1
|
Zhang Y, Li Y, Fang B, Du Y, Peng P. Framework Nucleic Acids: Innovative Tools for Cellular Sensing and Therapeutics. Chembiochem 2025; 26:e202400810. [PMID: 39653648 DOI: 10.1002/cbic.202400810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/07/2024] [Indexed: 12/18/2024]
Abstract
As emerging biomaterials, framework nucleic acids (FNAs) have recently demonstrated great potential in the biomedical field due to their high programmability, biocompatibility, unique structural diversity, and precise molecular design capabilities. This review focuses on the applications of FNAs in cellular sensing and disease treatment. First, we systematically introduce the applications of FNAs in cellular sensing, including their precise recognition and response to the extracellular tumor microenvironment, cell membrane proteins, and intracellular biomarkers. Subsequently, we review the potential of FNAs in disease treatment, covering their applications and development in drug delivery, regulation of cell behavior, and immunomodulation. We also discuss the limitations and potential role of FNAs in personalized medicine, precision diagnostics, and advanced therapies. The broad application of FNAs is expected to drive significant breakthroughs in future biomedical technological innovations and clinical translation.
Collapse
Affiliation(s)
- Yihan Zhang
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Yuting Li
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Bowen Fang
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Yi Du
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Pai Peng
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, 230032, China
| |
Collapse
|
2
|
Sayed ZS, Hieba EM, Batakoushy HA, Rashdan HRM, Ismail E, Elkatlawy SM, Elzwawy A. Cancer treatment approaches within the frame of hyperthermia, drug delivery systems, and biosensors: concepts and future potentials. RSC Adv 2024; 14:39297-39324. [PMID: 39670162 PMCID: PMC11635600 DOI: 10.1039/d4ra06992g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 11/28/2024] [Indexed: 12/14/2024] Open
Abstract
This work presents a review of the therapeutic modalities and approaches for cancer treatment. A brief overview of the traditional treatment routes is presented in the introduction together with their reported side effects. A combination of the traditional approaches was reported to demonstrate an effective therapy until a few decades ago. With the improvement in the fabrication of nanomaterials, targeted therapy represents a novel therapeutic approach. This improvement established on nanoparticles is categorized into hyperthermia, drug delivery systems, and biosensors. Hyperthermia presents a personalized medicine-based approach in which targeted zones are heated up until the diseased tissue is destroyed by the thermal effect. The use of magnetic nanoparticles further improved the effectiveness of hyperthermia owing to the enhanced heating action, further increasing the accuracy of the targeting process. Nanoparticle-based biosensors present a smart nanodevice that can detect, monitor, and target tumor tissues by following the biomarkers in the body fluids. Magnetic nanoparticles offer a controlled thermo-responsive device that can be manipulated by changing the magnetic field, offering a more personalized and controlled hyperthermia therapeutic modality. Similarly, gold nanoparticles offer an effective aid in the hyperthermia treatment approach. Furthermore, carbon nanotubes and metal-organic frameworks present a cutting-edge approach to cancer treatment. A combination of functionalized nanoparticles offers a unique route for drug delivery systems, in which therapeutic agents carried by nanoparticles are guided into the human body and then released in the target spot.
Collapse
Affiliation(s)
- Zeinab S Sayed
- Faculty of Applied Medical Science, Misr University for Science and Technology (MUST) Giza Egypt
| | - Eman M Hieba
- Chemistry and Entomology Department, Faculty of Science, Cairo University Giza 12613 Egypt
| | - Hany A Batakoushy
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Menoufia University Shebin Elkom 32511 Egypt
| | - Huda R M Rashdan
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre 33 El Buhouth St., Dokki Giza 12622 Egypt
| | - Enas Ismail
- Department of Prosthodontics, Faculty of Dentistry, University of the Western Cape Cape Town 7505 South Africa
- Physics Department, Faculty of Science (Girl's Branch), Al Azhar University Nasr City 11884 Cairo Egypt
| | - Saeid M Elkatlawy
- Department of Physics, Faculty of Science, University of Sadat City Fifth Zone Sadat Egypt
| | - Amir Elzwawy
- Ceramics Department, Advanced Materials Technology and Mineral Resources Research Institute, National Research Centre (NRC) 33 El Bohouth St., Dokki Giza 12622 Egypt
| |
Collapse
|
3
|
Shao F, Hu J, Zhang P, Akarapipad P, Park JS, Lei H, Hsieh K, Wang TH. Enhanced CRISPR/Cas-Based Immunoassay through Magnetic Proximity Extension and Detection. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.06.24313206. [PMID: 39314939 PMCID: PMC11419220 DOI: 10.1101/2024.09.06.24313206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas-associated systems have recently emerged as a focal point for developing next-generation molecular diagnosis, particularly for nucleic acid detection. However, the detection of proteins is equally critical across diverse applications in biology, medicine, and the food industry, especially for diagnosing and prognosing diseases like cancer, Alzheimer's and cardiovascular conditions. Despite recent efforts to adapt CRISPR/Cas systems for protein detection with immunoassays, these methods typically achieved sensitivity only in the femtomolar to picomolar range, underscoring the need for enhanced detection capabilities. To address this, we developed CRISPR-AMPED, an innovative CRISPR/Cas-based immunoassay enhanced by magnetic proximity extension and detection. This approach combines proximity extension assay (PEA) with magnetic beads that converts protein into DNA barcodes for quantification with effective washing steps to minimize non-specific binding and hybridization, therefore reducing background noise and increasing detection sensitivity. The resulting DNA barcodes are then detected through isothermal nucleic acid amplification testing (NAAT) using recombinase polymerase amplification (RPA) coupled with the CRISPR/Cas12a system, replacing the traditional PCR. This integration eliminates the need for thermocycling and bulky equipment, reduces amplification time, and provides simultaneous target and signal amplification, thereby significantly boosting detection sensitivity. CRISPR-AMPED achieves attomolar level sensitivity, surpassing ELISA by over three orders of magnitude and outperforming existing CRISPR/Cas-based detection systems. Additionally, our smartphone-based detection device demonstrates potential for point-of-care applications, and the digital format extends dynamic range and enhances quantitation precision. We believe CRISPR-AMPED represents a significant advancement in the field of protein detection.
Collapse
|
4
|
Kalashgrani MY, Mousavi SM, Akmal MH, Gholami A, Omidifar N, Chiang WH, Lai CW, Ripaj Uddin M, Althomali RH, Rahman MM. Biosensors for metastatic cancer cell detection. Clin Chim Acta 2024; 559:119685. [PMID: 38663472 DOI: 10.1016/j.cca.2024.119685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 05/04/2024]
Abstract
Early detection and effective cancer treatment are critical to improving metastatic cancer cell diagnosis and management today. In particular, accurate qualitative diagnosis of metastatic cancer cell represents an important step in the diagnosis of cancer. Today, biosensors have been widely developed due to the daily need to measure different chemical and biological species. Biosensors are utilized to quantify chemical and biological phenomena by generating signals that are directly proportional to the quantity of the analyte present in the reaction. Biosensors are widely used in disease control, drug delivery, infection detection, detection of pathogenic microorganisms, and markers that indicate a specific disease in the body. These devices have been especially popular in the field of metastatic cancer cell diagnosis and treatment due to their portability, high sensitivity, high specificity, ease of use and short response time. This article examines biosensors for metastatic cancer cells. It also studies metastatic cancer cells and the mechanism of metastasis. Finally, the function of biosensors and biomarkers in metastatic cancer cells is investigated.
Collapse
Affiliation(s)
| | - Seyyed Mojtaba Mousavi
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taiwan
| | - Muhammad Hussnain Akmal
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taiwan
| | - Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Navid Omidifar
- Department of Pathology, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taiwan.
| | - Chin Wei Lai
- Nanotechnology and Catalysis Research Centre (NANOCAT), Level 3, Block A, Institute for Advanced Studies (IAS), Universiti Malaya (UM), 50603 Kuala Lumpur, Malaysia
| | - Md Ripaj Uddin
- Institute of National Analytical Research and Service (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka, Bangladesh
| | - Raed H Althomali
- Department of Chemistry, College of Art and Science, Prince Sattam bin Abdulaziz University, Wadi Al-Dawasir 11991, Al Kharj, Saudi Arabia
| | - Mohammed M Rahman
- Center of Excellence for Advanced Materials Research (CEAMR) & Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
5
|
Tang Q, Zhang F, Luo L, Duan Y, Zhu T, Ni Y, Wang Y, Qi H, Jiang S, Zhou J, Ma X, Zhang Y. Ultrasound-Induced Gold Nanoparticle United with Acoustic Reprogramming of Macrophages for Enhanced Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:50926-50939. [PMID: 37877885 DOI: 10.1021/acsami.3c12599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Sonodynamic therapy (SDT) has considerable potential in cancer treatment and exhibits high tissue penetration with minimal damage to healthy tissues. The efficiency of SDT is constrained by the complex immunological environment and tumor treatment resistance. Herein, a specific acoustic-actuated tumor-targeted nanomachine is proposed to generate mechanical damage to lysosomes for cancer SDT. The hybrid nanomachine was assembled with gold nanoparticles (GNPs) as the core and encapsulated with macrophage exosomes modified by AS1411 aptamers (GNP@EXO-APs) to optimize the pharmacokinetics and tumor aggregation. GNP@EXO-APs could be specifically transferred to the lysosomes of tumor cells. After induction with ultrasound, GNP@EXO-APs generated strong mechanical stress to produce lysosomal-dependent cell death in cancer cells. Notably, tumor-associated macrophages were reprogrammed in the ultrasound environment to an antitumor phenotype. Enhanced mechanical destruction via GNP@EXO-APs and immunotherapy of cancer cells were verified both in vitro and in vivo under SDT. This study provides a new direction for inside-out killing effects on tumor cells for cancer treatment.
Collapse
Affiliation(s)
- Qinchao Tang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, China
| | - Fanyu Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, China
| | - Licheng Luo
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430079, China
| | - Yiling Duan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, China
| | - Taomin Zhu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, China
| | - Yueqi Ni
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, China
| | - Yang Wang
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430079, China
| | - Haoning Qi
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, China
| | - Shuting Jiang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, China
| | - Jingxuan Zhou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, China
| | - Xiaoxin Ma
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, China
| | - Yufeng Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China
| |
Collapse
|
6
|
Rao Bommi J, Kummari S, Lakavath K, Sukumaran RA, Panicker LR, Marty JL, Yugender Goud K. Recent Trends in Biosensing and Diagnostic Methods for Novel Cancer Biomarkers. BIOSENSORS 2023; 13:398. [PMID: 36979610 PMCID: PMC10046866 DOI: 10.3390/bios13030398] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
Cancer is one of the major public health issues in the world. It has become the second leading cause of death, with approximately 75% of cancer deaths transpiring in low- or middle-income countries. It causes a heavy global economic cost estimated at more than a trillion dollars per year. The most common cancers are breast, colon, rectum, prostate, and lung cancers. Many of these cancers can be treated effectively and cured if detected at the primary stage. Nowadays, around 50% of cancers are detected at late stages, leading to serious health complications and death. Early diagnosis of cancer diseases substantially increases the efficient treatment and high chances of survival. Biosensors are one of the potential screening methodologies useful in the early screening of cancer biomarkers. This review summarizes the recent findings about novel cancer biomarkers and their advantages over traditional biomarkers, and novel biosensing and diagnostic methods for them; thus, this review may be helpful in the early recognition and monitoring of treatment response of various human cancers.
