1
|
Laslo A, Laslo L, Arbănași EM, Ujlaki-Nagi AA, Chinezu L, Ivănescu AD, Arbănași EM, Cărare RO, Cordoș BA, Popa IA, Brînzaniuc K. Pathways to Alzheimer's Disease: The Intersecting Roles of Clusterin and Apolipoprotein E in Amyloid-β Regulation and Neuronal Health. PATHOPHYSIOLOGY 2024; 31:545-558. [PMID: 39449522 PMCID: PMC11503414 DOI: 10.3390/pathophysiology31040040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024] Open
Abstract
One of the hallmarks of Alzheimer's disease (AD) is the deposition of amyloid-β (Aβ) within the extracellular spaces of the brain as plaques and along the blood vessels in the brain, a condition also known as cerebral amyloid angiopathy (CAA). Clusterin (CLU), or apolipoprotein J (APOJ), is a multifunctional glycoprotein that has a role in many physiological and neurological conditions, including AD. The apolipoprotein E (APOE) is a significant genetic factor in AD, and while the primary physiological role of APOE in the brain and peripheral tissues is to regulate lipid transport, it also participates in various other biological processes, having three basic human forms: APOE2, APOE3, and APOE4. Notably, the APOE4 allele substantially increases the risk of developing late-onset AD. The main purpose of this review is to examine the roles of CLU and APOE in AD pathogenesis in order to acquire a better understanding of AD pathogenesis from which to develop targeted therapeutic approaches.
Collapse
Affiliation(s)
- Alexandru Laslo
- Department of Urology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania;
- Department of Anatomy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania; (A.D.I.); (K.B.)
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania;
| | - Laura Laslo
- Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania; (L.L.); (B.A.C.)
| | - Eliza-Mihaela Arbănași
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania;
- Regenerative Medicine Laboratory, Centre for Advanced Medical and Pharmaceutical Research (CCAMF), George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania
| | | | - Laura Chinezu
- Department of Histology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania;
| | - Adrian Dumitru Ivănescu
- Department of Anatomy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania; (A.D.I.); (K.B.)
| | - Emil-Marian Arbănași
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania;
- Regenerative Medicine Laboratory, Centre for Advanced Medical and Pharmaceutical Research (CCAMF), George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania
- Department of Vascular Surgery, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
- Clinic of Vascular Surgery, Mures County Emergency Hospital, 540136 Targu Mures, Romania
| | | | - Bogdan Andrei Cordoș
- Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania; (L.L.); (B.A.C.)
- Centre for Experimental Medical and Imaging Studies, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
| | - Ioana Adriana Popa
- Clinic of Radiology, Mures County Emergency Hospital, 540136 Targu Mures, Romania;
| | - Klara Brînzaniuc
- Department of Anatomy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania; (A.D.I.); (K.B.)
| |
Collapse
|
2
|
Milinkeviciute G, Green KN. Clusterin/apolipoprotein J, its isoforms and Alzheimer's disease. Front Aging Neurosci 2023; 15:1167886. [PMID: 37122381 PMCID: PMC10133478 DOI: 10.3389/fnagi.2023.1167886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/27/2023] [Indexed: 05/02/2023] Open
Affiliation(s)
- Giedre Milinkeviciute
- Institute for Memory Impairment and Neurological Disorders, University of California, Irvine, Irvine, CA, United States
- *Correspondence: Giedre Milinkeviciute
| | - Kim N. Green
- Institute for Memory Impairment and Neurological Disorders, University of California, Irvine, Irvine, CA, United States
- Department of Neurobiology and Behavior, School of Biological Sciences, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
3
|
The Role of Clusterin Transporter in the Pathogenesis of Alzheimer’s Disease at the Blood–Brain Barrier Interface: A Systematic Review. Biomolecules 2022; 12:biom12101452. [PMID: 36291661 PMCID: PMC9599067 DOI: 10.3390/biom12101452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/30/2022] [Accepted: 10/02/2022] [Indexed: 11/17/2022] Open
Abstract
Alzheimer’s disease (AD) is considered a chronic and debilitating neurological illness that is increasingly impacting older-age populations. Some proteins, including clusterin (CLU or apolipoprotein J) transporter, can be linked to AD, causing oxidative stress. Therefore, its activity can affect various functions involving complement system inactivation, lipid transport, chaperone activity, neuronal transmission, and cellular survival pathways. This transporter is known to bind to the amyloid beta (Aβ) peptide, which is the major pathogenic factor of AD. On the other hand, this transporter is also active at the blood–brain barrier (BBB), a barrier that prevents harmful substances from entering and exiting the brain. Therefore, in this review, we discuss and emphasize the role of the CLU transporter and CLU-linked molecular mechanisms at the BBB interface in the pathogenesis of AD.
