1
|
Narayanan D, Bartley B, Landes J, Moore SA, Kulkarni V, He Q, Simonette R, Doan HQ, Rady PL, Tyring SK. The effect of selinexor on prostaglandin synthesis in virus-positive Merkel cell carcinoma cell lines. Arch Dermatol Res 2024; 316:312. [PMID: 38822924 DOI: 10.1007/s00403-024-03108-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 03/17/2024] [Accepted: 04/26/2024] [Indexed: 06/03/2024]
Abstract
Merkel cell carcinoma (MCC) is an aggressive neuroendocrine skin cancer with high rates of metastasis and mortality. In vitro studies suggest that selinexor (KPT-330), an inhibitor of exportin 1, may be a targeted therapeutic option for MCC. This selective inhibitor prevents the transport of oncogenic mRNA out of the nucleus. Of note, 80% of MCC tumors are integrated with Merkel cell polyomavirus (MCPyV), and virally encoded tumor-antigens, small T (sT) and large T (LT) mRNAs may require an exportin transporter to relocate to the cytoplasm and modulate host tumor-suppressing pathways. To explore selinexor as a targeted therapy for MCC, we examine its ability to inhibit LT and sT antigen expression in vitro and its impact on the prostaglandin synthesis pathway. Protein expression was determined through immunoblotting and quantified by densitometric analysis. Statistical significance was determined with t-test. Treatment of MCPyV-infected cell lines with selinexor resulted in a significant dose-dependent downregulation of key mediators of the prostaglandin synthesis pathway. Given the role of prostaglandin synthesis pathway in MCC, our findings suggest that selinexor, alone or in combination with immunotherapy, could be a promising treatment for MCPyV-infected MCC patients who are resistant to chemotherapy and immunotherapy.
Collapse
Affiliation(s)
- Deepika Narayanan
- Department of Dermatology, The University of Texas Health Science Center at Houston, 6431 Fannin St., MSB Room 1.178, Houston, TX, 77070, USA
| | - Brooke Bartley
- Department of Dermatology, The University of Texas Health Science Center at Houston, 6431 Fannin St., MSB Room 1.178, Houston, TX, 77070, USA
| | - Jennifer Landes
- Department of Dermatology, The University of Texas Health Science Center at Houston, 6431 Fannin St., MSB Room 1.178, Houston, TX, 77070, USA
| | - Stephen A Moore
- Department of Dermatology, The University of Texas Health Science Center at Houston, 6431 Fannin St., MSB Room 1.178, Houston, TX, 77070, USA
| | - Veda Kulkarni
- Department of Dermatology, The University of Texas Health Science Center at Houston, 6431 Fannin St., MSB Room 1.178, Houston, TX, 77070, USA
| | - Qin He
- Department of Dermatology, The University of Texas Health Science Center at Houston, 6431 Fannin St., MSB Room 1.178, Houston, TX, 77070, USA
| | - Rebecca Simonette
- Department of Dermatology, The University of Texas Health Science Center at Houston, 6431 Fannin St., MSB Room 1.178, Houston, TX, 77070, USA
| | - Hung Q Doan
- Department of Dermatology, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Peter L Rady
- Department of Dermatology, The University of Texas Health Science Center at Houston, 6431 Fannin St., MSB Room 1.178, Houston, TX, 77070, USA
| | - Stephen K Tyring
- Department of Dermatology, The University of Texas Health Science Center at Houston, 6431 Fannin St., MSB Room 1.178, Houston, TX, 77070, USA.
| |
Collapse
|
2
|
Zhou L, Zeng Y, Liu Y, Du K, Luo Y, Dai Y, Pan W, Zhang L, Zhang L, Tian F, Gu C. Cellular senescence and metabolic reprogramming model based on bulk/single-cell RNA sequencing reveals PTGER4 as a therapeutic target for ccRCC. BMC Cancer 2024; 24:451. [PMID: 38605343 PMCID: PMC11007942 DOI: 10.1186/s12885-024-12234-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the prevailing histological subtype of renal cell carcinoma and has unique metabolic reprogramming during its occurrence and development. Cell senescence is one of the newly identified tumor characteristics. However, there is a dearth of methodical and all-encompassing investigations regarding the correlation between the broad-ranging alterations in metabolic processes associated with aging and ccRCC. We utilized a range of analytical methodologies, such as protein‒protein interaction network analysis and least absolute shrinkage and selection operator (LASSO) regression analysis, to form and validate a risk score model known as the senescence-metabolism-related risk model (SeMRM). Our study demonstrated that SeMRM could more precisely predict the OS of ccRCC patients than the clinical prognostic markers in use. By utilizing two distinct datasets of ccRCC, ICGC-KIRC (the International Cancer Genome Consortium) and GSE29609, as well as a single-cell dataset (GSE156632) and real patient clinical information, and further confirmed the relationship between the senescence-metabolism-related risk score (SeMRS) and ccRCC patient progression. It is worth noting that patients who were classified into different subgroups based on the SeMRS exhibited notable variations in metabolic activity, immune microenvironment, immune cell type transformation, mutant landscape, and drug responsiveness. We also demonstrated that PTGER4, a key gene in SeMRM, regulated ccRCC cell proliferation, lipid levels and the cell cycle in vivo and in vitro. Together, the utilization of SeMRM has the potential to function as a dependable clinical characteristic to increase the accuracy of prognostic assessment for patients diagnosed with ccRCC, thereby facilitating the selection of suitable treatment strategies.
Collapse
Affiliation(s)
- Lijie Zhou
- Department of Urology, First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan Province, China.
- Unit of Day Surgery Center, First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan Province, China.
| | - Youmiao Zeng
- Department of Urology, First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan Province, China
- Department of Urology, Zhengzhou Key Laboratory for Molecular Biology of Urological Tumor Research, Henan Institute of Urology, First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan Province, China
| | - Yuanhao Liu
- Department of Urology, First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan Province, China
- Unit of Day Surgery Center, First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan Province, China
| | - Kaixuan Du
- Department of Urology, First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan Province, China
- Unit of Day Surgery Center, First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan Province, China
| | - Yongbo Luo
- Department of Urology, First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan Province, China
- Unit of Day Surgery Center, First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan Province, China
| | - Yiheng Dai
- Department of Urology, First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan Province, China
- Department of Urology, Zhengzhou Key Laboratory for Molecular Biology of Urological Tumor Research, Henan Institute of Urology, First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan Province, China
| | - Wenbang Pan
- Department of Urology, First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan Province, China
- Unit of Day Surgery Center, First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan Province, China
| | - Lailai Zhang
- Department of Urology, First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan Province, China
- Unit of Day Surgery Center, First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan Province, China
| | - Lei Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan Province, China.
| | - Fengyan Tian
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan Province, China.
| | - Chaohui Gu
- Department of Urology, First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan Province, China.
- Unit of Day Surgery Center, First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan Province, China.
| |
Collapse
|
3
|
Jayathilake AG, Luwor RB, Nurgali K, Su XQ. Molecular Mechanisms Associated with the Inhibitory Role of Long Chain n-3 PUFA in Colorectal Cancer. Integr Cancer Ther 2024; 23:15347354241243024. [PMID: 38708673 PMCID: PMC11072084 DOI: 10.1177/15347354241243024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/14/2024] [Accepted: 03/11/2024] [Indexed: 05/07/2024] Open
Abstract
Colorectal cancer (CRC) is the third leading cause of cancer-related death in the world. Multiple evidence suggests that there is an association between excess fat consumption and the risk of CRC. The long chain n-3 polyunsaturated fatty acids (LC n-3 PUFA), especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are essential for human health, and both in vitro and in vivo studies have shown that these fatty acids can prevent CRC development through various molecular mechanisms. These include the modulation of arachidonic acid (AA) derived prostaglandin synthesis, alteration of growth signaling pathways, arrest of the cell cycle, induction of cell apoptosis, suppression of angiogenesis and modulation of inflammatory response. Human clinical studies found that LC n-3 PUFA combined with chemotherapeutic agents can improve the efficacy of treatment and reduce the dosage of chemotherapy and associated side effects. In this review, we discuss comprehensively the anti-cancer effects of LC n-3 PUFA on CRC, with a main focus on the underlying molecular mechanisms.
Collapse
Affiliation(s)
| | - Rodney Brain Luwor
- The University of Melbourne, Melbourne, VIC, Australia
- Fiona Elsey Cancer Research Institute, Ballarat, VIC, Australia
| | - Kulmira Nurgali
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
- The University of Melbourne, Melbourne, VIC, Australia
- Australian Institute for Muscular Skeletal Science (AIMSS), Melbourne, VIC, Australia
| | - Xiao Qun Su
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| |
Collapse
|
4
|
Nie JZ, Wang MT, Nie D. Regulations of Tumor Microenvironment by Prostaglandins. Cancers (Basel) 2023; 15:3090. [PMID: 37370700 PMCID: PMC10296267 DOI: 10.3390/cancers15123090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Prostaglandins, the bioactive lipids generated from the metabolism of arachidonic acid through cyclooxygenases, have potent effects on many constituents of tumor microenvironments. In this review, we will describe the formation and activities of prostaglandins in the context of the tumor microenvironment. We will discuss the regulation of cancer-associated fibroblasts and immune constituents by prostaglandins and their roles in immune escapes during tumor progression. The review concludes with future perspectives on improving the efficacy of immunotherapy through repurposing non-steroid anti-inflammatory drugs and other prostaglandin modulators.
Collapse
Affiliation(s)
- Jeffrey Z. Nie
- Department of Medical Microbiology, Immunology and Cell Biology, School of Medicine, Simmons Cancer Institute, Southern Illinois University, Springfield, IL 62702, USA
| | - Man-Tzu Wang
- Hillman Cancer Center, University of Pittsburg School of Medicine, Pittsburg, PA 15232, USA
| | - Daotai Nie
- Department of Medical Microbiology, Immunology and Cell Biology, School of Medicine, Simmons Cancer Institute, Southern Illinois University, Springfield, IL 62702, USA
| |
Collapse
|
5
|
Finetti F, Paradisi L, Bernardi C, Pannini M, Trabalzini L. Cooperation between Prostaglandin E2 and Epidermal Growth Factor Receptor in Cancer Progression: A Dual Target for Cancer Therapy. Cancers (Basel) 2023; 15:cancers15082374. [PMID: 37190301 DOI: 10.3390/cancers15082374] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/15/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
It is recognized that prostaglandin E2 (PGE2) is one key lipid mediator involved in chronic inflammation, and it is directly implicated in tumor development by regulating cancer cell growth and migration, apoptosis, epithelial-mesenchymal transition, angiogenesis, and immune escape. In addition, the expression of the enzymes involved in PGE2 synthesis, cyclooxygenase 2 (COX-2) and microsomal prostaglandin E synthase 1 (mPGES1), positively correlates with tumor progression and aggressiveness, clearly indicating the crucial role of the entire pathway in cancer. Moreover, several lines of evidence suggest that the COX2/mPGES1/PGE2 inflammatory axis is involved in the modulation of epidermal growth factor receptor (EGFR) signaling to reinforce the oncogenic drive of EGFR activation. Similarly, EGFR activation promotes the induction of COX2/mPGES1 expression and PGE2 production. In this review, we describe the interplay between COX2/mPGES1/PGE2 and EGFR in cancer, and new therapeutic strategies that target this signaling pathway, to outline the importance of the modulation of the inflammatory process in cancer fighting.
Collapse
Affiliation(s)
- Federica Finetti
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Lucrezia Paradisi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Clizia Bernardi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Margherita Pannini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Lorenza Trabalzini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| |
Collapse
|
6
|
Wang Y, Wang Y, Ren Y, Zhang Q, Yi P, Cheng C. Metabolic modulation of immune checkpoints and novel therapeutic strategies in cancer. Semin Cancer Biol 2022; 86:542-565. [PMID: 35151845 DOI: 10.1016/j.semcancer.2022.02.010] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 12/08/2021] [Accepted: 02/05/2022] [Indexed: 02/07/2023]
Abstract
Cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) or programmed death-1 (PD-1)/programmed death-ligand 1 (PD-L1)-based immune checkpoint inhibitors (ICIs) have led to significant improvements in the overall survival of patients with certain cancers and are expected to benefit patients by achieving complete, long-lasting remissions and cure. However, some patients who receive ICIs either fail treatment or eventually develop immunotherapy resistance. The existence of such patients necessitates a deeper understanding of cancer progression, specifically nutrient regulation in the tumor microenvironment (TME), which includes both metabolic cross-talk between metabolites and tumor cells, and intracellular metabolism in immune and cancer cells. Here we review the features and behaviors of the TME and discuss the recently identified major immune checkpoints. We comprehensively and systematically summarize the metabolic modulation of tumor immunity and immune checkpoints in the TME, including glycolysis, amino acid metabolism, lipid metabolism, and other metabolic pathways, and further discuss the potential metabolism-based therapeutic strategies tested in preclinical and clinical settings. These findings will help to determine the existence of a link or crosstalk between tumor metabolism and immunotherapy, which will provide an important insight into cancer treatment and cancer research.
