1
|
Muralidharan N, Murugan A, Raj PA, Jothi M. Restoration of functional PAX3 transcriptional factor enhanced neuronal differentiation in PAX3b isoform-depleted neuroblastoma cells. Cell Tissue Res 2023; 391:55-65. [PMID: 36378335 DOI: 10.1007/s00441-022-03710-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022]
Abstract
Reexpressed PAX3 transcription factor is believed to be responsible for the differentiation defects observed in neuroblastoma. Although the importance of PAX3 in neuronal differentiation is documented how it is involved in the defective differentiation remains unexplored particularly with its isoforms. Here, first we have analyzed PAX3 expression, its functional status, and its correlation with the neuronal marker expression in SH-SY5Y and its parental SK-N-SH cells. We have found that SH-SY5Y cells which expressed more PAX3 showed increased expression of neuronal marker genes (TUBB, MAP2, NEFL, NEUROG2, SYP) and reported PAX3 target genes (MET, TGFA, and NCAM1) than the SK-N-SH cells that had low PAX3 level. Retinoic acid treatment is unable to induce neuronal differentiation in cells (SK-N-SH) with low PAX3 level/activity. Moreover, ectopic expression of PAX3 in SK-N-SH cells neither induces neuronal marker genes nor its target genes. PAX3 isoform expression analysis revealed the expression of PAX3b isoform that contains only paired domain in SK-N-SH cells, whereas in SH-SY5Y cells, we could also observe PAX3c isoform that contains all functional domains. Further, PAX3b depletion in SK-N-SH cells is not induced PAX3 target genes, and the cells remain poorly differentiated. Interestingly, ectopic PAX3 expression in PAX3b-depleted SK-N-SH cells enhanced neuronal outgrowth along with neuronal marker gene induction. Collectively, these results showed that the PAX3b isoform may be responsible for the differentiation defect observed in SK-N-SH cells and restoration of functional PAX3 in the absence of PAX3b can induce neurogenesis in these cells.
Collapse
Affiliation(s)
- Narenkumar Muralidharan
- Laboratory of Molecular Therapeutics, Department of Human Genetics, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, 560029, Karnataka, India
| | - Abinayaselvi Murugan
- Laboratory of Molecular Therapeutics, Department of Human Genetics, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, 560029, Karnataka, India
| | - Prabhuraj Andiperumal Raj
- Department of Neurosurgery, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, 560029, Karnataka, India
| | - Mathivanan Jothi
- Laboratory of Molecular Therapeutics, Department of Human Genetics, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, 560029, Karnataka, India.
| |
Collapse
|
2
|
Zhang S, Xu H, Tian Y, Liu D, Hou X, Zeng B, Chen B, Liu H, Li R, Li X, Zuo B, Tang R, Tang W. High Genetic Heterogeneity in Chinese Patients With Waardenburg Syndrome Revealed by Next-Generation Sequencing. Front Genet 2021; 12:643546. [PMID: 34149797 PMCID: PMC8212959 DOI: 10.3389/fgene.2021.643546] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/23/2021] [Indexed: 01/08/2023] Open
Abstract
Objective This study aimed to explore the genetic causes of probands who were diagnosed with Waardenburg syndrome (WS) or congenital sensorineural hearing loss. Methods A detailed physical and audiological examinations were carried out to make an accurate diagnosis of 14 patients from seven unrelated families. We performed whole-exome sequencing in probands to detect the potential genetic causes and further validated them by Sanger sequencing in the probands and their family members. Results The genetic causes for all 14 patients with WS or congenital sensorineural hearing loss were identified. A total of seven heterozygous variants including c.1459C > T, c.123del, and c.959-409_1173+3402del of PAX3 gene (NM_181459.4), c.198_262del and c.529_556del of SOX10 gene (NM_006941.4), and c.731G > A and c.970dup of MITF gene (NM_000248.3) were found for the first time. Of these mutations, we had confirmed two (c.1459C > T and c.970dup) are de novo by Sanger sequencing of variants in the probands and their parents. Conclusion We revealed a total of seven novel mutations in PAX3, SOX10, and MITF, which underlie the pathogenesis of WS. The clinical and genetic characterization of these families with WS elucidated high heterogeneity in Chinese patients with WS. This study expands the database of PAX3, SOX10, and MITF mutations and improves our understanding of the causes of WS.
Collapse
Affiliation(s)
- Sen Zhang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Hongen Xu
- Precision Medicine Center, Academy of Medical Science, Zhengzhou University, Zhengzhou, China.,The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yongan Tian
- BGI College, Zhengzhou University, Zhengzhou, China
| | - Danhua Liu
- The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinyue Hou
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Beiping Zeng
- BGI College, Zhengzhou University, Zhengzhou, China
| | - Bei Chen
- Department of Otology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huanfei Liu
- Precision Medicine Center, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Ruijun Li
- Precision Medicine Center, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Xiaohua Li
- Department of Otology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bin Zuo
- Department of Otology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ryan Tang
- Johns Hopkins University, Maryland, MD, United States
| | - Wenxue Tang
- Precision Medicine Center, Academy of Medical Science, Zhengzhou University, Zhengzhou, China.,The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
3
|
Thompson B, Davidson EA, Liu W, Nebert DW, Bruford EA, Zhao H, Dermitzakis ET, Thompson DC, Vasiliou V. Overview of PAX gene family: analysis of human tissue-specific variant expression and involvement in human disease. Hum Genet 2021; 140:381-400. [PMID: 32728807 PMCID: PMC7939107 DOI: 10.1007/s00439-020-02212-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 07/25/2020] [Indexed: 12/18/2022]
Abstract
Paired-box (PAX) genes encode a family of highly conserved transcription factors found in vertebrates and invertebrates. PAX proteins are defined by the presence of a paired domain that is evolutionarily conserved across phylogenies. Inclusion of a homeodomain and/or an octapeptide linker subdivides PAX proteins into four groups. Often termed "master regulators", PAX proteins orchestrate tissue and organ development throughout cell differentiation and lineage determination, and are essential for tissue structure and function through maintenance of cell identity. Mutations in PAX genes are associated with myriad human diseases (e.g., microphthalmia, anophthalmia, coloboma, hypothyroidism, acute lymphoblastic leukemia). Transcriptional regulation by PAX proteins is, in part, modulated by expression of alternatively spliced transcripts. Herein, we provide a genomics update on the nine human PAX family members and PAX homologs in 16 additional species. We also present a comprehensive summary of human tissue-specific PAX transcript variant expression and describe potential functional significance of PAX isoforms. While the functional roles of PAX proteins in developmental diseases and cancer are well characterized, much remains to be understood regarding the functional roles of PAX isoforms in human health. We anticipate the analysis of tissue-specific PAX transcript variant expression presented herein can serve as a starting point for such research endeavors.
