1
|
Abstract
Multiple myeloma (MM) is a B-cell malignancy characterized by the clonal proliferation of malignant plasma cells in the bone marrow and the development of osteolytic bone lesions. MM has emerged as a paradigm within the cancers for the success of drug discovery and translational medicine. This article discusses immunotherapy as an encouraging option for the goal of inducing effective and long-lasting therapeutic outcome. Divided into two distinct approaches, passive or active, immunotherapy, which targets tumor-associated antigens has shown promising results in multiple preclinical and clinical studies.
Collapse
Affiliation(s)
- Jooeun Bae
- Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, USA.
| | - Nikhil C Munshi
- Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Kenneth C Anderson
- Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, USA
| |
Collapse
|
2
|
Zhang M, He J, Liu Z, Lu Y, Zheng Y, Li H, Xu J, Liu H, Qian J, Orlowski RZ, Kwak LW, Yi Q, Yang J. Anti-β₂-microglobulin monoclonal antibodies overcome bortezomib resistance in multiple myeloma by inhibiting autophagy. Oncotarget 2015; 6:8567-78. [PMID: 25895124 PMCID: PMC4496167 DOI: 10.18632/oncotarget.3251] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 01/29/2015] [Indexed: 01/19/2023] Open
Abstract
Our previous studies showed that anti-β2M monoclonal antibodies (mAbs) have strong and direct apoptotic effects on multiple myeloma (MM) cells, suggesting that anti-β2M mAbs might be developed as a novel therapeutic agent. In this study, we investigated the anti-MM effects of combination treatment with anti-β2M mAbs and bortezomib (BTZ). Our results showed that anti-β2M mAbs enhanced BTZ-induced apoptosis of MM cell lines and primary MM cells. Combination treatment could also induce apoptosis of BTZ-resistant MM cells, and the enhanced effect depended on the surface expression of β2M on MM cells. BTZ up-regulated the expression of autophagy proteins, whereas combination with anti-β2M mAbs inhibited autophagy. Sequence analysis of the promoter region of beclin 1 identified 3 putative NF-κB-binding sites from -615 to -789 bp. BTZ treatment increased, whereas combination with anti-β2M mAbs reduced, NF-κB transcription activities in MM cells, and combination treatment inhibited NF-κB p65 binding to the beclin 1 promoter. Furthermore, anti-β2M mAbs and BTZ combination treatment had anti-MM activities in an established MM mouse model. Thus, our studies provide new insight and support for the clinical development of an anti-β2M mAb and BTZ combination treatment to overcome BTZ drug resistance and improve MM patient survival.
Collapse
MESH Headings
- Active Transport, Cell Nucleus/drug effects
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacology
- Apoptosis/drug effects
- Apoptosis Regulatory Proteins/biosynthesis
- Apoptosis Regulatory Proteins/genetics
- Autophagy/drug effects
- Beclin-1
- Bortezomib/pharmacology
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/physiology
- Drug Screening Assays, Antitumor
- Drug Synergism
- Humans
- Lysosomal Membrane Proteins/biosynthesis
- Lysosomal Membrane Proteins/genetics
- Male
- Membrane Proteins/biosynthesis
- Membrane Proteins/genetics
- Mice
- Mice, SCID
- Microtubule-Associated Proteins/biosynthesis
- Microtubule-Associated Proteins/genetics
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Neoplasm Proteins/immunology
- RNA, Bacterial
- RNA, Small Interfering/genetics
- Signal Transduction/drug effects
- Transcription Factor RelA/antagonists & inhibitors
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
- beta 2-Microglobulin/antagonists & inhibitors
- beta 2-Microglobulin/biosynthesis
- beta 2-Microglobulin/genetics
- beta 2-Microglobulin/immunology
Collapse
Affiliation(s)
- Mingjun Zhang
- Department of Lymphoma/Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jin He
- Department of Lymphoma/Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Zhiqiang Liu
- Department of Lymphoma/Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yong Lu
- Department of Lymphoma/Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Yuhuan Zheng
- Department of Lymphoma/Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Haiyan Li
- Department of Lymphoma/Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jingda Xu
- Department of Lymphoma/Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Huan Liu
- Department of Lymphoma/Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jianfei Qian
- Department of Lymphoma/Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Robert Z. Orlowski
- Department of Lymphoma/Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Larry W. Kwak
- Department of Lymphoma/Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Qing Yi
- Department of Lymphoma/Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jing Yang
- Department of Lymphoma/Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Cancer Research Institute and Cancer Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
3
|
Abe M, Harada T, Matsumoto T. Concise review: Defining and targeting myeloma stem cell-like cells. Stem Cells 2014; 32:1067-73. [PMID: 24449391 DOI: 10.1002/stem.1643] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 11/29/2013] [Indexed: 01/12/2023]
Abstract
Multiple myeloma (MM) remains incurable despite recent advances in the treatment of MM. Although the idea of MM cancer stem cells (CSCs) has been proposed for the drug resistance in MM, MM CSCs have not been properly defined yet. Besides clonotypic B cells, phenotypically distinct MM plasma cell fractions have been demonstrated to possess a clonogenic capacity, leading to long-lasting controversies regarding the cells of origin in MM or MM-initiating cells. However, MM CSCs may not be a static population and survive as phenotypically and functionally different cell types via the transition between stem-like and non-stem-like states in local microenvironments, as observed in other types of cancers. Targeting MM CSCs is clinically relevant, and different approaches have been suggested to target molecular, metabolic and epigenetic signatures, and the self-renewal signaling characteristic of MM CSC-like cells.
