and University Hospitals Birmingham National Health Service Foundation Trust (J.C.W.), Birmingham, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Ozturk N, Singh I, Mehta A, Braun T, Barreto G. HMGA proteins as modulators of chromatin structure during transcriptional activation. Front Cell Dev Biol 2014; 2:5. [PMID: 25364713 PMCID: PMC4207033 DOI: 10.3389/fcell.2014.00005] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 02/07/2014] [Indexed: 01/12/2023] Open
Abstract
High mobility group (HMG) proteins are the most abundant non-histone chromatin associated proteins. HMG proteins bind to DNA and nucleosome and alter the structure of chromatin locally and globally. Accessibility to DNA within chromatin is a central factor that affects DNA-dependent nuclear processes, such as transcription, replication, recombination, and repair. HMG proteins associate with different multi-protein complexes to regulate these processes by mediating accessibility to DNA. HMG proteins can be subdivided into three families: HMGA, HMGB, and HMGN. In this review, we will focus on recent advances in understanding the function of HMGA family members, specifically their role in gene transcription regulation during development and cancer.
Collapse
Affiliation(s)
- Nihan Ozturk
- LOEWE Research Group Lung Cancer Epigenetic, Max-Planck-Institute for Heart and Lung Research Bad Nauheim, Germany
| | - Indrabahadur Singh
- LOEWE Research Group Lung Cancer Epigenetic, Max-Planck-Institute for Heart and Lung Research Bad Nauheim, Germany
| | - Aditi Mehta
- LOEWE Research Group Lung Cancer Epigenetic, Max-Planck-Institute for Heart and Lung Research Bad Nauheim, Germany
| | - Thomas Braun
- Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research Bad Nauheim, Germany
| | - Guillermo Barreto
- LOEWE Research Group Lung Cancer Epigenetic, Max-Planck-Institute for Heart and Lung Research Bad Nauheim, Germany
| |
Collapse
|
40
|
Malaguarnera R, Belfiore A. The emerging role of insulin and insulin-like growth factor signaling in cancer stem cells. Front Endocrinol (Lausanne) 2014; 5:10. [PMID: 24550888 PMCID: PMC3912738 DOI: 10.3389/fendo.2014.00010] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 01/21/2014] [Indexed: 12/20/2022] Open
Abstract
Cancer cells frequently exploit the IGF signaling, a fundamental pathway mediating development, cell growth, and survival. As a consequence, several components of the IGF signaling are deregulated in cancer and sustain cancer progression. However, specific targeting of IGF-IR in humans has resulted efficacious only in small subsets of cancers, making researches wondering whether IGF system targeting is still worth pursuing in the clinical setting. Although no definite answer is yet available, it has become increasingly clear that other components of the IGF signaling pathway, such as IR-A, may substitute for the lack of IGF-IR, and induce cancer resistance and/or clonal selection. Moreover, accumulating evidence now indicates that IGF signaling is a central player in the induction/maintenance of epithelial mesenchymal transition (EMT) and cell stemness, two strictly related programs, which play a key role in metastatic spread and resistance to cancer treatments. Here we review the evidences indicating that IGF signaling enhances the expression of transcription factors implicated in the EMT program and has extensive cross-talk with specific pathways involved in cell pluripotency and stemness maintenance. In turn, EMT and cell stemness activate positive feed-back mechanisms causing up-regulation of various IGF signaling components. These findings may have novel translational implications.