Collapse
Affiliation(s)
- Brian Thompson
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College Street, New Haven, CT, 06510, USA
| | - Emily A Davidson
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College Street, New Haven, CT, 06510, USA
| | - Wei Liu
- Program of Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06510, USA
| | - Daniel W Nebert
- Department of Environmental Health and Center for Environmental Genetics, Cincinnati Children's Research Center, University of Cincinnati Medical Center, Cincinnati, OH, 45267, USA
- Department of Pediatrics and Molecular and Developmental Biology, Cincinnati Children's Research Center, University of Cincinnati Medical Center, Cincinnati, OH, 45267, USA
| | - Elspeth A Bruford
- HUGO Gene Nomenclature Committee, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
- Department of Haematology, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK
| | - Hongyu Zhao
- Program of Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06510, USA
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, 06510, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Emmanouil T Dermitzakis
- Department of Genetic Medicine and Development, University of Geneva Medical School, 1211, Geneva, Switzerland
- Institute for Genetics and Genomics in Geneva (iGE3), University of Geneva, 1211, Geneva, Switzerland
- Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - David C Thompson
- Department of Clinical Pharmacy, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO, 80045, USA
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College Street, New Haven, CT, 06510, USA.
| |
Collapse
|
4
|
Liu Y, Cui S, Li W, Zhao Y, Yan X, Xu J. PAX3 is a biomarker and prognostic factor in melanoma: Database mining. Oncol Lett 2019; 17:4985-4993. [PMID: 31186709 PMCID: PMC6507366 DOI: 10.3892/ol.2019.10155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 02/14/2019] [Indexed: 11/24/2022] Open
Abstract
Paired box 3 (PAX3) is a transcription factor and critical regulator of pigment cell development during embryonic development. However, while there have been several studies on PAX3, its expression patterns and precise role remain to be clarified. The present study is an in-depth computational study of tumor-associated gene information, with specific emphasis on the expression of PAX3 in melanoma, using Oncomine along with an investigation of corresponding expression profiles in an array of cancer cell lines through Cancer Cell Line Encyclopedia analysis. Based on Kaplan-Meier analysis, the prognostic value of high PAX3 expression in tissues from patients with melanoma compared with normal tissues was assessed. PAX3 was more highly expressed in male patients with melanoma compared with female patients with melanoma. Using Oncomine and Coexpedia analysis, it was demonstrated that PAX3 expression was clearly associated with SRY-box 10 expression. The survival analysis results revealed that high PAX3 mRNA expression was associated with worse survival rates in patients with melanoma. These results suggested that PAX3 may be a biomarker and essential prognostic factor for melanoma, and provided an important theoretical basis for the development of melanoma treatments.
Collapse
Affiliation(s)
- Yong Liu
- Department of Dermatology, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi'an, Shaanxi 710003, P.R. China
| | - Shengnan Cui
- Department of Hematology, The Second Affiliated Hospital, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, P.R. China
| | - Wenbin Li
- Department of Dermatology, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi'an, Shaanxi 710003, P.R. China
| | - Yiding Zhao
- Department of Dermatology, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi'an, Shaanxi 710003, P.R. China
| | - Xiaoning Yan
- Department of Dermatology, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi'an, Shaanxi 710003, P.R. China
| | - Jianqin Xu
- Department of Dermatology, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi'an, Shaanxi 710003, P.R. China
| |
Collapse
|
5
|
Choi EY, Choi W, Lee CS. A novel PAX3 mutation in a Korean patient with Waardenburg syndrome type 1 and unilateral branch retinal vein and artery occlusion: a case report. BMC Ophthalmol 2018; 18:266. [PMID: 30314436 PMCID: PMC6186106 DOI: 10.1186/s12886-018-0933-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 10/03/2018] [Indexed: 11/10/2022] Open
Abstract
Background Waardenburg syndrome (WS) is a very rare genetic disorder affecting the neural crest cells. Coexistence of branch retinal vein occlusion (BRVO) and branch retinal artery occlusion (BRAO) in the same eye is also a rare finding. Here we report a case of WS type 1 that was confirmed by a novel mutation with the finding of unilateral BRVO and BRAO. Case presentation A 36-year-old, white-haired Korean man presented with a complaint of loss of vision in the inferior visual field of his right eye and hearing loss. He had telecanthus with a medial eyebrow and a hypochromic left iris. Funduscopy showed an ischemic change at the posterior pole in the right eye with sparing of the foveal center as well as retinal hemorrhages and white patches along the superotemporal arcade. Fundus angiography revealed the presence of both BRVO and BRAO, and optical coherence tomography showed thickening and opacification of the retinal layers corresponding to the ischemic area. A blood workup revealed hyperhomocysteinemia and the presence of antiphospholipid antibodies; both are suggestive as the cause of the BRVO and BRAO. Single nucleotide polymorphism analysis confirmed a novel PAX3 mutation at 2q35 (c.91–95 ACTCC deletion causing a frameshift). These findings confirmed a diagnosis of WS type 1. Conclusions WS is a heterogeneous inherited disorder of the neural crest cells that causes pigment abnormalities and sensorineural hearing loss. This is the first report of unilateral BRVO and BRAO in a patient with WS. Furthermore, the PAX3 mutation identified in this patient has not been reported previously.
Collapse
Affiliation(s)
- Eun Young Choi
- Department of Ophthalmology, The Institute of Vision Research, Gangnam Severance Hospital, Yonsei University College of Medicine, 211, Eonjuro, Gangnam-gu, Seoul, 06273, Korea
| | - Wungrak Choi
- Department of Ophthalmology, The Institute of Vision Research, Gangnam Severance Hospital, Yonsei University College of Medicine, 211, Eonjuro, Gangnam-gu, Seoul, 06273, Korea
| | - Christopher Seungkyu Lee
- Department of Ophthalmology, The Institute of Vision Research, Gangnam Severance Hospital, Yonsei University College of Medicine, 211, Eonjuro, Gangnam-gu, Seoul, 06273, Korea. .,Department of Ophthalmology, The Institute of Vision Research, Severance Hospital, Yonsei University College of Medicine, 50-1, Yonseiro, Seodaemun-gu, Seoul, 03722, Korea.