Collapse
Affiliation(s)
- Yi Wang
- Health Management Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China
| | - Yuya Wang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Yifei Ren
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China; Department of Obstetrics and Gynecology, Daping Hospital, Army Medical Center, Chongqing, 400038, China
| | - Qi Zhang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Ping Yi
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China.
| | - Chunming Cheng
- Department of Radiation Oncology, James Comprehensive Cancer Center and College of Medicine at The Ohio State University, Columbus, OH, 43221, United States.
| |
Collapse
|
7
|
Gamez-Belmonte R, Mahapatro M, Erkert L, Gonzalez-Acera M, Naschberger E, Yu Y, Tena-Garitaonaindia M, Patankar JV, Wagner Y, Podstawa E, Schödel L, Bubeck M, Neurath MF, Stürzl M, Becker C. Epithelial presenilin-1 drives colorectal tumour growth by controlling EGFR-COX2 signalling. Gut 2022; 72:1155-1166. [PMID: 36261293 DOI: 10.1136/gutjnl-2022-327323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 10/02/2022] [Indexed: 12/08/2022]
Abstract
OBJECTIVE Psen1 was previously characterised as a crucial factor in the pathogenesis of neurodegeneration in patients with Alzheimer's disease. Little, if any, is known about its function in the gut. Here, we uncovered an unexpected functional role of Psen1 in gut epithelial cells during intestinal tumourigenesis. DESIGN Human colorectal cancer (CRC) and control samples were investigated for PSEN1 and proteins of theγ-secretase complex. Tumour formation was analysed in the AOM-DSS and Apc min/+ mouse models using newly generated epithelial-specific Psen1 deficient mice. Psen1 deficient human CRC cells were studied in a xenograft tumour model. Tumour-derived organoids were analysed for growth and RNA-Seq was performed to identify Psen1-regulated pathways. Tumouroids were generated to study EGFR activation and evaluation of the influence of prostanoids. RESULTS PSEN1 is expressed in the intestinal epithelium and its level is increased in human CRC. Psen1-deficient mice developed only small tumours and human cancer cell lines deficient in Psen1 had a reduced tumourigenicity. Tumouroids derived from Psen1-deficient Apc min/+ mice exhibited stunted growth and reduced cell proliferation. On a molecular level, PSEN1 potentiated tumour cell proliferation via enhanced EGFR signalling and COX-2 production. Exogenous administration of PGE2 reversed the slow growth of PSEN1 deficient tumour cells via PGE2 receptor 4 (EP4) receptor signalling. CONCLUSIONS Psen1 drives tumour development by increasing EGFR signalling via NOTCH1 processing, and by activating the COX-2-PGE2 pathway. PSEN1 inhibition could be a useful strategy in treatment of CRC.
Collapse
Affiliation(s)
- Reyes Gamez-Belmonte
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Mousumi Mahapatro
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Lena Erkert
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Miguel Gonzalez-Acera
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Elisabeth Naschberger
- Division of Molecular and Experimental Surgery, Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Yuqiang Yu
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Duke University Medical Center, Durham, North Carolina, USA
| | | | - Jay V Patankar
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Yara Wagner
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Eva Podstawa
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Lena Schödel
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Marvin Bubeck
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Markus F Neurath
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Michael Stürzl
- Division of Molecular and Experimental Surgery, Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christoph Becker
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany .,Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
8
|
Wei J, Zhang J, Wang D, Cen B, Lang JD, DuBois RN. The COX-2-PGE2 Pathway Promotes Tumor Evasion in Colorectal Adenomas. Cancer Prev Res (Phila) 2022; 15:285-296. [PMID: 35121582 PMCID: PMC9064954 DOI: 10.1158/1940-6207.capr-21-0572] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/18/2022] [Accepted: 01/28/2022] [Indexed: 11/16/2022]
Abstract
The mechanisms underlying the regulation of a checkpoint receptor, PD-1, in tumor-infiltrating immune cells during the development of colorectal cancer are not fully understood. Here we demonstrate that COX-2-derived PGE2, an inflammatory mediator and tumor promoter, induces PD-1 expression by enhancing NFκB's binding to the PD-1 promoter via an EP4-PI3K-Akt signaling pathway in both CD8+ T cells and macrophages. Moreover, PGE2 suppresses CD8+ T-cell proliferation and cytotoxicity against tumor cells and impairs macrophage phagocytosis of cancer cells via an EP4-PI3K-Akt-NFκB-PD-1 signaling pathway. In contrast, inhibiting the COX-2-PGE2-EP4 pathway increases intestinal CD8+ T-cell activation and proliferation and enhances intestinal macrophage phagocytosis of carcinoma cells accompanied by reduction of PD-1 expression in intestinal CD8+ T cells and macrophages in ApcMin/+ mice. PD-1 expression correlates well with COX-2 levels in human colorectal cancer specimens. Both elevated PD-1 and COX-2 are associated with poorer overall survival in patients with colorectal cancer. Our results uncover a novel role of PGE2 in tumor immune evasion. They may provide the rationale for developing new therapeutic approaches to subvert this process by targeting immune checkpoint pathways using EP4 antagonists. In addition, our findings reveal a novel mechanism explaining how NSAIDs reduce colorectal cancer risk by suppressing tumor immune evasion. PREVENTION RELEVANCE These findings provide a potential explanation underlying the chemopreventive effect of NSAIDs on reducing colorectal cancer incidence during premalignancy and provide a rationale for developing EP4 antagonists for colorectal cancer prevention and treatment. Simply targeting PGE2 signaling alone may be efficacious in colorectal cancer prevention and treatment, avoiding side effects associated with NSAIDs.
Collapse
Affiliation(s)
- Jie Wei
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425
| | - Jinyu Zhang
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425
| | - Dingzhi Wang
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425
| | - Bo Cen
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425
| | - Jessica D. Lang
- Integrated Cancer Genomics Division, Translational Genomics Research Institute, Phoenix, AZ 85004
| | - Raymond N. DuBois
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425
- Department of Research and Division of Gastroenterology, Mayo Clinic, Scottsdale, AZ 85259
| |
Collapse
|
9
|
Wang Q, Morris RJ, Bode AM, Zhang T. Prostaglandin Pathways: Opportunities for Cancer Prevention and Therapy. Cancer Res 2021; 82:949-965. [PMID: 34949672 DOI: 10.1158/0008-5472.can-21-2297] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/27/2021] [Accepted: 12/17/2021] [Indexed: 11/16/2022]
Abstract
Because of profound effects observed in carcinogenesis, prostaglandins (PGs), prostaglandin-endoperoxide synthases, and PG receptors are implicated in cancer development and progression. Understanding the molecular mechanisms of PG actions has potential clinical relevance for cancer prevention and therapy. This review focuses on the current status of PG signaling pathways in modulating cancer progression and aims to provide insights into the mechanistic actions of PGs and their receptors in influencing tumor progression. We also examine several small molecules identified as having anticancer activity that target prostaglandin receptors. The literature suggests that targeting PG pathways could provide opportunities for cancer prevention and therapy.
Collapse
Affiliation(s)
- Qiushi Wang
- The Hormel Institute, University of Minnesota
| | | | - Ann M Bode
- The Hormel Institute, University of Minnesota
| | | |
Collapse
|
10
|
Wang D, Cabalag CS, Clemons NJ, DuBois RN. Cyclooxygenases and Prostaglandins in Tumor Immunology and Microenvironment of Gastrointestinal Cancer. Gastroenterology 2021; 161:1813-1829. [PMID: 34606846 DOI: 10.1053/j.gastro.2021.09.059] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/03/2021] [Accepted: 09/19/2021] [Indexed: 12/21/2022]
Abstract
Chronic inflammation is a known risk factor for gastrointestinal cancer. The evidence that nonsteroidal anti-inflammatory drugs suppress the incidence, growth, and metastasis of gastrointestinal cancer supports the concept that a nonsteroidal anti-inflammatory drug target, cyclooxygenase, and its downstream bioactive lipid products may provide one of the links between inflammation and cancer. Preclinical studies have demonstrated that the cyclooxygenase-2-prostaglandin E2 pathway can promote gastrointestinal cancer development. Although the role of this pathway in cancer has been investigated extensively for 2 decades, only recent studies have described its effects on host defenses against transformed epithelial cells. Overcoming tumor-immune evasion remains one of the major challenges in cancer immunotherapy. This review summarizes the impacts of the cyclooxygenase-2-prostaglandin E2 pathway on gastrointestinal cancer development. Our focus was to highlight recent advances in our understanding of how this pathway induces tumor immune evasion.
Collapse
Affiliation(s)
- Dingzhi Wang
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina
| | - Carlos S Cabalag
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Nicholas J Clemons
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia.
| | - Raymond N DuBois
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina.
| |
Collapse
|
11
|
Xin Y, Roh K, Cho E, Park D, Whang W, Jung E. Isookanin Inhibits PGE 2-Mediated Angiogenesis by Inducing Cell Arrest through Inhibiting the Phosphorylation of ERK1/2 and CREB in HMEC-1 Cells. Int J Mol Sci 2021; 22:ijms22126466. [PMID: 34208772 PMCID: PMC8234715 DOI: 10.3390/ijms22126466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/09/2021] [Accepted: 06/14/2021] [Indexed: 11/16/2022] Open
Abstract
Inflammation is increasingly recognized as a critical mediator of angiogenesis, and unregulated angiogenic responses often involve human diseases. The importance of regulating angiogenesis in inflammatory diseases has been demonstrated through some successful cases of anti-angiogenesis therapies in related diseases, including arthritis, but it has been reported that some synthetic types of antiangiogenic drugs have potential side effects. In recent years, the importance of finding alternative strategies for regulating angiogenesis has begun to attract the attention of researchers. Therefore, identification of natural ingredients used to prevent or treat angiogenesis-related diseases will play a greater role. Isookanin is a phenolic flavonoid presented in Bidens extract, and it has been reported that isookanin possesses some biological properties, including antioxidative and anti-inflammatory effects, anti-diabetic properties, and an ability to inhibit α-amylase. However, its antiangiogenic effects and mechanism thereof have not been studied yet. In this study, our results indicate that isookanin has an effective inhibitory effect on the angiogenic properties of microvascular endothelial cells. Isookanin shows inhibitory effects in multiple stages of PGE2-induced angiogenesis, including the growth, proliferation, migration, and tube formation of microvascular endothelial cells. In addition, isookanin induces cell cycle arrest in S phase, which is also the reason for subsequent inhibition of cell proliferation. The mechanism of inhibiting angiogenesis by isookanin is related to the inhibition of PGE2-mediated ERK1/2 and CREB phosphorylation. These findings make isookanin a potential candidate for the treatment of angiogenesis-related diseases.
Collapse
Affiliation(s)
- Yingji Xin
- Biospectrum Life Science Institute, Yongin 16827, Korea; (Y.X.); (K.R.); (E.C.); (D.P.)
- Department of Global Innovative Drug, Graduate School, College of Pharmacy, Chung-Ang University, Heukseok-dong, Dongjak-gu, Seoul 156756, Korea
| | - Kyungbaeg Roh
- Biospectrum Life Science Institute, Yongin 16827, Korea; (Y.X.); (K.R.); (E.C.); (D.P.)
| | - Eunae Cho
- Biospectrum Life Science Institute, Yongin 16827, Korea; (Y.X.); (K.R.); (E.C.); (D.P.)
| | - Deokhoon Park
- Biospectrum Life Science Institute, Yongin 16827, Korea; (Y.X.); (K.R.); (E.C.); (D.P.)
| | - Wankyunn Whang
- Department of Global Innovative Drug, Graduate School, College of Pharmacy, Chung-Ang University, Heukseok-dong, Dongjak-gu, Seoul 156756, Korea
- Correspondence: (W.W.); (E.J.); Tel.: +82-70-5117-0043 (E.J.)
| | - Eunsun Jung
- Biospectrum Life Science Institute, Yongin 16827, Korea; (Y.X.); (K.R.); (E.C.); (D.P.)
- Correspondence: (W.W.); (E.J.); Tel.: +82-70-5117-0043 (E.J.)
| |
Collapse
|
12
|
Sayılgan JF, Haliloğlu T, Gönen M. Protein dynamics analysis identifies candidate cancer driver genes and mutations in TCGA data. Proteins 2021; 89:721-730. [PMID: 33550612 DOI: 10.1002/prot.26054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 01/04/2021] [Accepted: 01/31/2021] [Indexed: 11/09/2022]
Abstract
Recently, it has been showed that cancer missense mutations selectively target the neighborhood of hinge residues, which are key sites in protein dynamics. Here, we show that this approach can be extended to find previously unknown candidate mutations and genes. To this aim, we developed a computational pipeline to detect significantly enriched three-dimensional (3D) clustering of missense mutations around hinge residues. The hinge residues were detected by applying a Gaussian network model. By systematically analyzing the PanCancer compendium of somatic mutations in nearly 10 000 tumors from the Cancer Genome Atlas, we identified candidate genes and mutations in addition to well known ones. For instance, we found significantly enriched 3D clustering of missense mutations in known cancer genes including CDK4, CDKN2A, TCL1A, and MAPK1. Beside these known genes, we also identified significantly enriched 3D clustering of missense mutations around hinge residues in PLA2G4A, which may lead to excessive phosphorylation of the extracellular signal-regulated kinases. Furthermore, we demonstrated that hinge-based features improves pathogenicity prediction for missense mutations. Our results show that the consideration of clustering around hinge residues can help us explain the functional role of the mutations in known cancer genes and identify candidate genes.
Collapse
Affiliation(s)
- Jan Fehmi Sayılgan
- Graduate School of Sciences and Engineering, Koç University, İstanbul, Turkey
| | - Türkan Haliloğlu
- Department of Chemical Engineering, School of Engineering, Boğaziçi University, İstanbul, Turkey.,Polymer Research Center, Boğaziçi University, İstanbul, Turkey
| | - Mehmet Gönen
- Department of Industrial Engineering, College of Engineering, Koç University, İstanbul, Turkey.,School of Medicine, Koç University, İstanbul, Turkey
| |
Collapse
|
13
|
Nabergoj S, Markovič T, Avsec D, Gobec M, Podgornik H, Jakopin Ž, Mlinarič-Raščan I. EP4 receptor agonist L-902688 augments cytotoxic activities of ibrutinib, idelalisib, and venetoclax against chronic lymphocytic leukemia cells. Biochem Pharmacol 2020; 183:114352. [PMID: 33278351 DOI: 10.1016/j.bcp.2020.114352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/20/2020] [Accepted: 11/30/2020] [Indexed: 01/10/2023]
Abstract
Treatment of patients with relapsed or refractory chronic lymphocytic leukemia (CLL) has significantly improved more recently with the approval of several new agents, including ibrutinib, idelalisib, and venetoclax. Despite the outstanding efficacies observed with these agents, these treatments are sometimes discontinued due to toxicity, unresponsiveness, transformation of the disease and/or resistance. Constitutive NF-κB activation that protects CLL cells from apoptotic stimuli represents one of molecular mechanisms that underlie the emergence of drug resistance. As prostaglandin E (EP)4 receptor agonists have been shown to successfully inhibit the NF-κB pathway in B-cell lymphoma cells, we investigated the potential of the highly specific EP4 receptor agonist L-902688 for the potential treatment of patients with CLL. We show here that low micromolar concentrations of L-902688 can indeed induce selective cytotoxicity towards several B-cell malignancies, including CLL. Moreover, L-902688-mediated activation of the EP4 receptor in patient derived CLL cells resulted in inhibition of the NF-κB pathway, cell proliferation, and induction of apoptosis. Most importantly, we show for the first time that in combination with ibrutinib, idelalisib, or venetoclax, L-902688 induces synergistic cytotoxic activity against patient derived CLL cells. To conclude, the modulation of NF-κB activity by EP4 receptor agonists represents an innovative approach to improve the treatment of patients with CLL. In particular, EP4 receptor agonists appear to represent promising adjuncts to the already existing therapies for patients with CLL due to these promising synergistic activities.