Collapse
Affiliation(s)
- Masahiro Abe
- Department of Medicine and Bioregulatory Sciences, University of Tokushima Graduate School of Medical Sciences, Tokushima, Japan
| | | | | |
Collapse
|
4
|
Zhang M, Qian J, Lan Y, Lu Y, Li H, Hong B, Zheng Y, He J, Yang J, Yi Q. Anti-β₂M monoclonal antibodies kill myeloma cells via cell- and complement-mediated cytotoxicity. Int J Cancer 2014; 135:1132-41. [PMID: 24474467 DOI: 10.1002/ijc.28745] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Accepted: 01/15/2014] [Indexed: 12/26/2022]
Abstract
Our previous studies showed that anti-β2M monoclonal antibodies (mAbs) at high doses have direct apoptotic effects on myeloma cells, suggesting that anti-β2M mAbs might be developed as a novel therapeutic agent. In this study, we investigated the ability of the mAbs at much lower concentrations to indirectly kill myeloma cells by utilizing immune effector cells or molecules. Our results showed that anti-β2M mAbs effectively lysed MM cells via antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC), which were correlated with and dependent on the surface expression of β2M on MM cells. The presence of MM bone marrow stromal cells or addition of IL-6 did not attenuate anti-β2M mAb-induced ADCC and CDC activities against MM cells. Furthermore, anti-β2M mAbs only showed limited cytotoxicity toward normal B cells and nontumorous mesenchymal stem cells, indicating that the ADCC and CDC activities of the anti-β2M mAbs were more prone to the tumor cells. Lenalidomide potentiated in vitro ADCC activity against MM cells and in vivo tumor inhibition capacity induced by the anti-β2M mAbs by enhancing the activity of NK cells. These results support clinical development of anti-β2M mAbs, both as a monotherapy and in combination with lenalidomide, to improve MM patient outcome.
Collapse
Affiliation(s)
- Mingjun Zhang
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Tumor necrosis factor α-induced hypoxia-inducible factor 1α-β-catenin axis regulates major histocompatibility complex class I gene activation through chromatin remodeling. Mol Cell Biol 2013; 33:2718-31. [PMID: 23671189 DOI: 10.1128/mcb.01254-12] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Hypoxia-inducible factor 1α (HIF-1α) plays a crucial role in the progression of glioblastoma multiforme tumors, which are characterized by their effective immune escape mechanisms. As major histocompatibility complex class I (MHC-I) is involved in glioma immune evasion and since HIF-1α is a pivotal link between inflammation and glioma progression, the role of tumor necrosis factor alpha (TNF-α)-induced inflammation in MHC-I gene regulation was investigated. A TNF-α-induced increase in MHC-I expression and transcriptional activation was concurrent with increased HIF-1α, ΝF-κΒ, and β-catenin activities. While knockdown of HIF-1α and β-catenin abrogated TNF-α-induced MHC-I activation, NF-κB had no effect. β-Catenin inhibition abrogated HIF-1α activation and vice versa, and this HIF-1α-β-catenin axis positively regulated CREB phosphorylation. Increased CREB activation was accompanied by its increased association with β-catenin and CBP. Chromatin immunoprecipitation revealed increased CREB enrichment at CRE/site α on the MHC-I promoter in a β-catenin-dependent manner. β-Catenin replaced human Brahma (hBrm) with Brg1 as the binding partner for CREB at the CRE site. The hBrm-to-Brg1 switch is crucial for MHC-I regulation, as ATPase-deficient Brg1 abolished TNF-α-induced MHC-I expression. β-Catenin also increased the association of MHC-I enhanceosome components RFX5 and NF-YB at the SXY module. CREB acts as a platform for assembling coactivators and chromatin remodelers required for MHC-I activation in a HIF-1α/β-catenin-dependent manner.