| |
Collapse
|
6
|
Saberi M, Golchehre Z, Salmani H, Karamzade A, Tabatabaie SZ, Keramatipour M. First report of Klein-Waardenburg Syndrome in Iran and a novel pathogenic splice site variant in PAX3 gene. Int J Pediatr Otorhinolaryngol 2018; 113:229-233. [PMID: 30173992 DOI: 10.1016/j.ijporl.2018.08.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 08/07/2018] [Accepted: 08/08/2018] [Indexed: 10/28/2022]
Abstract
OBJECTIVES Waardenburg Syndrome (WS) as a congenital auditory-pigmentary syndrome is a clinically and genetically heterogeneous disorder. Based upon clinical manifestations, it can be classified into four types. Loss of function mutations in PAX3 gene cause WS1 and WS3 (Klein-Waardenburg syndrome). While WS2 and WS4 have locus heterogeneity with multiple causative genes. Here we report a novel splice site variant in a pedigree with multiple affected members. Based on diagnostic criteria, three of them are associated with WS3. The remained patients classified as type 1. METHODS PCR amplification and Sanger sequencing were performed for all exons and all exon-intron boundaries of PAX3 (NM_181,459) gene of the proband. Then available symptomatic and asymptomatic members were screened for the detected variant. Interpretation and classification of the variant were done based on the current guidelines. RESULTS We identified a novel heterozygous splice site variant (c.586+2T > C) in donor site of intron 4 of PAX3 gene in our proband. Moreover, this variant was co-segregated with the disease in other available five affected members. Also, the detected variant was not detected in any of the investigated asymptomatic members. This variant was classified as a pathogenic variant. CONCLUSIONS This study shows significant intra-familial clinical heterogeneity and absence of phenotype-genotype correlation in a pedigree with Waardenburg Syndrome. However, severity of phenotypes and additional symptoms in the patients can be related to alternative splicing and different levels of PAX3 gene expression. Detailed evaluation of more cases can shed light on this and case-reports are valuable traffic sign in the road. This article is the first report of Waardenburg syndrome type 3 in Iran.
Collapse
Affiliation(s)
- Mohammad Saberi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Golchehre
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamzeh Salmani
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Arezou Karamzade
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Keramatipour
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
PAX3: A Molecule with Oncogenic or Tumor Suppressor Function Is Involved in Cancer. BIOMED RESEARCH INTERNATIONAL 2018. [DOI: 10.1155/2018/1095459] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Metastasis is the most deadly aspect of cancer and results from acquired gene regulation abnormalities in tumor cells. Transcriptional regulation is an essential component of controlling of gene function and its failure could contribute to tumor progression and metastasis. During cancer progression, deregulation of oncogenic or tumor suppressive transcription factors, as well as master cell fate regulators, collectively influences multiple steps of the metastasis cascade, including local invasion and dissemination of the tumor to distant organs. Transcription factor PAX3/Pax3, which contributes to diverse cell lineages during embryonic development, plays a major role in tumorigenesis. Mutations in this gene can cause neurodevelopmental disease and the existing literature supports that there is a potential link between aberrant expression of PAX3 genes in adult tissues and a wide variety of cancers. PAX3 function is tissue-specific and could contribute to tumorigenesis either directly as oncogene or as a tumor suppressor by losing its function. In this review, we discuss comprehensively the differential role played by PAX3 in various tissues and how its aberrant expression is implicated in disease development. This review particularly highlights the oncogenic and tumor suppressor role played by PAX3 in different cancers and underlines the importance of precisely identifying tissue-specific role of PAX3 in order to determine its exact role in development of cancer.
Collapse
|
8
|
Boudjadi S, Chatterjee B, Sun W, Vemu P, Barr FG. The expression and function of PAX3 in development and disease. Gene 2018; 666:145-157. [PMID: 29730428 DOI: 10.1016/j.gene.2018.04.087] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 04/26/2018] [Accepted: 04/27/2018] [Indexed: 12/27/2022]
Abstract
The PAX3 gene encodes a member of the PAX family of transcription factors that is characterized by a highly conserved paired box motif. The PAX3 protein is a transcription factor consisting of an N-terminal DNA binding domain (containing a paired box and homeodomain) and a C-terminal transcriptional activation domain. This protein is expressed during development of skeletal muscle, central nervous system and neural crest derivatives, and regulates expression of target genes that impact on proliferation, survival, differentiation and motility in these lineages. Germline mutations of the murine Pax3 and human PAX3 genes cause deficiencies in these developmental lineages and result in the Splotch phenotype and Waardenburg syndrome, respectively. Somatic genetic rearrangements that juxtapose the PAX3 DNA binding domain to the transcriptional activation domain of other transcription factors deregulate PAX3 function and contribute to the pathogenesis of the soft tissue cancers alveolar rhabdomyosarcoma and biphenotypic sinonasal sarcoma. The wild-type PAX3 protein is also expressed in other cancers related to developmental lineages that normally express this protein and exerts phenotypic effects related to its normal developmental role.
Collapse
Affiliation(s)
- Salah Boudjadi
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD, USA
| | | | - Wenyue Sun
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD, USA
| | - Prasantha Vemu
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD, USA
| | - Frederic G Barr
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD, USA.
| |
Collapse
|
9
|
Imbriano C, Molinari S. Alternative Splicing of Transcription Factors Genes in Muscle Physiology and Pathology. Genes (Basel) 2018; 9:genes9020107. [PMID: 29463057 PMCID: PMC5852603 DOI: 10.3390/genes9020107] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/10/2018] [Accepted: 02/13/2018] [Indexed: 12/13/2022] Open
Abstract
Skeletal muscle formation is a multi-step process that is governed by complex networks of transcription factors. The regulation of their functions is in turn multifaceted, including several mechanisms, among them alternative splicing (AS) plays a primary role. On the other hand, altered AS has a role in the pathogenesis of numerous muscular pathologies. Despite these premises, the causal role played by the altered splicing pattern of transcripts encoding myogenic transcription factors in neuromuscular diseases has been neglected so far. In this review, we systematically investigate what has been described about the AS patterns of transcription factors both in the physiology of the skeletal muscle formation process and in neuromuscular diseases, in the hope that this may be useful in re-evaluating the potential role of altered splicing of transcription factors in such diseases.