Collapse
MESH Headings
- Adenine/administration & dosage
- Adenine/analogs & derivatives
- Adult
- Antineoplastic Agents/administration & dosage
- Antineoplastic Combined Chemotherapy Protocols/administration & dosage
- Apoptosis/drug effects
- Apoptosis/physiology
- Bridged Bicyclo Compounds, Heterocyclic/administration & dosage
- Dose-Response Relationship, Drug
- Drug Synergism
- Humans
- Jurkat Cells
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukocytes, Mononuclear/drug effects
- Leukocytes, Mononuclear/metabolism
- Piperidines/administration & dosage
- Purines/administration & dosage
- Pyrrolidinones/administration & dosage
- Quinazolinones/administration & dosage
- Receptors, Prostaglandin E, EP4 Subtype/agonists
- Receptors, Prostaglandin E, EP4 Subtype/metabolism
- Sulfonamides/administration & dosage
- Tetrazoles/administration & dosage
- U937 Cells
Collapse
Affiliation(s)
- Sanja Nabergoj
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Tijana Markovič
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Damjan Avsec
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Martina Gobec
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Helena Podgornik
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia; University Medical Centre Ljubljana, Department of Haematology, Ljubljana, Slovenia
| | - Žiga Jakopin
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Irena Mlinarič-Raščan
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia.
| |
Collapse
|
14
|
EP4 receptor as a novel promising therapeutic target in colon cancer. Pathol Res Pract 2020; 216:153247. [PMID: 33190014 DOI: 10.1016/j.prp.2020.153247] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 01/17/2023]
Abstract
The most prevalent malignancy that can occur in the gastrointestinal tract is colon cancer. The current treatment options for colon cancer patients include chemotherapy, surgery, radiotherapy, immunotherapy, and targeted therapy. Although the chance of curing the disease in the early stages is high, there is no cure for almost all patients with advanced and metastatic disease. It has been found that over-activation of cyclooxygenase 2 (COX-2), followed by the production of prostaglandin E2 (PGE2) in patients with colon cancer are significantly increased. The tumorigenic function of COX-2 is mainly due to its role in the production of PGE2. PGE2, as a main generated prostanoid, has an essential role in growth and survival of colon cancer cell's. PGE2 exerts various effects in colon cancer cells including enhanced expansion, angiogenesis, survival, invasion, and migration. The signaling of PGE2 via the EP4 receptor has been shown to induce colon tumorigenesis. Moreover, the expression levels of the EP4 receptor significantly affect tumor growth and development. Overexpression of EP4 by various mechanisms increases survival and tumor vasculature in colon cancer cells. It seems that the pathway starting with COX2, continuing with PGE2, and ending with EP4 can promote the spread and growth of colon cancer. Therefore, targeting the COX-2/PGE2/EP4 axis can be considered as a worthy therapeutic approach to treat colon cancer. In this review, we have examined the role and different mechanisms that the EP4 receptor is involved in the development of colon cancer.
Collapse
|
15
|
Musser ML, Viall AK, Phillips RL, Hostetter JM, Johannes CM. Gene expression of prostaglandin EP4 receptor in three canine carcinomas. BMC Vet Res 2020; 16:213. [PMID: 32571310 PMCID: PMC7310232 DOI: 10.1186/s12917-020-02431-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/16/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Chronic inflammation mediated by the cyclooxygenase enzymes, specifically their product prostaglandin E2 (PGE2), can result in the development of cancer. PGE2 promotes cell proliferation, apoptosis, and angiogenesis through interaction with its specific receptors (EP1 receptor - EP4 receptor [EP1R-EP4R]). In multiple human cancers, the expression of EP4R is associated with the development of malignancy and a poor prognosis. The expression of EP4R has not yet been evaluated in canine tumors. The aim of this study was to characterize the mRNA gene expression of EP4R (ptger4) in canine squamous cell carcinoma (SCC), apocrine gland anal sac adenocarcinoma (AGASACA), and transitional cell carcinoma (TCC). Archived tumor samples of canine cutaneous SCC (n = 9), AGASACA (n = 9), and TCC (n = 9), and matched archived normal tissue controls were evaluated for mRNA expression of canine EP4R using RNA in situ hybridization (RNAscope®). Quantification of RNAscope® signals in tissue sections was completed with an advanced digital pathology image analysis system (HALO). Data was expressed as copy number, H-index, and percent tumor cell expression of EP4R. RESULTS In all canine SCC, AGASACA, and TCC samples evaluated, strong universal positive expression of EP4R was identified. For SCC and AGASACA, mRNA EP4R expression was statistically higher than that of their respective normal tissues. The TCC tissues displayed significantly less mRNA EP4R expression when compared to normal bladder mucosa. CONCLUSIONS These results confirm the mRNA expression of canine EP4R in all tumor types evaluated, with SCC and AGASACA displaying the highest expression, and TCC displaying the lowest expression. This study also represents the first reported veterinary evaluation of EP4R expression using the novel in situ hybridization technique, RNAscope®.
Collapse
Affiliation(s)
- Margaret L Musser
- Department of Veterinary Clinical Sciences, Iowa State University College of Veterinary Medicine, Ames, IA, USA.
| | - Austin K Viall
- Department of Veterinary Pathology, Iowa State University College of Veterinary Medicine, Ames, IA, USA
| | - Rachel L Phillips
- Department of Veterinary Pathology, Iowa State University College of Veterinary Medicine, Ames, IA, USA
| | - Jesse M Hostetter
- Department of Veterinary Pathology, Iowa State University College of Veterinary Medicine, Ames, IA, USA.,Present address: University of Georgia College of Veterinary Medicine, 501 D.W. Brooks Drive, Athens, GA, 30602, USA
| | - Chad M Johannes
- Department of Veterinary Clinical Sciences, Iowa State University College of Veterinary Medicine, Ames, IA, USA
| |
Collapse
|
16
|
Zang R, Wang X, Jin R, Lei Y, Huang J, Liu C, Zheng S, Zhou F, Wu Q, Sun N, Gao S, He J. Translational value of IDH1 and DNA methylation biomarkers in diagnosing lung cancers: a novel diagnostic panel of stage and histology-specificity. J Transl Med 2019; 17:430. [PMID: 31888670 PMCID: PMC6936123 DOI: 10.1186/s12967-019-2117-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 10/26/2019] [Indexed: 12/24/2022] Open
Abstract
Background Lung cancer is the leading cause of cancer-related death worldwide, and the timely and serial assessment of low-dose computed tomography (LDCT) in high-risk populations remains a challenge. Furthermore, testing a single biomarker for the diagnosis of lung cancers is of relatively low effectiveness. Thus, a stronger diagnostic combination of blood biomarkers is needed to improve the diagnosis of non-small cell lung cancer (NSCLC). Methods The blood levels of individual biomarkers [IDH1, DNA methylation of short stature homeobox 2 gene (SHOX2), and prostaglandin E receptor 4 gene (PTGER4)] were measured and statistically analyzed in samples from healthy controls and patients with lung cancer. In total, 221 candidates were enrolled and randomly assigned into two groups for the training and validation of a diagnostic panel. Additionally, a subgroup analysis was performed in the whole cohort. Results A newly combined 3-marker diagnostic model for lung cancers was established and validated with area under the receiver operating characteristic (ROC) curve (AUC) values ranging from 0.835 to 0.905 in independent groups showing significantly stronger diagnostic value compared with a single tested biomarker. The sensitivity of the diagnostic model was as high as 86.1% and 80.0% in the training and validation sets, respectively. Although no apparent differences were found between the 3-marker and 2-marker models, the high clinical T-stage and histological type specificity of IDH1 and two other methylated DNA biomarkers were demonstrated in the subgroup analysis. Conclusions The combination of single biomarkers with high stage-specificity and histological type specificity (SHOX2 and PTGER4 DNA methylation and IDH1) showed better diagnostic performance in the detection of lung cancers compared with single marker assessment. A greater clinical utility of the panel may be developed by adding demographic/epidemiologic characteristics.
Collapse
Affiliation(s)
- Ruochuan Zang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xinfeng Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Runsen Jin
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yuanyuan Lei
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jianbing Huang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chengming Liu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Sufei Zheng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Fang Zhou
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Qian Wu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Nan Sun
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Shugeng Gao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
17
|
Mizuno R, Kawada K, Sakai Y. Prostaglandin E2/EP Signaling in the Tumor Microenvironment of Colorectal Cancer. Int J Mol Sci 2019; 20:ijms20246254. [PMID: 31835815 PMCID: PMC6940958 DOI: 10.3390/ijms20246254] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/01/2019] [Accepted: 12/09/2019] [Indexed: 12/20/2022] Open
Abstract
The number of colorectal cancer (CRC) patients is increasing worldwide. Accumulating evidence has shown that the tumor microenvironment (TME), including macrophages, neutrophils, and fibroblasts, plays an important role in the development and progression of CRC. Although targeting the TME could be a promising therapeutic approach, the mechanisms by which inflammatory cells promote CRC tumorigenesis are not well understood. When inflammation occurs in tissues, prostaglandin E2 (PGE2) is generated from arachidonic acid by the enzyme cyclooxygenase-2 (COX-2). PGE2 regulates multiple functions in various immune cells by binding to the downstream receptors EP1, EP2, EP3, and EP4, and plays an important role in the development of CRC. The current therapies targeting PGE2 using non-steroidal anti-inflammatory drugs (NSAIDs) or COX-2 inhibitors have failed due to the global prostanoid suppression resulting in the severe adverse effects despite the fact they could prevent tumorigenesis. Therefore, therapies targeting the specific downstream molecules of PGE2 signaling could be a promising approach. This review highlights the role of each EP receptor in the TME of CRC tumorigenesis and their therapeutic potential.
Collapse
|
18
|
Wong KM, Song J, Saini V, Wong YH. Small Molecules as Drugs to Upregulate Metastasis Suppressors in Cancer Cells. Curr Med Chem 2019; 26:5876-5899. [PMID: 29788870 DOI: 10.2174/0929867325666180522090842] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/20/2018] [Accepted: 05/18/2018] [Indexed: 12/26/2022]
Abstract
It is well-recognized that the majority of cancer-related deaths is attributed to metastasis, which can arise from virtually any type of tumor. Metastasis is a complex multistep process wherein cancer cells must break away from the primary tumor, intravasate into the circulatory or lymphatic systems, extravasate, proliferate and eventually colonize secondary sites. Since these molecular processes involve the coordinated actions of numerous proteins, targeted disruptions of key players along these pathways represent possible therapeutic interventions to impede metastasis formation and reduce cancer mortality. A diverse group of proteins with demonstrated ability to inhibit metastatic colonization have been identified and they are collectively known as metastasis suppressors. Given that the metastasis suppressors are often downregulated in tumors, drug-induced re-expression or upregulation of these proteins represents a promising approach to limit metastasis. Indeed, over 40 compounds are known to exhibit efficacy in upregulating the expression of metastasis suppressors via transcriptional or post-transcriptional mechanisms, and the most promising ones are being evaluated for their translational potentials. These small molecules range from natural products to drugs in clinical use and they apparently target different molecular pathways, reflecting the diverse nature of the metastasis suppressors. In this review, we provide an overview of the different classes of compounds known to possess the ability to upregulate one or more metastasis suppressors, with an emphasis on their mechanisms of action and therapeutic potentials.
Collapse
Affiliation(s)
- Ka Ming Wong
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Jiaxing Song
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Vasu Saini
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Yung H Wong
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.,State Key Laboratory of Molecular Neuroscience, and the Molecular Neuroscience Center, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.,Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
19
|
Reader J, Harper AK, Legesse T, Staats PN, Goloubeva O, Rao GG, Fulton A, Roque DM. EP4 and Class III β-Tubulin Expression in Uterine Smooth Muscle Tumors: Implications for Prognosis and Treatment. Cancers (Basel) 2019; 11:cancers11101590. [PMID: 31635323 PMCID: PMC6826612 DOI: 10.3390/cancers11101590] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/10/2019] [Accepted: 10/12/2019] [Indexed: 02/07/2023] Open
Abstract
The microtubule-stabilizing agent docetaxel in combination with gemcitabine represents one of the most effective regimens against the aggressive gynecologic tumor leiomyosarcoma (LMS). Upregulation of class III β-tubulin has previously been shown to confer taxane resistance in a variety of human cancers. Prostaglandin E2 receptor EP4 is linked to progression of a variety of human cancers and may represent a novel target for tumor inhibition in LMS. We evaluated the hypotheses that EP4 and class III β-tubulin have increased expression in LMS in comparison to normal myometrium or benign tumors and that expression of class III β-tubulin correlates with resistance to taxanes and poor clinical outcome. Gene expression was examined using TCGA data and correlated with clinicopathologic outcome which demonstrated that class III β-tubulin is more highly expressed in more aggressive sarcomas with EP4 being widely expressed in all subtypes of sarcoma. Immunohistochemistry for EP4 and class III β-tubulin was performed on patients with LMS, leiomyomatosis/STUMP, leiomyoma, and normal myometrium. Expression of EP4 and class III β-tubulin were characterized for cell lines SK-UT-1, SK-UT-1B, and PHM-41 and these cell lines were treated with docetaxel alone and in combination with EP4 inhibitors. In taxane-resistant cell lines that overexpress class III β-tubulin and EP4, treatment with EP4 inhibitor resulted in at least 2-fold sensitization to docetaxel. Expression of class III β-tubulin and EP4 in LMS may identify patients at risk of resistance to standard chemotherapies and candidates for augmentation of therapy through EP4 inhibition.