Collapse
Affiliation(s)
| | - Shekher Kummari
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad 678 557, Kerala, India
| | - Kavitha Lakavath
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad 678 557, Kerala, India
| | - Reshmi A. Sukumaran
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad 678 557, Kerala, India
| | - Lakshmi R. Panicker
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad 678 557, Kerala, India
| | - Jean Louis Marty
- Université de Perpignan Via Domitia, 52 Avenue Paul Alduy, 66860 Perpignan, France
| | - Kotagiri Yugender Goud
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad 678 557, Kerala, India
| |
Collapse
|
7
|
Huang D, Rao D, Jin Q, Lai M, Zhang J, Lai Z, Shen H, Zhong T. Role of CD147 in the development and diagnosis of hepatocellular carcinoma. Front Immunol 2023; 14:1149931. [PMID: 37090718 PMCID: PMC10115957 DOI: 10.3389/fimmu.2023.1149931] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/28/2023] [Indexed: 04/25/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer, and the third leading cause of cancer-related deaths worldwide. HCC is characterized by insidious onset, and most patients are diagnosed at an advanced stage with a poor prognosis. Identification of biomarkers for HCC onset and progression is imperative to development of effective diagnostic and therapeutic strategies. CD147 is a glycoprotein that is involved in tumor cell invasion, metastasis and angiogenesis through multiple mechanisms. In this review, we describe the molecular structure of CD147 and its role in regulating HCC invasion, metastasis and angiogenesis. We highlight its potential as a diagnostic and therapeutic target for HCC.
Collapse
Affiliation(s)
- Defa Huang
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Dingyu Rao
- Department of Cardiothoracic Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Qing Jin
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Mi Lai
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jiali Zhang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
| | - Zhonghong Lai
- Department of traumatology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Haibin Shen
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- *Correspondence: Haibin Shen, ; Tianyu Zhong,
| | - Tianyu Zhong
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Precision Medicine Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- *Correspondence: Haibin Shen, ; Tianyu Zhong,
| |
Collapse
|
8
|
Advancing Tumor Microenvironment Research by Combining Organs-on-Chips and Biosensors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1379:171-203. [DOI: 10.1007/978-3-031-04039-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Hernandez-Garcia E, Chrysikou E, Kalea AZ. The Interplay between Housing Environmental Attributes and Design Exposures and Psychoneuroimmunology Profile-An Exploratory Review and Analysis Paper in the Cancer Survivors' Mental Health Morbidity Context. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:10891. [PMID: 34682637 PMCID: PMC8536084 DOI: 10.3390/ijerph182010891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/08/2021] [Accepted: 10/14/2021] [Indexed: 12/11/2022]
Abstract
Adult cancer survivors have an increased prevalence of mental health comorbidities and other adverse late-effects interdependent with mental illness outcomes compared with the general population. Coronavirus Disease 2019 (COVID-19) heralds an era of renewed call for actions to identify sustainable modalities to facilitate the constructs of cancer survivorship care and health care delivery through physiological supportive domestic spaces. Building on the concept of therapeutic architecture, psychoneuroimmunology (PNI) indicators-with the central role in low-grade systemic inflammation-are associated with major psychiatric disorders and late effects of post-cancer treatment. Immune disturbances might mediate the effects of environmental determinants on behaviour and mental disorders. Whilst attention is paid to the non-objective measurements for examining the home environmental domains and mental health outcomes, little is gathered about the multidimensional effects on physiological responses. This exploratory review presents a first analysis of how addressing the PNI outcomes serves as a catalyst for therapeutic housing research. We argue the crucial component of housing in supporting the sustainable primary care and public health-based cancer survivorship care model, particularly in the psychopathology context. Ultimately, we illustrate a series of interventions aiming at how housing environmental attributes can trigger PNI profile changes and discuss the potential implications in the non-pharmacological treatment of cancer survivors and patients with mental morbidities.
Collapse
Affiliation(s)
- Eva Hernandez-Garcia
- The Bartlett Real Estate Institute, The Bartlett School of Sustainable Construction, University College London, London WC1E 6BT, UK;
| | - Evangelia Chrysikou
- The Bartlett Real Estate Institute, The Bartlett School of Sustainable Construction, University College London, London WC1E 6BT, UK;
- Clinic of Social and Family Medicine, Department of Social Medicine, University of Crete, 700 13 Heraklion, Greece
| | - Anastasia Z. Kalea
- Division of Medicine, University College London, London WC1E 6JF, UK;
- Institute of Cardiovascular Science, University College London, London WC1E 6HX, UK
| |
Collapse
|
10
|
Guo Y, Li K, Gao Y, Zhao S, Shi M, Li J, Liu Z, Wang Z, He L. CLEC3B Identified as a Potential Lung Cancer Biomarker in Serum by Aptamer‐Capture Technology. ChemistrySelect 2021. [DOI: 10.1002/slct.202100605] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yuanbin Guo
- College of Environment & Chemical Engineering Yanshan University Qinhuangdao Hebei Province 066004 China
| | - Kun Li
- College of Environment & Chemical Engineering Yanshan University Qinhuangdao Hebei Province 066004 China
| | - Yue Gao
- College of Environment & Chemical Engineering Yanshan University Qinhuangdao Hebei Province 066004 China
| | - Shuhua Zhao
- College of Environment & Chemical Engineering Yanshan University Qinhuangdao Hebei Province 066004 China
| | - Ming Shi
- College of Environment & Chemical Engineering Yanshan University Qinhuangdao Hebei Province 066004 China
| | - Jian Li
- College of Environment & Chemical Engineering Yanshan University Qinhuangdao Hebei Province 066004 China
| | - Zhiwei Liu
- College of Environment & Chemical Engineering Yanshan University Qinhuangdao Hebei Province 066004 China
| | - Zhaoxia Wang
- College of Environment & Chemical Engineering Yanshan University Qinhuangdao Hebei Province 066004 China
| | - Lei He
- College of Environment & Chemical Engineering Yanshan University Qinhuangdao Hebei Province 066004 China
| |
Collapse
|
11
|
Li L, Zhang R, Yang H, Zhang D, Liu J, Li J, Guo B. GDF15 knockdown suppresses cervical cancer cell migration in vitro through the TGF-β/Smad2/3/Snail1 pathway. FEBS Open Bio 2020; 10:2750-2760. [PMID: 33098235 PMCID: PMC7714065 DOI: 10.1002/2211-5463.13013] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/11/2020] [Accepted: 10/21/2020] [Indexed: 12/28/2022] Open
Abstract
Growth differentiation factor 15 (GDF15), a member of the transforming growth factor β (TGF-β) superfamily, is a prognostic biomarker of cervical cancer. In addition, GDF15 has been reported to enhance the migration of colorectal cancer cells and liver cancer stem-like cells. However, the mechanism by which GDF15 promotes cervical cancer cell migration is not completely understood. Here, we report that GDF15 expression is enhanced in cervical cancer tissues, as well as in cultured cervical cancer cells. ShGDF15 transfection markedly inhibited expression of Vimentin, N-cadherin and Snail1, and resulted in up-regulation of E-cadherin expression in HT-3 and HeLa cells. Moreover, knockdown of GDF15 suppressed wound healing rate and reduced the number of invasive cells. Furthermore, knockdown of GDF15 significantly suppressed the expression of phosphorylated Smad2 and Smad3. The addition of TGF-β1 partially abolished the inhibitory effects of GDF15 knockdown on the migration and invasion of cervical cancer cells. In summary, we report here that GDF15 knockdown inhibits migration and invasion of cervical cancer cells in vitro through the TGF-β/Smad2/3/Snail1 pathway.
Collapse
Affiliation(s)
- Li Li
- Department of Gynaecology, Binzhou Medical University Hospital, Binzhou, China
| | - Ruihong Zhang
- Department of Obstetrics, Chengwu People's Hospital, Heze, China
| | - Hailei Yang
- Department of Gynaecology, The Liaocheng Second People's Hospital, The Second Hospital of Liaocheng Affiliated to Shandong First Medical University, Liaocheng, China
| | - Donghua Zhang
- Department of Cancer Chemotherapy, Zhangqiu District People's Hospital, Jinan, China
| | - Jiwei Liu
- Department of Cancer Chemotherapy, Zhangqiu District People's Hospital, Jinan, China
| | - Jinfang Li
- Department of Oncology, The Shouguang People's Hospital, Shouguang, China
| | - Bin Guo
- Department of Oncology, The Shouguang People's Hospital, Shouguang, China
| |
Collapse
|
12
|
Evaluating the Relationship of GDF-15 with Clinical Characteristics, Cardinal Features, and Survival in Multiple Myeloma. Mediators Inflamm 2020; 2020:5657864. [PMID: 33144847 PMCID: PMC7596430 DOI: 10.1155/2020/5657864] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/17/2020] [Accepted: 10/09/2020] [Indexed: 12/21/2022] Open
Abstract
Growth differentiation factor 15 (GDF-15), a member of the transforming growth factor-β superfamily, participates in processes associated with myeloma development and its end-organ complications. It plays a significant role in both physiological and abnormal erythropoiesis and regulates iron homeostasis through modulation of hepcidin. It is abnormally secreted in marrow stromal cells of patients with multiple myeloma (MM), which may reflect the tumor microenvironment. We analyzed the associations of serum GDF-15 with clinical characteristics of 73 MM patients (including asymptomatic MM) and the laboratory indices of renal function, anemia, and inflammation. Baseline serum GDF-15 was studied as the predictor of two-year survival. We defined five clinically relevant subgroups of patients (symptomatic MM only, patients with and without remission, patients on chemotherapy, and without treatment). Increased GDF-15 concentrations were associated with more advanced MM stage, anemia, renal impairment (lower glomerular filtration and higher markers of tubular injury), and inflammation. Most of the results were confirmed in the subgroup analysis. Serum cystatin C and urine neutrophil gelatinase-associated lipocalin were associated with GDF-15 independently of other variables. In the studied MM patients, GDF-15 did not significantly predict survival (p = 0.06). Our results suggest that serum GDF-15 reflects myeloma burden and shares a relationship with several markers of prognostic significance, as well as major manifestations.
Collapse
|
13
|
Takke A, Shende P. Non-invasive Biodiversified Sensors: A Modernized Screening Technology for Cancer. Curr Pharm Des 2019; 25:4108-4120. [DOI: 10.2174/1381612825666191022162232] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 10/14/2019] [Indexed: 01/30/2023]
Abstract
Background:
Biological sensors revolutionize the method of diagnoses of diseases from early to final
stages using the biomarkers present in the body. Biosensors are advantageous due to the involvement of minimal
sample collection with improved specificity and sensitivity for the detection of biomarkers.
Methods:
Conventional biopsies restrict problems like patient non-compliance, cross-infection and high cost and to
overcome these issues biological samples like saliva, sweat, urine, tears and sputum progress into clinical and diagnostic
research for the development of non-invasive biosensors. This article covers various non-invasive measurements
of biological samples, optical-based, mass-based, wearable and smartphone-based biosensors for the detection
of cancer.
Results:
The demand for non-invasive, rapid and economic analysis techniques escalated due to the modernization
of the introduction of self-diagnostics and miniature forms of devices. Biosensors have high sensitivity and
specificity for whole cells, microorganisms, enzymes, antibodies, and genetic materials.
Conclusion:
Biosensors provide a reliable early diagnosis of cancer, which results in faster therapeutic outcomes
with in-depth fundamental understanding of the disease progression.
Collapse
Affiliation(s)
- Anjali Takke
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India
| | - Pravin Shende
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India
| |
Collapse
|
14
|
Landras A, Reger de Moura C, Jouenne F, Lebbe C, Menashi S, Mourah S. CD147 Is a Promising Target of Tumor Progression and a Prognostic Biomarker. Cancers (Basel) 2019; 11:cancers11111803. [PMID: 31744072 PMCID: PMC6896083 DOI: 10.3390/cancers11111803] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/13/2019] [Accepted: 11/13/2019] [Indexed: 12/18/2022] Open
Abstract
Microenvironment plays a crucial role in tumor development and progression. Cancer cells modulate the tumor microenvironment, which also contribute to resistance to therapy. Identifying biomarkers involved in tumorigenesis and cancer progression represents a great challenge for cancer diagnosis and therapeutic strategy development. CD147 is a glycoprotein involved in the regulation of the tumor microenvironment and cancer progression by several mechanisms—in particular, by the control of glycolysis and also by its well-known ability to induce proteinases leading to matrix degradation, tumor cell invasion, metastasis and angiogenesis. Accumulating evidence has demonstrated the role of CD147 expression in tumor progression and prognosis, suggesting it as a relevant tumor biomarker for cancer diagnosis and prognosis, as well as validating its potential as a promising therapeutic target in cancers.