Collapse
Affiliation(s)
- Carol Imbriano
- University of Modena and Reggio Emilia, Department of Life Sciences, Modena, Italy.
| | - Susanna Molinari
- University of Modena and Reggio Emilia, Department of Life Sciences, Modena, Italy.
| |
Collapse
|
10
|
Shin J, Watanabe S, Hoelper S, Krüger M, Kostin S, Pöling J, Kubin T, Braun T. BRAF activates PAX3 to control muscle precursor cell migration during forelimb muscle development. eLife 2016; 5. [PMID: 27906130 PMCID: PMC5148607 DOI: 10.7554/elife.18351] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 11/30/2016] [Indexed: 11/13/2022] Open
Abstract
Migration of skeletal muscle precursor cells is a key step during limb muscle development and depends on the activity of PAX3 and MET. Here, we demonstrate that BRAF serves a crucial function in formation of limb skeletal muscles during mouse embryogenesis downstream of MET and acts as a potent inducer of myoblast cell migration. We found that a fraction of BRAF accumulates in the nucleus after activation and endosomal transport to a perinuclear position. Mass spectrometry based screening for potential interaction partners revealed that BRAF interacts and phosphorylates PAX3. Mutation of BRAF dependent phosphorylation sites in PAX3 impaired the ability of PAX3 to promote migration of C2C12 myoblasts indicating that BRAF directly activates PAX3. Since PAX3 stimulates transcription of the Met gene we propose that MET signaling via BRAF fuels a positive feedback loop, which maintains high levels of PAX3 and MET activity required for limb muscle precursor cell migration. DOI:http://dx.doi.org/10.7554/eLife.18351.001
Collapse
Affiliation(s)
- Jaeyoung Shin
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Shuichi Watanabe
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Soraya Hoelper
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Marcus Krüger
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Sawa Kostin
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Jochen Pöling
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Thomas Kubin
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Thomas Braun
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| |
Collapse
|
11
|
Liu JA, Cheung M. Neural crest stem cells and their potential therapeutic applications. Dev Biol 2016; 419:199-216. [PMID: 27640086 DOI: 10.1016/j.ydbio.2016.09.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 09/07/2016] [Accepted: 09/07/2016] [Indexed: 12/13/2022]
Abstract
The neural crest (NC) is a remarkable transient structure generated during early vertebrate development. The neural crest progenitors have extensive migratory capacity and multipotency, harboring stem cell-like characteristics such as self-renewal. They can differentiate into a variety of cell types from craniofacial skeletal tissues to the trunk peripheral nervous system (PNS). Multiple regulators such as signaling factors, transcription factors, and migration machinery components are expressed at different stages of NC development. Gain- and loss-of-function studies in various vertebrate species revealed epistatic relationships of these molecules that could be assembled into a gene regulatory network defining the processes of NC induction, specification, migration, and differentiation. These basic developmental studies led to the subsequent establishment and molecular validation of neural crest stem cells (NCSCs) derived by various strategies. We provide here an overview of the isolation and characterization of NCSCs from embryonic, fetal, and adult tissues; the experimental strategies for the derivation of NCSCs from embryonic stem cells, induced pluripotent stem cells, and skin fibroblasts; and recent developments in the use of patient-derived NCSCs for modeling and treating neurocristopathies. We discuss future research on further refinement of the culture conditions required for the differentiation of pluripotent stem cells into axial-specific NC progenitors and their derivatives, developing non-viral approaches for the generation of induced NC cells (NCCs), and using a genomic editing approach to correct genetic mutations in patient-derived NCSCs for transplantation therapy. These future endeavors should facilitate the therapeutic applications of NCSCs in the clinical setting.
Collapse
Affiliation(s)
- Jessica Aijia Liu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Martin Cheung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
12
|
Monsoro-Burq AH. PAX transcription factors in neural crest development. Semin Cell Dev Biol 2015; 44:87-96. [PMID: 26410165 DOI: 10.1016/j.semcdb.2015.09.015] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 09/14/2015] [Accepted: 09/21/2015] [Indexed: 10/23/2022]
Abstract
The nine vertebrate PAX transcription factors (PAX1-PAX9) play essential roles during early development and organogenesis. Pax genes were identified in vertebrates using their homology with the Drosophila melanogaster paired gene DNA-binding domain. PAX1-9 functions are largely conserved throughout vertebrate evolution, in particular during central nervous system and neural crest development. The neural crest is a vertebrate invention, which gives rise to numerous derivatives during organogenesis, including neurons and glia of the peripheral nervous system, craniofacial skeleton and mesenchyme, the heart outflow tract, endocrine and pigment cells. Human and mouse spontaneous mutations as well as experimental analyses have evidenced the critical and diverse functions of PAX factors during neural crest development. Recent studies have highlighted the role of PAX3 and PAX7 in neural crest induction. Additionally, several PAX proteins - PAX1, 3, 7, 9 - regulate cell proliferation, migration and determination in multiple neural crest-derived lineages, such as cardiac, sensory, and enteric neural crest, pigment cells, glia, craniofacial skeleton and teeth, or in organs developing in close relationship with the neural crest such as the thymus and parathyroids. The diverse PAX molecular functions during neural crest formation rely on fine-tuned modulations of their transcriptional transactivation properties. These modulations are generated by multiple means, such as different roles for the various isoforms (formed by alternative splicing), or posttranslational modifications which alter protein-DNA binding, or carefully orchestrated protein-protein interactions with various co-factors which control PAX proteins activity. Understanding these regulations is the key to decipher the versatile roles of PAX transcription factors in neural crest development, differentiation and disease.
Collapse
Affiliation(s)
- Anne H Monsoro-Burq
- Univ. Paris Sud, Université Paris Saclay, Centre Universitaire, 15, rue Georges Clémenceau, F-91405 Orsay, France; Institut Curie Research Division, Centre Universitaire, 15, rue Georges Clémenceau, F-91405 Orsay, France; UMR 3347 CNRS, U1021 Inserm, Université Paris Saclay, Centre Universitaire, 15, rue Georges Clémenceau, F-91405 Orsay, France.
| |
Collapse
|
13
|
Mayran A, Pelletier A, Drouin J. Pax factors in transcription and epigenetic remodelling. Semin Cell Dev Biol 2015; 44:135-44. [PMID: 26234816 DOI: 10.1016/j.semcdb.2015.07.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 07/22/2015] [Accepted: 07/24/2015] [Indexed: 11/25/2022]
Abstract
The nine Pax transcription factors that constitute the mammalian family of paired domain (PD) factors play key roles in many developmental processes. As DNA binding transcription factors, they exhibit tremendous variability and complexity in their DNA recognition patterns. This is ascribed to the presence of multiple DNA binding structural domains, namely helix-turn-helix (HTH) domains. The PD contains two HTH subdomains and four of the nine Pax factors have an additional HTH domain, the homeodomain (HD). We now review these diverse DNA binding modalities together with their properties as transcriptional activators and repressors. The action of Pax factors on gene expression is also exerted through recruitment of chromatin remodelling complexes that introduce either activating or repressive chromatin marks. Interestingly, the recent demonstration that Pax7 has pioneer activity, the unique property to "open" chromatin, further underlines the mechanistic versatility and the developmental importance of these factors.