Collapse
Affiliation(s)
- Jocelyn Reader
- Division of Gynecologic Oncology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA.
| | - Amy K Harper
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Teklu Legesse
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Paul N Staats
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Olga Goloubeva
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Gautam G Rao
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA.
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Amy Fulton
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA.
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
- Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201, USA.
| | - Dana M Roque
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA.
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
20
|
Kurata N, Tokashiki N, Fukushima K, Misao T, Hasuoka N, Kitagawa K, Mashimo M, Regan JW, Murayama T, Fujino H. Short chain fatty acid butyrate uptake reduces expressions of prostanoid EP 4 receptors and their mediation of cyclooxygenase-2 induction in HCA-7 human colon cancer cells. Eur J Pharmacol 2019; 853:308-315. [PMID: 30980797 DOI: 10.1016/j.ejphar.2019.04.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/03/2019] [Accepted: 04/05/2019] [Indexed: 12/21/2022]
Abstract
Microbiota produce short chain fatty acids (SCFAs), which are known to maintain gut homeostasis, by the fermentation of dietary fiber in the human colon. Among SCFAs, butyrate has been considered as the most physiologically effective SCFA in colorectal epithelial cells for growth and differentiation. Here we show that the E-type prostanoid 4 (EP4) receptor expression level is regulated by different concentrations of butyrate, but not by other SCFAs, in human colon cancer HCA-7 cells, through sodium-coupled monocarboxylate transporter-1 (SMCT-1)-mediated uptake followed by the activation of histone acetyltransferase: cAMP response element binding protein-binding protein/p300. Of particular interest, the prostanoid EP4 receptors are known to be expressed in normal colorectal crypt epithelial cells and maintain intestinal homeostasis by preserving mucosal integrity, while they are also known to be involved in the early stage of carcinogenesis. Thus, the links between butyrate and the expression of prostanoid EP4 receptors are both important factors for maintaining homeostasis. Based on in silico analysis, almost half of colorectal cancer tissues have lost the expression of SMCT-1 mRNA when compared with healthy corresponding tissues. Therefore, with the collapse of homeostasis systems such as a decrease in the concentration of butyrate in colorectal tissues, or reduced butyrate uptake, there is a possibility of early stage colorectal cancer development; the transformation of normal cells to the cancerous phenotype may be due to the overexpression of prostanoid EP4 receptors followed by excessive cyclooxygenase-2 induction, which are caused by a reduced amount of butyrate and/or its uptake, in/around colorectal epithelial cells.
Collapse
Affiliation(s)
- Naoki Kurata
- Department of Pharmacology for Life Sciences, Graduate School of Pharmaceutical Sciences & Graduate School of Biomedical Sciences, Tokushima University, Tokushima, 770-8505, Japan; Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan
| | - Natsumi Tokashiki
- Department of Pharmacology for Life Sciences, Graduate School of Pharmaceutical Sciences & Graduate School of Biomedical Sciences, Tokushima University, Tokushima, 770-8505, Japan
| | - Keijo Fukushima
- Department of Pharmacology for Life Sciences, Graduate School of Pharmaceutical Sciences & Graduate School of Biomedical Sciences, Tokushima University, Tokushima, 770-8505, Japan
| | - Takaya Misao
- Department of Pharmacology for Life Sciences, Graduate School of Pharmaceutical Sciences & Graduate School of Biomedical Sciences, Tokushima University, Tokushima, 770-8505, Japan
| | - Nanae Hasuoka
- Department of Pharmacology for Life Sciences, Graduate School of Pharmaceutical Sciences & Graduate School of Biomedical Sciences, Tokushima University, Tokushima, 770-8505, Japan
| | - Kana Kitagawa
- Department of Pharmacology for Life Sciences, Graduate School of Pharmaceutical Sciences & Graduate School of Biomedical Sciences, Tokushima University, Tokushima, 770-8505, Japan
| | - Masato Mashimo
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kyoto, 610-0311, Japan
| | - John W Regan
- Department of Pharmacology & Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ, 85721-0207, USA
| | - Toshihiko Murayama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan
| | - Hiromichi Fujino
- Department of Pharmacology for Life Sciences, Graduate School of Pharmaceutical Sciences & Graduate School of Biomedical Sciences, Tokushima University, Tokushima, 770-8505, Japan.
| |
Collapse
|
21
|
Navigating metabolic pathways to enhance antitumour immunity and immunotherapy. Nat Rev Clin Oncol 2019; 16:425-441. [DOI: 10.1038/s41571-019-0203-7] [Citation(s) in RCA: 279] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
22
|
Seira N, Yamagata K, Fukushima K, Araki Y, Kurata N, Yanagisawa N, Mashimo M, Nakamura H, Regan JW, Murayama T, Fujino H. Cellular density-dependent increases in HIF-1α compete with c-Myc to down-regulate human EP4 receptor promoter activity through Sp-1-binding region. Pharmacol Res Perspect 2018; 6:e00441. [PMID: 30455960 PMCID: PMC6230926 DOI: 10.1002/prp2.441] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 09/26/2018] [Accepted: 10/11/2018] [Indexed: 12/23/2022] Open
Abstract
The up-regulated expression of E-type prostanoid (EP) 4 receptors has been implicated in carcinogenesis; however, the expression of EP4 receptors has also been reported to be weaker in tumor tissues than in normal tissues. Indeed, EP4 receptors have been suggested to play a role in the maintenance of colorectal homeostasis. This study aimed to examine the underlying mechanisms/reasons for why inconsistent findings have been reported regarding EP4 receptor expression levels in homeostasis and carcinogenesis by focusing on cellular densities. Thus, the human colon cancer HCA-7 cells, which retain some functional features of normal epithelia, and luciferase reporter genes containing wild-type or mutated EP4 receptor promoters were used for elucidating the cellular density-dependent mechanisms about the regulation of EP4 receptor expression. In silico analysis was also utilized for confirming the relevance of the findings with respect to colon cancer development. We here demonstrated that the expression of EP4 receptors was up-regulated by c-Myc by binding to Sp-1 under low cellular density conditions, but was down-regulated under high cellular density conditions via the increase in the expression levels of HIF-1α protein, which may pull out c-Myc and Sp-1 from DNA-binding. The tightly regulated EP4 receptor expression mechanism may be a critical system for maintaining homeostasis in normal colorectal epithelial cells. Therefore, once the system is altered, possibly due to the transient overexpression of EP4 receptors, it may result in aberrant cellular proliferation and transformation to cancerous phenotypes. However, at the point, EP4 receptors themselves and their mediated homeostasis would be no longer required.
Collapse
Affiliation(s)
- Naofumi Seira
- Laboratory of Chemical PharmacologyGraduate School of Pharmaceutical SciencesChiba UniversityChuo‐ku ChibaJapan
| | - Kazuyuki Yamagata
- Laboratory of Chemical PharmacologyGraduate School of Pharmaceutical SciencesChiba UniversityChuo‐ku ChibaJapan
| | - Keijo Fukushima
- Department of Pharmacology for Life SciencesGraduate School of Pharmaceutical Sciences & Graduate School of Biomedical SciencesTokushima UniversityTokushimaJapan
| | - Yumi Araki
- Laboratory of Chemical PharmacologyGraduate School of Pharmaceutical SciencesChiba UniversityChuo‐ku ChibaJapan
- Department of Pharmacology for Life SciencesGraduate School of Pharmaceutical Sciences & Graduate School of Biomedical SciencesTokushima UniversityTokushimaJapan
| | - Naoki Kurata
- Laboratory of Chemical PharmacologyGraduate School of Pharmaceutical SciencesChiba UniversityChuo‐ku ChibaJapan
- Department of Pharmacology for Life SciencesGraduate School of Pharmaceutical Sciences & Graduate School of Biomedical SciencesTokushima UniversityTokushimaJapan
| | - Naoki Yanagisawa
- Laboratory of Chemical PharmacologyGraduate School of Pharmaceutical SciencesChiba UniversityChuo‐ku ChibaJapan
| | - Masato Mashimo
- Laboratory of PharmacologyFaculty of Pharmaceutical SciencesDoshisha Women's College of Liberal ArtsKyotanabe, KyotoJapan
| | - Hiroyuki Nakamura
- Laboratory of Chemical PharmacologyGraduate School of Pharmaceutical SciencesChiba UniversityChuo‐ku ChibaJapan
| | - John W. Regan
- Department of Pharmacology & ToxicologyCollege of PharmacyThe University of ArizonaTucsonArizona
| | - Toshihiko Murayama
- Laboratory of Chemical PharmacologyGraduate School of Pharmaceutical SciencesChiba UniversityChuo‐ku ChibaJapan
| | - Hiromichi Fujino
- Department of Pharmacology for Life SciencesGraduate School of Pharmaceutical Sciences & Graduate School of Biomedical SciencesTokushima UniversityTokushimaJapan
| |
Collapse
|
23
|
Majumder M, Nandi P, Omar A, Ugwuagbo KC, Lala PK. EP4 as a Therapeutic Target for Aggressive Human Breast Cancer. Int J Mol Sci 2018; 19:ijms19041019. [PMID: 29596308 PMCID: PMC5979567 DOI: 10.3390/ijms19041019] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 03/18/2018] [Accepted: 03/27/2018] [Indexed: 02/07/2023] Open
Abstract
G-protein-coupled receptors (GPCRs, also called seven-transmembrane or heptahelical receptors) are a superfamily of cell surface receptor proteins that bind to many extracellular ligands and transmit signals to an intracellular guanine nucleotide-binding protein (G-protein). When a ligand binds, the receptor activates the attached G-protein by causing the exchange of Guanosine-5′-triphosphate (GTP) for guanosine diphosphate (GDP). They play a major role in many physiological functions, as well as in the pathology of many diseases, including cancer progression and metastasis. Only a few GPCR members have been exploited as targets for developing drugs with therapeutic benefit in cancer. Present review briefly summarizes the signaling pathways utilized by the EP (prostaglandin E receptor) family of GPCR, their physiological and pathological roles in carcinogenesis, with special emphasis on the roles of EP4 in breast cancer progression. We make a case for EP4 as a promising newer therapeutic target for treating breast cancer. We show that an aberrant over-expression of cyclooxygenase (COX)-2, which is an inflammation-associated enzyme, occurring in 40–50% of breast cancer patients leads to tumor progression and metastasis due to multiple cellular events resulting from an increased prostaglandin (PG) E2 production in the tumor milieu. They include inactivation of host anti-tumor immune cells, such as Natural Killer (NK) and T cells, increased immuno-suppressor function of tumor-associated macrophages, promotion of tumor cell migration, invasiveness and tumor-associated angiogenesis, due to upregulation of multiple angiogenic factors including Vascular Endothelial Growth Factor (VEGF)-A, increased lymphangiogenesis (due to upregulation of VEGF-C/D), and a stimulation of stem-like cell (SLC) phenotype in cancer cells. All of these events were primarily mediated by activation of the Prostaglandin (PG) E receptor EP4 on tumor or host cells. We show that selective EP4 antagonists (EP4A) could mitigate all of these events tested with cells in vitro as well as in vivo in syngeneic COX-2 expressing mammary cancer bearing mice or immune-deficient mice bearing COX-2 over-expressing human breast cancer xenografts. We suggest that EP4A can avoid thrombo-embolic side effects of long term use of COX-2 inhibitors by sparing cardio-protective roles of PGI2 via IP receptor activation or PGE2 via EP3 receptor activation. Furthermore, we identified two COX-2/EP4 induced oncogenic and SLC-stimulating microRNAs—miR526b and miR655, one of which (miR655) appears to be a potential blood biomarker in breast cancer patients for monitoring SLC-ablative therapies, such as with EP4A. We suggest that EP4A will likely produce the highest benefit in aggressive breast cancers, such as COX-2 expressing triple-negative breast cancers, when combined with other newer agents, such as inhibitors of programmed cell death (PD)-1 or PD-L1.
Collapse
Affiliation(s)
- Mousumi Majumder
- Department of Biology, Brandon University, Brandon, MB R7A6A9, Canada.
| | - Pinki Nandi
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A5C1, Canada.
| | - Ahmed Omar
- Department of Biology, Brandon University, Brandon, MB R7A6A9, Canada.
| | | | - Peeyush K Lala
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A5C1, Canada.