Collapse
|
6
|
Allegra A, Penna G, Alonci A, Russo S, Greve B, Innao V, Minardi V, Musolino C. Monoclonal antibodies: potential new therapeutic treatment against multiple myeloma. Eur J Haematol 2013; 90:441-68. [DOI: 10.1111/ejh.12107] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2013] [Indexed: 12/12/2022]
Affiliation(s)
| | - Giuseppa Penna
- Division of Haematology; University of Messina; Messina; Italy
| | - Andrea Alonci
- Division of Haematology; University of Messina; Messina; Italy
| | - Sabina Russo
- Division of Haematology; University of Messina; Messina; Italy
| | - Bruna Greve
- Division of Haematology; University of Messina; Messina; Italy
| | - Vanessa Innao
- Division of Haematology; University of Messina; Messina; Italy
| | - Viviana Minardi
- Division of Haematology; University of Messina; Messina; Italy
| | | |
Collapse
|
7
|
Danylesko I, Beider K, Shimoni A, Nagler A. Monoclonal antibody-based immunotherapy for multiple myeloma. Immunotherapy 2013; 4:919-38. [PMID: 23046236 DOI: 10.2217/imt.12.82] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Multiple myeloma (MM) is a life-threatening hematological malignancy. High-dose chemotherapy followed by autologous stem cell transplantation is a relatively effective treatment, but disease recurrence remains a major obstacle. Allogeneic transplantation may result in durable responses and cure due to antitumor immunity mediated by donor lymphocytes. However, morbidity and mortality related to graft-versus-host disease remain a challenge. Recent advances in understanding the interaction between the immune system of the patient and the malignant cells are influencing the design of clinically more efficient study protocols for MM. This review will focus on MM antigens and their specific antibodies. These monoclonal antibodies are an attractive therapeutic tool for MM humoral immunotherapy, with most promising preclinical results.
Collapse
Affiliation(s)
- Ivetta Danylesko
- Division of Hematology, Bone Marrow Transplantation & Cord Blood Bank, Chaim Sheba Medical Center, Tel Hashomer & Tel Aviv University, Tel Aviv, Israel
| | | | | | | |
Collapse
|
8
|
Ikegame A, Ozaki S, Tsuji D, Harada T, Fujii S, Nakamura S, Miki H, Nakano A, Kagawa K, Takeuchi K, Abe M, Watanabe K, Hiasa M, Kimura N, Kikuchi Y, Sakamoto A, Habu K, Endo M, Itoh K, Yamada-Okabe H, Matsumoto T. Small molecule antibody targeting HLA class I inhibits myeloma cancer stem cells by repressing pluripotency-associated transcription factors. Leukemia 2012; 26:2124-34. [PMID: 22430632 DOI: 10.1038/leu.2012.78] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 02/16/2012] [Accepted: 02/28/2012] [Indexed: 02/01/2023]
Abstract
Cancer stem cells have been proposed to be responsible for tumorigenesis and recurrence in various neoplastic diseases, including multiple myeloma (MM). We have previously reported that MM cells specifically express HLA class I at high levels and that single-chain Fv diabody against this molecule markedly induces MM cell death. Here we investigated the effect of a new diabody (C3B3) on cancer stem cell-like side population (SP) cells. SP fraction of MM cells highly expressed ABCG2 and exhibited resistance to chemotherapeutic agents; however, C3B3 induced cytotoxicity in both SP cells and main population (MP) cells to a similar extent. Moreover, C3B3 suppressed colony formation and tumorigenesis of SP cells in vitro and in vivo. Crosslinking of HLA class I by C3B3 mediated disruption of lipid rafts and actin aggregation, which led to inhibition of gene expression of β-catenin and pluripotency-associated transcription factors such as Sox2, Oct3/4 and Nanog. Conversely, knockdown of Sox2 and Oct3/4 mRNA reduced the proportion of SP cells, suggesting that these factors are essential in maintenance of SP fraction in MM cells. Thus, our findings reveal that immunotherapeutic approach by engineered antibodies can overcome drug resistance, and provide a new basis for development of cancer stem cell-targeted therapy.