Collapse
Affiliation(s)
- Alexandre Mayran
- Laboratoire de Génétique Moléculaire, Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC H2W 1R7, Canada
| | - Audrey Pelletier
- Laboratoire de Génétique Moléculaire, Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC H2W 1R7, Canada
| | - Jacques Drouin
- Laboratoire de Génétique Moléculaire, Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC H2W 1R7, Canada.
| |
Collapse
|
14
|
Bartlett D, Boyle GM, Ziman M, Medic S. Mechanisms contributing to differential regulation of PAX3 downstream target genes in normal human epidermal melanocytes versus melanoma cells. PLoS One 2015; 10:e0124154. [PMID: 25880082 PMCID: PMC4399949 DOI: 10.1371/journal.pone.0124154] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 03/01/2015] [Indexed: 11/19/2022] Open
Abstract
Melanoma is a highly aggressive and drug resistant form of skin cancer. It arises from melanocytes, the pigment producing cells of the skin. The formation of these melanocytes is driven by the transcription factor PAX3 early during embryonic development. As a result of alternative splicing, the PAX3 gene gives rise to eight different transcripts which encode isoforms that have different structures and activate different downstream target genes involved in pathways of cell proliferation, migration, differentiation and survival. Furthermore, post-translational modifications have also been shown to alter the functions of PAX3. We previously identified PAX3 downstream target genes in melanocytes and melanoma cells. Here we assessed the effects of PAX3 down-regulation on this panel of target genes in primary melanocytes versus melanoma cells. We show that PAX3 differentially regulates various downstream target genes involved in cell proliferation in melanoma cells compared to melanocytes. To determine mechanisms behind this differential downstream target gene regulation, we performed immunoprecipitation to assess post-translational modifications of the PAX3 protein as well as RNAseq to determine PAX3 transcript expression profiles in melanocytes compared to melanoma cells. Although PAX3 was found to be post-translationally modified, there was no qualitative difference in phosphorylation and ubiquitination between melanocytes and melanoma cells, while acetylation of PAX3 was reduced in melanoma cells. Additionally, there were differences in PAX3 transcript expression profiles between melanocytes and melanoma cells. In particular the PAX3E transcript, responsible for reducing melanocyte proliferation and increasing apoptosis, was found to be down-regulated in melanoma cells compared to melanocytes. These results suggest that alternate transcript expression profiles activate different downstream target genes leading to the melanoma phenotype.
Collapse
Affiliation(s)
- Danielle Bartlett
- School of Medical Sciences, Edith Cowan University, Perth, Australia
| | - Glen M. Boyle
- Cancer Drug Mechanisms Group, Division of Cancer & Cell Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Mel Ziman
- School of Medical Sciences, Edith Cowan University, Perth, Australia
- School of Pathology and Laboratory Medicine, University of Western Australia, Perth, Australia
- * E-mail:
| | - Sandra Medic
- School of Medical Sciences, Edith Cowan University, Perth, Australia
- Curtin Health Innovation Research Institute of Ageing and Chronic Disease, Curtin University, Perth, Australia
| |
Collapse
|
15
|
Kim YJ, Lim H, Li Z, Oh Y, Kovlyagina I, Choi IY, Dong X, Lee G. Generation of multipotent induced neural crest by direct reprogramming of human postnatal fibroblasts with a single transcription factor. Cell Stem Cell 2014; 15:497-506. [PMID: 25158936 DOI: 10.1016/j.stem.2014.07.013] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 06/19/2014] [Accepted: 07/29/2014] [Indexed: 12/22/2022]
Abstract
Neural crest (NC) generates diverse lineages including peripheral neurons, glia, melanocytes, and mesenchymal derivatives. Isolating multipotent human NC has proven challenging, limiting our ability to understand NC development and model NC-associated disorders. Here, we report direct reprogramming of human fibroblasts into induced neural crest (iNC) cells by overexpression of a single transcription factor, SOX10, in combination with environmental cues including WNT activation. iNC cells possess extensive capacity for migration in vivo, and single iNC clones can differentiate into the four main NC lineages. We further identified a cell surface marker for prospective isolation of iNCs, which was used to generate and purify iNCs from familial dysautonomia (FD) patient fibroblasts. FD-iNC cells displayed defects in cellular migration and alternative mRNA splicing, providing insights into FD pathogenesis. Thus, this study provides an accessible platform for studying NC biology and disease through rapid and efficient reprogramming of human postnatal fibroblasts.
Collapse
Affiliation(s)
- Yong Jun Kim
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hotae Lim
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Zhe Li
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yohan Oh
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Irina Kovlyagina
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - In Young Choi
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Xinzhong Dong
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Center for Sensory Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; The Howard Hughes Medical Institute, Baltimore, MD 21205, USA
| | - Gabsang Lee
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
16
|
Blake JA, Ziman MR. Pax genes: regulators of lineage specification and progenitor cell maintenance. Development 2014; 141:737-51. [PMID: 24496612 DOI: 10.1242/dev.091785] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Pax genes encode a family of transcription factors that orchestrate complex processes of lineage determination in the developing embryo. Their key role is to specify and maintain progenitor cells through use of complex molecular mechanisms such as alternate RNA splice forms and gene activation or inhibition in conjunction with protein co-factors. The significance of Pax genes in development is highlighted by abnormalities that arise from the expression of mutant Pax genes. Here, we review the molecular functions of Pax genes during development and detail the regulatory mechanisms by which they specify and maintain progenitor cells across various tissue lineages. We also discuss mechanistic insights into the roles of Pax genes in regeneration and in adult diseases, including cancer.
Collapse
Affiliation(s)
- Judith A Blake
- School of Medical Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| | | |
Collapse
|
17
|
Dye DE, Medic S, Ziman M, Coombe DR. Melanoma biomolecules: independently identified but functionally intertwined. Front Oncol 2013; 3:252. [PMID: 24069584 PMCID: PMC3781348 DOI: 10.3389/fonc.2013.00252] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 09/09/2013] [Indexed: 01/31/2023] Open
Abstract
The majority of patients diagnosed with melanoma present with thin lesions and generally these patients have a good prognosis. However, 5% of patients with early melanoma (<1 mm thick) will have recurrence and die within 10 years, despite no evidence of local or metastatic spread at the time of diagnosis. Thus, there is a need for additional prognostic markers to help identify those patients that may be at risk of recurrent disease. Many studies and several meta-analyses have compared gene and protein expression in melanocytes, naevi, primary, and metastatic melanoma in an attempt to find informative prognostic markers for these patients. However, although a large number of putative biomarkers have been described, few of these molecules are informative when used in isolation. The best approach is likely to involve a combination of molecules. We believe one approach could be to analyze the expression of a group of interacting proteins that regulate different aspects of the metastatic pathway. This is because a primary lesion expressing proteins involved in multiple stages of metastasis may be more likely to lead to secondary disease than one that does not. This review focuses on five putative biomarkers – melanoma cell adhesion molecule (MCAM), galectin-3 (gal-3), matrix metalloproteinase 2 (MMP-2), chondroitin sulfate proteoglycan 4 (CSPG4), and paired box 3 (PAX3). The goal is to provide context around what is known about the contribution of these biomarkers to melanoma biology and metastasis. Although each of these molecules have been independently identified as likely biomarkers, it is clear from our analyses that each are closely linked with each other, with intertwined roles in melanoma biology.