Collapse
Affiliation(s)
- Alexandra Landras
- INSERM UMRS 976, Team 1, Human Immunology Pathophysiology & Immunotherapy (HIPI), University of Paris, 75010 Paris, France; (A.L.); (C.R.d.M.); (F.J.); (C.L.); (S.M.)
| | - Coralie Reger de Moura
- INSERM UMRS 976, Team 1, Human Immunology Pathophysiology & Immunotherapy (HIPI), University of Paris, 75010 Paris, France; (A.L.); (C.R.d.M.); (F.J.); (C.L.); (S.M.)
- Pharmacogenomics Department, Assistance Publique-Hôpitaux de Paris (AP-HP), Saint Louis Hospital, 75010 Paris, France
| | - Fanelie Jouenne
- INSERM UMRS 976, Team 1, Human Immunology Pathophysiology & Immunotherapy (HIPI), University of Paris, 75010 Paris, France; (A.L.); (C.R.d.M.); (F.J.); (C.L.); (S.M.)
- Pharmacogenomics Department, Assistance Publique-Hôpitaux de Paris (AP-HP), Saint Louis Hospital, 75010 Paris, France
| | - Celeste Lebbe
- INSERM UMRS 976, Team 1, Human Immunology Pathophysiology & Immunotherapy (HIPI), University of Paris, 75010 Paris, France; (A.L.); (C.R.d.M.); (F.J.); (C.L.); (S.M.)
- Dermatology Department and Centre d’Investigation Clinique (CIC), Assistance Publique-Hôpitaux de Paris (AP-HP), Saint Louis Hospital, 75010 Paris, France
| | - Suzanne Menashi
- INSERM UMRS 976, Team 1, Human Immunology Pathophysiology & Immunotherapy (HIPI), University of Paris, 75010 Paris, France; (A.L.); (C.R.d.M.); (F.J.); (C.L.); (S.M.)
- Pharmacogenomics Department, Assistance Publique-Hôpitaux de Paris (AP-HP), Saint Louis Hospital, 75010 Paris, France
| | - Samia Mourah
- INSERM UMRS 976, Team 1, Human Immunology Pathophysiology & Immunotherapy (HIPI), University of Paris, 75010 Paris, France; (A.L.); (C.R.d.M.); (F.J.); (C.L.); (S.M.)
- Pharmacogenomics Department, Assistance Publique-Hôpitaux de Paris (AP-HP), Saint Louis Hospital, 75010 Paris, France
- Correspondence: ; Tel.: +33-1-42-49-48-85
| |
Collapse
|
15
|
Sakhtianchi R, Darvishi B, Mirzaie Z, Dorkoosh F, Shanehsazzadeh S, Dinarvand R. Pegylated magnetic mesoporous silica nanoparticles decorated with AS1411 Aptamer as a targeting delivery system for cytotoxic agents. Pharm Dev Technol 2019; 24:1063-1075. [PMID: 30654677 DOI: 10.1080/10837450.2019.1569678] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Fulfilling the purpose of developing a NP with theragnostic capabilities, the current study describes the synthesis of an aptamer-functionalized PEG-coated SPION/mesoporous silica core-shell nanoparticle for concurrent cancer targeted therapy and magnetic resonance imaging. SPIONs were synthesized according to a thermal decomposition method and served as cores for SPION/mesoporous silica core/shell nanoparticles (MMSNs). Doxorubicin was then successfully loaded in MMSNs which were then coated with di-carboxylic acid functionalized polyethylene glycol (PEG-MMSNs). AS1411 aptamers were at the end covalently attached to NPs (APT-PEG-MMSNs). The mean diameter of synthesized NPs was about 89 nm and doxorubicin encapsulation efficacy was ≈67.47%. Results of MTT based cell cytotoxicity assay demonstrated a significantly higher toxicity profile for APT-PEG-MMSNs against MCF7 cells compared to non-decorated MMSNs, while no significant differences were spotted against NIH-3T3 cells. Meanwhile, formation of protein corona around APT-PEG-MMSNs in biological medium significantly attenuated observed cytotoxicity against MCF7 cell line. Examining NPs uptake by MCF7 cells using confocal laser scanning microscopy also confirmed superiority of APT-PEG-MMSNs over PEG-MMSNs. Finally, APT decorated NPs induced highest signal intensity reduction in T2-weighted images during in vitro MRI assay. In conclusion, developed NPs may serve as promising multifunctional vehicles for simultaneous cancer targeted therapy and MRI imaging.
Collapse
Affiliation(s)
- Ramin Sakhtianchi
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences , Tehran , Iran.,Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences , Tehran , Iran
| | - Behrad Darvishi
- Recombinant Proteins Department, Breast Cancer Research Center, ACECR , Tehran , Iran
| | - Zahra Mirzaie
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences , Tehran , Iran
| | - Farid Dorkoosh
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences , Tehran , Iran
| | - Saeed Shanehsazzadeh
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences , Tehran , Iran
| | - Rassoul Dinarvand
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences , Tehran , Iran.,Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences , Tehran , Iran
| |
Collapse
|
16
|
Pereira RL, Nascimento IC, Santos AP, Ogusuku IEY, Lameu C, Mayer G, Ulrich H. Aptamers: novelty tools for cancer biology. Oncotarget 2018; 9:26934-26953. [PMID: 29928493 PMCID: PMC6003562 DOI: 10.18632/oncotarget.25260] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 03/22/2018] [Indexed: 02/07/2023] Open
Abstract
Although the term ‘cancer’ was still over two thousand years away of being coined, the first known cases of the disease date back to about 3000BC, in ancient Egypt. Five thousand years later, still lacking a cure, it has become one of the leading causes of death, killing over half a dozen million people yearly. So far, monoclonal antibodies are the most successful immune-therapy tools when it comes to fighting cancer. The number of clinical trials that use them has been increasing steadily during the past few years, especially since the Food and Drug Administration greenlit the use of the first immune-checkpoint blockade antibodies. However, albeit successful, this approach does come with the cost of auto-inflammatory toxicity. Taking this into account, the development of new therapeutic reagents with low toxicity becomes evident, particularly ones acting in tandem with the tools currently at our disposal. Ever since its discovery in the early nineties, aptamer technology has been used for a wide range of diagnostic and therapeutic applications. With similar properties to those of monoclonal antibodies, such as high-specificity of recognition and high-affinity binding, and the advantages of being developed using in vitro selection procedures, aptamers quickly became convenient building blocks for the generation of multifunctional constructs. In this review, we discuss the steps involved in the in vitro selection process that leads to functional aptamers - known as Systematic Evolution of Ligands by Exponential Enrichment - as well as the most recent applications of this technology in diagnostic and treatment of oncological illnesses. Moreover, we also suggest ways to improve such use.
Collapse
Affiliation(s)
- Ricardo L Pereira
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP 05508-900, Brazil
| | - Isis C Nascimento
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP 05508-900, Brazil
| | - Ana P Santos
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP 05508-900, Brazil
| | - Isabella E Y Ogusuku
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP 05508-900, Brazil
| | - Claudiana Lameu
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP 05508-900, Brazil
| | - Günter Mayer
- Chemical Biology and Chemical Genetics, Life and Medical Sciences (LIMES) Institute, University of Bonn, 53121, Bonn, Germany.,Center of Aptamer Research and Development (CARD), University of Bonn, 53121, Bonn, Germany
| | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP 05508-900, Brazil
| |
Collapse
|
17
|
Callegaro G, Forcella M, Melchioretto P, Frattini A, Gribaldo L, Fusi P, Fabbri M, Urani C. Toxicogenomics applied to in vitro Cell Transformation Assay reveals mechanisms of early response to cadmium. Toxicol In Vitro 2018; 48:232-243. [DOI: 10.1016/j.tiv.2018.01.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 01/26/2018] [Accepted: 01/28/2018] [Indexed: 01/01/2023]
|
18
|
Bii VM, Collins CP, Hocum JD, Trobridge GD. Replication-incompetent gammaretroviral and lentiviral vector-based insertional mutagenesis screens identify prostate cancer progression genes. Oncotarget 2018; 9:15451-15463. [PMID: 29643985 PMCID: PMC5884640 DOI: 10.18632/oncotarget.24503] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 02/10/2018] [Indexed: 12/27/2022] Open
Abstract
Replication-incompetent gammaretroviral (γRV) and lentiviral (LV) vectors have both been used in insertional mutagenesis screens to identify cancer drivers. In this approach the vectors stably integrate in the host cell genome and induce cancers by dysregulating nearby genes. The cells that contain a retroviral vector provirus in or near a proto-oncogene or tumor suppressor are preferentially enriched in a tumor. γRV and LV vectors have different integration profiles and genotoxic potential, making them potentially complementary tools for insertional mutagenesis screens. We performed screens using both γRV and LV vectors to identify driver genes that mediate progression of androgen-independent prostate cancer (AIPC) using a xenotransplant mouse model. Vector transduced LNCaP cells were injected orthotopically into the prostate gland of immunodeficient mice. Mice that developed tumors were castrated to create an androgen-deficient environment and metastatic tumors that developed were analyzed. A high-throughput modified genomic sequencing PCR (MGS-PCR) approach identified the positions of vector integrations in these metastatic tumors. OR2A14, FER1L6, TAOK3, MAN1A2, MBNL2, SERBP1, PLEKHA2, SPTAN1, ADAMTS1, SLC30A5, ABCC1, SLC7A1 and SLC25A24 were identified as candidate prostate cancer (PC) progression genes. TAOK3 and ABCC1 expression in PC patients predicted the risk of recurrence after androgen deprivation therapy. Our data shows that γRV and LV vectors are complementary approaches to identify cancer driver genes which may be promising potential biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Victor M. Bii
- College of Pharmacy, Washington State University, Spokane 99210, WA, USA
| | - Casey P. Collins
- College of Pharmacy, Washington State University, Spokane 99210, WA, USA
| | - Jonah D. Hocum
- College of Pharmacy, Washington State University, Spokane 99210, WA, USA
| | - Grant D. Trobridge
- College of Pharmacy, Washington State University, Spokane 99210, WA, USA
- School of Molecular Biosciences, Washington State University, Pullman 99164, WA, USA
| |
Collapse
|
19
|
Mohammadzadeh P, Cohan RA, Ghoreishi SM, Bitarafan-Rajabi A, Ardestani MS. AS1411 Aptamer-Anionic Linear Globular Dendrimer G2-Iohexol Selective Nano-Theranostics. Sci Rep 2017; 7:11832. [PMID: 28928437 PMCID: PMC5605695 DOI: 10.1038/s41598-017-12150-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 08/31/2017] [Indexed: 12/12/2022] Open
Abstract
Molecular theranostics is of the utmost interest for diagnosis as well as treatment of different malignancies. In the present study, anionic linear globular dendrimer G2 is employed as a suitable carrier for delivery and AS1411 aptamer is exploited as the targeting agent to carry Iohexol specifically to the human breast cancer cells (MCF-7). Dendrimer G2 was prepared and conjugation of dendrimer and aptamer was carried out thereafter. Based on the data yielded by AFM, morphology of smooth and spherical non-targeted dendrimer changed to the rough aspherical shape when it conjugated. Then, conjugation was confirmed using DLS, ELS and SLS methods. Toxicity on nucleolin positive MCF-7 cells and nucleolin negative HEK-293 cells was assessed by XTT and apoptosis/necrosis assays. In vitro uptake was determined using DAPI-FITC staining and ICP-MS methods. In vivo studies including in vivo CT imaging, pathology and blood tests were done to confirm the imaging ability, bio-safety and targeted nature of the Nano-Theranostics in vivo. In a nutshell, the prepared construction showed promising effects upon decreasing the toxicity of Iohexol on normal cells and accumulation of it in the cancer tumors as well as reducing the number of cancer cells.