Collapse
Affiliation(s)
- Roberta Malaguarnera
- Endocrinology, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Antonino Belfiore
- Endocrinology, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| |
Collapse
|
41
|
Macrì S, Sgarra R, Ros G, Maurizio E, Zammitti S, Milani O, Onorati M, Vignali R, Manfioletti G. Expression and functional characterization of Xhmg-at-hook genes in Xenopus laevis. PLoS One 2013; 8:e69866. [PMID: 23936116 PMCID: PMC3723657 DOI: 10.1371/journal.pone.0069866] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 06/12/2013] [Indexed: 01/12/2023] Open
Abstract
High Mobility Group A proteins (HMGA1 and HMGA2) are architectural nuclear factors involved in development, cell differentiation, and cancer formation and progression. Here we report the cloning, developmental expression and functional analysis of a new multi-AT-hook factor in Xenopus laevis (XHMG-AT-hook) that exists in three different isoforms. Xhmg-at-hook1 and 3 isoforms, but not isoform 2, are expressed throughout the entire development of Xenopus, both in the maternal and zygotic phase. Localized transcripts are present in the animal pole in the early maternal phase; during the zygotic phase, mRNA can be detected in the developing central nervous system (CNS), including the eye, and in the neural crest. We show evidence that XHMG-AT-hook proteins differ from typical HMGA proteins in terms of their properties in DNA binding and in protein/protein interaction. Finally, we provide evidence that they are involved in early CNS development and in neural crest differentiation.
Collapse
Affiliation(s)
- Simone Macrì
- Department of Biology, University of Pisa, Pisa, Italy
| | - Riccardo Sgarra
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Gloria Ros
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Elisa Maurizio
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Salvina Zammitti
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | | | - Marco Onorati
- Department of Biology, University of Pisa, Pisa, Italy
| | - Robert Vignali
- Department of Biology, University of Pisa, Pisa, Italy
- * E-mail: (GM); (RV)
| | | |
Collapse
|
42
|
Zhu W, Li C, Ai Z. Candidate agents for papillary thyroid cancer identified by gene expression analysis. Pathol Oncol Res 2013; 19:597-604. [PMID: 23519608 DOI: 10.1007/s12253-013-9625-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 03/06/2013] [Indexed: 01/10/2023]
Abstract
A better understanding of the molecular mechanisms involved in papillary thyroid cancer (PTC) is needed to manage these patients effectively. Our objectives were to expand our understanding of this disease, and to identify biologically active small molecules capable to reverse PTC. We downloaded gene expression data of PTC from Gene Expression Omnibus database and employed computational bioinformatics analysis to compare gene expression patterns with normal tissues. Small molecules that induced inverse gene changes to the PTC were identified. A total of 2,154 differentially expressed genes (DEGs) with a false discovery rate of 0.01 were identified. These 2,154 DEGs were significantly enriched in 17 pathways, including pathways associated with signal transduction, tumorigenesis and lipid or amino acid metabolism. In addition, we identified large amount of small molecules that capable to reverse PTC. We found a group of small molecules that can provide new ideas for the therapeutic studies in PTC. These drugs are clearly a direction that warrants additional consideration.
Collapse
Affiliation(s)
- Wei Zhu
- Department of General Surgery, Zhongshan Hospital Affiliated to Fudan University, No.180 Fenglin Road, Xuhui District, Shanghai 200032, China
| | | | | |
Collapse
|
43
|
Mussnich P, D'Angelo D, Leone V, Croce CM, Fusco A. The High Mobility Group A proteins contribute to thyroid cell transformation by regulating miR-603 and miR-10b expression. Mol Oncol 2013; 7:531-42. [PMID: 23384558 DOI: 10.1016/j.molonc.2013.01.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 01/07/2013] [Accepted: 01/08/2013] [Indexed: 01/08/2023] Open
Abstract
The overexpression of the HMGA1 proteins is a feature of human malignant neoplasias and has a causal role in cell transformation. The aim of our study has been to investigate the microRNAs (miRNAs or miRs) regulated by the HMGA1 proteins in the process of cell transformation analyzing the miRNA expression profile of v-ras-Ki oncogene-transformed thyroid cells expressing or not HMGA1 proteins. We demonstrate that, among the miRNAs regulated by cell transformation, there are miR-10b, miR-21, miR-125b, miR-221 and miR-222 that are positively and miR-34a and miR-603 that are negatively regulated by HMGA1 expression. Then, we focused our attention on the miR-10b and miR-603 whose expression was dependent on the presence of HMGA1 also in other cell systems. We found that miR-10b is able to target the PTEN gene, whereas miR-603 targets the CCND1 and CCND2 genes coding for the cyclin D1 and cyclin D2 proteins, respectively. Moreover, functional studies showed that miR-10b and miR-603 regulate positively and negatively, respectively, cell proliferation and migration suggesting a role of their dysregulation in thyroid cell transformation.