Collapse
Affiliation(s)
- Danielle E Dye
- School of Biomedical Science & Curtin Health Innovation Research Institute, Faculty of Health, Curtin University , Perth, WA , Australia
| | | | | | | |
Collapse
|
18
|
Hu Q, Yuan Y, Wang C. Structural and functional studies of FKHR-PAX3, a reciprocal fusion gene of the t(2;13) chromosomal translocation in alveolar rhabdomyosarcoma. PLoS One 2013; 8:e68065. [PMID: 23799156 PMCID: PMC3683129 DOI: 10.1371/journal.pone.0068065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 05/23/2013] [Indexed: 12/14/2022] Open
Abstract
Alveolar rhabdomyosarcoma (ARMS) is an aggressive pediatric cancer of skeletal muscle. More than 70% of ARMS tumors carry balanced t(2;13) chromosomal translocation that leads to the production of two novel fusion genes, PAX3-FKHR and FKHR-PAX3. While the PAX3-FKHR gene has been intensely studied, the reciprocal FKHR-PAX3 gene has rarely been described. We report here the cloning and functional characterization of the FKHR-PAX3 gene as the first step towards a better understanding of its potential impact on ARMS biology. From RH30 ARMS cells, we detected and isolated three versions of FKHR-PAX3 cDNAs whose C-terminal sequences corresponded to PAX3c, PAX3d, and PAX3e isoforms. Unlike the nuclear-specific localization of PAX3-FKHR, the reciprocal FKHR-PAX3 proteins stayed predominantly in the cytoplasm. FKHR-PAX3 potently inhibited myogenesis in both non-transformed myoblast cells and ARMS cells. We showed that FKHR-PAX3 was not a classic oncogene but could act as a facilitator in oncogenic pathways by stabilizing PAX3-FKHR expression, enhancing cell proliferation, clonogenicity, anchorage-independent growth, and matrix adhesion in vitro, and accelerating the onset of tumor formation in xenograft mouse model in vivo. In addition to these pro-oncogenic behaviors, FKHR-PAX3 also negatively affected cell migration and invasion in vitro and lung metastasis in vivo. Taken together, these functional characteristics suggested that FKHR-PAX3 might have a critical role in the early stage of ARMS development.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Cell Adhesion
- Cell Differentiation
- Cell Movement
- Cell Proliferation
- Chromosomes, Human, Pair 13/genetics
- Chromosomes, Human, Pair 2/genetics
- Forkhead Box Protein O1
- Forkhead Transcription Factors/genetics
- Forkhead Transcription Factors/metabolism
- Gene Expression
- Gene Expression Regulation, Neoplastic
- HEK293 Cells
- Humans
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/secondary
- Male
- Mice
- Mice, Nude
- Molecular Sequence Data
- Muscle Neoplasms/genetics
- Muscle Neoplasms/metabolism
- Muscle Neoplasms/pathology
- Myoblasts/metabolism
- NIH 3T3 Cells
- Neoplasm Transplantation
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- PAX3 Transcription Factor
- Paired Box Transcription Factors/genetics
- Paired Box Transcription Factors/metabolism
- Protein Transport
- Rhabdomyosarcoma, Alveolar/genetics
- Rhabdomyosarcoma, Alveolar/metabolism
- Rhabdomyosarcoma, Alveolar/secondary
- Transcriptional Activation
- Translocation, Genetic
Collapse
Affiliation(s)
- Qiande Hu
- Center for Molecular Biology of Oral Diseases, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Yewen Yuan
- Center for Molecular Biology of Oral Diseases, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Oral Biology, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Chiayeng Wang
- Center for Molecular Biology of Oral Diseases, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Oral Biology, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
19
|
Alternative polyadenylation mediates microRNA regulation of muscle stem cell function. Cell Stem Cell 2012; 10:327-36. [PMID: 22385659 DOI: 10.1016/j.stem.2012.01.017] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2011] [Revised: 12/14/2011] [Accepted: 01/26/2012] [Indexed: 01/09/2023]
Abstract
Pax3, a key myogenic regulator, is transiently expressed during activation of adult muscle stem cells, or satellite cells (SCs), and is also expressed in a subset of quiescent SCs (QSCs), but only in specific muscles. The mechanisms regulating these variations in expression are not well understood. Here we show that Pax3 levels are regulated by miR-206, a miRNA with a previously demonstrated role in myogenic differentiation. In most QSCs and activated SCs, miR-206 expression suppresses Pax3 expression. Paradoxically, QSCs that express high levels of Pax3 also express high levels of miR-206. In these QSCs, Pax3 transcripts are subject to alternative polyadenylation, resulting in transcripts with shorter 3' untranslated regions (3'UTRs) that render them resistant to regulation by miR-206. Similar alternate polyadenylation of the Pax3 transcript also occurs in myogenic progenitors during development. Our findings may reflect a general role of alternative polyadenylation in circumventing miRNA-mediated regulation of stem cell function.
Collapse
|
20
|
Phosphorylation of BRN2 modulates its interaction with the Pax3 promoter to control melanocyte migration and proliferation. Mol Cell Biol 2012; 32:1237-47. [PMID: 22290434 DOI: 10.1128/mcb.06257-11] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
MITF-M and PAX3 are proteins central to the establishment and transformation of the melanocyte lineage. They control various cellular mechanisms, including migration and proliferation. BRN2 is a POU domain transcription factor expressed in melanoma cell lines and is involved in proliferation and invasion, at least in part by regulating the expression of MITF-M and PAX3. The T361 and S362 residues of BRN2, both in the POU domain, are conserved throughout the POU protein family and are targets for phosphorylation, but their roles in vivo remain unknown. To examine the role of this phosphorylation, we generated mutant BRN2 in which these two residues were replaced with alanines (BRN2TS→BRN2AA). When expressed in melanocytes in vitro or in the melanocyte lineage in transgenic mice, BRN2TS induced proliferation and repressed migration, whereas BRN2AA repressed both proliferation and migration. BRN2TS and BRN2AA bound and repressed the MITF-M promoter, whereas PAX3 transcription was induced by BRN2TS but repressed by BRN2AA. Expression of the BRN2AA transgene in a Mitf heterozygous background and in a Pax3 mutant background enhanced the coat color phenotype. Our findings show that melanocyte migration and proliferation are controlled both through the regulation of PAX3 by nonphosphorylated BRN2 and through the regulation of MITF-M by the overall BRN2 level.