Collapse
|
4
|
Cytoplasmic Clusterin Suppresses Lung Cancer Metastasis by Inhibiting the ROCK1-ERK Axis. Cancers (Basel) 2022; 14:cancers14102463. [PMID: 35626071 PMCID: PMC9140019 DOI: 10.3390/cancers14102463] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/04/2022] [Accepted: 05/10/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary We show that CLU, especially cytoplasmic precursor CLU, is downregulated in lung cancer and correlates with poor survival. The silencing of CLU promotes lung cancer cell migration and invasion, while the overexpression of CLU potently inhibits these phenomena. Interestingly, secretory CLU proteins are slightly decreased in lung cancer tissue and fail to exert similar anti-metastatic effects like cytoplasmic precursor CLU, demonstrating that cytoplasmic precursor CLU is the primary functional isoform of CLU, which exerts the anti-metastatic effects of lung cancer. Mechanistically, cytoplasmic precursor CLU binds ROCK1 to decrease phosphorylation of ERK1/2 by inhibiting the kinase activity of ROCK1, leading to an anti-metastatic effect in lung cancer cells. These findings reveal a novel insight into the function and regulation of cytoplasmic CLU in lung cancer, which might be a potential target for the diagnosis and treatment of metastatic lung cancer. Abstract Clusterin (CLU) is a heterodimeric glycoprotein that has been detected in diverse human tissues and implicated in many cellular processes. Accumulating evidence indicates that the expression of secreted CLU correlates with the progression of cancers. However, the molecular mechanisms underlying its tumor-suppressive roles are incompletely uncovered. In this study, we demonstrate that precursor CLU is widely downregulated in lung cancer tissue, in which secretory CLU proteins are slightly decreased. Impressively, overexpressing CLU potently inhibits the migration, invasion and metastasis of lung cancer cells, whereas silencing CLU promotes this behavior; however, it appears that secretory CLU fails to exert similar anti-metastatic effects. Interestingly, the cytoplasmic precursor CLU binds ROCK1 to abrogate the interaction between ROCK1 and ERK and impair ERK activity, leading to the suppression of lung cancer invasiveness. Meanwhile, the expression of CLU was remarkably diminished in lung cancer bone metastasis loci when compared with subcutaneous tumors in the mouse model and hardly detected in the bone metastasis loci of lung cancer patients when compared with the primary. These findings reveal a novel insight into the function and regulation of cytoplasmic CLU in lung cancer, which might be a potential target for the diagnosis and treatment of metastatic lung cancer.
Collapse
|
5
|
Uddin MS, Kabir MT, Begum MM, Islam MS, Behl T, Ashraf GM. Exploring the Role of CLU in the Pathogenesis of Alzheimer's Disease. Neurotox Res 2021; 39:2108-2119. [PMID: 32820456 DOI: 10.1007/s12640-020-00271-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/05/2020] [Accepted: 08/10/2020] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is a chronic and devastating neurodegenerative disorder that is affecting elderly people at an increasing rate. Clusterin (CLU), an extracellular chaperone, is an ubiquitously expressed protein that can be identified in various body fluids and tissues. Expression of CLU can lead to various processes including suppression of complement system, lipid transport, chaperone function, and also controlling neuronal cell death and cell survival mechanisms. Studies have confirmed that the level of CLU expression is increased in AD. Furthermore, CLU also decreased the toxicity and aggregation of amyloid beta (Aβ). However when the Aβ level was far greater than CLU, then the amyloid generation was increased. CLU was also found to incorporate in the amyloid aggregates, which were more harmful as compared with the Aβ42 aggregates alone. Growing evidence indicates that CLU plays roles in AD pathogenesis via various processes, including aggregation and clearance of Aβ, neuroinflammation, lipid metabolism, Wnt signaling, copper homeostasis, and regulation of neuronal cell cycle and apoptosis. In this article, we represent the critical interaction of CLU and AD based on recent advances. Furthermore, we have also focused on the Aβ-dependent and Aβ-independent mechanisms by which CLU plays a role in AD pathogenesis.