Collapse
Affiliation(s)
- Paula Mussnich
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR, c/o Dipartimento di Biologia e Patologia Cellulare e Molecolare, Facoltà di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli Federico II, Naples, Italy
| | | | | | | | | |
Collapse
|
44
|
Lo Sardo A, Altamura S, Pegoraro S, Maurizio E, Sgarra R, Manfioletti G. Identification and characterization of new molecular partners for the protein arginine methyltransferase 6 (PRMT6). PLoS One 2013; 8:e53750. [PMID: 23326497 PMCID: PMC3542376 DOI: 10.1371/journal.pone.0053750] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 12/03/2012] [Indexed: 12/13/2022] Open
Abstract
PRMT6 is a protein arginine methyltransferase that has been implicated in transcriptional regulation, DNA repair, and human immunodeficiency virus pathogenesis. Only few substrates of this enzyme are known and therefore its cellular role is not well understood. To identify in an unbiased manner substrates and potential regulators of PRMT6 we have used a yeast two-hybrid approach. We identified 36 new putative partners for PRMT6 and we validated the interaction in vivo for 7 of them. In addition, using invitro methylation assay we identified 4 new substrates for PRMT6, extending the involvement of this enzyme to other cellular processes beyond its well-established role in gene expression regulation. Holistic approaches create molecular connections that allow to test functional hypotheses. The assembly of PRMT6 protein network allowed us to formulate functional hypotheses which led to the discovery of new molecular partners for the architectural transcription factor HMGA1a, a known substrate for PRMT6, and to provide evidences for a modulatory role of HMGA1a on the methyltransferase activity of PRMT6.
Collapse
Affiliation(s)
| | - Sandro Altamura
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Silvia Pegoraro
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Elisa Maurizio
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Riccardo Sgarra
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | | |
Collapse
|
45
|
Tumor suppressive miR-124 targets androgen receptor and inhibits proliferation of prostate cancer cells. Oncogene 2012; 32:4130-8. [PMID: 23069658 DOI: 10.1038/onc.2012.425] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 07/10/2012] [Accepted: 07/31/2012] [Indexed: 12/21/2022]
Abstract
Although prostate cancer (CaP) is the most frequently diagnosed malignant tumor in American men, the mechanisms underlying the development and progression of CaP remain largely unknown. Recent studies have shown that downregulation of the microRNA miR-124 occurs in several types of human cancer, suggesting a tumor suppressive function of miR-124. Until now, however, it has been unclear whether miR-124 is associated with CaP. In the present study, we completed a series of experiments to understand the functional role of miR-124 in CaP. We detected the expression level of miR-124 in clinical CaP tissues, evaluated the influence of miR-124 on the growth of CaP cells and investigated the mechanism underlying the dysregulation of miR-124. We found that (i) miR-124 directly targets the androgen receptor (AR) and subsequently induces an upregulation of p53; (ii) miR-124 is significantly downregulated in malignant prostatic cells compared to benign cells, and DNA methylation causes the reduced expression of miR-124; and (iii) miR-124 can inhibit the growth of CaP cells in vitro and in vivo. Data from this study revealed that loss of miR-124 expression is a common event in CaP, which may contribute to the pathogenesis of CaP. Our studies also suggest that miR-124 is a potential tumor suppressive gene in CaP, and restoration of miR-124 expression may represent a novel strategy for CaP therapy.