Collapse
|
21
|
Thompson JA, Ziman M. Pax genes during neural development and their potential role in neuroregeneration. Prog Neurobiol 2011; 95:334-51. [DOI: 10.1016/j.pneurobio.2011.08.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 08/30/2011] [Indexed: 12/18/2022]
|
22
|
Medic S, Rizos H, Ziman M. Differential PAX3 functions in normal skin melanocytes and melanoma cells. Biochem Biophys Res Commun 2011; 411:832-7. [PMID: 21802410 DOI: 10.1016/j.bbrc.2011.07.053] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 07/14/2011] [Indexed: 12/17/2022]
Abstract
The PAX3 transcription factor is the key regulator of melanocyte development during embryogenesis and is also frequently found in melanoma cells. While PAX3 is known to regulate melanocyte differentiation, survival, proliferation and migration during development, it is not clear if its function is maintained in adult melanocytes and melanoma cells. To clarify this we have assessed which genes are targeted by PAX3 in these cells. We show here that similar to its roles in development, PAX3 regulates complex differentiation networks in both melanoma cells and melanocytes, in order to maintain cells as "stem" cell-like (via NES and SOX9). We show also that mediators of migration (MCAM and CSPG4) are common to both cell types but more so in melanoma cells. By contrast, PAX3-mediated regulation of melanoma cell proliferation (through TPD52) and survival (via BCL2L1 and PTEN) differs from that in melanocytes. These results suggest that by controlling cell proliferation, survival and migration as well as maintaining a less differentiated "stem" cell like phenotype, PAX3 may contribute to melanoma development and progression.
Collapse
Affiliation(s)
- Sandra Medic
- School of Exercise, Biomedical and Health Sciences, Edith Cowan University, Perth, WA, Australia
| | | | | |
Collapse
|
23
|
Charytonowicz E, Matushansky I, Castillo-Martin M, Hricik T, Cordon-Cardo C, Ziman M. Alternate PAX3 and PAX7 C-terminal isoforms in myogenic differentiation and sarcomagenesis. Clin Transl Oncol 2011; 13:194-203. [PMID: 21421465 DOI: 10.1007/s12094-011-0640-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Pax3 and Pax7 are closely related genes that are involved in commitment of cells to a myogenic lineage during skeletal muscle development and regeneration. Several Pax3 and Pax7 transcripts are expressed from the genes, generating different isoforms with potentially distinct DNA binding and transactivation properties. The aim of this study was to investigate the implication of Pax3 and Pax7 C-terminal isoforms during myogenic differentiation and tumorigenesis, since fusions involving these genes are commonly associated with alveolar rhabdomyosarcoma (ARMS). METHODS Uncommitted (mouse mesenchymal stem cells, MSCs) and committed (C2C12) myogenic precursor cells were stably transfected with PAX3/FKHR and PAXC7/ FKHR fusion genes. We analysed gene and protein expression comparing the newly generated cells with the parental cells, to determine the functional importance of Pax3 and Pax7 C-terminal isoforms. RESULTS We found that the transcript Pax3c was expressed at low levels in undifferentiated C2C12 and MSCs cells, but its expression levels increased considerably at later stages of differentiation. However, expression levels of Pax3d transcript increased only slightly after differentiation. Pax7 transcripts, present before differentiation in committed C2C12 cells, but absent in uncommitted MSCs, increased noticeably in MSCs after differentiation. We also found that the presence of PAX/FKHR fusions prevented both C2C12 and MSC cells from terminal myogenic differentiation and increased the expression of discrete endogenous Pax3/7 transcripts, in particular Pax3d and Pax7B. CONCLUSIONS Our results suggest that both Pax3 and Pax7 transcripts are required for commitment of cells to the myogenic lineage, with each transcript having a distinct role. More specifically, the Pax3c isoform may be required for terminal myogenic differentiation whereas the Pax3d isoform may be involved in undifferentiated cell maintenance and/or proliferation.
Collapse
Affiliation(s)
- Elizabeth Charytonowicz
- School of Exercise Biomedical and Health Science, Edith Cowan University, Joondalup, Australia
| | | | | | | | | | | |
Collapse
|
24
|
Ichi S, Boshnjaku V, Shen YW, Mania-Farnell B, Ahlgren S, Sapru S, Mansukhani N, McLone DG, Tomita T, Mayanil CSK. Role of Pax3 acetylation in the regulation of Hes1 and Neurog2. Mol Biol Cell 2010; 22:503-12. [PMID: 21169561 PMCID: PMC3038648 DOI: 10.1091/mbc.e10-06-0541] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Pax3 plays a role in regulating Hes1 and Neurog2 activity and thereby stem cell maintenance and neurogenesis. A mechanism for Pax3 regulation of these two opposing events, during caudal neural tube development, is examined in this study. Pax3 acetylation on C-terminal lysine residues K437 and K475 may be critical for proper regulation of Hes1 and Neurog2. Removal of these lysine residues increased Hes1 but decreased Neurog2 promoter activity. SIRT1 deacetylase may be a key component in regulating Pax3 acetylation. Chromatin immunoprecipitation assays showed that SIRT1 is associated with Hes1 and Neurog2 promoters during murine embryonic caudal neural tube development at E9.5, but not at E12.5. Overexpression of SIRT1 decreased Pax3 acetylation, Neurog2 and Brn3a positive staining. Conversely, siRNA-mediated silencing of SIRT1 increased these factors. These studies suggest that Pax3 acetylation results in decreased Hes1 and increased Neurog2 activity, thereby promoting sensory neuron differentiation.