Collapse
Affiliation(s)
- Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh.
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh.
| | | | | | | | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
6
|
Satapathy S, Wilson MR. The Dual Roles of Clusterin in Extracellular and Intracellular Proteostasis. Trends Biochem Sci 2021; 46:652-660. [PMID: 33573881 DOI: 10.1016/j.tibs.2021.01.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/04/2021] [Accepted: 01/19/2021] [Indexed: 02/06/2023]
Abstract
Clusterin (CLU) was the first reported secreted mammalian chaperone and impacts on serious diseases associated with inappropriate extracellular protein aggregation. Many studies have described intracellular CLU in locations outside the secretory system and recent work has shown that CLU can be released into the cytosol during cell stress. In this article, we critically evaluate evidence relevant to the proposed origins of cellular CLU found outside the secretory system, and advance the hypothesis that the cytosolic release of CLU induced by stress serves to facilitate the trafficking of misfolded proteins to the proteasome and autophagy for degradation. We also propose future research directions that could help establish CLU as a unique chaperone performing critical and synergic roles in both intracellular and extracellular proteostasis.
Collapse
Affiliation(s)
- Sandeep Satapathy
- School of Chemistry and Molecular Biosciences, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia; Molecular Horizons Research Institute, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia; Illawarra Health and Medical Research Institute, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia
| | - Mark R Wilson
- School of Chemistry and Molecular Biosciences, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia; Molecular Horizons Research Institute, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia; Illawarra Health and Medical Research Institute, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia.
| |
Collapse
|
7
|
Rodríguez-Rivera C, Garcia MM, Molina-Álvarez M, González-Martín C, Goicoechea C. Clusterin: Always protecting. Synthesis, function and potential issues. Biomed Pharmacother 2021; 134:111174. [DOI: 10.1016/j.biopha.2020.111174] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/09/2020] [Accepted: 12/14/2020] [Indexed: 02/06/2023] Open
|
8
|
Chen QF, Chang L, Su Q, Zhao Y, Kong B. Clinical importance of serum secreted clusterin in predicting invasive breast cancer and treatment responses. Bioengineered 2021; 12:278-285. [PMID: 33356806 PMCID: PMC8806267 DOI: 10.1080/21655979.2020.1868732] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Enhanced serum secreted clusterin (sCLU) protein was associated with progression, poor prognosis and chemotherapy sensitivity evaluation in malignant patients. However, the clinical significance of serum sCLU protein levels in patients with invasive breast cancer (IBC) is unknown. In this study, the serum sCLU protein in 2648 patients with IBC was detected. The diagnostic value and treatment responses of serum sCLU protein in patients with IBC were also performed. The results showed that the serum sCLU protein level was significantly higher in IBC patients compared to the healthy controls (P < 0.0001), and strongly correlated with higher clinical tumor stage (P < 0.001), lymph node metastasis (P < 0.001), shorter overall survival (OS) (P = 0.032) and disease-free survival (DFS) (P = 0.029), respectively. Using the cutoff value of 18.46 μg/mL, the sensitivity and specificity were 86.26% and 73.46% to separate IBC patients from noncancerous and healthy controls. The postoperative patients showed lower serum sCLU levels compared to the preoperative patients (P = 0.003). The chemoresistant patients showed higher serum sCLU levels compared to the chemosensitive patients (P < 0.001). These data indicated that serum sCLU levels are effective indicators for diagnosis and chemotherapy sensitivity evaluation in patients with IBC.