- Department of Oncology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A5C1, Canada.
| |
Collapse
|
24
|
Characterization of genome-wide copy number aberrations in colonic mixed adenoneuroendocrine carcinoma and neuroendocrine carcinoma reveals recurrent amplification of PTGER4 and MYC genes. Hum Pathol 2017; 73:16-25. [PMID: 28899736 DOI: 10.1016/j.humpath.2017.08.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/29/2017] [Accepted: 08/30/2017] [Indexed: 12/15/2022]
Abstract
Colonic mixed adenoneuroendocrine carcinoma (MANEC) is an aggressive neoplasm with worse prognosis compared with adenocarcinoma. To gain a better understanding of the molecular features of colonic MANEC, we characterized the genome-wide copy number aberrations of 14 MANECs and 5 neuroendocrine carcinomas using the OncoScan FFPE (Affymetrix, Santa Clara, CA) assay. Compared with 269 colonic adenocarcinomas, 19 of 42 chromosomal arms of MANEC exhibited a similar frequency of major aberrant events as adenocarcinomas, and 13 chromosomal arms exhibited a higher frequency of copy number gains. Among them, the most significant chromosomal arms were 5p (77% versus 13%, P = .000012) and 8q (85% versus 33%, P = .0018). The Genomic Identification of Significant Targets in Cancers algorithm identified 7 peaks that drive the tumorgenesis of MANEC. For all except 5p13.1, the peaks largely overlapped with those of adenocarcinoma. Two tumors exhibited MYC amplification localized in 8q24.21, and 2 tumors exhibited PTGER4 amplification localized in 5p13.1. A total of 8 tumors exhibited high copy number gain of PTGER4 and/or MYC. Whereas the frequency of MYC amplification was similar to adenocarcinoma (10.5% versus 4%, P = .2), the frequency of PTGER4 amplification was higher than adenocarcinoma (10.5% versus 0.3%, P = .01). Our study demonstrates similar, but also distinct, copy number aberrations in MANEC compared with adenocarcinoma and suggests an important role for the MYC pathway of colonic carcinoma with neuroendocrine differentiation. The discovery of recurrent PTGER4 amplification implies a potential of exploring targeting therapy to the prostaglandin synthesis pathways in a subset of these tumors.
Collapse
|
25
|
Stucky EC, Erndt-Marino J, Schloss RS, Yarmush ML, Shreiber DI. Prostaglandin E 2 Produced by Alginate-Encapsulated Mesenchymal Stromal Cells Modulates the Astrocyte Inflammatory Response. NANO LIFE 2017; 7:1750005. [PMID: 29682085 PMCID: PMC5903452 DOI: 10.1142/s1793984417500052] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Astroglia are well known for their role in propagating secondary injury following brain trauma. Modulation of this injury cascade, including inflammation, is essential to repair and recovery. Mesenchymal stromal cells (MSCs) have been demonstrated as trophic mediators in several models of secondary CNS injury, however, there has been varied success with the use of direct implantation due to a failure to persist at the injury site. To achieve sustained therapeutic benefit, we have encapsulated MSCs in alginate microspheres and evaluated the ability of these encapsulated MSCs to attenuate neuro-inflammation. In this study, astroglial cultures were administered lipopolysaccharide (LPS) to induce inflammation and immediately co-cultured with encapsulated or monolayer human MSCs. Cultures were assayed for the pro-inflammatory cytokine tumor necrosis factor alpha (TNF-α) produced by astroglia, MSC-produced prostaglandin E2, and expression of neurotrophin-associated genes. We found that encapsulated MSCs significantly reduced TNF-α produced by LPS-stimulated astrocytes, more effectively than monolayer MSCs, and this enhanced benefit commences earlier than that of monolayer MSCs. Furthermore, in support of previous findings, encapsulated MSCs constitutively produced high levels of PGE2, while monolayer MSCs required the presence of inflammatory stimuli to induce PGE2 production. The early, constitutive presence of PGE2 significantly reduced astrocyte-produced TNF-α, while delayed administration had no effect. Finally, MSC-produced PGE2 was not only capable of modulating inflammation, but appears to have an additional role in stimulating astrocyte neurotrophin production. Overall, these results support the enhanced benefit of encapsulated MSC treatment, both in modulating the inflammatory response and providing neuroprotection.
Collapse
Affiliation(s)
- Elizabeth C Stucky
- Department of Chemical and Biochemical Engineering, Rutgers University, 599 Taylor Road, Piscataway, New Jersey 08854, USA
| | - Joshua Erndt-Marino
- Department of Biomedical Engineering, The College of New Jersey, 2000 Pennington Road, Ewing, New Jersey 08628, USA
| | - Rene S Schloss
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, New Jersey 08854, USA
| | - Martin L Yarmush
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, New Jersey 08854, USA
| | - David I Shreiber
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, New Jersey 08854, USA
| |
Collapse
|
26
|
de Freitas AC, de Oliveira THA, Barros MR, Venuti A. hrHPV E5 oncoprotein: immune evasion and related immunotherapies. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:71. [PMID: 28545552 PMCID: PMC5445378 DOI: 10.1186/s13046-017-0541-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 05/12/2017] [Indexed: 12/12/2022]
Abstract
The immune response is a key factor in the fight against HPV infection and related cancers, and thus, HPV is able to promote immune evasion through the expression of oncogenes. In particular, the E5 oncogene is responsible for modulation of several immune mechanisms, including antigen presentation and inflammatory pathways. Moreover, E5 was suggested as a promising therapeutic target, since there is still no effective medical therapy for the treatment of HPV-related pre-neoplasia and cancer. Indeed, several studies have shown good prospective for E5 immunotherapy, suggesting that it could be applied for the treatment of pre-cancerous lesions. Thus, insofar as the majority of cervical, oropharyngeal and anal cancers are caused by high-risk HPV (hrHPV), mainly by HPV16, the aim of this review is to discuss the immune pathways interfered by E5 oncoprotein of hrHPV highlighting the various aspects of the potential immunotherapeutic approaches.
Collapse
Affiliation(s)
- Antonio Carlos de Freitas
- Department of Genetics, Laboratory of Molecular Studies and Experimental Therapy (LEMTE), Center of Biological Sciences, Federal University of Pernambuco, Av. Prof Moraes Rego, 1235, Cidade Universitária, Recife, CEP 50670-901, Brazil.
| | - Talita Helena Araújo de Oliveira
- Department of Genetics, Laboratory of Molecular Studies and Experimental Therapy (LEMTE), Center of Biological Sciences, Federal University of Pernambuco, Av. Prof Moraes Rego, 1235, Cidade Universitária, Recife, CEP 50670-901, Brazil
| | - Marconi Rego Barros
- Department of Genetics, Laboratory of Molecular Studies and Experimental Therapy (LEMTE), Center of Biological Sciences, Federal University of Pernambuco, Av. Prof Moraes Rego, 1235, Cidade Universitária, Recife, CEP 50670-901, Brazil
| | - Aldo Venuti
- Department of Research, HPV-Unit, UOSD Tumor Immunology and Immunotherapy Unit, Advanced Diagnostic and Technological Innovation, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy.
| |
Collapse
|
27
|
Gandhi J, Khera L, Gaur N, Paul C, Kaul R. Role of Modulator of Inflammation Cyclooxygenase-2 in Gammaherpesvirus Mediated Tumorigenesis. Front Microbiol 2017; 8:538. [PMID: 28400769 PMCID: PMC5368278 DOI: 10.3389/fmicb.2017.00538] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 03/14/2017] [Indexed: 12/25/2022] Open
Abstract
Chronic inflammation is recognized as a threat factor for cancer progression. Release of inflammatory molecules generates microenvironment which is highly favorable for development of tumor, cancer progression and metastasis. In cases of latent viral infections, generation of such a microenvironment is one of the major predisposing factors related to virus mediated tumorigenesis. Among various inflammatory mediators implicated in pathological process associated with cancer, the cyclooxygenase (COX) and its downstream effector molecules are of greater significance. Though the role of infectious agents in causing inflammation leading to transformation of cells has been more or less well established, however, the mechanism by which inflammation in itself modulates the events in life cycle of infectious agent is not very much clear. This is specifically important for gammaherpesviruses infections where viral life cycle is characterized by prolonged periods of latency when the virus remains hidden, immunologically undetectable and expresses only a very limited set of genes. Therefore, it is important to understand the mechanisms for role of inflammation in virus life cycle and tumorigenesis. This review is an attempt to summarize the latest findings highlighting the significance of COX-2 and its downstream signaling effectors role in life cycle events of gammaherpesviruses leading to progression of cancer.
Collapse
Affiliation(s)
- Jaya Gandhi
- Department of Microbiology, University of Delhi South Campus New Delhi, India
| | - Lohit Khera
- Department of Microbiology, University of Delhi South Campus New Delhi, India
| | - Nivedita Gaur
- Department of Microbiology, University of Delhi South Campus New Delhi, India
| | - Catherine Paul
- Department of Microbiology, University of Delhi South Campus New Delhi, India
| | - Rajeev Kaul
- Department of Microbiology, University of Delhi South Campus New Delhi, India
| |
Collapse
|
28
|
Moreno JJ. Eicosanoid receptors: Targets for the treatment of disrupted intestinal epithelial homeostasis. Eur J Pharmacol 2016; 796:7-19. [PMID: 27940058 DOI: 10.1016/j.ejphar.2016.12.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 11/30/2016] [Accepted: 12/05/2016] [Indexed: 12/25/2022]
Abstract
The importance of cyclooxygenase and lipoxygenase pathways and the consequent eicosanoid synthesis in the physiology and pathophysiology of the intestinal epithelium is currently being established. Each eicosanoid (prostanoid, leukotriene, hydroxyeicosatetraenoic acid) preferentially recognizes one or more receptors coupled to one or more signal-transduction processes. This overview focuses on the role of eicosanoid receptors in the maintenance of intestinal epithelium physiology through the control of proliferation/differentiation/apoptosis processes. Furthermore, it is reported that the role of these receptors on the regulation of the barrier function of the intestinal epithelium have arisen through the regulation of absorption/secretion processes, tight-junction state and the control of the intestinal immune response. Also, this review considers the implication of AA cascade in the disruption of epithelial homeostasis during inflammatory bowel diseases and colorectal cancer as well as the therapeutic values and potential of the eicosanoid receptors as novel targets for the treatments of the pathologies above mentioned.
Collapse
Affiliation(s)
- Juan J Moreno
- Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, Avda. Prat de la Riba 171, E-08921 Santa Coloma de Gramenet, Spain.
| |
Collapse
|
29
|
Mahmood B, Damm MMB, Jensen TSR, Backe MB, Dahllöf MS, Poulsen SS, Bindslev N, Hansen MB. Phosphodiesterases in non-neoplastic appearing colonic mucosa from patients with colorectal neoplasia. BMC Cancer 2016; 16:938. [PMID: 27927168 PMCID: PMC5141637 DOI: 10.1186/s12885-016-2980-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 11/29/2016] [Indexed: 12/11/2022] Open
Abstract
Background Intracellular signaling through cyclic nucleotides, both cyclic AMP and cyclic GMP, is altered in colorectal cancer. Accordingly, it is hypothesized that an underlying mechanism for colorectal neoplasia involves altered function of phosphodiesterases (PDEs), which affects cyclic nucleotide degradation. Here we present an approach to evaluate the function of selected cyclic nucleotide-PDEs in colonic endoscopic biopsies from non-neoplastic appearing mucosa. Methods Biopsies were obtained from patients with and without colorectal neoplasia. Activities of PDEs were characterized functionally by measurements of transepithelial ion transport and their expression and localization by employing real-time qPCR and immunohistochemistry. Results In functional studies PDE subtype-4 displayed lower activity in colorectal neoplasia patients (p = 0.006). Furthermore, real-time qPCR analysis showed overexpression of subtype PDE4B (p = 0.002) and subtype PDE5A (p = 0.02) in colorectal neoplasia patients. Finally, immunohistochemistry for 7 PDE isozymes demonstrated the presence of all 7 isozymes, albeit with weak reactions, and with no differences in localization between colorectal neoplasia and control patients. Of note, quantification of PDE subtype immunostaining revealed a lower amount of PDE3A (p = 0.04) and a higher amount of PDE4B (p = 0.02) in samples from colorectal neoplasia patients. Conclusion In conclusion, functional data indicated lower activity of PDE4 subtypes while expressional and abundance data indicated a higher expression of PDE4B in patients with colorectal neoplasia. We suggest that cyclic nucleotide-PDE4B is overexpressed as a malfunctioning protein in non-neoplastic appearing colonic mucosa from patients with colorectal neoplasia. If a predisposition of reduced PDE4B activity in colonic mucosa from colorectal neoplasia patients is substantiated further, this subtype could be a potential novel early diagnostic risk marker and may even be a target for future medical preventive treatment of colorectal cancer. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2980-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Badar Mahmood
- Digestive Disease Center K, Bispebjerg Hospital, Copenhagen, DK-2400, Denmark. .,Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, DK-2200, Denmark.
| | - Morten Matthiesen Bach Damm
- Digestive Disease Center K, Bispebjerg Hospital, Copenhagen, DK-2400, Denmark.,Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, DK-2200, Denmark
| | | | - Marie Balslev Backe
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, DK-2200, Denmark
| | - Mattias Salling Dahllöf
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, DK-2200, Denmark
| | - Steen Seier Poulsen
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, DK-2200, Denmark
| | - Niels Bindslev
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, DK-2200, Denmark
| | - Mark Berner Hansen
- Digestive Disease Center K, Bispebjerg Hospital, Copenhagen, DK-2400, Denmark.,Zealand Pharma, Glostrup, DK-2600, Denmark
| |
Collapse
|
30
|
Moltu K, Henjum K, Oberprieler NG, Bjørnbeth BA, Taskén K. Proximal signaling responses in peripheral T cells from colorectal cancer patients are affected by high concentrations of circulating prostaglandin E 2. Hum Immunol 2016; 78:129-137. [PMID: 27769746 DOI: 10.1016/j.humimm.2016.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 09/19/2016] [Accepted: 10/17/2016] [Indexed: 01/05/2023]
Abstract
Patients with colorectal cancer (CRC) have been shown to have elevated levels of circulating prostaglandin E2 (PGE2) which promotes cancer progression and suppresses T cell immune responses. In this study we evaluated whether signaling responses in T lymphocytes obtained from peripheral blood of CRC patients were affected by the sustained exposure to increased levels of PGE2. The phosphorylation status of an extended panel of proteins involved in downstream signaling cascades in T cells was profiled at a single cell level both in naïve and antigen-experienced cells after triggering T cell-, prostaglandin- and interleukin-2 receptors. Peripheral T cells from patients with elevated PGE2 levels displayed aberrant T cell signaling responses downstream of the T cell receptor (assessed by reduced phosphorylation of CD3ζ and SLP76), and after triggering the IL-2 receptor (assessed by reduced phosphorylation of STAT5) when compared to T cells from CRC patients with lower levels of PGE2 and T cells from healthy blood donors. This signaling study of circulating T cells from CRC patients indicates that increased systemic PGE2 levels affect proximal T cell responses and confirms phospho-specific flow cytometry to be a valuable tool for revealing signaling signatures in immunological disorders.