Collapse
Affiliation(s)
- Pardis Mohammadzadeh
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Reza Ahangari Cohan
- Department of Pilot Nanobiotechnology, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran.
| | | | - Ahmad Bitarafan-Rajabi
- Echocardiography Research Center, Cardiovascular Interventional Research Center, Department Of Nuclear Medicine, Rajaie Cardiovascular Medical And Research Center, Iran University Of Medical Sciences, Tehran, Iran
| | - Mehdi Shafiee Ardestani
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Mehta KY, Wu HJ, Menon SS, Fallah Y, Zhong X, Rizk N, Unger K, Mapstone M, Fiandaca MS, Federoff HJ, Cheema AK. Metabolomic biomarkers of pancreatic cancer: a meta-analysis study. Oncotarget 2017; 8:68899-68915. [PMID: 28978166 PMCID: PMC5620306 DOI: 10.18632/oncotarget.20324] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 08/04/2017] [Indexed: 02/07/2023] Open
Abstract
Pancreatic cancer (PC) is an aggressive disease with high mortality rates, however, there is no blood test for early detection and diagnosis of this disease. Several research groups have reported on metabolomics based clinical investigations to identify biomarkers of PC, however there is a lack of a centralized metabolite biomarker repository that can be used for meta-analysis and biomarker validation. Furthermore, since the incidence of PC is associated with metabolic syndrome and Type 2 diabetes mellitus (T2DM), there is a need to uncouple these common metabolic dysregulations that may otherwise diminish the clinical utility of metabolomic biosignatures. Here, we attempted to externally replicate proposed metabolite biomarkers of PC reported by several other groups in an independent group of PC subjects. Our study design included a T2DM cohort that was used as a non-cancer control and a separate cohort diagnosed with colorectal cancer (CRC), as a cancer disease control to eliminate possible generic biomarkers of cancer. We used targeted mass spectrometry for quantitation of literature-curated metabolite markers and identified a biomarker panel that discriminates between normal controls (NC) and PC patients with high accuracy. Further evaluation of our model with CRC, however, showed a drop in specificity for the PC biomarker panel. Taken together, our study underscores the need for a more robust study design for cancer biomarker studies so as to maximize the translational value and clinical implementation.
Collapse
Affiliation(s)
- Khyati Y Mehta
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Hung-Jen Wu
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Smrithi S Menon
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Yassi Fallah
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Xiaogang Zhong
- Department of Biostatistics Bioinformatics and Biomathematics, Georgetown University, Washington, DC, United States of America
| | - Nasser Rizk
- Department of Health Sciences, Qatar University, Doha, Qatar
| | - Keith Unger
- Lombardi Comprehensive Cancer Center, Med-Star Georgetown University Hospital, Washington, DC, United States of America
| | - Mark Mapstone
- Department of Neurology, University of California, Irvine, CA, United States of America
| | - Massimo S Fiandaca
- Department of Neurology, University of California, Irvine, CA, United States of America.,Department of Neurological Surgery, University of California, Irvine, CA, United States of America
| | - Howard J Federoff
- Department of Neurology, University of California, Irvine, CA, United States of America
| | - Amrita K Cheema
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States of America.,Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC, United States of America
| |
Collapse
|
21
|
De Marco C, Laudanna C, Rinaldo N, Oliveira DM, Ravo M, Weisz A, Ceccarelli M, Caira E, Rizzuto A, Zoppoli P, Malanga D, Viglietto G. Specific gene expression signatures induced by the multiple oncogenic alterations that occur within the PTEN/PI3K/AKT pathway in lung cancer. PLoS One 2017; 12:e0178865. [PMID: 28662101 PMCID: PMC5491004 DOI: 10.1371/journal.pone.0178865] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 05/19/2017] [Indexed: 01/04/2023] Open
Abstract
Hyperactivation of the phosphatydil-inositol-3' phosphate kinase (PI3K)/AKT pathway is observed in most NSCLCs, promoting proliferation, migration, invasion and resistance to therapy. AKT can be activated through several mechanisms that include loss of the negative regulator PTEN, activating mutations of the catalytic subunit of PI3K (PIK3CA) and/or mutations of AKT1 itself. However, number and identity of downstream targets of activated PI3K/AKT pathway are poorly defined. To identify the genes that are targets of constitutive PI3K/AKT signalling in lung cancer cells, we performed a comparative transcriptomic analysis of human lung epithelial cells (BEAS-2B) expressing active mutant AKT1 (AKT1-E17K), active mutant PIK3CA (PIK3CA-E545K) or that are silenced for PTEN. We found that, altogether, aberrant PI3K/AKT signalling in lung epithelial cells regulated the expression of 1,960/20,436 genes (9%), though only 30 differentially expressed genes (DEGs) (15 up-regulated, 12 down-regulated and 3 discordant) out of 20,436 that were common among BEAS-AKT1-E17K, BEAS-PIK3CA-E545K and BEAS-shPTEN cells (0.1%). Conversely, DEGs specific for mutant AKT1 were 133 (85 up-regulated; 48 down-regulated), DEGs specific for mutant PIK3CA were 502 (280 up-regulated; 222 down-regulated) and DEGs specific for PTEN loss were 1549 (799 up-regulated, 750 down-regulated). The results obtained from array analysis were confirmed by quantitative RT-PCR on selected up- and down-regulated genes (n = 10). Treatment of BEAS-C cells and the corresponding derivatives with pharmacological inhibitors of AKT (MK2206) or PI3K (LY294002) further validated the significance of our findings. Moreover, mRNA expression of selected DEGs (SGK1, IGFBP3, PEG10, GDF15, PTGES, S100P, respectively) correlated with the activation status of the PI3K/AKT pathway assessed by S473 phosphorylation in NSCLC cell lines (n = 6). Finally, we made use of Ingenuity Pathway Analysis (IPA) to investigate the relevant BioFunctions enriched by the costitutive activation of AKT1-, PI3K- or PTEN-dependent signalling in lung epithelial cells. Expectedly, the analysis of the DEGs common to all three alterations highlighted a group of BioFunctions that included Cell Proliferation of tumor cell lines (14 DEGs), Invasion of cells (10 DEGs) and Migration of tumour cell lines (10 DEGs), with a common core of 5 genes (ATF3, CDKN1A, GDF15, HBEGF and LCN2) that likely represent downstream effectors of the pro-oncogenic activities of PI3K/AKT signalling. Conversely, IPA analysis of exclusive DEGs led to the identification of different downstream effectors that are modulated by mutant AKT1 (TGFBR2, CTSZ, EMP1), mutant PIK3CA (CCND2, CDK2, IGFBP2, TRIB1) and PTEN loss (ASNS, FHL2). These findings not only shed light on the molecular mechanisms that are activated by aberrant signalling through the PI3K/AKT pathway in lung epithelial cells, but also contribute to the identification of previously unrecognised molecules whose regulation takes part in the development of lung cancer.
Collapse
Affiliation(s)
- Carmela De Marco
- Dipartimento di Medicina Sperimentale e Clinica, Università "Magna Graecia", Catanzaro, Italia
| | - Carmelo Laudanna
- Dipartimento di Medicina Sperimentale e Clinica, Università "Magna Graecia", Catanzaro, Italia
| | - Nicola Rinaldo
- Biogem scarl, Instituto di Rihe Genetiche "Gaetano Salvatore", Ariano Irpino, Italia
| | - Duarte Mendes Oliveira
- Dipartimento di Medicina Sperimentale e Clinica, Università "Magna Graecia", Catanzaro, Italia
| | - Maria Ravo
- Laboratorio di Medicina Molecolare e Genomica, Facoltà di Medicina e Chirurgia, Università di Salerno, Baronissi, Italia
| | - Alessandro Weisz
- Laboratorio di Medicina Molecolare e Genomica, Facoltà di Medicina e Chirurgia, Università di Salerno, Baronissi, Italia
| | - Michele Ceccarelli
- Dipartimento di Studi Biologici e Ambientali, Università del Sannio, Benevento, Italia
| | - Elvira Caira
- Dipartimento di Medicina Sperimentale e Clinica, Università "Magna Graecia", Catanzaro, Italia
| | - Antonia Rizzuto
- Dipartimento di Scienze Mediche e Chirurgiche, Università "Magna Graecia", Catanzaro, Italia
| | - Pietro Zoppoli
- Dipartimento di Medicina Sperimentale e Clinica, Università "Magna Graecia", Catanzaro, Italia
| | - Donatella Malanga
- Dipartimento di Medicina Sperimentale e Clinica, Università "Magna Graecia", Catanzaro, Italia
| | - Giuseppe Viglietto
- Dipartimento di Medicina Sperimentale e Clinica, Università "Magna Graecia", Catanzaro, Italia.,Biogem scarl, Instituto di Rihe Genetiche "Gaetano Salvatore", Ariano Irpino, Italia
| |
Collapse
|
22
|
Monteiro JP, Predabon SM, Bonafé EG, Martins AF, Brolo AG, Radovanovic E, Girotto EM. SPR platform based on image acquisition for HER2 antigen detection. NANOTECHNOLOGY 2017; 28:045206. [PMID: 27997366 DOI: 10.1088/1361-6528/28/4/045206] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
HER2 antigen is a marker used for breast cancer diagnosis and prevention. Its determination has great importance since breast cancer is one of the most insidious types of cancer in women. HER2 antigen assessment in human serum is traditionally achieved by enzyme-linked immunosorbent assay (ELISA method), but it has some disadvantages, such as suppressing the thermodynamic-kinetic studies regarding the antibody-antigen interaction, and the use of labeled molecules that can promote false positive responses. Biosensors based on surface plasmon resonance (SPR) are sensitive optical techniques widely applied on bioassays. The plasmonic devices do not operate with labeled molecules, overcoming conventional immunoassay limitations, and enabling a direct detection of target analytes. In this way, a new SPR biosensor to assess HER2 antigen has been proposed, using nanohole arrays on a gold thin film by signal transduction of transmitted light measurements from array image acquisitions. These metallic nanostructures may couple the light directly on surface plasmons using a simple collinear arrangement. The proposed device reached an average sensitivity for refractive index (RI) variation on a metal surface of 4146 intensity units/RIU (RIU = RI units). The device feasibility on biomolecular assessment was evaluated. For this, 3 ng ml-1 known HER2 antigen concentration was efficiently flowed (using a microfluidic system) and detected from aqueous solutions. This outcome shows that the device may be a powerful apparatus for bioassays, particularly toward breast cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Johny P Monteiro
- Materials Chemistry and Sensors Laboratories, Department of Chemistry, State University of Maringá, Colombo Avenue 5790, 87020-900, Maringá, PR, Brazil
| | | | | | | | | | | | | |
Collapse
|
23
|
Wu CI, Wang HY, Ling S, Lu X. The Ecology and Evolution of Cancer: The Ultra-Microevolutionary Process. Annu Rev Genet 2016; 50:347-369. [DOI: 10.1146/annurev-genet-112414-054842] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Chung-I Wu
- State Key Laboratory of Biocontrol, College of Ecology and Evolution, Sun Yat-Sen University, Guangzhou 510275, China;
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China;
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois 60637;
| | - Hurng-Yi Wang
- Graduate Institute of Clinical Medicine and Hepatitis Research Center, National Taiwan University and Hospital, Taipei 106, Taiwan;
| | - Shaoping Ling
- State Key Laboratory of Biocontrol, College of Ecology and Evolution, Sun Yat-Sen University, Guangzhou 510275, China;
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China;
| | - Xuemei Lu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China;
| |
Collapse
|
24
|
CD8 down-regulation on cytotoxic T lymphocytes of patients with endometrioid endometrial carcinomas. Hum Pathol 2016; 56:180-8. [PMID: 27346574 DOI: 10.1016/j.humpath.2016.05.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 05/17/2016] [Accepted: 05/29/2016] [Indexed: 12/11/2022]
Abstract
Carcinogenesis is a multistep process in which cancer cells and tumor stroma cells play important roles. T lymphocytes are immune constituents of tumor stroma and play a crucial function in anti-tumor response. By immunohistochemistry and flow cytometry, we studied T cytotoxic (CTLs) and T helper lymphocyte distribution and percentage in the tumor microenvironment and peripheral blood from 35 patients with endometrioid endometrial carcinomas (EEC). We also studied 23 healthy donors' blood samples as a control group. Tumor and non-tumoral endometrium samples were obtained. Immunohistochemistry revealed a high number of CTLs and T helper lymphocytes in the tumor stroma of myoinvasive EECs. T lymphocytes were mostly located in the invasive front. By flow cytometry, the percentages of CTLs and T helper lymphocytes were significantly higher in the tumor compared with the non-neoplastic endometrium (P = .0492 and P = .002). The mean fluorescence intensity of CD8 staining was lower in the tumor compared to the non-neoplastic endometrium (P = .001). There was also reduction of the mean fluorescence intensity of CD8 staining on peripheral blood from patients with grade 3 EECs compare to the peripheral blood from healthy donors (P = .0093). No alterations in the expression of granzymes A and B were found in the CTLs from the EEC cases. Finally, in a proteome profiler cytokine array we found that the growth differentiation factor 15 (GDF15) increased in blood in parallel to the tumor grade. EECs are capable of down-regulating CD8 expression of CTLs. Most likely, this effect is mediated by a soluble molecule present in plasma and is not a result of anergy or exhaustion state.