Collapse
Affiliation(s)
- Qing-Feng Chen
- Department of Breast Surgery, The Affiliated Hospital of Qingdao University , Qingdao, China
| | - Lei Chang
- Department of Breast Surgery, The Affiliated Hospital of Qingdao University , Qingdao, China
| | - Qun Su
- Department of Clinical Lab, The Affiliated Hospital of Guanxi Medical University , Nanning, China
| | - Ying Zhao
- Department of Clinical Lab, The Affiliated Hospital of Guanxi Medical University , Nanning, China
| | - Bin Kong
- Department of Breast Surgery, The Affiliated Hospital of Qingdao University , Qingdao, China
| |
Collapse
|
9
|
Praharaj PP, Patra S, Panigrahi DP, Patra SK, Bhutia SK. Clusterin as modulator of carcinogenesis: A potential avenue for targeted cancer therapy. Biochim Biophys Acta Rev Cancer 2020; 1875:188500. [PMID: 33385484 DOI: 10.1016/j.bbcan.2020.188500] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/14/2020] [Accepted: 12/24/2020] [Indexed: 12/30/2022]
Abstract
Clusterin (CLU) is an evolutionary conserved molecular chaperone present in different human tissues and fluids and established to be a significant cancer regulator. It controls several cancer-associated cellular events, including cancer cell proliferation, stemness, survival, metastasis, epithelial-mesenchymal transition, therapy resistance, and inhibition of programmed cell death to support cancer growth and recurrence. This multifunctional role of CLU makes it an ideal target for cancer control. More importantly, genetic and antisense-mediated (OGX-011) inhibition of CLU enhances the anticancer potential of different FDA-approved chemotherapeutic drugs at the clinical level, improving patient's survival. In this review, we have discussed the detailed mechanism of CLU-mediated modulation of different cancer-associated signaling pathways. We have also provided updated information on the current preclinical and clinical findings that drive trials in various cancer types for potential targeted cancer therapy.
Collapse
Affiliation(s)
- Prakash Priyadarshi Praharaj
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Srimanta Patra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Debasna Pritimanjari Panigrahi
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Sujit Kumar Bhutia
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India.
| |
Collapse
|
10
|
Naik PP, Mukhopadhyay S, Praharaj PP, Bhol CS, Panigrahi DP, Mahapatra KK, Patra S, Saha S, Panda AK, Panda K, Paul S, Aich P, Patra SK, Bhutia SK. Secretory clusterin promotes oral cancer cell survival via inhibiting apoptosis by activation of autophagy in AMPK/mTOR/ULK1 dependent pathway. Life Sci 2020; 264:118722. [PMID: 33160989 DOI: 10.1016/j.lfs.2020.118722] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/26/2020] [Accepted: 10/31/2020] [Indexed: 02/06/2023]
Abstract
AIMS Secretory clusterin (sCLU) plays an important role in tumor development and cancer progression. However, the molecular mechanisms and physiological functions of sCLU in oral cancer is unclear. We examined the impact of sCLU-mediated autophagy in cell survival and apoptosis inhibition in oral cancer. MAIN METHODS Immunohistochemical analysis was performed to analyze protein expression in patient samples. Autophagy and mitophagy was studied by immunofluorescence microscopy and Western blot. The gain and loss of function was studied by overexpression of plasmid and siRNA approaches respectively. Cellular protection against nutrient starvation and therapeutic stress by sCLU was studied by cell viability, caspase assay and meta-analysis. KEY FINDINGS The data from oral cancer patients showed that the expression levels of sCLU, ATG14, ULK1, and PARKIN increased in grade-wise manners. Interestingly, sCLU overexpression promoted autophagy through AMPK/Akt/mTOR signaling pathway leading to cell survival and protection from long exposure serum starvation induced-apoptosis. Additionally, sCLU was demonstrated to interact with ULK1 and inhibition of ULK1 activity by SBI206965 was found to abolish sCLU-induced autophagy indicating critical role of ULK1 in induction of autophagy. Furthermore, sCLU was observed to promote expression of mitophagy-associated proteins in serum starvation conditions to protect cells from nutrient deprivation. The meta-analysis elucidated that high CLU expression is associated with therapy resistance in cancer and we demonstrated that sCLU-mediated mitophagy was revealed to inhibit cell death by cisplatin. SIGNIFICANCE The present investigation has highlighted the probable implications of the clusterin-induced autophagy in cell survival and inhibition of apoptosis in oral cancer.