Collapse
Affiliation(s)
- Shunsuke Ichi
- Developmental Neurobiology Laboratory, Department of Pediatric Neurosurgery, Children's Memorial Hospital, Chicago, IL 60614, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Yeang CH. An integrated analysis of molecular aberrations in NCI-60 cell lines. BMC Bioinformatics 2010; 11:495. [PMID: 20925909 PMCID: PMC2984587 DOI: 10.1186/1471-2105-11-495] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2010] [Accepted: 10/06/2010] [Indexed: 11/26/2022] Open
Abstract
Background Cancer is a complex disease where various types of molecular aberrations drive the development and progression of malignancies. Large-scale screenings of multiple types of molecular aberrations (e.g., mutations, copy number variations, DNA methylations, gene expressions) become increasingly important in the prognosis and study of cancer. Consequently, a computational model integrating multiple types of information is essential for the analysis of the comprehensive data. Results We propose an integrated modeling framework to identify the statistical and putative causal relations of various molecular aberrations and gene expressions in cancer. To reduce spurious associations among the massive number of probed features, we sequentially applied three layers of logistic regression models with increasing complexity and uncertainty regarding the possible mechanisms connecting molecular aberrations and gene expressions. Layer 1 models associate gene expressions with the molecular aberrations on the same loci. Layer 2 models associate expressions with the aberrations on different loci but have known mechanistic links. Layer 3 models associate expressions with nonlocal aberrations which have unknown mechanistic links. We applied the layered models to the integrated datasets of NCI-60 cancer cell lines and validated the results with large-scale statistical analysis. Furthermore, we discovered/reaffirmed the following prominent links: (1)Protein expressions are generally consistent with mRNA expressions. (2)Several gene expressions are modulated by composite local aberrations. For instance, CDKN2A expressions are repressed by either frame-shift mutations or DNA methylations. (3)Amplification of chromosome 6q in leukemia elevates the expression of MYB, and the downstream targets of MYB on other chromosomes are up-regulated accordingly. (4)Amplification of chromosome 3p and hypo-methylation of PAX3 together elevate MITF expression in melanoma, which up-regulates the downstream targets of MITF. (5)Mutations of TP53 are negatively associated with its direct target genes. Conclusions The analysis results on NCI-60 data justify the utility of the layered models for the incoming flow of cancer genomic data. Experimental validations on selected prominent links and application of the layered modeling framework to other integrated datasets will be carried out subsequently.
Collapse
|
26
|
Hueber PA, Fukuzawa R, Elkares R, Chu L, Blumentkrantz M, He SJ, Anaka MR, Reeve AE, Eccles M, Jabado N, Iglesias DM, Goodyer PR. PAX3 is expressed in the stromal compartment of the developing kidney and in Wilms tumors with myogenic phenotype. Pediatr Dev Pathol 2009; 12:347-54. [PMID: 18666806 DOI: 10.2350/08-05-0466.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Wilms tumor (WT) is the most frequent renal neoplasm of childhood; a myogenic component is observed in 5% to 10% of tumors. We demonstrate for the first time that myogenic WTs are associated with expression of PAX3, a transcription factor known to specify myoblast cell fate during muscle development. In a panel of 20 WTs, PAX3 was identified in 13 of 13 tumor samples with myogenic histopathology but was absent in 7 of 7 tumors lacking a myogenic component. Furthermore, we show that PAX3 is expressed in the metanephric mesenchyme and stromal compartment of developing mouse kidney. Modulation of endogenous PAX3 expression in human embryonic kidney (HEK293) cells influenced cell migration in in vitro assays. Mutations of WT1 were consistently associated with PAX3 expression in WTs, and modulation of WT1 expression in HEK293 cells was inversely correlated with the level of endogenous PAX3 protein. We demonstrate abundant PAX3 and absence of PAX2 expression in a novel cell line (WitP3) isolated from the stromal portion of a WT bearing a homozygous deletion of the WT1 gene. We hypothesize that PAX3 sets stromal cell fate in developing kidney but is normally suppressed by WT1 during the mesenchyme-to-epithelium transition leading to nephrogenesis. Loss of WT1 permits aberrant PAX3 expression in a subset of WTs with myogenic phenotype.
Collapse
Affiliation(s)
- Pierre-Alain Hueber
- Department of Experimental Medicine, McGill University, Montreal Children's Hospital Research Institute, 4060 Ste-Catherine west, Montreal, QC, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
The paired box genes are a family of nine developmental control genes, which in human beings (PAX) and mice (Pax) encode nuclear transcription factors. The temporal and spatial expressions of these highly conserved genes are tightly regulated during foetal development including organogenesis. PAY/Paxgenes are switched off during the terminal differentiation of most structures. Specific mutations within a number of PAX/Pax genes lead to developmental abnormalities in both human beings and mice. Mutation in PAX3 causes Waardenburg syndrome, and craniofacial-deafness-hand syndrome. The Splotch phenotype in mouse exhibits defects in neural crest derivatives such as, pigment cells, sympathetic ganglia and cardiac neural crest-derived structures. The PAX family also plays key roles in several human malignancies. In particular, PAX3 is involved in rhabdomyosarcoma and tumours of neural crest origin, including melanoma and neuroblastoma. This review critically evaluates the roles of PAX/Pax in oncogenesis. It especially highlights recent advances in knowledge of how their genetic alterations directly interfere in the transcriptional networks that regulate cell differentiation, proliferation, migration and survival and may contribute to oncogenesis.
Collapse
Affiliation(s)
- Qiuyu Wang
- School of Biology, Chemistry and Health Science, Manchester Metropolitan University, and Department of Pathology Sciences, Christie Hospital, Manchester, United Kingdom
| | | | | | | | | | | |
Collapse
|
28
|
The Evolution of Alternative Splicing in the Pax Family: The View from the Basal Chordate Amphioxus. J Mol Evol 2008; 66:605-20. [DOI: 10.1007/s00239-008-9113-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Revised: 04/16/2008] [Accepted: 04/22/2008] [Indexed: 10/22/2022]
|
29
|
Underwood TJ, Amin J, Lillycrop KA, Blaydes JP. Dissection of the functional interaction between p53 and the embryonic proto-oncoprotein PAX3. FEBS Lett 2007; 581:5831-5. [PMID: 18053811 DOI: 10.1016/j.febslet.2007.11.056] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Revised: 11/20/2007] [Accepted: 11/20/2007] [Indexed: 11/16/2022]
Abstract
Studies from murine embryogenesis and cancer cells derived from human melanomas have identified a critical role for the transcription factor PAX3 in the suppression of p53 protein accumulation and p53-dependent apoptosis. Here we show, using a well-defined over-expression system, that PAX3 suppresses p53-dependent transcription from promoters of p53-responsive genes, notably BAX and HDM2-P2, and reduces p53 protein abundance by promoting its degradation. We define the functional domains of PAX3 required for this activity, and furthermore present evidence that PAX3-dependent inhibition of p53 is independent of binding of the N-terminal domain of p53 to HDM2, the primary negative regulator of cellular p53 activity.
Collapse
|