Collapse
Affiliation(s)
- A Ikegame
- Department of Medicine and Bioregulatory Sciences, University of Tokushima Graduate School of Medical Sciences, Tokushima, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Novel strategies for immunotherapy in multiple myeloma: previous experience and future directions. Clin Dev Immunol 2012; 2012:753407. [PMID: 22649466 PMCID: PMC3357929 DOI: 10.1155/2012/753407] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 02/27/2012] [Indexed: 12/28/2022]
Abstract
Multiple myeloma (MM) is a life-threatening haematological malignancy for which standard therapy is inadequate. Autologous stem cell transplantation is a relatively effective treatment, but residual malignant sites may cause relapse. Allogeneic transplantation may result in durable responses due to antitumour immunity mediated by donor lymphocytes. However, morbidity and mortality related to graft-versus-host disease remain a challenge. Recent advances in understanding the interaction between the immune system of the patient and the malignant cells are influencing the design of clinically more efficient study protocols for MM.
Cellular immunotherapy using specific antigen-presenting cells (APCs), to overcome aspects of immune incompetence in MM patients, has received great attention, and numerous clinical trials have evaluated the potential for dendritic cell (DC) vaccines as a novel immunotherapeutic approach. This paper will summarize the data investigating aspects of immunity concerning MM, immunotherapy for patients with MM, and strategies, on the way, to target the plasma cell more selectively. We also include the MM antigens and their specific antibodies that are of potential use for MM humoral immunotherapy, because they have demonstrated the most promising preclinical results.
Collapse
|
10
|
Garrido C, Paco L, Romero I, Berruguilla E, Stefansky J, Collado A, Algarra I, Garrido F, Garcia-Lora AM. MHC class I molecules act as tumor suppressor genes regulating the cell cycle gene expression, invasion and intrinsic tumorigenicity of melanoma cells. Carcinogenesis 2012; 33:687-93. [PMID: 22219178 DOI: 10.1093/carcin/bgr318] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The alteration of MHC class I (MHC-I) expression is a frequent event during cancer progression, allowing tumor cells to evade the immune system. We report that the loss of one major histocompatibility complex haplotype in human melanoma cells not only allowed them to evade immunosurveillance but also increased their intrinsic oncogenic potential. A second successive defect in MHC-I expression, MHC-I total downregulation, gave rise to melanoma cells that were more oncogenic per se in vivo and showed a higher proliferation rate and greater migratory and invasive potential in vitro. All these processes were reversed by restoring MHC-I expression via human leukocite antigen-A2 gene transfection. MHC-I cell surface expression was inversely correlated with intrinsic oncogenic potential. Modifications in the expression of various cell cycle genes were correlated with changes in MHC-I expression; the most important differences among the melanoma cell lines were in the transcriptional level of AP2-alpha, cyclin A1 and p21WAF1/CIP1. According to these results, altered MHC-I expression in malignant cells can directly increase their intrinsic oncogenic and invasive potential and modulate the expression of cell cycle genes. These findings suggest that human leukocite antigen class I molecules may act directly as tumor suppressor genes in melanoma.
Collapse
Affiliation(s)
- Cristina Garrido
- Departamento de Bioquímica, Biología Molecular e Inmunología III, Universidad de Granada, 18012 Granada, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Miki H, Ozaki S, Nakamura S, Oda A, Amou H, Ikegame A, Watanabe K, Hiasa M, Cui Q, Harada T, Fujii S, Nakano A, Kagawa K, Takeuchi K, Yata K, Sakai A, Abe M, Matsumoto T. KRN5500, a spicamycin derivative, exerts anti‐myeloma effects through impairing both myeloma cells and osteoclasts. Br J Haematol 2011; 155:328-39. [DOI: 10.1111/j.1365-2141.2011.08844.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Hirokazu Miki
- Department of Medicine and Bioregulatory Sciences, The University of Tokushima Graduate School of Health Biosciences
| | - Shuji Ozaki
- Department of Medicine and Bioregulatory Sciences, The University of Tokushima Graduate School of Health Biosciences
- Department of Internal Medicine, Tokushima Prefectural Central Hospital
| | - Shingen Nakamura
- Department of Medicine and Bioregulatory Sciences, The University of Tokushima Graduate School of Health Biosciences
| | - Asuka Oda
- Department of Medicine and Bioregulatory Sciences, The University of Tokushima Graduate School of Health Biosciences
| | - Hiroe Amou
- Department of Medicine and Bioregulatory Sciences, The University of Tokushima Graduate School of Health Biosciences