Collapse
Affiliation(s)
- Kristine Moltu
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo and Oslo University Hospital, P.O. Box 1137 Blindern, 0318 Oslo, Norway; Biotechnology Centre, University of Oslo, P.O. Box 1125 Blindern, 0317 Oslo, Norway
| | - Karen Henjum
- Biotechnology Centre, University of Oslo, P.O. Box 1125 Blindern, 0317 Oslo, Norway; Department of Gastrointestinal Surgery, Oslo University Hospital, P.O. Box 4956 Nydalen, 0424 Oslo, Norway
| | | | - Bjørn A Bjørnbeth
- Department of Gastrointestinal Surgery, Oslo University Hospital, P.O. Box 4956 Nydalen, 0424 Oslo, Norway
| | - Kjetil Taskén
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo and Oslo University Hospital, P.O. Box 1137 Blindern, 0318 Oslo, Norway; Biotechnology Centre, University of Oslo, P.O. Box 1125 Blindern, 0317 Oslo, Norway; Department of Infectious Diseases, Oslo University Hospital, P.O. Box 4956 Nydalen, 0424 Oslo, Norway; K.G. Jebsen Centre for Cancer Immunotherapy, Biotechnology Centre, University of Oslo, P.O. Box 1125 Blindern, 0317 Oslo, Norway; K.G. Jebsen Inflammation Research Centre, Centre for Molecular Medicine Norway, University of Oslo, P.O. Box 1137 Blindern, 0318 Oslo, Norway.
| |
Collapse
|
31
|
Altobelli E, Angeletti PM, Latella G. Role of Urinary Biomarkers in the Diagnosis of Adenoma and Colorectal Cancer: A Systematic Review and Meta-Analysis. J Cancer 2016; 7:1984-2004. [PMID: 27877214 PMCID: PMC5118662 DOI: 10.7150/jca.16244] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 07/16/2016] [Indexed: 12/23/2022] Open
Abstract
The growing interest in enhancing and spreading colorectal cancer (CRC) screening has been stimulating the exploration of novel biomarkers with greater sensitivity and specificity than immunochemical faecal occult blood test (iFOBT). The present study provides i) a systematic review of the urinary biomarkers that have been tested to achieve early CRC diagnosis and assess the risk of colorectal adenoma and adenocarcinoma, and ii) a meta-analysis of the data regarding the urinary prostaglandin (PG) metabolite PGE-M. As regard to gene markers, we found significantly different percent methylation of the vimentin gene in CRC patients and healthy controls (HC) (p<0.0001). Respect to metabolism of nitrogenous bases, cytidine, 1-methyladenosine, and adenosine, have higher concentrations in CRC patients than in HC (respectively, p<0.01, p=0.01, and p<0.01). As regard to spermine we found that N1,N12 diacetyl spermine (DiAcSpm) and N1, N8 diacetylspermidine (DiAcSpd) were significantly higher in CRC than in HC (respectively p=0.01 and p<0.01). Respect to PGE-M, levels were higher in CRC than in those with multiple polyposis (p<0.006) and HC subjects (p<0.0004). PGE-M seems to be the most interesting and promising urinary marker for CRC and adenoma risk assessment and for CRC screening. In conclusion, evidence suggests that urinary biomarker could have a potential role as urinary biomarkers in the diagnosis of colorectal cancer. Particularly, PGE-M seems to be the most promising urinary marker for CRC early detection.
Collapse
Affiliation(s)
- Emma Altobelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
- Epidemiology and Biostatistics Unit, AUSL Teramo, University of L'Aquila, L'Aquila, Italy
| | - Paolo Matteo Angeletti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Giovanni Latella
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
- Gastroenterology Unit, Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
32
|
Ochs K, Ott M, Rauschenbach KJ, Deumelandt K, Sahm F, Opitz CA, von Deimling A, Wick W, Platten M. Tryptophan-2,3-dioxygenase is regulated by prostaglandin E2 in malignant glioma via a positive signaling loop involving prostaglandin E receptor-4. J Neurochem 2016; 136:1142-1154. [PMID: 26708701 DOI: 10.1111/jnc.13503] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 12/16/2015] [Accepted: 12/18/2015] [Indexed: 01/21/2023]
Abstract
Malignant gliomas and other types of tumors generate a local immunosuppressive microenvironment, which prohibits an effective anti-tumor immune response and promotes tumor growth. Along with others, we have recently demonstrated that catabolism of the essential amino acid tryptophan via tryptophan-2,3-dioxygenase (TDO) is an important mechanism mediating tumor-associated immunosuppression particularly in gliomas. The pathways regulating TDO in tumors, however, are poorly understood. Here, we show that prostaglandins enhance TDO expression and enzymatic activity in malignant gliomas via activation of prostaglandin E receptor-4 (EP4). Stimulation with prostaglandin E2 (PGE2 ) up-regulated TDO-mediated kynurenine release in human glioma cell lines, whereas knockdown of the PGE2 receptor EP4 inhibited TDO expression and activity. In human malignant glioma tissue expression of the PGE2 -producing enzyme cyclooxygenase-2 (COX2) and its receptor EP4 were associated with TDO expression both on transcript and protein level. High expression of EP4 correlated with poor survival in malignant glioma patients WHO III-IV. Importantly, treatment of glioma cells with an EP4 inhibitor decreased TDO expression and activity. Moreover, TDO-over-expressing murine gliomas showed increased COX2 and EP4 expression suggesting a positive feedback mechanism in vivo. In summary, targeting EP4 may inhibit - in addition to immunosuppressive COX2 signaling - tryptophan degradation as another important immunosuppressive pathway and thus, could provide a dual clinically relevant immunotherapeutic avenue for the treatment of malignant gliomas. We proposed that in malignant gliomas prostaglandin E2 (PGE2 ) produced by cyclooxygenases (COX) up-regulates tryptophan-2,3-dioxygenase (TDO) expression and enzyme activity through binding to its Gs-coupled receptor EP4 and therefore may mediate tumor immune escape in part through aryl hydrocarbon receptor (AHR) activation. Moreover, TDO activity itself seems to induce intratumoral PGE2 metabolism suggesting an immunosuppressive loop involving COX/EP4/TDO.
Collapse
Affiliation(s)
- Katharina Ochs
- Department of Neurology, University Hospital Heidelberg and National Center for Tumor Diseases, Heidelberg, Germany.,Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martina Ott
- Department of Neurology, University Hospital Heidelberg and National Center for Tumor Diseases, Heidelberg, Germany.,Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Katharina J Rauschenbach
- Department of Neurology, University Hospital Heidelberg and National Center for Tumor Diseases, Heidelberg, Germany.,Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Katrin Deumelandt
- Department of Neurology, University Hospital Heidelberg and National Center for Tumor Diseases, Heidelberg, Germany.,Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Felix Sahm
- Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christiane A Opitz
- Department of Neurology, University Hospital Heidelberg and National Center for Tumor Diseases, Heidelberg, Germany.,Brain Cancer Metabolism Group, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andreas von Deimling
- Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Wolfgang Wick
- Department of Neurology, University Hospital Heidelberg and National Center for Tumor Diseases, Heidelberg, Germany.,Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Platten
- Department of Neurology, University Hospital Heidelberg and National Center for Tumor Diseases, Heidelberg, Germany.,Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
33
|
Fujino H. The Roles of EP4 Prostanoid Receptors in Cancer Malignancy Signaling. Biol Pharm Bull 2016; 39:149-55. [DOI: 10.1248/bpb.b15-00840] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Hiromichi Fujino
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences,
Chiba University
| |
Collapse
|
34
|
Liu B, Qu L, Yan S. Cyclooxygenase-2 promotes tumor growth and suppresses tumor immunity. Cancer Cell Int 2015; 15:106. [PMID: 26549987 PMCID: PMC4635545 DOI: 10.1186/s12935-015-0260-7] [Citation(s) in RCA: 274] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Accepted: 10/28/2015] [Indexed: 01/05/2023] Open
Abstract
Cyclooxygenase-2 (COX-2), an inducible form of the enzyme that catalyzes the first step in the synthesis of prostanoids, is associated with inflammatory diseases and carcinogenesis, which is suspected to promote angiogenesis and tissue invasion of tumors and resistance to apoptosis. Meanwhile, COX-2 contributes to immune evasion and resistance to cancer immunotherapy, which plays a crucial role in the innate and adaptive immune response. The activity of COX-2-PGE2-EP signal pathway can suppress Dendritic cells (DCs), natural killer (NK), T cells, type-1 immunity excluding type-2 immunity which promote tumor immune evasion. COX-2 and the prostaglandin cascade play important roles in the "inflammogenesis of cancer". In addition, COX-inhibitors can inhibit tumor immune evasion. Therefore, we can exert the COX-inhibitors to facilitate the patients to benefit from addition of COX-inhibitors to standard cytotoxic therapy.
Collapse
Affiliation(s)
- Bing Liu
- />Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, #88 Jie Fang Road, 310009 Hangzhou, Zhejiang People’s Republic of China
| | - Liyan Qu
- />Clinical Laboratory Centre, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, #88 Jie Fang Road, 310009 Hangzhou, Zhejiang People’s Republic of China
- />Clinical Laboratory Centre, Binjiang Hospital of Hangzhou, Hangzhou, Zhejiang People’s Republic of China
| | - Shigui Yan
- />Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, #88 Jie Fang Road, 310009 Hangzhou, Zhejiang People’s Republic of China
| |
Collapse
|
35
|
Chun KS, Shim M. EP2 Induces p38 Phosphorylation via the Activation of Src in HEK 293 Cells. Biomol Ther (Seoul) 2015; 23:539-48. [PMID: 26535079 PMCID: PMC4624070 DOI: 10.4062/biomolther.2015.043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 07/14/2015] [Accepted: 08/17/2015] [Indexed: 12/14/2022] Open
Abstract
Prostaglandin E2 (PGE2), a major product of cyclooxygenase, binds to four different prostaglandin E2 receptors (EP1, EP2, EP3, and EP4) which are G-protein coupled transmembrane receptors (GPCRs). Although GPCRs including EP receptors have been shown to be associated with their specific G proteins, recent evidences suggest that GPCRs can regulate MAPK signaling via non-G protein coupled pathways including Src. EP2 is differentially expressed in various tissues and the expression of EP2 is induced by extracellular stimuli. We hypothesized that an increased level of EP2 expression may affect MAPK signaling. The overexpression of EP2 in HEK 293 cells resulted in significant increase in intracellular cAMP levels response to treatment with butaprost, a specific EP2 agonist, while overexpression of EP2 alone did not increase intracellular cAMP levels. However, EP2 overexpression in the absence of PGE2 induced an increase in the level of p38 phosphorylation as well as the kinase activity of p38, suggesting that up-regulation of EP2 may promote p38 activation via non-G protein coupled pathway. Inhibition of Src completely blocked EP2-induced p38 phosphorylation and overexpression of Src increased the level of p38 phosphorylation, indicating that Src is upstream kinase for EP2-induced p38 phosphorylation. EP2 overexpression also increased the Src activity and EP2 protein was co-immunoprecipitated with Src. Furthermore, sequential co-immunoprecipitation studies showed that EP2, Src, and β-arrestin can form a complex. Our study found a novel pathway in which EP2 is associated with Src, regulating p38 pathway.
Collapse
Affiliation(s)
- Kyung-Soo Chun
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
| | - Minsub Shim
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
36
|
Sun L, Wei X, Liu X, Zhou D, Hu F, Zeng Y, Sun Y, Luo S, Zhang Y, Yi XP. Expression of prostaglandin E2 and EP receptors in human papillary thyroid carcinoma. Tumour Biol 2015; 37:4689-97. [PMID: 26511970 DOI: 10.1007/s13277-015-4316-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 10/22/2015] [Indexed: 01/15/2023] Open
Abstract
The objective of the present study is to determine the role of prostaglandin E2 (PGE2) and downstream EP receptors in the development of human papillary thyroid carcinoma (PTC). A total of 90 thyroid specimens excised from patients undergoing total or subtotal thyroidectomy in the Department of General Surgery, the Fifth Affiliated Hospital of Sun Yat-sen University, China, from August 2013 to September 2014, were analyzed. The quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and immunohistochemical analyses were employed to examine the messenger RNA (mRNA) and protein expression, respectively. The expressions and significances of cyclooxygenase-2 (COX-2), microsomal prostaglandin E synthase-1 (mPGES-1), PGE2, and EP receptors in PTC and nodular goiter were investigated. The COX-2 mRNA and protein expression level significantly increased in the PTC tissues than in the paired noncarcinoma tissues adjacent to the PTC or nodular goiter tissues. The mPGES-1 protein expression was also significantly upregulated in the PTC tissues. All the four subtypes of EP receptors (EP1-4) could express in the thyroid tissues, while only the EP4 mRNA and protein levels significantly increased in the PTC tissues. The local production of PGE2 had a higher-level expression in the PTC tissues than in the noncarcinoma thyroid tissues adjacent to the PTC lesion and the benign nodular goiter tissues. The induction of PGE2 biosynthesis as well as the overexpression of EP4 in PTC suggested that this pathway might play an important role in the carcinogenesis and progression of PTC. These observations raise the possibility that pharmacological inhibition of mPGES-1 and/or EP4 may hold therapeutic promise in this common cancer.