Collapse
|
25
|
Moreira FTC, Ferreira MJMS, Puga JRT, Sales MGF. Screen-printed electrode produced by printed-circuit board technology. Application to Cancer Biomarker Detection by means of plastic antibody as sensing material. SENSORS AND ACTUATORS. B, CHEMICAL 2016; 223:927-935. [PMID: 30740000 PMCID: PMC6366552 DOI: 10.1016/j.snb.2015.09.157] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
This research work presents, for the first time, a screen-printed electrode (SPE) made on a PCB board with silver tracks (Ag) and a three electrode configuration (AgxO-working, AgxO-counter and Ag/AgxO-reference electrodes), following the same approach as printed-circuit boards (PCBs). This low cost and disposable device was tested for screening a cancer biomarker in point-of-care. The selected biomarker was carcinogenic embryonic antigen (CEA) protein, routinely used to follow-up the progression of specific cancer diseases. The biosensor was constructed by assembling a plastic antibody on the Ag-working electrode area, acting as the biorecognition element of the device. The protein molecules that were entrapped on the polymer and positioned at the outer surface of the polypyrrole (PPy) film were removed by protease action. The imprinting effect was tested by preparing non-imprinted (NPPy) material, including only PPy as biorecognition element. Infrared and Raman studies confirmed the surface modification of these electrodes. The ability of the sensing material to rebind CEA was measured by several electrochemical techniques: cyclic voltammetry (CV), impedance spectroscopy (EIS) and square wave voltammetry (SWV). The linear response ranged from 0.05 to 1.25 pg/mL against logarithm concentration. Overall, producing screen-printed electrodes by means of conventional PCB technology showed promising features, mostly regarding cost and prompt availability. The plastic antibody-based biosensor also seems to be a promising tool for screening CEA in point-of-care, with low response time, low cost, good sensitivity and high stability.
Collapse
Affiliation(s)
- Felismina T C Moreira
- BioMark-CINTESIS/ISEP, School of Engineering, Polytechnic Institute of Porto, Portugal
| | | | - José R T Puga
- TID-CINTESIS/ School of Engineering, Polytechnic Institute of Porto, Portugal
| | - M Goreti F Sales
- BioMark-CINTESIS/ISEP, School of Engineering, Polytechnic Institute of Porto, Portugal
| |
Collapse
|
26
|
Prakash JS, Rajamanickam K. Aptamers and Their Significant Role in Cancer Therapy and Diagnosis. Biomedicines 2015; 3:248-269. [PMID: 28536411 PMCID: PMC5344239 DOI: 10.3390/biomedicines3030248] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 08/07/2015] [Indexed: 02/07/2023] Open
Abstract
Aptamers are nucleic acid/peptide molecules that can be generated by a sophisticated, well-established technique known as Systematic Evolution of Ligands by EXponential enrichment (SELEX). Aptamers can interact with their targets through structural recognition, as in antibodies, though with higher specificity. With this added advantage, they can be made useful for clinical applications such as targeted therapy and diagnosis. In this review, we have discussed the steps involved in SELEX process and modifications executed to attain high affinity nucleic acid aptamers. Moreover, our review also highlights the therapeutic applications of aptamer functionalized nanoparticles and nucleic acids as chemo-therapeutic agents. In addition, we have described the development of "aptasensor" in clinical diagnostic application for detecting cancer cells and the use of aptamers in different routine imaging techniques, such as Positron Emission Tomography/Computed Tomography, Ultrasound, and Magnetic Resonance Imaging.
Collapse
Affiliation(s)
- Joy Sebastian Prakash
- Faculty of Allied Health Sciences (FAHS), Chettinad Academy of Research and Education, Kelambakkam, Chennai 603103, Tamil Nadu, India.
| | - Karunanithi Rajamanickam
- Faculty of Allied Health Sciences (FAHS), Chettinad Academy of Research and Education, Kelambakkam, Chennai 603103, Tamil Nadu, India.
| |
Collapse
|
27
|
Uchiyama T, Kawabata H, Miura Y, Yoshioka S, Iwasa M, Yao H, Sakamoto S, Fujimoto M, Haga H, Kadowaki N, Maekawa T, Takaori-Kondo A. The role of growth differentiation factor 15 in the pathogenesis of primary myelofibrosis. Cancer Med 2015; 4:1558-72. [PMID: 26276681 PMCID: PMC4618626 DOI: 10.1002/cam4.502] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 07/02/2015] [Accepted: 07/03/2015] [Indexed: 11/23/2022] Open
Abstract
Growth differentiation factor 15 (GDF15) is a pleiotropic cytokine that belongs to the transforming growth factor-β superfamily. Elevated serum concentrations of this cytokine have been reported in patients with various malignancies. To assess the potential roles of GDF15 in hematologic malignancies, we measured its serum levels in patients with these diseases. We found that serum GDF15 levels were elevated in almost all these patients, particularly in patients with primary myelofibrosis (PMF). Immunohistochemical staining of bone marrow (BM) specimens revealed that GDF15 was strongly expressed by megakaryocytes, which may be sources of increased serum GDF15 in PMF patients. Therefore, we further assessed the contribution of GDF15 to the pathogenesis of PMF. Recombinant human (rh) GDF15 enhanced the growth of human BM mesenchymal stromal cells (BM-MSCs), and it enhanced the potential of these cells to support human hematopoietic progenitor cell growth in a co-culture system. rhGDF15 enhanced the growth of human primary fibroblasts, but it did not affect their expression of profibrotic genes. rhGDF15 induced osteoblastic differentiation of BM-MSCs in vitro, and pretreatment of BM-MSCs with rGDF15 enhanced the induction of bone formation in a xenograft mouse model. These results suggest that serum levels of GDF15 in PMF are elevated, that megakaryocytes are sources of this cytokine in BM, and that GDF15 may modulate the pathogenesis of PMF by enhancing proliferation and promoting osteogenic differentiation of BM-MSCs.
Collapse
Affiliation(s)
- Tatsuki Uchiyama
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroshi Kawabata
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yasuo Miura
- Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, Kyoto, Japan
| | - Satoshi Yoshioka
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, Kyoto, Japan
| | - Masaki Iwasa
- Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, Kyoto, Japan.,Division of Gastroenterology and Hematology, Shiga University of Medical Science, Otsu, Japan
| | - Hisayuki Yao
- Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, Kyoto, Japan
| | - Soichiro Sakamoto
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masakazu Fujimoto
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| | - Hironori Haga
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| | - Norimitsu Kadowaki
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Taira Maekawa
- Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, Kyoto, Japan
| | - Akifumi Takaori-Kondo
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
28
|
Redina OE, Smolenskaya SE, Klimov LO, Markel AL. Candidate genes in quantitative trait loci associated with absolute and relative kidney weight in rats with Inherited Stress Induced Arterial Hypertension. BMC Genet 2015; 16 Suppl 1:S1. [PMID: 25707311 PMCID: PMC4331803 DOI: 10.1186/1471-2156-16-s1-s1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The kidney mass is significantly increased in hypertensive ISIAH rats with Inherited Stress Induced Arterial Hypertension as compared with normotensive WAG rats. The QTL/microarray approach was carried out to determine the positional candidate genes in the QTL for absolute and relative kidney weight. RESULTS Several known and predicted genes differentially expressed in ISIAH and WAG kidney were mapped to genetic loci associated with the absolute and relative kidney weight in 6-month old F2 hybrid (ISIAHxWAG) males. The knowledge-driven filtering of the list of candidates helped to suggest several positional candidate genes, which may be related to the structural and mass changes in hypertensive ISIAH kidney. CONCLUSIONS The further experimental validation of causative genes and detection of polymorphisms will provide opportunities to advance our understanding of the underlying nature of structural and mass changes in hypertensive ISIAH kidney.
Collapse
|
29
|
Szyfter K, Wierzbicka M, Hunt JL, Rinaldo A, Rodrigo JP, Takes RP, Ferlito A. Frequent chromosomal aberrations and candidate genes in head and neck squamous cell carcinoma. Eur Arch Otorhinolaryngol 2014; 273:537-45. [PMID: 25355032 DOI: 10.1007/s00405-014-3339-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 10/14/2014] [Indexed: 12/21/2022]
Abstract
The knowledge of the biology of head and neck squamous cell carcinoma (HNSCC) has had relatively little impact on the improvement in oncologic outcome up to date. However, the identification of oncogenes and tumor suppressor genes (TSGs) involved in cancer progression contributes to the understanding of the molecular pathways involved in oncogenesis and could contribute to individual risk assessment and provide tools for improvement of treatment and targets for therapy based on the alterations in these pathways. The aim of this article is to review the chromosomal aberrations commonly found in HNSCC, to identify the genes in these chromosomal regions suggested to act as (candidate) oncogenes or TSGs, and to discuss the molecular mechanisms modulating their expression.
Collapse
Affiliation(s)
- Krzysztof Szyfter
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Malgorzata Wierzbicka
- Department of Otolaryngology and Laryngeal Oncology, K. Marcinkowski University of Medical Sciences, Poznan, Poland
| | - Jennifer L Hunt
- Department of Pathology and Laboratory Services, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | - Juan P Rodrigo
- Department of Otolaryngology, Hospital Universitario Central de Asturias, Oviedo, Spain.,Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain
| | - Robert P Takes
- Department of Otolaryngology Head and Neck Surgery, Radboud University Medicine Center, Nijmegen, The Netherlands
| | - Alfio Ferlito
- University of Udine School of Medicine, Udine, Italy.
| |
Collapse
|
30
|
Zhang Z, Wu L, Wang J, Li G, Feng D, Zhang B, Li L, Yang J, Ma L, Qin H. Opposing effects of PI3K/Akt and Smad-dependent signaling pathways in NAG-1-induced glioblastoma cell apoptosis. PLoS One 2014; 9:e96283. [PMID: 24759784 PMCID: PMC3997521 DOI: 10.1371/journal.pone.0096283] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Accepted: 04/05/2014] [Indexed: 11/18/2022] Open
Abstract
Nonsteroidal anti-inflammatory drug (NSAID) activated gene-1 (NAG-1) is a divergent member of the transforming growth factor-beta (TGF-β) superfamily. NAG-1 plays remarkable multifunctional roles in controlling diverse physiological and pathological processes including cancer. Like other TGF-β family members, NAG-1 can play dual roles during cancer development and progression by negatively or positively modulating cancer cell behaviors. In glioblastoma brain tumors, NAG-1 appears to act as a tumor suppressor gene; however, the precise underlying mechanisms have not been well elucidated. In the present study, we discovered that overexpression of NAG-1 induced apoptosis in U87 MG, U118 MG, U251 MG, and T98G cell lines via the intrinsic mitochondrial pathway, but not in A172 and LN-229 cell lines. NAG-1 could induce the phosphorylation of PI3K/Akt and Smad2/3 in all six tested glioblastoma cell lines, except Smad3 phosphorylation in A172 and LN-229 cell lines. In fact, Smad3 expression and its phosphorylation were almost undetectable in A172 and LN-229 cells. The PI3K inhibitors promoted NAG-1-induced glioblastoma cell apoptosis, while siRNAs to Smad2 and Smad3 decreased the apoptosis rate. NAG-1 also stimulated the direct interaction between Akt and Smad3 in glioblastoma cells. Elevating the level of Smad3 restored the sensitivity to NAG-1-induced apoptosis in A172 and LN-229 cells. In conclusion, our results suggest that PI3K/Akt and Smad-dependent signaling pathways display opposing effects in NAG-1-induced glioblastoma cell apoptosis.