| | - Akishige Ikegame
- Department of Medicine and Bioregulatory Sciences, The University of Tokushima Graduate School of Health Biosciences
| | - Keiichiro Watanabe
- Department of Orthodontics and Dentofacial Orthopedics, The University of Tokushima Graduate School of Oral Science
| | - Masahiro Hiasa
- Department of Biomaterials and Bioengineering, The University of Tokushima Graduate School of Oral Science
| | - Qu Cui
- Department of Medicine and Bioregulatory Sciences, The University of Tokushima Graduate School of Health Biosciences
| | - Takeshi Harada
- Department of Medicine and Bioregulatory Sciences, The University of Tokushima Graduate School of Health Biosciences
| | - Shiro Fujii
- Department of Medicine and Bioregulatory Sciences, The University of Tokushima Graduate School of Health Biosciences
| | - Ayako Nakano
- Department of Medicine and Bioregulatory Sciences, The University of Tokushima Graduate School of Health Biosciences
| | - Kumiko Kagawa
- Department of Medicine and Bioregulatory Sciences, The University of Tokushima Graduate School of Health Biosciences
| | - Kyoko Takeuchi
- Division of Transfusion Medicine, Tokushima University Hospital, Tokushima
| | - Ken‐ichiro Yata
- Department of Medicine and Bioregulatory Sciences, The University of Tokushima Graduate School of Health Biosciences
| | - Akira Sakai
- Department of Haematology and Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Japan
| | - Masahiro Abe
- Department of Medicine and Bioregulatory Sciences, The University of Tokushima Graduate School of Health Biosciences
| | - Toshio Matsumoto
- Department of Medicine and Bioregulatory Sciences, The University of Tokushima Graduate School of Health Biosciences
| |
Collapse
|
12
|
Cao Y, Lan Y, Qian J, Zheng Y, Hong S, Li H, Wang M, Kwak LW, Lin D, Yang J, Yi Q. Targeting cell surface β2 -microglobulin by pentameric IgM antibodies. Br J Haematol 2011; 154:111-21. [PMID: 21554263 DOI: 10.1111/j.1365-2141.2011.08714.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Monoclonal antibodies (mAbs) specific for human β(2) -microglobulin (β(2) M) have been shown to induce tumour cell apoptosis in haematological and solid tumours via recruiting major histocompatibility complex (MHC) class I molecules into and excluding cytokine receptors from the lipid rafts. Based on these findings, we hypothesized that IgM anti-β(2) M mAbs might have stronger apoptotic effects because of their pentameric structure. Our results showed that, compared with IgG mAbs, IgM anti-β(2) M mAbs exhibited stronger tumouricidal activity in vitro against different tumour cells, including myeloma, mantle cell lymphoma, and prostate cancer, and in vivo in a human-like xenografted myeloma mouse model without damaging normal tissues. IgM mAb-induced apoptosis is dependent on the pentameric structure of the mAbs. Disrupting pentameric IgM into monomeric IgM significantly reduced their ability to induce cell apoptosis. Monomeric IgM mAbs were less efficient at recruiting MHC class I molecules into and exclusion of cytokine receptors from lipid rafts, and at activating the intrinsic apoptosis cascade. Thus, we developed and validated the efficacy of anti-β(2) M IgM mAbs that may be utilized in the clinical setting and showed that IgM anti-β(2) M mAbs may be more potent than IgG mAbs at inducing tumour apoptosis.
Collapse
Affiliation(s)
- Yabing Cao
- Department of Lymphoma/Myeloma, Division of Cancer Medicine, Center for Cancer Immunology Research, The University of Texas M D Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Tai YT, Anderson KC. Antibody-based therapies in multiple myeloma. BONE MARROW RESEARCH 2011; 2011:924058. [PMID: 22046572 PMCID: PMC3200112 DOI: 10.1155/2011/924058] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 01/04/2011] [Indexed: 01/06/2023]
Abstract
The unmet need for improved multiple myeloma (MM) therapy has stimulated clinical development of monoclonal antibodies (mAbs) targeting either MM cells or cells of the bone marrow (BM) microenvironment. In contrast to small-molecule inhibitors, therapeutic mAbs present the potential to specifically target tumor cells and directly induce an immune response to lyse tumor cells. Unique immune-effector mechanisms are only triggered by therapeutic mAbs but not by small molecule targeting agents. Although therapeutic murine mAbs or chimeric mAbs can cause immunogenicity, the advancement of genetic recombination for humanizing rodent mAbs has allowed large-scale production and designation of mAbs with better affinities, efficient selection, decreasing immunogenicity, and improved effector functions. These advancements of antibody engineering technologies have largely overcome the critical obstacle of antibody immunogenicity and enabled the development and subsequent Food and Drug Administration (FDA) approval of therapeutic Abs for cancer and other diseases.