Collapse
Affiliation(s)
- Prajna Paramita Naik
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Subhadip Mukhopadhyay
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Prakash Priyadarshi Praharaj
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Chandra Sekhar Bhol
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Debasna Pritimanjari Panigrahi
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Kewal Kumar Mahapatra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Srimanta Patra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Sarbari Saha
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | | | - Krupasindhu Panda
- Panda Curie Cancer Hospital, Telenga Pentha, Cuttack, 753051, Odisha, India
| | - Subhankar Paul
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Palok Aich
- National Institute of Science Education and Research (NISER), HBNI, Bhipmpur-Padanpur, Jatni, Khurda 752050, Odisha, India
| | - Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Sujit Kumar Bhutia
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India.
| |
Collapse
|
11
|
Bertacchini J, Mediani L, Beretti F, Guida M, Ghalali A, Brugnoli F, Bertagnolo V, Petricoin E, Poti F, Arioli J, Anselmi L, Bari A, McCubrey J, Martelli AM, Cocco L, Capitani S, Marmiroli S. Clusterin enhances AKT2-mediated motility of normal and cancer prostate cells through a PTEN and PHLPP1 circuit. J Cell Physiol 2019; 234:11188-11199. [PMID: 30565691 DOI: 10.1002/jcp.27768] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 10/30/2018] [Indexed: 07/23/2024]
Abstract
Clusterin (CLU) is a chaperone-like protein with multiple functions. sCLU is frequently upregulated in prostate tumor cells after chemo- or radiotherapy and after surgical or pharmacological castration. Moreover, CLU has been documented to modulate the cellular homolog of murine thymoma virus akt8 oncogene (AKT) activity. Here, we investigated how CLU overexpression influences phosphatidylinositol 3'-kinase (PI3K)/AKT signaling in human normal and cancer epithelial prostate cells. Human prostate cells stably transfected with CLU were broadly profiled by reverse phase protein array (RPPA), with particular emphasis on the PI3K/AKT pathway. The effect of CLU overexpression on normal and cancer cell motility was also tested. Our results clearly indicate that CLU overexpression enhances phosphorylation of AKT restricted to isoform 2. Mechanistically, this can be explained by the finding that the phosphatase PH domain leucine-rich repeat-containing protein phosphatase 1 (PHLPP1), known to dephosphorylate AKT2 at S474, is markedly downregulated by CLU, whereas miR-190, a negative regulator of PHLPP1, is upregulated. Moreover, we found that phosphatase and tensin homolog (PTEN) was heavily phosphorylated at the inhibitory site S380, contributing to the hyperactivation of AKT signaling. By keeping AKT2 phosphorylation high, CLU dramatically enhances the migratory behavior of prostate epithelial cell lines with different migratory and invasive phenotypes, namely prostate normal epithelial 1A (PNT1A) and prostatic carcinoma 3 (PC3) cells. Altogether, our results unravel for the first time a circuit by which CLU can switch a low migration phenotype toward a high migration phenotype, through miR-190-dependent downmodulation of PHLPP1 expression and, in turn, stabilization of AKT2 phosphorylation.
Collapse
Affiliation(s)
- Jessika Bertacchini
- Department of Biomedical, Metabolic, and Neural Sciences, Section of Morphology, Signal Transduction Unit, University of Modena and Reggio Emilia, Modena, Italy
| | - Laura Mediani
- Department of Biomedical, Metabolic, and Neural Sciences, Section of Morphology, Signal Transduction Unit, University of Modena and Reggio Emilia, Modena, Italy
| | - Francesca Beretti
- Department of Medicine, Surgery, Dentistry, and Morphology, University of Modena and Reggio Emilia, Modena, Italy
| | - Marianna Guida
- Department of Biomedical, Metabolic, and Neural Sciences, Section of Morphology, Signal Transduction Unit, University of Modena and Reggio Emilia, Modena, Italy
| | - Aram Ghalali
- Institute of Environment Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Federica Brugnoli
- Department of Morphology, Surgery, and Experimental Medicine, Section of Anatomy and Histology and LTTA Center, University of Ferrara, Ferrara, Italy
| | - Valeria Bertagnolo
- Department of Morphology, Surgery, and Experimental Medicine, Section of Anatomy and Histology and LTTA Center, University of Ferrara, Ferrara, Italy