Collapse
|
46
|
Takeuchi I, Takaha N, Nakamura T, Hongo F, Mikami K, Kamoi K, Okihara K, Kawauchi A, Miki T. High mobility group protein AT-hook 1 (HMGA1) is associated with the development of androgen independence in prostate cancer cells. Prostate 2012; 72:1124-32. [PMID: 22213442 DOI: 10.1002/pros.22460] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2011] [Accepted: 10/27/2011] [Indexed: 11/11/2022]
Abstract
BACKGROUND We previously reported that the level of high mobility group protein AT-hook 1 (HMGA1) is low in androgen-dependent prostate cancer (PCa) cells (LNCaP), but is high in androgen-independent PCa cells (DU145 and PC-3) and that HMGA1 is a strong candidate gene playing a potential role in the progression of PCa. These findings have prompted us to evaluate the effect of HMGA1 on developing androgen independency, which is associated with the progression of PCa. METHODS Expression of HMGA1 in PCa cells and mouse tissues was examined by Western blot. In order to examine the effect of HMGA1 on cell growth under androgen-deprived condition, we transfected HMGA1 into LNCaP cells, and siRNA into both DU145 and PC-3 cells, respectively. RESULTS Androgen-deprivation induced an increase in the level of HMGA1 in LNCaP cells in vitro and in vivo, but did not in normal prostate tissue. Overexpression of HMGA1 maintained the cell growth of LNCaP under androgen-deprived condition. Furthermore, knockdown of HMGA1 suppressed the cell growth of DU145 and PC-3. CONCLUSIONS These data suggest that elevated expression of HMGA1 is associated with the transition of PCa cells from androgen-sensitive to androgen-independent growth and plays a role in the cell growth of androgen-independent PCa cells.
Collapse
Affiliation(s)
- Ichiro Takeuchi
- Department of Urology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
PURPOSE Although molecular targeted therapy has improved the clinical outcome of metastatic renal cell carcinoma, a complete response is rare and there are various side effects. Identifying novel target molecules is necessary to improve the clinical outcome of metastatic renal cell carcinoma. HMGA1 is over expressed in many types of cancer and it is associated with metastatic potential. It is expressed at low levels or not expressed in normal tissue. We examined HMGA1 expression and function in human renal cell carcinoma. MATERIALS AND METHODS HMGA1 expression in surgical specimen from patients with renal cell carcinoma was examined by immunoblot. HMGA1 expression in 6 human renal cell carcinoma cell lines was examined by immunoblot and immunofluorescence. The molecular effects of siRNA mediated knockdown of HMGA1 were examined in ACHN and Caki-1 cells. RESULTS Immunoblot using surgical specimen showed that HMGA1 was not expressed in normal kidney tissue but it was expressed in tumor tissue in 1 of 30 nonmetastatic (3%) and 6 of 18 metastatic (33%) cases (p=0.008). Immunoblot and immunofluorescence revealed significant nuclear expression of HMGA1 in ACHN and Caki-1 cells derived from metastatic sites. HMGA1 knockdown remarkably suppressed colony formation and induced significant apoptosis in ACHN and Caki-1 cells. HMGA1 knockdown significantly inhibited invasion and migration in vitro, and induced anoikis associated with P-Akt down-regulation in ACHN cells. CONCLUSIONS HMGA1 is a potential target for novel therapeutic modalities for metastatic renal cell carcinoma.
Collapse
|
48
|
Massimi I, Guerrieri F, Petroni M, Veschi V, Truffa S, Screpanti I, Frati L, Levrero M, Gulino A, Giannini G. The HMGA1 protoncogene frequently deregulated in cancer is a transcriptional target of E2F1. Mol Carcinog 2012; 52:526-34. [PMID: 22389255 DOI: 10.1002/mc.21887] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 12/05/2011] [Accepted: 01/25/2012] [Indexed: 01/28/2023]
Abstract
Reactivation of the HMGA1 protoncogene is very frequent in human cancer, but still very little is known on the molecular mechanisms leading to this event. Prompted by the finding of putative E2F binding sites in the human HMGA1 promoter and by the frequent deregulation of the RB/E2F1 pathway in human carcinogenesis, we investigated whether E2F1 might contribute to the regulation of HMGA1 gene expression. Here we report that E2F1 induces HMGA1 by interacting with a 193 bp region of the HMGA1 promoter containing an E2F binding site surrounded by three putative Sp1 binding sites. Both gain and loss of function experiments indicate that Sp1 functionally interacts with E2F1 to promote HMGA1 expression. However, while Sp1 constitutively binds HMGA1 promoter, it is the balance between different E2F family members that tunes the levels of HMGA1 expression between quiescence and proliferation. Finally, we found increased HMGA1 expression in pituitary and thyroid tumors developed in Rb(+/-) mice, supporting the hypothesis that E2F1 is a novel important regulator of HMGA1 expression and that deregulation of the RB/E2F1 path might significantly contribute to HMGA1 deregulation in cancer.