Collapse
Affiliation(s)
- Yu-Tzu Tai
- Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Boston, MA 02115, USA
| | - Kenneth C. Anderson
- Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Boston, MA 02115, USA
| |
Collapse
|
14
|
Abstract
Multiple myeloma is still a fatal disease. Despite advances in high-dose chemotherapy and stem-cell transplantation and the development of novel therapeutics, relapse of the underlying disease remains the primary cause of treatment failure. Strategies for posttransplantation immunomodulation are desirable for eradication of remaining tumor cells. To this end, immunotherapy aimed at inducing myeloma-specific immunity in patients has been explored. Idiotype protein, secreted by myeloma cells, has been the primary target for immunotherapy as it is the best defined tumor-specific antigen. This chapter focuses on novel immunotherapies that are being developed to treat patients with myeloma. I will discuss potential myeloma antigens, antigen-specific T cells, and their function on myeloma tumor cells, and T-cell-based and antibody-based immunotherapies for myeloma. Furthermore, clinical studies of T-cell-based immunotherapy in the form of vaccination, allogeneic stem-cell transplantation and donor lymphocyte infusions, with or without donor vaccination using patient-derived idiotype, and future application of donor-derived or patient-derived, antigen-specific T-cell infusion in this disease are also discussed. Based on the specificity of the immune effector molecules and cells, immunotherapies with specific T cells or therapeutic antibodies may represent novel strategies for the treatment of multiple myeloma in the near future.
Collapse
|
15
|
Igawa T, Tsunoda H, Kikuchi Y, Yoshida M, Tanaka M, Koga A, Sekimori Y, Orita T, Aso Y, Hattori K, Tsuchiya M. VH/VL interface engineering to promote selective expression and inhibit conformational isomerization of thrombopoietin receptor agonist single-chain diabody. Protein Eng Des Sel 2010; 23:667-77. [DOI: 10.1093/protein/gzq034] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
16
|
Yang J, Yi Q. Killing tumor cells through their surface beta(2)-microglobulin or major histocompatibility complex class I molecules. Cancer 2010; 116:1638-45. [PMID: 20143445 DOI: 10.1002/cncr.24953] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Targeted antibody-based therapy has been used successfully to treat cancers. Recent studies have demonstrated that tumor cells treated with antibodies specific for beta(2)-microglobulin (beta(2)M) or major histocompatibility complex (MHC) class I molecules undergo apoptosis in vitro and in vivo (mouse models). Antibodies against beta(2)M or MHC class I induce tumor cell apoptosis by 1) recruiting MHC class I molecules to lipid rafts and activating LYN kinase and the signal-transducing enzyme phospholipase C-gamma2-dependent c-Jun N-terminal kinase signaling pathway and 2) expelling interleukin 6 and insulin-like growth factor 1 receptors out of lipid rafts and inhibiting the growth and survival factor-induced activation of the phosphatidylinositol 3-kinase/Akt and extracellular signal-related kinase pathways. Consequently, mitochondrial integrity is compromised, and the caspase-9-dependent cascade is activated in treated tumor cells. However, although beta(2)M and MHC class I are expressed on normal hematopoietic cells, which is a potential safety concern, the monoclonal antibodies were selective to tumor cells and did not damage normal cells in vitro or in human-like mouse models. These findings suggest that targeting beta(2)M or MHC class I by using antibodies or other agents offers a potential therapeutic approach for beta(2)M/MHC class I-expressing malignancies. Cancer 2010. (c) 2010 American Cancer Society.
Collapse
Affiliation(s)
- Jing Yang
- Department of Lymphoma and Myeloma, Division of Cancer Medicine, Center for Cancer Immunology Research, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | | |
Collapse
|
17
|
The hemopoietic stem cell niche versus the microenvironment of the multiple myeloma-tumor initiating cell. CANCER MICROENVIRONMENT 2010; 3:15-28. [PMID: 21209772 PMCID: PMC2970809 DOI: 10.1007/s12307-009-0034-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2009] [Accepted: 12/29/2009] [Indexed: 12/25/2022]
Abstract
Multiple myeloma cells are reminiscent of hemopoietic stem cells in their strict dependence upon the bone marrow microenvironment. However, from all other points of view, multiple myeloma cells differ markedly from stem cells. The cells possess a mature phenotype and secrete antibodies, and have thus made the whole journey to maturity, while maintaining a tumor phenotype. Not much credence was given to the possibility that the bulk of plasma-like multiple myeloma tumor cells is generated from tumor-initiating cells. Although interleukin-6 is a major contributor to the formation of the tumor’s microenvironment in multiple myeloma, it is not a major factor within hemopoietic stem cell niches. The bone marrow niche for myeloma cells includes the activity of inflammatory cytokines released through osteoclastogenesis. These permit maintenance of myeloma cells within the bone marrow. In contrast, osteoclastogenesis constitutes a signal that drives hemopoietic stem cells away from their bone marrow niches. The properties of the bone marrow microenvironment, which supports myeloma cell maintenance and proliferation, is therefore markedly different from the characteristics of the hemopoietic stem cell niche. Thus, multiple myeloma presents an example of a hemopoietic tumor microenvironment that does not resemble the corresponding stem cell renewal niche.