Collapse
Affiliation(s)
- Liao Sun
- Department of Endocrinology & Metabolism, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, Guangdong, China.
| | - Xiaohong Wei
- Department of Endocrinology & Metabolism, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, Guangdong, China
| | - Xueting Liu
- Department of Endocrinology & Metabolism, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, Guangdong, China
| | - Danli Zhou
- Department of Endocrinology & Metabolism, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, Guangdong, China
| | - Fang Hu
- Department of Endocrinology & Metabolism, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, Guangdong, China
| | - Yingjuan Zeng
- Department of Endocrinology & Metabolism, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, Guangdong, China
| | - Ying Sun
- Department of Endocrinology & Metabolism, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, Guangdong, China
| | - Shunkui Luo
- Department of Endocrinology & Metabolism, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, Guangdong, China
| | - Yu Zhang
- Department of Endocrinology & Metabolism, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, Guangdong, China
| | - Xian Ping Yi
- Department of Pathology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, Guangdong, China
| |
Collapse
|
37
|
O'Callaghan G, Houston A. Prostaglandin E2 and the EP receptors in malignancy: possible therapeutic targets? Br J Pharmacol 2015; 172:5239-50. [PMID: 26377664 DOI: 10.1111/bph.13331] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 08/06/2015] [Accepted: 09/14/2015] [Indexed: 12/28/2022] Open
Abstract
Elevated expression of COX-2 and increased levels of PGE2 are found in numerous cancers and are associated with tumour development and progression. Although epidemiological, clinical and preclinical studies have shown that the inhibition of PGE2 synthesis through the use of either non-steroidal anti-inflammatory drugs (NSAIDs) or specific COX-2 inhibitors (COXibs) has the potential to prevent and treat malignant disease, toxicities due to inhibition of COX-2 have limited their use. Thus, there is an urgent need for the development of strategies whereby COX-2 activity may be reduced without inducing any side effects. The biological effects of PGE2 are mediated by signalling through four distinct E-type prostanoid (EP) receptors - EP1 , EP2 , EP3 and EP4 . In recent years, extensive effort has gone into elucidating the function of PGE2 and the EP receptors in health and disease, with the goal of creating selective inhibitors as a means of therapy. In this review, we focus on PGE2 , and in particular on the role of the individual EP receptors and their signalling pathways in neoplastic disease. As knowledge concerning the role of the EP receptors in cancer grows, so does the potential for exploiting the EP receptors as therapeutic targets for the treatment of cancer and metastatic disease.
Collapse
Affiliation(s)
- G O'Callaghan
- Department of Medicine, University College Cork, Cork, Ireland.,HRB Clinical Research Facility, University College Cork, Cork, Ireland
| | - A Houston
- Department of Medicine, University College Cork, Cork, Ireland.,Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| |
Collapse
|
38
|
Chang J, Vacher J, Yao B, Fan X, Zhang B, Harris RC, Zhang MZ. Prostaglandin E receptor 4 (EP4) promotes colonic tumorigenesis. Oncotarget 2015; 6:33500-11. [PMID: 26378024 PMCID: PMC4741781 DOI: 10.18632/oncotarget.5589] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 08/23/2015] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) continues to be a major cause of morbidity and mortality. Although the factors underlying CRC development and progression are multifactorial, there is an important role for tumor-host interactions, especially interactions with myeloid cells. There is also increasing evidence that cyclooxygenase-derived prostaglandins are important mediators of CRC development and growth. Although prevention trials with either nonselective NSAIDs or COX-2 selective agents have shown promise, the gastrointestinal or cardiovascular side effects of these agents have limited their implementation. The predominant prostaglandin involved in CRC pathogenesis is PGE2. Since myeloid cells express high levels of the PGE2 receptor subtype, EP4, we selectively ablated EP4 in myeloid cells and studied adenoma formation in a mouse model of intestinal adenomatous polyposis, ApcMin/+ mice. ApcMin/+mice with selective myeloid cell deletion of EP4 had marked inhibition of both adenoma number and size, with associated decreases in mTOR and ERK activation. Either genetic or pharmacologic inhibition of EP4 receptors led to an anti-tumorigenic M1 phenotype of macrophages/dendritic cells. Therefore, PGE2-mediated EP4 signaling in myeloid cells promotes tumorigenesis, suggesting EP4 as a potentially attractive target for CRC chemoprevention or treatment.
Collapse
Affiliation(s)
- Jian Chang
- Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
- Hepatobiliary Surgery Department, Wuhan No.1 Hospital, Wuhan, China
| | - Jean Vacher
- Départment of Médecine, Clinical Research Institute of Montreal, Université de Montréal, Montreal, Quebec, Canada
| | - Bing Yao
- Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Xiaofeng Fan
- Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Raymond C. Harris
- Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Ming-Zhi Zhang
- Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA
- Cancer Biology, Vanderbilt University, Nashville, Tennessee, USA
- Jiangsu Center for The Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical College, Xuzhou, China
| |
Collapse
|
39
|
Cockbill LMR, Murk K, Love S, Hanley JG. Protein interacting with C kinase 1 suppresses invasion and anchorage-independent growth of astrocytic tumor cells. Mol Biol Cell 2015; 26:4552-61. [PMID: 26466675 PMCID: PMC4678014 DOI: 10.1091/mbc.e15-05-0270] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 10/07/2015] [Indexed: 12/11/2022] Open
Abstract
Astrocytic tumors are the most common form of primary brain tumor. Astrocytic tumor cells infiltrate the surrounding CNS tissue, allowing them to evade removal upon surgical resection of the primary tumor. Dynamic changes to the actin cytoskeleton are crucial to cancer cell invasion, but the specific mechanisms that underlie the particularly invasive phenotype of astrocytic tumor cells are unclear. Protein interacting with C kinase 1 (PICK1) is a PDZ and BAR domain-containing protein that inhibits actin-related protein 2/3 (Arp2/3)-dependent actin polymerization and is involved in regulating the trafficking of a number of cell-surface receptors. Here we report that, in contrast to other cancers, PICK1 expression is down-regulated in grade IV astrocytic tumor cell lines and also in clinical cases of the disease in which grade IV tumors have progressed from lower-grade tumors. Exogenous expression of PICK1 in the grade IV astrocytic cell line U251 reduces their capacity for anchorage-independent growth, two-dimensional migration, and invasion through a three-dimensional matrix, strongly suggesting that low PICK1 expression plays an important role in astrocytic tumorigenesis. We propose that PICK1 negatively regulates neoplastic infiltration of astrocytic tumors and that manipulation of PICK1 is an attractive possibility for therapeutic intervention.
Collapse
Affiliation(s)
- Louisa M R Cockbill
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Kai Murk
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Seth Love
- School of Clinical Sciences, University of Bristol, Bristol BS10 5NB, United Kingdom
| | - Jonathan G Hanley
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, United Kingdom
| |
Collapse
|
40
|
Gandhi J, Gaur N, Khera L, Kaul R, Robertson ES. COX-2 induces lytic reactivation of EBV through PGE2 by modulating the EP receptor signaling pathway. Virology 2015; 484:1-14. [PMID: 26057147 PMCID: PMC4567511 DOI: 10.1016/j.virol.2015.05.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 01/28/2015] [Accepted: 05/11/2015] [Indexed: 01/12/2023]
Abstract
Inflammation is one of the predisposing factors known to be associated with Epstein Barr Virus (EBV) mediated tumorigenesis. However it is not well understood whether inflammation in itself plays a role in regulating the life cycle of this infectious agent. COX-2, a key mediator of the inflammatory processes is frequently over-expressed in EBV positive cancer cells. In various tumors, PGE2 is the principle COX-2 regulated downstream product which exerts its effects on cellular processes through the EP1-4 receptors. In this study, we further elucidated how upregulated COX-2 levels can modulate the events in EBV life cycle related to latency-lytic reactivation. Our data suggest a role for upregulated COX-2 on modulation of EBV latency through its downstream effector PGE2. This study demonstrates a role for increased COX-2 levels in modulation of EBV latency. This is important for understanding the pathogenesis of EBV-associated cancers in people with chronic inflammatory conditions.
Collapse
Affiliation(s)
- Jaya Gandhi
- Department of Microbiology, University of Delhi South Campus, New Delhi, India
| | - Nivedita Gaur
- Department of Microbiology, University of Delhi South Campus, New Delhi, India
| | - Lohit Khera
- Department of Microbiology, University of Delhi South Campus, New Delhi, India
| | - Rajeev Kaul
- Department of Microbiology, University of Delhi South Campus, New Delhi, India.
| | - Erle S Robertson
- Department of Microbiology and Tumour Virology Program, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA.
| |
Collapse
|
41
|
Ma X, Aoki T, Tsuruyama T, Narumiya S. Definition of Prostaglandin E2-EP2 Signals in the Colon Tumor Microenvironment That Amplify Inflammation and Tumor Growth. Cancer Res 2015; 75:2822-32. [PMID: 26018088 DOI: 10.1158/0008-5472.can-15-0125] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 04/27/2015] [Indexed: 12/18/2022]
Abstract
Inflammation in the colon contributes significantly to colorectal cancer development. While aspirin reduces the colorectal cancer risk, its action mechanism, especially in inflammation in tumor microenvironment, still remains obscure. Here, we examined this issue by subjecting mice deficient in each prostaglandin (PG) receptor to colitis-associated cancer model. Deficiency of PGE receptor subtype EP2 selectively reduced, and deficiency of EP1 and EP3 enhanced, the tumor formation. EP2 is expressed in infiltrating neutrophils and tumor-associated fibroblasts in stroma, where it regulates expression of inflammation- and growth-related genes in a self-amplification manner. Notably, expression of cytokines such as TNFα and IL6, a chemokine, CXCL1, a PG-producing enzyme, COX-2, and Wnt5A was significantly elevated in tumor lesions of wild-type mice but this elevation was significantly suppressed in EP2-deficient mice. Intriguingly, EP2 stimulation in cultured neutrophils amplified expression of TNFα, IL6, CXCL1, COX-2, and other proinflammatory genes synergistically with TNFα, and EP2 stimulation in cultured fibroblasts induced expression of EP2 itself, COX-2, IL6, and Wnt genes. EP2 expression in infiltrating neutrophils and tumor-associated fibroblasts was also found in clinical specimen of ulcerative colitis-associated colorectal cancer. Bone marrow transfer experiments suggest that EP2 in both cell populations is critical for tumorigenesis. Finally, administration of a selective EP2 antagonist potently suppressed tumorigenesis in this model. Our study has thus revealed that EP2 in neutrophils and tumor-associated fibroblasts promotes colon tumorigenesis by amplifying inflammation and shaping tumor microenvironment, and suggests that EP2 antagonists are promising candidates of aspirin-alternative for chemoprevention of colorectal cancer.
Collapse
Affiliation(s)
- Xiaojun Ma
- CREST Laboratory, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tomohiro Aoki
- CREST Laboratory, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan. Center for Innovation in Immunoregulation Technology and Therapeutics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tatsuaki Tsuruyama
- Department of Diagnostic Pathology, Kyoto University Graduate School of Medicine, Kyoto, Japan. Center for Anatomical, Pathological and Forensic Medical Researches, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shuh Narumiya
- CREST Laboratory, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan. Center for Innovation in Immunoregulation Technology and Therapeutics, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| |
Collapse
|
42
|
KAG-308, a newly-identified EP4-selective agonist shows efficacy for treating ulcerative colitis and can bring about lower risk of colorectal carcinogenesis by oral administration. Eur J Pharmacol 2015; 754:179-89. [DOI: 10.1016/j.ejphar.2015.02.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 02/10/2015] [Accepted: 02/11/2015] [Indexed: 12/21/2022]
|
43
|
COX-2 Elevates Oncogenic miR-526b in Breast Cancer by EP4 Activation. Mol Cancer Res 2015; 13:1022-33. [DOI: 10.1158/1541-7786.mcr-14-0543] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 02/22/2015] [Indexed: 11/16/2022]
|
44
|
Otake S, Yoshida K, Seira N, Sanchez CM, Regan JW, Fujino H, Murayama T. Cellular density-dependent down-regulation of EP4 prostanoid receptors via the up-regulation of hypoxia-inducible factor-1α in HCA-7 human colon cancer cells. Pharmacol Res Perspect 2014; 3:e00083. [PMID: 25692008 PMCID: PMC4317221 DOI: 10.1002/prp2.83] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Revised: 07/28/2014] [Accepted: 08/07/2014] [Indexed: 12/27/2022] Open
Abstract
Increases in prostaglandin E2 (PGE2) and cyclooxygenase-2 (COX-2) levels are features of colon cancer. Among the different E-type prostanoid receptor subtypes, EP4 receptors are considered to play a crucial role in carcinogenesis by, for example, inducing COX-2 when stimulated with PGE2. However, EP4 receptor levels and PGE2-induced cellular responses are inconsistent among the cellular conditions. Therefore, the connections responsible for the expression of EP4 receptors were investigated in the present study by focusing on cell density-induced hypoxia-inducible factor-1α (HIF-1α). The expression of EP4 receptors was examined using immunoblot analysis, quantitative polymerase chain reaction, and reporter gene assays in HCA-7 human colon cancer cells with different cellular densities. The involvement of HIF-1α and its signaling pathways were also examined by immunoblot analysis, reporter gene assays, and with siRNA. We here demonstrated that EP4 receptors as well as EP4 receptor-mediated COX-2 expression levels decreased with an increase in cellular density. In contrast, HIF-1α levels increased in a cellular density-dependent manner. The knockdown of HIF-1α by siRNA restored the expression of EP4 receptors and EP4 receptor-mediated COX-2 in cells at a high density. Thus, the cellular density-dependent increase observed in HIF-1α expression levels reduced the expression of COX-2 by decreasing EP4 receptor levels. This novel regulation mechanism for the expression of EP4 receptors by HIF-1α may provide an explanation for the inconsistent actions of PGE2. The expression levels of EP4 receptors may vary depending on cellular density, which may lead to the differential activation of their signaling pathways by PGE2. Thus, cellular density-dependent PGE2-mediated signaling may determine the fate/stage of cancer cells, i.e., the surrounding environments could define the fate/stage of malignancies associated with colon cancer.