Collapse
Affiliation(s)
- Isabella Massimi
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Liu Y, Wang Y, Zhang Y, Fu J, Zhang G. Knockdown of HMGA1 expression by short/small hairpin RNA inhibits growth of ovarian carcinoma cells. Biotechnol Appl Biochem 2012; 59:1-5. [PMID: 22332738 DOI: 10.1002/bab.56] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 09/01/2011] [Indexed: 01/04/2023]
Abstract
The aim of the current study was to investigate the influence of downregulating high-mobility group protein A1 (HMGA1) on the tumor gene and the mechanisms underlying the antitumor of HMGA1. The efficient short/small hairpin RNAs (shRNAs) of HMGA1 were constructed and transfected into human ovarian carcinoma OVCAR cells. The changes were identified by reverse transcription PCR (RT-PCR), Western blotting, methyl thiazolyl tetrazolium, and invasion assay. The knockdown of HMGA1 expression in OVCAR cells could obviously change cell morphology, decrease cell proliferation, and reduce invasion in vitro. BALB/C nude mice injected with OVCAR cells transfected HMGA1 shRNA showed a significantly lower tumor weight and volume than those in the control group. Taken together, HMGA1 knockdown could reduce the growth and metastasis potentials of OVCAR cells.
Collapse
Affiliation(s)
- Yinglan Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Harbin University, Harbin, People's Republic of China
| | | | | | | | | |
Collapse
|
50
|
Zhang Y, Ma T, Yang S, Xia M, Xu J, An H, Yang Y, Li S. High-mobility group A1 proteins enhance the expression of the oncogenic miR-222 in lung cancer cells. Mol Cell Biochem 2011; 357:363-71. [PMID: 21656127 DOI: 10.1007/s11010-011-0907-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 05/28/2011] [Indexed: 12/18/2022]
Abstract
High-mobility group A1 (HMGA1) is a non-histone chromatin protein that has the ability to regulate the transcriptional activity of many genes. Overexpression of HMGA1 is associated with malignant cellular behavior in a range of human cancers but the underlying mechanism is largely unknown. Here we showed that in a cohort of non-small cell lung cancer (NSCLC) tumors, HMGA1 overexpression was immediately associated with enhanced expression of an oncogenic miRNA, namely, miR-222. Chromatin immunoprecipitation (CHIP) assay revealed that HMGA1 directly binds to the proximal promoter of miR-222 in NSCLC cells. We further showed that HMGA1 silencing reduced miR-222 transcriptional activity, whereas forced HMGA1 expression increased it, indicating that miR-222 is directly regulated by HMGA1. Based on in silico prediction, one of the putative targets of miR-222 is phosphatase 2A subunit B (PPP2R2A) which inhibits Akt phosphorylation (p-Akt). We demonstrated that miR-222 inhibited protein expression of PPP2R2A in NSCLC cells by directly interacting with its 3'-UTR region, leading to an obvious increase of p-Akt. HMGA1 silencing augmented PPP2R2A protein expression and inhibited Akt signaling, resulting in significantly retarded cell growth response to IGF-I. These results suggested that HMGA1 is a positive regulator of miR-222, and HMGA1 overexpression might contribute to dysregulation of Akt signaling in NSCLC.
Collapse
Affiliation(s)
- Yunzhi Zhang
- Department of Infectious Disease, Shanghai Public Health Clinical Center Affiliated to Fudan University, Shanghai, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|