Collapse
|
18
|
Yang J, Cao Y, Hong S, Li H, Qian J, Kwak LW, Yi Q. Human-like mouse models for testing the efficacy and safety of anti-beta2-microglobulin monoclonal antibodies to treat myeloma. Clin Cancer Res 2009; 15:951-9. [PMID: 19188166 PMCID: PMC2659684 DOI: 10.1158/1078-0432.ccr-08-1823] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE We showed recently that anti-beta2-microglobulin (beta2M) monoclonal antibodies (mAb) have remarkably strong apoptotic effects on myeloma cells in vitro and in SCID-hu mice. However, whether the mAbs will be therapeutic and safe in the treatment of myeloma patients, in whom every tissue expresses low densities of MHC class I molecules and elevated levels of soluble beta2M are present, remains to be determined. EXPERIMENTAL DESIGN In this study, human-like myeloma mouse models (HLA-A2-transgenic NOD/SCID mice) were developed, which express mature and functional human MHC class I (HLA-A2 and human beta2M) on murine organs and present high levels of circulating human beta2M derived from human myeloma cells. Myeloma-bearing mice were treated intraperitoneally with anti-beta2M mAbs, and the distribution and effects of the mAbs on normal organs and established tumors were examined. RESULTS Our results show that anti-beta2M mAbs were effective in suppressing myeloma growth in treated mice. The therapeutic efficacy of the mAbs in these mice are comparable with those observed in myeloma-bearing nontransgenic NOD/SCID mice in which no human MHC class I is expressed on murine organs. Furthermore, although the mAbs can be detected on different organs, no tissue damage or cell apoptosis was observed in the mice. CONCLUSION Based on the antimyeloma efficacy and low toxicity in the mice, our study suggests that anti-beta2M mAbs may be safe and the tissue-expressing and soluble beta2M may not compromise their therapeutic effects in myeloma patients. This study provides further support for the future application of the mAbs as therapeutic agents for multiple myeloma.
Collapse
Affiliation(s)
- Jing Yang
- Department of Lymphoma and Myeloma, Division of Cancer Medicine, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Podar K, Chauhan D, Anderson KC. Bone marrow microenvironment and the identification of new targets for myeloma therapy. Leukemia 2009; 23:10-24. [PMID: 18843284 PMCID: PMC3418600 DOI: 10.1038/leu.2008.259] [Citation(s) in RCA: 258] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Revised: 08/04/2008] [Accepted: 08/14/2008] [Indexed: 12/31/2022]
Abstract
The development of multiple myeloma (MM) is a complex multi-step process involving both early and late genetic changes in the tumor cell as well as selective supportive conditions by the bone marrow (BM) microenvironment. Indeed, it is now well established that MM cell-induced disruption of the BM homeostasis between the highly organized cellular and extracellular compartments supports MM cell proliferation, survival, migration and drug resistance through activation of various signaling (for example, PI3K/Akt, JAK/Stat-, Raf/MEK/MAPK-, NFkappaB- and Wnt-) pathways. Based on our enhanced understanding of the functional importance of the MM BM microenvironment and its inter-relation with the MM cell resulting in homing, seeding, proliferation and survival, new molecular targets have been identified and derived treatment regimens in MM have already changed fundamentally during recent years. These agents include thalidomide, its immunomodulatory derivative lenalidomide and the proteasome inhibitor bortezomib, which mediate tumor cytotoxicity in the BM milieu. Ongoing studies are further delineating MM pathogenesis in the BM to enhance cytotoxicity, avoid drug resistance and improve patient outcome.