Collapse
Affiliation(s)
- Zhiguo Zhang
- Department of Neurosurgery and Institute for Functional Brain Disorders, Tangdu Hospital, The Fourth Military Medical University, Xi’an, China
- Postdoctoral research station of Neurosurgery, Wuhan General Hospital of Guangzhou Command, PLA, Wuhan, China
| | - Lin Wu
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Cancer Biology, The Fourth Military Medical University, Xi’an, China
| | - Julei Wang
- Department of Neurosurgery and Institute for Functional Brain Disorders, Tangdu Hospital, The Fourth Military Medical University, Xi’an, China
| | - Gang Li
- Department of Neurosurgery and Institute for Functional Brain Disorders, Tangdu Hospital, The Fourth Military Medical University, Xi’an, China
| | - Dayun Feng
- Department of Neurosurgery and Institute for Functional Brain Disorders, Tangdu Hospital, The Fourth Military Medical University, Xi’an, China
| | - Bin Zhang
- Department of Neurosurgery and Institute for Functional Brain Disorders, Tangdu Hospital, The Fourth Military Medical University, Xi’an, China
| | - Lihong Li
- Department of Neurosurgery and Institute for Functional Brain Disorders, Tangdu Hospital, The Fourth Military Medical University, Xi’an, China
| | - Jiandong Yang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Lianting Ma
- Postdoctoral research station of Neurosurgery, Wuhan General Hospital of Guangzhou Command, PLA, Wuhan, China
| | - Huaizhou Qin
- Department of Neurosurgery and Institute for Functional Brain Disorders, Tangdu Hospital, The Fourth Military Medical University, Xi’an, China
- * E-mail:
| |
Collapse
|
31
|
Dmitriev P, Kairov U, Robert T, Barat A, Lazar V, Carnac G, Laoudj-Chenivesse D, Vassetzky YS. Cancer-related genes in the transcription signature of facioscapulohumeral dystrophy myoblasts and myotubes. J Cell Mol Med 2013; 18:208-17. [PMID: 24341522 PMCID: PMC3930408 DOI: 10.1111/jcmm.12182] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 10/08/2013] [Indexed: 01/23/2023] Open
Abstract
Muscular dystrophy is a condition potentially predisposing for cancer; however, currently, only Myotonic dystrophy patients are known to have a higher risk of cancer. Here, we have searched for a link between facioscapulohumeral dystrophy (FSHD) and cancer by comparing published transcriptome signatures of FSHD and various malignant tumours and have found a significant enrichment of cancer-related genes among the genes differentially expressed in FSHD. The analysis has shown that gene expression profiles of FSHD myoblasts and myotubes resemble that of Ewing's sarcoma more than that of other cancer types tested. This is the first study demonstrating a similarity between FSHD and cancer cell expression profiles, a finding that might indicate the existence of a common step in the pathogenesis of these two diseases.
Collapse
Affiliation(s)
- Petr Dmitriev
- UMR8126, Université Paris-Sud 11, CNRS, Institut de cancérologie Gustave Roussy, Villejuif, France; INSERM U1046, Université Montpellier I, Montpellier, France
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Corre J. Growth differentiation factor 15 in multiple myeloma: a microenvironment factor predictive of response to treatment? Acta Haematol 2013; 131:170-2. [PMID: 24216505 DOI: 10.1159/000355129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 07/29/2013] [Indexed: 11/19/2022]
Affiliation(s)
- Jill Corre
- Unité de Génomique du Myélome, CHU Toulouse, and CRCT, INSERM U1037, Toulouse, France
| |
Collapse
|
33
|
Corre J, Hébraud B, Bourin P. Concise review: growth differentiation factor 15 in pathology: a clinical role? Stem Cells Transl Med 2013; 2:946-52. [PMID: 24191265 DOI: 10.5966/sctm.2013-0055] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Growth differentiation factor 15 (GDF15) is a divergent member of the transforming growth factor β family discovered in a broad range of cells, as indicated by the diversity of its nomenclature. However, the only tissue that expresses a high amount of GDF15 in the physiologic state is placenta. GDF15 is easily detected in blood, and its concentration varies with age. In fact, increased blood concentration of GDF15 is associated with numerous pathological conditions. However, the biological significance underlying these observations is far from clear. GDF15 could have a positive or negative role depending on the state of cells or their environment. Furthermore, study of its biology is hampered by lack of knowledge of its receptor and thus the signaling pathways that drive its action. GDF15 seems to be an integrative signal in pathologic conditions, giving information on severity of disease. Its effectiveness in classifying patients to modulate treatment remains to be shown. Development of therapeutic interventions with GDF15 or anti-GDF15 agents remains difficult until we uncover the mechanism that drives its activity.
Collapse
Affiliation(s)
- Jill Corre
- Intergroupe Francophone du Myélome, France
| | | | | |
Collapse
|
34
|
George S, Chaudhery V, Lu M, Takagi M, Amro N, Pokhriyal A, Tan Y, Ferreira P, Cunningham BT. Sensitive detection of protein and miRNA cancer biomarkers using silicon-based photonic crystals and a resonance coupling laser scanning platform. LAB ON A CHIP 2013; 13:4053-64. [PMID: 23963502 PMCID: PMC4522268 DOI: 10.1039/c3lc50579k] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Enhancement of the fluorescent output of surface-based fluorescence assays by performing them upon nanostructured photonic crystal (PC) surfaces has been demonstrated to increase signal intensities by >8000×. Using the multiplicative effects of optical resonant coupling to the PC in increasing the electric field intensity experienced by fluorescent labels ("enhanced excitation") and the spatially biased funneling of fluorophore emissions through coupling to PC resonances ("enhanced extraction"), PC enhanced fluorescence (PCEF) can be adapted to reduce the limits of detection of disease biomarker assays, and to reduce the size and cost of high sensitivity detection instrumentation. In this work, we demonstrate the first silicon-based PCEF detection platform for multiplexed biomarker assay. The sensor in this platform is a silicon-based PC structure, comprised of a SiO2 grating that is overcoated with a thin film of high refractive index TiO2 and is produced in a semiconductor foundry for low cost, uniform, and reproducible manufacturing. The compact detection instrument that completes this platform was designed to efficiently couple fluorescence excitation from a semiconductor laser to the resonant optical modes of the PC, resulting in elevated electric field strength that is highly concentrated within the region <100 nm from the PC surface. This instrument utilizes a cylindrically focused line to scan a microarray in <1 min. To demonstrate the capabilities of this sensor-detector platform, microspot fluorescent sandwich immunoassays using secondary antibodies labeled with Cy5 for two cancer biomarkers (TNF-α and IL-3) were performed. Biomarkers were detected at concentrations as low as 0.1 pM. In a fluorescent microarray for detection of a breast cancer miRNA biomarker miR-21, the miRNA was detectable at a concentration of 0.6 pM.
Collapse
Affiliation(s)
- Sherine George
- Department of Bioengineering, 1304 West Springfield Avenue, University of Illinois, Urbana-Champaign, Illinois, 61801, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Ma Y, Chen B, Xu X, Lin G. Prospective nested case-control study of feature genes related to leukemic evolution of myelodysplastic syndrome. Mol Biol Rep 2012; 40:469-76. [PMID: 23065273 DOI: 10.1007/s11033-012-2082-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 10/03/2012] [Indexed: 12/11/2022]
Abstract
We established a nested case-control study cohort of myelodysplastic syndrome patients (n = 435). And 41 patients had conditions progressing to leukemia (case group = 41), 342 patients had no leukemic transformation (control group = 342), and 52 patients died. Bone marrow mononuclear cell of the patients in the case group and after the evolution were analyzed for the gene expression microarray test (self-control study), whereas the bone marrow mononuclear cell of the paired patients extracted at diagnosis were analyzed for the gene expression microarray test (case-control study). By incorporating the results of above two studies, we identified the genes related to the transformation of myelodysplastic syndrome to acute leukemia. A total of 958 deregulated genes were identified via bioinformatics analysis. Further analyses identified a subset of six genes that help distinguish between the case and control groups. These genes are TUBB, PSMD1, SLC7A5, ATG3, TUBB2C, and TIMM10. The combined gene expression microarray test and nested case-control study method identified a subset of six genes that help distinguish between the case and control groups. The six genes may play critical roles in the evolution of myelodysplastic syndrome to acute leukemia.
Collapse
Affiliation(s)
- Yan Ma
- Department of Hematology, Huashan Hospital, Fudan University, No. 12 middle Wulumuqi road, Shanghai 200040, China
| | | | | | | |
Collapse
|
36
|
Global Transcriptional Analysis for Biomarker Discovery and Validation in Cellular Therapies. Mol Diagn Ther 2012. [DOI: 10.1007/bf03256324] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
37
|
Essaghir A, Demoulin JB. A minimal connected network of transcription factors regulated in human tumors and its application to the quest for universal cancer biomarkers. PLoS One 2012; 7:e39666. [PMID: 22761861 PMCID: PMC3382591 DOI: 10.1371/journal.pone.0039666] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 05/25/2012] [Indexed: 12/19/2022] Open
Abstract
A universal cancer biomarker candidate for diagnosis is supposed to distinguish, within a broad range of tumors, between healthy and diseased patients. Recently published studies have explored the universal usefulness of some biomarkers in human tumors. In this study, we present an integrative approach to search for potential common cancer biomarkers. Using the TFactS web-tool with a catalogue of experimentally established gene regulations, we could predict transcription factors (TFs) regulated in 305 different human cancer cell lines covering a large panel of tumor types. We also identified chromosomal regions having significant copy number variation (CNV) in these cell lines. Within the scope of TFactS catalogue, 88 TFs whose activity status were explained by their gene expressions and CNVs were identified. Their minimal connected network (MCN) of protein-protein interactions forms a significant module within the human curated TF proteome. Functional analysis of the proteins included in this MCN revealed enrichment in cancer pathways as well as inflammation. The ten most central proteins in MCN are TFs that trans-regulate 157 known genes encoding secreted and transmembrane proteins. In publicly available collections of gene expression data from 8,525 patient tissues, 86 genes were differentially regulated in cancer compared to inflammatory diseases and controls. From TCGA cancer gene expression data sets, 50 genes were significantly associated to patient survival in at least one tumor type. Enrichment analysis shows that these genes mechanistically interact in common cancer pathways. Among these cancer biomarker candidates, TFRC, MET and VEGFA are commonly amplified genes in tumors and their encoded proteins stained positive in more than 80% of malignancies from public databases. They are linked to angiogenesis and hypoxia, which are common in cancer. They could be interesting for further investigations in cancer diagnostic strategies.