| | - Emanuel Petricoin
- Center for Applied Proteomics & Molecular Medicine, GMU, Fairfax, Virginia
| | - Francesco Poti
- Department of Medicine and Surgery-Unit of Neurosciences, University of Parma, Parma, Italy
| | - Jessica Arioli
- Department of Biomedical, Metabolic, and Neural Sciences, Section of Morphology, Signal Transduction Unit, University of Modena and Reggio Emilia, Modena, Italy
| | - Laura Anselmi
- Department of Biomedical, Metabolic, and Neural Sciences, Section of Morphology, Signal Transduction Unit, University of Modena and Reggio Emilia, Modena, Italy
| | - Alessia Bari
- Department of Diagnostic, Clinical Medicine and Public Health, Program of Innovative Therapy in Oncology and Hematology, University of Modena and Reggio Emilia, Modena, Italy
| | - James McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, North Carolina
| | - Alberto M Martelli
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - Lucio Cocco
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - Silvano Capitani
- Department of Morphology, Surgery, and Experimental Medicine, Section of Anatomy and Histology and LTTA Center, University of Ferrara, Ferrara, Italy
| | - Sandra Marmiroli
- Department of Biomedical, Metabolic, and Neural Sciences, Section of Morphology, Signal Transduction Unit, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
12
|
Ramadan RA, Madkour MA, El-Nagarr MM, Abourawash SN. Serum clusterin as a marker for diagnosing hepatocellular carcinoma. ALEXANDRIA JOURNAL OF MEDICINE 2019. [DOI: 10.1016/j.ajme.2014.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Affiliation(s)
- Ragaa A. Ramadan
- Medical Research Institute Teaching Hospital, Alexandria University, Egypt
| | - Marwa A. Madkour
- Medical Research Institute Teaching Hospital, Alexandria University, Egypt
| | | | | |
Collapse
|
13
|
Foster EM, Dangla-Valls A, Lovestone S, Ribe EM, Buckley NJ. Clusterin in Alzheimer's Disease: Mechanisms, Genetics, and Lessons From Other Pathologies. Front Neurosci 2019; 13:164. [PMID: 30872998 PMCID: PMC6403191 DOI: 10.3389/fnins.2019.00164] [Citation(s) in RCA: 227] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 02/12/2019] [Indexed: 01/10/2023] Open
Abstract
Clusterin (CLU) or APOJ is a multifunctional glycoprotein that has been implicated in several physiological and pathological states, including Alzheimer's disease (AD). With a prominent extracellular chaperone function, additional roles have been discussed for clusterin, including lipid transport and immune modulation, and it is involved in pathways common to several diseases such as cell death and survival, oxidative stress, and proteotoxic stress. Although clusterin is normally a secreted protein, it has also been found intracellularly under certain stress conditions. Multiple hypotheses have been proposed regarding the origin of intracellular clusterin, including specific biogenic processes leading to alternative transcripts and protein isoforms, but these lines of research are incomplete and contradictory. Current consensus is that intracellular clusterin is most likely to have exited the secretory pathway at some point or to have re-entered the cell after secretion. Clusterin's relationship with amyloid beta (Aβ) has been of great interest to the AD field, including clusterin's apparent role in altering Aβ aggregation and/or clearance. Additionally, clusterin has been more recently identified as a mediator of Aβ toxicity, as evidenced by the neuroprotective effect of CLU knockdown and knockout in rodent and human iPSC-derived neurons. CLU is also the third most significant genetic risk factor for late onset AD and several variants have been identified in CLU. Although the exact contribution of these variants to altered AD risk is unclear, some have been linked to altered CLU expression at both mRNA and protein levels, altered cognitive and memory function, and altered brain structure. The apparent complexity of clusterin's biogenesis, the lack of clarity over the origin of the intracellular clusterin species, and the number of pathophysiological functions attributed to clusterin have all contributed to the challenge of understanding the role of clusterin in AD pathophysiology. Here, we highlight clusterin's relevance to AD by discussing the evidence linking clusterin to AD, as well as drawing parallels on how the role of clusterin in other diseases and pathways may help us understand its biological function(s) in association with AD.