Collapse
Affiliation(s)
- K Podar
- Department of Medical Oncology, LeBow Institute for Myeloma Therapeutics, Dana Farber Cancer Institute, Jerome Lipper Multiple Myeloma Center, Harvard Medical School, Boston, MA 02115, USA.
| | | | | |
Collapse
|
20
|
Abstract
Down-regulation of conventional human leukocyte antigen (HLA) class I and II molecules from the surface of tumor cells is an important mechanism for tumor immune evasion, survival, and progression. Whether CD1d, a nonconventional, glycolipid-presenting HLA class I-like molecule instructing the function of the immunoregulatory invariant NKT cells can affect tumor cell survival is not known. Here we show that CD1d is highly expressed in premalignant and early myeloma, but with disease progression its expression is reduced and eventually in advanced stages and myeloma cell lines is lost altogether, suggesting that CD1d impacts negatively on myeloma cell survival. Consistent with this, engagement of CD1d by anti-CD1d monoclonal antibodies (mAbs) induces cell death of myeloma cell lines with restored CD1d expression and primary myeloma cells. Cell death induced by monoclonal antibody engagement of CD1d is associated with overexpression of proapoptotic Bax and mitochondrial membrane potential loss but it is caspase-activation independent; in addition, it requires the cytoplasmic tail but not the Tyr residue critical for lysosomal sorting of CD1d. Finally, anti-CD1d cooperates with antimyeloma agents in the killing of myeloma cells. Thus, this work provides evidence linking a novel function of CD1d in the regulation of cell death with tumor survival and progression in humans.
Collapse
|
21
|
Tai YT, Dillon M, Song W, Leiba M, Li XF, Burger P, Lee AI, Podar K, Hideshima T, Rice AG, van Abbema A, Jesaitis L, Caras I, Law D, Weller E, Xie W, Richardson P, Munshi NC, Mathiot C, Avet-Loiseau H, Afar DEH, Anderson KC. Anti-CS1 humanized monoclonal antibody HuLuc63 inhibits myeloma cell adhesion and induces antibody-dependent cellular cytotoxicity in the bone marrow milieu. Blood 2008; 112:1329-37. [PMID: 17906076 PMCID: PMC2515112 DOI: 10.1182/blood-2007-08-107292] [Citation(s) in RCA: 384] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Accepted: 09/23/2007] [Indexed: 12/16/2022] Open
Abstract
Currently, no approved monoclonal antibody (mAb) therapies exist for human multiple myeloma (MM). Here we characterized cell surface CS1 as a novel MM antigen and further investigated the potential therapeutic utility of HuLuc63, a humanized anti-CS1 mAb, for treating human MM. CS1 mRNA and protein was highly expressed in CD138-purified primary tumor cells from the majority of MM patients (more than 97%) with low levels of circulating CS1 detectable in MM patient sera, but not in healthy donors. CS1 was expressed at adhesion-promoting uropod membranes of polarized MM cells, and short interfering RNA (siRNA) targeted to CS1 inhibited MM cell adhesion to bone marrow stromal cells (BMSCs). HuLuc63 inhibited MM cell binding to BMSCs and induced antibody-dependent cellular cytotoxicity (ADCC) against MM cells in dose-dependent and CS1-specific manners. HuLuc63 triggered autologous ADCC against primary MM cells resistant to conventional or novel therapies, including bortezomib and HSP90 inhibitor; and pretreatment with conventional or novel anti-MM drugs markedly enhanced HuLuc63-induced MM cell lysis. Administration of HuLuc63 significantly induces tumor regression in multiple xenograft models of human MM. These results thus define the functional significance of CS1 in MM and provide the preclinical rationale for testing HuLuc63 in clinical trials, either alone or in combination.
Collapse
Affiliation(s)
- Yu-Tzu Tai
- Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Kapoor P, Greipp PT, Morice WG, Rajkumar SV, Witzig TE, Greipp PR. Anti-CD20 monoclonal antibody therapy in multiple myeloma. Br J Haematol 2008; 141:135-48. [PMID: 18318769 DOI: 10.1111/j.1365-2141.2008.07024.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
CD20 is a particularly appealing target that is expressed on the surface of almost all B cells, with no significant shedding, secretion or internalization. In contrast to the demonstrated efficacy of anti-CD20 strategies in various B-cell lymphoproliferative disorders, the role of such therapy in multiple myeloma is undetermined and controversial. The expression of CD20 by myeloma cells is heterogeneous, and can be detected only in 13-22% of patients. However, there is increasing interest in testing anti-CD20 therapy in myeloma because of recent studies suggesting the existence of clonogenic CD20-positive precursor B cells in the disease. This article reviews the rationale, preclinical and clinical activity of anti-CD20 therapy in myeloma. Clinical trials show that anti-CD20 therapy with rituximab elicits a partial response in approximately 10% of CD20+ patients with multiple myeloma. In addition, there is preliminary evidence of disease stabilization in 50-57% of CD20+ patients for a period of 10-27 months. Further large-scale clinical trials are therefore needed to establish the role of this promising strategy in the treatment of myeloma.
Collapse
Affiliation(s)
- Prashant Kapoor
- Division of Hematology, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | | | |
Collapse
|