Collapse
Affiliation(s)
- Ahmed Essaghir
- de Duve institute, Université Catholique de Louvain, Brussels, Belgium.
| | | |
Collapse
|
38
|
Spivey TL, De Giorgi V, Zhao Y, Bedognetti D, Pos Z, Liu Q, Tomei S, Ascierto ML, Uccellini L, Reinboth J, Chouchane L, Stroncek DF, Wang E, Marincola FM. The stable traits of melanoma genetics: an alternate approach to target discovery. BMC Genomics 2012; 13:156. [PMID: 22537248 PMCID: PMC3362771 DOI: 10.1186/1471-2164-13-156] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 04/26/2012] [Indexed: 12/18/2022] Open
Abstract
Background The weight that gene copy number plays in transcription remains controversial; although in specific cases gene expression correlates with copy number, the relationship cannot be inferred at the global level. We hypothesized that genes steadily expressed by 15 melanoma cell lines (CMs) and their parental tissues (TMs) should be critical for oncogenesis and their expression most frequently influenced by their respective copy number. Results Functional interpretation of 3,030 transcripts concordantly expressed (Pearson's correlation coefficient p-value < 0.05) by CMs and TMs confirmed an enrichment of functions crucial to oncogenesis. Among them, 968 were expressed according to the transcriptional efficiency predicted by copy number analysis (Pearson's correlation coefficient p-value < 0.05). We named these genes, "genomic delegates" as they represent at the transcriptional level the genetic footprint of individual cancers. We then tested whether the genes could categorize 112 melanoma metastases. Two divergent phenotypes were observed: one with prevalent expression of cancer testis antigens, enhanced cyclin activity, WNT signaling, and a Th17 immune phenotype (Class A). This phenotype expressed, therefore, transcripts previously associated to more aggressive cancer. The second class (B) prevalently expressed genes associated with melanoma signaling including MITF, melanoma differentiation antigens, and displayed a Th1 immune phenotype associated with better prognosis and likelihood to respond to immunotherapy. An intermediate third class (C) was further identified. The three phenotypes were confirmed by unsupervised principal component analysis. Conclusions This study suggests that clinically relevant phenotypes of melanoma can be retraced to stable oncogenic properties of cancer cells linked to their genetic back bone, and offers a roadmap for uncovering novel targets for tailored anti-cancer therapy.
Collapse
Affiliation(s)
- Tara L Spivey
- Infectious Disease and Immunogenetics Section (IDIS), Department of Transfusion Medicine, Clinical Center and trans-NIH Center for Human Immunology (CHI), National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Corre J, Labat E, Espagnolle N, Hébraud B, Avet-Loiseau H, Roussel M, Huynh A, Gadelorge M, Cordelier P, Klein B, Moreau P, Facon T, Fournié JJ, Attal M, Bourin P. Bioactivity and prognostic significance of growth differentiation factor GDF15 secreted by bone marrow mesenchymal stem cells in multiple myeloma. Cancer Res 2012; 72:1395-406. [PMID: 22301101 DOI: 10.1158/0008-5472.can-11-0188] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Overexpression of growth differentiation factor 15 (GDF15) by bone marrow mesenchymal stem cells occurs widely in patients with multiple myeloma, but the pathophysiologic effects of GDF15 in this setting remain undefined. GDF15 has been described in numerous solid tumors but never in hematologic malignancies. In this study, we report that GDF15 significantly increases survival of stroma-dependent multiple myeloma cells including primary multiple myeloma cells. In particular, GDF15 conferred resistance to melphalan, bortezomib, and to a lesser extent, lenalidomide in both stroma-dependent and stroma-independent multiple myeloma cells. Akt-dependent signaling was critical to mediate the effects of GDF15, whereas Src and extracellular signal-regulated kinase 1/2 signaling pathways were not involved. Given these results, we tested the clinical significance of plasma concentrations of GDF15 (pGDF15) in 131 patients with multiple myeloma and found that it correlated with disease prognosis. Specifically, patients with high levels of pGDF15 had lower probabilities of event-free and overall survival 30 months after diagnosis than patients with low pGDF15 levels. Our findings suggest that tumor microenvironment-derived GDF15 is a key survival and chemoprotective factor for multiple myeloma cells, which is pathophysiologically linked to both initial parameters of the disease as well as patient survival.
Collapse
Affiliation(s)
- Jill Corre
- Institut National de la Santé et de la Recherche Médicale, U1037, Toulouse, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Mehta S, Shelling A, Muthukaruppan A, Lasham A, Blenkiron C, Laking G, Print C. Predictive and prognostic molecular markers for cancer medicine. Ther Adv Med Oncol 2011; 2:125-48. [PMID: 21789130 DOI: 10.1177/1758834009360519] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Over the last 10 years there has been an explosion of information about the molecular biology of cancer. A challenge in oncology is to translate this information into advances in patient care. While there are well-formed routes for translating new molecular information into drug therapy, the routes for translating new information into sensitive and specific diagnostic, prognostic and predictive tests are still being developed. Similarly, the science of using tumor molecular profiles to select clinical trial participants or to optimize therapy for individual patients is still in its infancy. This review will summarize the current technologies for predicting treatment response and prognosis in cancer medicine, and outline what the future may hold. It will also highlight the potential importance of methods that can integrate molecular, histopathological and clinical information into a synergistic understanding of tumor progression. While these possibilities are without doubt exciting, significant challenges remain if we are to implement them with a strong evidence base in a widely available and cost-effective manner.
Collapse
Affiliation(s)
- Sunali Mehta
- School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | | | | | | | | | | | | |
Collapse
|
41
|
Spivey TL, Uccellini L, Ascierto ML, Zoppoli G, De Giorgi V, Delogu LG, Engle AM, Thomas JM, Wang E, Marincola FM, Bedognetti D. Gene expression profiling in acute allograft rejection: challenging the immunologic constant of rejection hypothesis. J Transl Med 2011; 9:174. [PMID: 21992116 PMCID: PMC3213224 DOI: 10.1186/1479-5876-9-174] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 10/12/2011] [Indexed: 02/06/2023] Open
Abstract
In humans, the role and relationship between molecular pathways that lead to tissue destruction during acute allograft rejection are not fully understood. Based on studies conducted in humans, we recently hypothesized that different immune-mediated tissue destruction processes (i.e. cancer, infection, autoimmunity) share common convergent final mechanisms. We called this phenomenon the "Immunologic Constant of Rejection (ICR)." The elements of the ICR include molecular pathways that are consistently described through different immune-mediated tissue destruction processes and demonstrate the activation of interferon-stimulated genes (ISGs), the recruitment of cytotoxic immune cells (primarily through CXCR3/CCR5 ligand pathways), and the activation of immune effector function genes (IEF genes; granzymes A/B, perforin, etc.). Here, we challenge the ICR hypothesis by using a meta-analytical approach and systematically reviewing microarray studies evaluating gene expression on tissue biopsies during acute allograft rejection. We found the pillars of the ICR consistently present among the studies reviewed, despite implicit heterogeneity. Additionally, we provide a descriptive mechanistic overview of acute allograft rejection by describing those molecular pathways most frequently encountered and thereby thought to be most significant. The biological role of the following molecular pathways is described: IFN-γ, CXCR3/CCR5 ligand, IEF genes, TNF-α, IL-10, IRF-1/STAT-1, and complement pathways. The role of NK cell, B cell and T-regulatory cell signatures are also addressed.
Collapse
Affiliation(s)
- Tara L Spivey
- Infectious Disease and Immunogenetics Section (IDIS), Department of Transfusion Medicine, Clinical Center and trans-NIH Center for Human Immunology (CHI), National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Rucevic M, Hixson D, Josic D. Mammalian plasma membrane proteins as potential biomarkers and drug targets. Electrophoresis 2011; 32:1549-64. [PMID: 21706493 DOI: 10.1002/elps.201100212] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Defining the plasma membrane proteome is crucial to understand the role of plasma membrane in fundamental biological processes. Change in membrane proteins is one of the first events that take place under pathological conditions, making plasma membrane proteins a likely source of potential disease biomarkers with prognostic or diagnostic potential. Membrane proteins are also potential targets for monoclonal antibodies and other drugs that block receptors or inhibit enzymes essential to the disease progress. Despite several advanced methods recently developed for the analysis of hydrophobic proteins and proteins with posttranslational modifications, integral membrane proteins are still under-represented in plasma membrane proteome. Recent advances in proteomic investigation of plasma membrane proteins, defining their roles as diagnostic and prognostic disease biomarkers and as target molecules in disease treatment, are presented.
Collapse
Affiliation(s)
- Marijana Rucevic
- COBRE Center for Cancer Research Development, Rhode Island Hospital, Providence, RI, USA
| | | | | |
Collapse
|
43
|
Hu LL, Huang T, Cai YD, Chou KC. Prediction of body fluids where proteins are secreted into based on protein interaction network. PLoS One 2011; 6:e22989. [PMID: 21829572 PMCID: PMC3146524 DOI: 10.1371/journal.pone.0022989] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Accepted: 07/08/2011] [Indexed: 12/27/2022] Open
Abstract
Determining the body fluids where secreted proteins can be secreted into is important for protein function annotation and disease biomarker discovery. In this study, we developed a network-based method to predict which kind of body fluids human proteins can be secreted into. For a newly constructed benchmark dataset that consists of 529 human-secreted proteins, the prediction accuracy for the most possible body fluid location predicted by our method via the jackknife test was 79.02%, significantly higher than the success rate by a random guess (29.36%). The likelihood that the predicted body fluids of the first four orders contain all the true body fluids where the proteins can be secreted into is 62.94%. Our method was further demonstrated with two independent datasets: one contains 57 proteins that can be secreted into blood; while the other contains 61 proteins that can be secreted into plasma/serum and were possible biomarkers associated with various cancers. For the 57 proteins in first dataset, 55 were correctly predicted as blood-secrete proteins. For the 61 proteins in the second dataset, 58 were predicted to be most possible in plasma/serum. These encouraging results indicate that the network-based prediction method is quite promising. It is anticipated that the method will benefit the relevant areas for both basic research and drug development.
Collapse
Affiliation(s)
- Le-Le Hu
- Institute of Systems Biology, Shanghai University, Shanghai, China
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, China
| | - Tao Huang
- Key Laboratory of Systems Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Shanghai Center for Bioinformation Technology, Shanghai, China
| | - Yu-Dong Cai
- Institute of Systems Biology, Shanghai University, Shanghai, China
- Centre for Computational Systems Biology, Fudan University, Shanghai, China
- Gordon Life Science Institute, San Diego, California, United States of America
- * E-mail:
| | - Kuo-Chen Chou
- Gordon Life Science Institute, San Diego, California, United States of America
| |
Collapse
|
44
|
Mocellin S, Nitti D. Cutaneous melanoma in situ: translational evidence from a large population-based study. Oncologist 2011; 16:896-903. [PMID: 21632457 DOI: 10.1634/theoncologist.2010-0340] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Cutaneous melanoma in situ (CMIS) is a nosologic entity surrounded by health concerns and unsolved debates. We aimed to shed some light on CMIS by means of a large population-based study. METHODS Patients with histologic diagnosis of CMIS were identified from the Surveillance Epidemiology End Results (SEER) database. RESULTS The records of 93,863 cases of CMIS were available for analysis. CMIS incidence has been steadily increasing over the past 3 decades at a rate higher than any other in situ or invasive tumor, including invasive skin melanoma (annual percentage change [APC]: 9.5% versus 3.6%, respectively). Despite its noninvasive nature, CMIS is treated with excision margins wider than 1 cm in more than one third of cases. CMIS is associated with an increased risk of invasive melanoma (standardized incidence ratio [SIR]: 8.08; 95% confidence interval [CI]: 7.66-8.57), with an estimated 3:5 invasive/in situ ratio; surprisingly, it is also associated with a reduced risk of gastrointestinal (SIR: 0.78, CI: 0.72-0.84) and lung (SIR: 0.65, CI: 0.59-0.71) cancers. Relative survival analysis shows that persons with CMIS have a life expectancy equal to that of the general population. CONCLUSIONS CMIS is increasingly diagnosed and is often overtreated, although it does not affect the life expectancy of its carriers. Patients with CMIS have an increased risk of developing invasive melanoma (which warrants their enrollment in screening programs) but also a reduced risk of some epithelial cancers, which raises the intriguing hypothesis that genetic/environmental risk factors for some tumors may oppose the pathogenesis of others.