Collapse
Affiliation(s)
- Sho Otake
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University Chuo-ku, Chiba, 260-8675, Japan
| | - Kenji Yoshida
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University Chuo-ku, Chiba, 260-8675, Japan
| | - Naofumi Seira
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University Chuo-ku, Chiba, 260-8675, Japan
| | - Christopher M Sanchez
- Department of Pharmacology & Toxicology, College of Pharmacy, The University of Arizona Tucson, Arizona, 85721-0207
| | - John W Regan
- Department of Pharmacology & Toxicology, College of Pharmacy, The University of Arizona Tucson, Arizona, 85721-0207
| | - Hiromichi Fujino
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University Chuo-ku, Chiba, 260-8675, Japan
| | - Toshihiko Murayama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University Chuo-ku, Chiba, 260-8675, Japan
| |
Collapse
|
45
|
Ma X, Holt D, Kundu N, Reader J, Goloubeva O, Take Y, Fulton AM. A prostaglandin E (PGE) receptor EP4 antagonist protects natural killer cells from PGE 2-mediated immunosuppression and inhibits breast cancer metastasis. Oncoimmunology 2014; 2:e22647. [PMID: 23482441 PMCID: PMC3583931 DOI: 10.4161/onci.22647] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cyclooxygenase-2 is frequently upregulated in epithelial tumors and contributes to poor outcomes in multiple malignancies. The COX-2 product prostaglandin E2 (PGE2) promotes tumor growth and metastasis by acting on a family of four G protein-coupled receptors (EP1-4). Using a novel small molecule EP4 antagonist (RQ-15986) and a syngeneic murine model of metastatic breast cancer, we determined the effect of EP4 blockade on innate immunity and tumor biology. Natural killer (NK)-cell functions are markedly depressed in mice bearing murine mammary tumor 66.1 or 410.4 cells owing to the actions of PGE2 on NK cell EP4 receptors. The EP4 agonist PGE1-OH inhibits NK functions in vitro, and this negative regulation is blocked by RQ-15986. Likewise, the treatment of tumor-bearing mice with RQ-15986 completely protected NK cells from the immunosuppressive effects of the tumor microenvironment in vivo. RQ-15986 also has direct effects on EP4 expressed by tumor cells, inhibiting the PGE2-mediated activation of adenylate cyclase and blocking PGE2-induced tumor cell migration. The pretreatment of tumor cells with a non-cytotoxic concentration of RQ-15986 inhibited lung colonization, a beneficial effect that was lost in mice depleted of NK cells. The oral administration of RQ-15986 inhibited the growth of tumor cells implanted into mammary glands and their spontaneous metastatic colonization to the lungs, resulting in improved survival. Our findings reveal that EP4 antagonism prevents tumor-mediated NK-cell immunosuppression and demonstrates the anti-metastatic activity of a novel EP4 antagonist. These observations support the investigation of EP4 antagonists in clinical trials.
Collapse
Affiliation(s)
- Xinrong Ma
- University of Maryland Greenebaum Cancer Center; Baltimore, MD USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Chae IG, Kim DH, Kundu J, Jeong CH, Kundu JK, Chun KS. Generation of ROS by CAY10598 leads to inactivation of STAT3 signaling and induction of apoptosis in human colon cancer HCT116 cells. Free Radic Res 2014; 48:1311-21. [PMID: 25096910 DOI: 10.3109/10715762.2014.951838] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Prostaglandin E2 (PGE2) has been reported to play critical roles in cell fate decision by interacting with four types of prostanoid receptors such as EP1, EP2, EP3 and EP4. The present study was aimed at investigating the effect of the EP4-specific agonist CAY10598 in human colon cancer HCT116 cells. Our study revealed that treatment with CAY10598 significantly reduced the cell viability and induced apoptosis in HCT116 cells, as evidenced by the induction of p53 and Bax, release of cytochrome c, cleavage of caspase-9, -7, and -3, and PARP, and the inhibition of Bcl-2, Bcl-xL and survivin expression. Moreover, treatment with CAY10598 diminished the phosphorylation of JAK2, leading to the attenuation of STAT3 activation in HCT116 cells. CAY10598-induced apoptosis in cells which were transiently transfected with EP4 siRNA or treated with an EP4 antagonist prior to incubation with the compound remained unaffected, suggesting an EP4-independent mechanism of apoptosis induction by CAY10598. We found that treatment with CAY10598 generated reactive oxygen species (ROS) and pretreatment of cells with N-acetyl cysteine rescued cells from apoptosis by abrogating the inhibitory effect of CAY10598 on the activation of JAK2/STAT3 signaling. In conclusion, CAY10598 induced apoptosis in HCT116 cells in an EP4-independent manner, but through the generation of ROS and inactivation of JAK2/STAT3 signaling.
Collapse
Affiliation(s)
- I G Chae
- College of Pharmacy, Keimyung University , Daegu , South Korea
| | | | | | | | | | | |
Collapse
|
47
|
Shin D, Kim IS, Lee JM, Shin SY, Lee JH, Baek SH, Cho KH. The hidden switches underlying RORα-mediated circuits that critically regulate uncontrolled cell proliferation. J Mol Cell Biol 2014; 6:338-48. [PMID: 24831657 DOI: 10.1093/jmcb/mju023] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Prostaglandin E2 (PGE2) is known to have a key role in the development of colorectal cancer, but previous experiments showed its contrasting (i.e. tumor-promoting or tumor-suppressive) roles depending on experimental conditions. To elucidate the mechanisms underlying such contrasting roles of PGE2 in tumorigenesis, we investigated all the previous experiments and found a new signal transduction pathway mediated by retinoic acid receptor-related orphan receptor (ROR)α, in which PGE2/PKCα-dependent phosphorylation of RORα attenuates Wnt target gene expression in colon cancer cells. From mathematical simulations combined with biochemical experimentation, we revealed that RORα induces a biphasic response of Wnt target genes to PGE2 stimulation through a regulatory switch formed by an incoherent feedforward loop, which provides a mechanistic explanation on the contrasting roles of PGE2 observed in previous experiments. More interestingly, we found that RORα constitutes another regulatory switch formed by coupled positive and negative feedback loops, which regulates the hysteretic response of Wnt signaling and eventually converts a proliferative cellular state into an anti-proliferative state in a very delicate way. Our results indicate that RORα is the key regulator at the center of these hidden switches that critically regulate cancer cell proliferation and thereby being a promising anti-cancer therapeutic target.
Collapse
Affiliation(s)
- Dongkwan Shin
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | - Ik Soo Kim
- Department of Biological Sciences, Creative Research Initiative Center for Chromatin Dynamics, Seoul National University, Seoul 151-742, Republic of Korea
| | - Ji Min Lee
- Department of Biological Sciences, Creative Research Initiative Center for Chromatin Dynamics, Seoul National University, Seoul 151-742, Republic of Korea
| | - Sung-Young Shin
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | - Jong-Hoon Lee
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | - Sung Hee Baek
- Department of Biological Sciences, Creative Research Initiative Center for Chromatin Dynamics, Seoul National University, Seoul 151-742, Republic of Korea
| | - Kwang-Hyun Cho
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| |
Collapse
|
48
|
de Freitas AC, Coimbra EC, Leitão MDCG. Molecular targets of HPV oncoproteins: potential biomarkers for cervical carcinogenesis. Biochim Biophys Acta Rev Cancer 2014; 1845:91-103. [PMID: 24388872 DOI: 10.1016/j.bbcan.2013.12.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Revised: 12/10/2013] [Accepted: 12/27/2013] [Indexed: 12/17/2022]
Abstract
Cervical cancer is the second most common cancer among women worldwide and is responsible for 275,000 deaths each year. Persistent infection with high-risk human papillomavirus (HR-HPV) is an essential factor for the development of cervical cancer. Although the process is not fully understood, molecular mechanisms caused by HPV infection are necessary for its development and reveal a large number of potential biomarkers for diagnosis and prognosis. These molecules are host genes and/or proteins, and cellular microRNAs involved in cell cycle regulation that result from disturbed expression of HR-HPV E5, E6 and E7 oncoproteins. One of the current challenges in medicine is to discover potent biomarkers that can correctly diagnose cervical premalignant lesions and standardize clinical management. Currently, studies are showing that some of these molecules are potential biomarkers of cervical carcinogenesis, and it is possible to carry out a more accurate diagnosis and provide more appropriate follow-up treatment for women with cervical dysplasia. In this paper, we review recent research studies on cell cycle molecules deregulated by HPV infections, as well as their potential use for cervical cancer screening.
Collapse
Affiliation(s)
- Antonio Carlos de Freitas
- Laboratory of Molecular Studies and Experimental Therapy, Department of Genetics, Center for Biological Sciences, Federal University of Pernambuco, Recife, Brazil.
| | - Eliane Campos Coimbra
- Laboratory of Molecular Studies and Experimental Therapy, Department of Genetics, Center for Biological Sciences, Federal University of Pernambuco, Recife, Brazil.
| | - Maria da Conceição Gomes Leitão
- Laboratory of Molecular Studies and Experimental Therapy, Department of Genetics, Center for Biological Sciences, Federal University of Pernambuco, Recife, Brazil.
| |
Collapse
|
49
|
Prostaglandin E receptor EP4 is a therapeutic target in breast cancer cells with stem-like properties. Breast Cancer Res Treat 2013; 143:19-31. [PMID: 24281828 PMCID: PMC3889836 DOI: 10.1007/s10549-013-2779-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 11/15/2013] [Indexed: 01/15/2023]
Abstract
The cyclooxygenase pathway is strongly implicated in breast cancer progression but the role of this pathway in the biology of breast cancer stem/progenitor cells has not been defined. Recent attention has focused on targeting the cyclooxygenase 2 (COX-2) pathway downstream of the COX-2 enzyme by blocking the activities of individual prostaglandin E (EP) receptors. Prostaglandin E receptor 4 (EP4) is widely expressed in primary invasive ductal carcinomas of the breast and antagonizing this receptor with small molecule inhibitors or shRNA directed to EP4 inhibits metastatic potential in both syngeneic and xenograft models. Breast cancer stem/progenitor cells are defined as a subpopulation of cells that drive tumor growth, metastasis, treatment resistance, and relapse. Mammosphere-forming breast cancer cells of human (MDA-MB-231, SKBR3) or murine (66.1, 410.4) origin of basal-type, Her-2 phenotype and/or with heightened metastatic capacity upregulate expression of both EP4 and COX-2 and are more tumorigenic compared to the bulk population. In contrast, luminal-type or non-metastatic counterparts (MCF7, 410, 67) do not increase COX-2 and EP4 expression in mammosphere culture. Treatment of mammosphere-forming cells with EP4 inhibitors (RQ-15986, AH23848, Frondoside A) or EP4 gene silencing, but not with a COX inhibitor (Indomethacin) reduces both mammosphere-forming capacity and the expression of phenotypic markers (CD44hi/CD24low, aldehyde dehydrogenase) of breast cancer stem cells. Finally, an orally delivered EP4 antagonist (RQ-08) reduces the tumor-initiating capacity and markedly inhibits both the size of tumors arising from transplantation of mammosphere-forming cells and phenotypic markers of stem cells in vivo. These studies support the continued investigation of EP4 as a potential therapeutic target and provide new insight regarding the role of EP4 in supporting a breast cancer stem cell/tumor-initiating phenotype.
Collapse
|
50
|
Eilati E, Small CC, McGee SR, Kurrey NK, Hales DB. Anti-inflammatory effects of fish oil in ovaries of laying hens target prostaglandin pathways. Lipids Health Dis 2013; 12:152. [PMID: 24156238 PMCID: PMC3874764 DOI: 10.1186/1476-511x-12-152] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 10/18/2013] [Indexed: 12/17/2022] Open
Abstract
Background An effective way to control cancer is by prevention. Ovarian cancer is the most lethal gynecological malignancy. Progress in the treatment and prevention of ovarian cancer has been hampered due to the lack of an appropriate animal model and absence of effective chemo-prevention strategies. The domestic hens spontaneously develop ovarian adenocarcinomas that share similar histological appearance and symptoms such as ascites and metastasis with humans. There is a link between chronic inflammation and cancer. Prostaglandin E2 (PGE2) is the most pro-inflammatory ecoisanoid and one of the downstream products of two isoforms of cyclooxygenase (COX) enzymes: COX-1 and COX-2. PGE2 exerts its effects on target cells by coupling to four subtypes of receptors which have been classified as EP1-4. Fish oil is a source of omega-3 fatty acids (OM-3FAs) which may be effective in prevention of ovarian cancer. Our objective was to assess the potential impact of fish oil on expression of COX enzymes, PGE2 concentration, apoptosis and proliferation in ovaries of laying hens. Methods 48 white Leghorn hens were fed 50, 100, 175, 375 and 700 mg/kg fish oil for 21 days. The OM3-FAs and omega-6 fatty acids contents of egg yolks were determined by Gas Chromatography. Proliferation, apoptosis, COX-1, COX-2 and prostaglandin receptor subtype 4 (EP4) protein and mRNA expression and PGE2 concentration in ovaries were measured by PCNA, TUNEL, Western blot, quantitative real-time qPCR and ELISA, respectively. Results Consumption of fish oil increased the incorporation of OM-3FAs into yolks and decreased both COX-1 and COX-2 protein and mRNA expression. In correlation with COXs down-regulation, fish oil significantly reduced the concentrations of PGE2 in ovaries. EP4 protein and mRNA expression in ovaries of hens was not affected by fish oil treatment. A lower dose of fish oil increased the egg laying frequency. 175 and 700 mg/kg fish oil reduced proliferation and 700 mg/kg increased apoptosis in hen ovaries. Conclusions Our findings suggest that the lower doses of fish oil reduce inflammatory PG and may be an effective approach in preventing ovarian carcinogenesis. These findings may provide the basis for clinical trials utilizing fish oil as a dietary intervention targeting prostaglandin biosynthesis for the prevention and treatment of ovarian cancer.
Collapse
Affiliation(s)
| | | | | | | | - Dale Buchanan Hales
- Department of Physiology, Southern Illinois University Carbondale, School of Medicine, Life Science II, Room 250 (M/C 6512), 1125 Lincoln Drive, Carbondale, IL 62901, USA.
| |
Collapse
|