Collapse
Affiliation(s)
- Simone Mocellin
- Department of Oncological Sciences, University of Padova, Padova, Italy.
| | | |
Collapse
|
45
|
Rosemond E, Rossi M, McMillin SM, Scarselli M, Donaldson JG, Wess J. Regulation of M₃ muscarinic receptor expression and function by transmembrane protein 147. Mol Pharmacol 2011; 79:251-61. [PMID: 21056967 PMCID: PMC3033710 DOI: 10.1124/mol.110.067363] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Accepted: 11/05/2010] [Indexed: 12/16/2022] Open
Abstract
The M₃ muscarinic acetylcholine receptor (M3R) regulates many fundamental physiological functions. To identify novel M3R-interacting proteins, we used a recently developed yeast two-hybrid screen (split ubiquitin method) to detect interactions among membrane proteins. This screen led to the identification of many novel M3R-associated proteins, including the putative membrane protein transmembrane protein 147 (Tmem147). The amino acid sequence of Tmem147 is highly conserved among mammals, but its physiological roles are unknown at present. We initially demonstrated that Tmem147 could be coimmunoprecipitated with M3Rs in cotransfected mammalian cells (COS-7 cells). Confocal imaging studies showed that Tmem147 was localized to endoplasmic reticulum (ER) membranes and that the Tmem147/M3R interaction occurred in the ER of cotransfected COS-7 cells, resulting in impaired trafficking of the M3R to the cell surface. To study the role of Tmem147 in modulating M3R function in a more physiologically relevant setting, we carried out studies with H508 human colon cancer cells that endogenously express M3Rs and Tmem147. Treatment of H508 cells with carbachol, a hydrolytically stable acetylcholine analog, promoted H508 cell proliferation and activation of the mitogenic kinase, p90RSK. Small interfering RNA-mediated knockdown of Tmem147 expression significantly augmented the stimulatory effects of carbachol on H508 cell proliferation and p90RSK activation. These effects were associated with an increase in the density of cell surface M3Rs. Our data clearly indicate that Tmem147 represents a potent negative regulator of M3R function, most likely by interacting with M3Rs in an intracellular compartment (ER). These findings may lead to new strategies aimed at modulating M3R activity for therapeutic purposes.
Collapse
Affiliation(s)
- Erica Rosemond
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland, USA
| | | | | | | | | | | |
Collapse
|
46
|
Abstract
The earlier cancer can be detected, the better the chance of a cure. Currently, many cancers are diagnosed only after they have metastasized throughout the body. Effective, accurate methods of cancer detection and clinical diagnosis are urgently needed. Biosensors are devices that are designed to detect a specific biological analyte by essentially converting a biological entity (ie, protein, DNA, RNA) into an electrical signal that can be detected and analyzed. The use of biosensors in cancer detection and monitoring holds vast potential. Biosensors can be designed to detect emerging cancer biomarkers and to determine drug effectiveness at various target sites. Biosensor technology has the potential to provide fast and accurate detection, reliable imaging of cancer cells, and monitoring of angiogenesis and cancer metastasis, and the ability to determine the effectiveness of anticancer chemotherapy agents. This review will briefly summarize the current obstacles to early detection of cancer and the expanding use of biosensors as a diagnostic tool, as well as some future applications of biosensor technology.
Collapse
Affiliation(s)
- Brian Bohunicky
- The Pharmaceutical Research Institute at Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA
| | - Shaker A Mousa
- The Pharmaceutical Research Institute at Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA
- College of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
47
|
Salcedo R, Worschech A, Cardone M, Jones Y, Gyulai Z, Dai RM, Wang E, Ma W, Haines D, O'hUigin C, Marincola FM, Trinchieri G. MyD88-mediated signaling prevents development of adenocarcinomas of the colon: role of interleukin 18. J Exp Med 2010; 207:1625-36. [PMID: 20624890 PMCID: PMC2916129 DOI: 10.1084/jem.20100199] [Citation(s) in RCA: 336] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 06/16/2010] [Indexed: 12/18/2022] Open
Abstract
Signaling through the adaptor protein myeloid differentiation factor 88 (MyD88) promotes carcinogenesis in several cancer models. In contrast, MyD88 signaling has a protective role in the development of azoxymethane (AOM)/dextran sodium sulfate (DSS) colitis-associated cancer (CAC). The inability of Myd88(-/-) mice to heal ulcers generated upon injury creates an altered inflammatory environment that induces early alterations in expression of genes encoding proinflammatory factors, as well as pathways regulating cell proliferation, apoptosis, and DNA repair, resulting in a dramatic increase in adenoma formation and progression to infiltrating adenocarcinomas with frequent clonal mutations in the beta-catenin gene. Others have reported that toll-like receptor (Tlr) 4-deficient mice have a similar susceptibility to colitis to Myd88-deficient mice but, unlike the latter, are resistant to CAC. We have observed that mice deficient for Tlr2 or Il1r do not show a differential susceptibility to colitis or CAC. However, upon AOM/DSS treatment Il18(-/-) and Il18r1(-/-) mice were more susceptible to colitis and polyp formation than wild-type mice, suggesting that the phenotype of Myd88(-/-) mice is, in part, a result of their inability to signal through the IL-18 receptor. This study revealed a previously unknown level of complexity surrounding MyD88 activities downstream of different receptors that impact tissue homeostasis and carcinogenesis.
Collapse
Affiliation(s)
- Rosalba Salcedo
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21701
- Pathology/Histotechnology Laboratory, SAIC-Frederick, Inc., Frederick, MD 21701
| | - Andrea Worschech
- Department of Transfusion Medicine, Infectious Disease and Immunogenetics Section, National Institutes of Health, Bethesda, MD, 20892
| | - Marco Cardone
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21701
| | - Yava Jones
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21701
| | - Zsofia Gyulai
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21701
| | - Ren-Ming Dai
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21701
- Pathology/Histotechnology Laboratory, SAIC-Frederick, Inc., Frederick, MD 21701
| | - Ena Wang
- Department of Transfusion Medicine, Infectious Disease and Immunogenetics Section, National Institutes of Health, Bethesda, MD, 20892
| | - Winnie Ma
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21701
| | - Diana Haines
- Pathology/Histotechnology Laboratory, SAIC-Frederick, Inc., Frederick, MD 21701
| | - Colm O'hUigin
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21701
- Pathology/Histotechnology Laboratory, SAIC-Frederick, Inc., Frederick, MD 21701
| | - Francesco M. Marincola
- Department of Transfusion Medicine, Infectious Disease and Immunogenetics Section, National Institutes of Health, Bethesda, MD, 20892
| | - Giorgio Trinchieri
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21701
| |
Collapse
|
48
|
Irgon J, Huang CC, Zhang Y, Talantov D, Bhanot G, Szalma S. Robust multi-tissue gene panel for cancer detection. BMC Cancer 2010; 10:319. [PMID: 20569444 PMCID: PMC2906482 DOI: 10.1186/1471-2407-10-319] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Accepted: 06/22/2010] [Indexed: 01/10/2023] Open
Abstract
Background We have identified a set of genes whose relative mRNA expression levels in various solid tumors can be used to robustly distinguish cancer from matching normal tissue. Our current feature set consists of 113 gene probes for 104 unique genes, originally identified as differentially expressed in solid primary tumors in microarray data on Affymetrix HG-U133A platform in five tissue types: breast, colon, lung, prostate and ovary. For each dataset, we first identified a set of genes significantly differentially expressed in tumor vs. normal tissue at p-value = 0.05 using an experimentally derived error model. Our common cancer gene panel is the intersection of these sets of significantly dysregulated genes and can distinguish tumors from normal tissue on all these five tissue types. Methods Frozen tumor specimens were obtained from two commercial vendors Clinomics (Pittsfield, MA) and Asterand (Detroit, MI). Biotinylated targets were prepared using published methods (Affymetrix, CA) and hybridized to Affymetrix U133A GeneChips (Affymetrix, CA). Expression values for each gene were calculated using Affymetrix GeneChip analysis software MAS 5.0. We then used a software package called Genes@Work for differential expression discovery, and SVM light linear kernel for building classification models. Results We validate the predictability of this gene list on several publicly available data sets generated on the same platform. Of note, when analysing the lung cancer data set of Spira et al, using an SVM linear kernel classifier, our gene panel had 94.7% leave-one-out accuracy compared to 87.8% using the gene panel in the original paper. In addition, we performed high-throughput validation on the Dana Farber Cancer Institute GCOD database and several GEO datasets. Conclusions Our result showed the potential for this panel as a robust classification tool for multiple tumor types on the Affymetrix platform, as well as other whole genome arrays. Apart from possible use in diagnosis of early tumorigenesis, some other potential uses of our methodology and gene panel would be in assisting pathologists in diagnosis of pre-cancerous lesions, determining tumor boundaries, assessing levels of contamination in cell populations in vitro and identifying transformations in cell cultures after multiple passages. Moreover, based on the robustness of this gene panel in identifying normal vs. tumor, mislabelled or misinterpreted samples can be pinpointed with high confidence.
Collapse
Affiliation(s)
- Joseph Irgon
- Centocor R&D, Inc, 145 King of Prussia Rd, Radnor, PA 19087, USA
| | | | | | | | | | | |
Collapse
|
49
|
CD4+ T cells inhibit the neu-specific CD8+ T-cell exhaustion during the priming phase of immune responses against breast cancer. Breast Cancer Res Treat 2010; 126:385-94. [PMID: 20480224 DOI: 10.1007/s10549-010-0942-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Accepted: 05/06/2010] [Indexed: 10/24/2022]
Abstract
Studies conducted in animal model of infectious diseases or H-Y antigen model suggest a crucial role for CD4+ T cells in providing help for CD8+ T-cell memory responses. This concept suggests that inclusion of T helper epitopes in vaccine formulation will result in improved CD8+ T-cell responses. Although this concept has been applied to cancer vaccine design, the role of CD4+ T cells in the memory differentiation of CD8+ T cells and retention of their anti-tumor function have never been tested in breast cancer model. Using the FVB mouse model of neu-positive breast carcinoma we report for the first time that helpless T cells showed cytostatic or tumor inhibitory effects during primary tumor challenge whereas, helped T cells showed cytotoxic effects and resulted in complete tumor rejection. Such differential effects, in vivo, were associated with higher frequency of CD8+PD-L1+ and CD8+PD-1+ T cells in animals harboring helpless T cells as well as higher titer of IL-2 in the sera of animals harboring helped T cells. However, depletion of CD4+ T cells did not alter the ability of neu-specific CD8+ T cells to differentiate into memory cells and to retain their effector function against the tumor during recall challenge. These results suggest the inhibitory role of CD4+ T cells on CD8+ T-cell exhaustion without substantial effects on the differentiation of memory T cells during priming phase of the immune responses against breast cancer.
Collapse
|
50
|
Stroncek DF, Jin P, Ren J, Feng J, Castiello L, Civini S, Wang E, Marincola FM, Sabatino M. Quality assessment of cellular therapies: the emerging role of molecular assays. THE KOREAN JOURNAL OF HEMATOLOGY 2010; 45:14-22. [PMID: 21120158 PMCID: PMC2983004 DOI: 10.5045/kjh.2010.45.1.14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 03/09/2010] [Accepted: 03/16/2010] [Indexed: 12/23/2022]
Abstract
Cellular therapies are becoming increasingly important in treating cancer, hematologic malignancies, autoimmune disorders, and damaged tissue. These therapies are becoming more effective and are being used more frequently, but they are also becoming more complex. As a result, quality testing is becoming an increasingly important part of cellular therapy. Cellular therapies should be tested at several points during their production. The starting material, intermediate products and the final product are usually analyzed. Products are evaluated at critical steps in the manufacturing process and at the end of production prior to the release of the product for clinical use. In addition, the donor of the starting biologic material is usually evaluated. The testing of cellular therapies for stability, consistency, comparability and potency is especially challenging. We and others have found that global gene and microRNA expression analysis is useful for comparability testing and will likely be useful for potency, stability and consistency testing. Several examples of the use of gene expression analysis for assessing cellular therapies are presented.
Collapse
Affiliation(s)
- David F Stroncek
- Cellular Therapy and Immunogenetics Sections, Department of Transfusion Medicine, Clinical Center, NIH, Bethesda, MD, USA
| | | | | | | | | | | | | | | | | |
Collapse
|