Collapse
Affiliation(s)
| | | | | | | | - Noel J. Buckley
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
14
|
Ming X, Bao C, Hong T, Yang Y, Chen X, Jung YS, Qian Y. Clusterin, a Novel DEC1 Target, Modulates DNA Damage-Mediated Cell Death. Mol Cancer Res 2018; 16:1641-1651. [PMID: 30002194 DOI: 10.1158/1541-7786.mcr-18-0070] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/28/2018] [Accepted: 06/20/2018] [Indexed: 11/16/2022]
Abstract
Differentiated embryonic chondrocyte expressed gene 1 (DEC1, also known as Sharp2/Stra13/BHLHE40) is a basic helix-loop-helix transcription factor that plays an important role in circadian rhythms, cell proliferation, apoptosis, cellular senescence, hypoxia response, and epithelial-to-mesenchymal transition of tumor cells. Secretory clusterin (sCLU) is a cytoprotective protein that guards against genotoxic stresses. Here, clusterin (CLU) was identified as a novel target gene of DEC1 and suppresses DNA damage-induced cell death in tumor cells. Mechanistically, based on chromatin immunoprecipitation and luciferase assays, DEC1 binds to and activates the promoter of the CLU gene. DEC1 and DNA-damaging agents induce sCLU expression, whereas DEC1 knockdown decreases the expression of sCLU upon DNA damage. Moreover, the data demonstrate that DEC1 inhibits, whereas sCLU knockdown enhances, DNA damage-induced cell death in MCF7 breast cancer cells. Given that DEC1 and sCLU are frequently overexpressed in breast cancers, these data provide mechanistic insight into DEC1 as a prosurvival factor by upregulating sCLU to reduce the DNA damage-induced apoptotic response. Together, this study reveals sCLU as a novel target of DEC1 which modulates the sensitivity of the DNA damage response.Implications: DEC1 and sCLU are frequently overexpressed in breast cancer, and targeting the sCLU-mediated cytoprotective signaling pathway may be a novel therapeutic approach. Mol Cancer Res; 16(11); 1641-51. ©2018 AACR.
Collapse
Affiliation(s)
- Xin Ming
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Chenyi Bao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Tao Hong
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Ying Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Xinbin Chen
- The Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California at Davis, Davis, California
| | - Yong-Sam Jung
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Yingjuan Qian
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
15
|
Clusterin inhibition mediates sensitivity to chemotherapy and radiotherapy in human cancer. Anticancer Drugs 2017; 28:702-716. [PMID: 28471806 DOI: 10.1097/cad.0000000000000507] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Since its discovery in 1983, the protein clusterin (CLU) has been isolated from almost all human tissues and fluids and linked to the development of different physiopathological processes, including carcinogenesis and tumor progression. During the last few years, several studies have shown the cytoprotective role of secretory CLU in tumor cells, inhibiting their apoptosis and enhancing their resistance to conventional treatments including hormone depletion, chemotherapy, and radiotherapy. In an effort to determine the therapeutic potential that the inhibition of this protein could have on the development of new strategies for cancer treatment, numerous studies have been carried out in this field, with results, in most cases, satisfactory but sometimes contradictory. In this document, we summarize for the first time the current knowledge of the effects that CLU inhibition has on sensitizing tumor cells to conventional cancer treatments and discuss its importance in the development of new strategies against cancer.
Collapse
|
16
|
Matukumalli SR, Tangirala R, Rao CM. Clusterin: full-length protein and one of its chains show opposing effects on cellular lipid accumulation. Sci Rep 2017; 7:41235. [PMID: 28120874 PMCID: PMC5264606 DOI: 10.1038/srep41235] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 12/16/2016] [Indexed: 12/31/2022] Open
Abstract
Proteins, made up of either single or multiple chains, are designed to carry out specific biological functions. We found an interesting example of a two-chain protein where administration of one of its chains leads to a diametrically opposite outcome than that reported for the full-length protein. Clusterin is a highly glycosylated protein consisting of two chains, α- and β-clusterin. We have investigated the conformational features, cellular localization, lipid accumulation, in vivo effects and histological changes upon administration of recombinant individual chains of clusterin. We demonstrate that recombinant α- and β-chains exhibit structural and functional differences and differ in their sub-cellular localization. Full-length clusterin is known to lower lipid levels. In contrast, we find that β-chain-treated cells accumulate 2-fold more lipid than controls. Interestingly, α-chain-treated cells do not show such increase. Rabbits injected with β-chain, but not α-chain, show ~40% increase in weight, with adipocyte hypertrophy, liver and kidney steatosis. Many, sometimes contrasting, roles are ascribed to clusterin in obesity, metabolic syndrome and related conditions. Our findings of differential localization and activities of individual chains of clusterin should help in understanding better the roles of clusterin in metabolism.
Collapse
Affiliation(s)
| | | | - C. M. Rao
- CSIR- Centre for Cellular and Molecular Biology, Hyderabad, 500007, India
| |
Collapse
|
17
|
Liu H, Chen J, Jiang X, Wang T, Xie X, Hu H, Yu F, Wang X, Fan H. Apoptotic signal pathways and regulatory mechanisms of cancer cells induced by IL-24. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/s11859-016-1205-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
18
|
Fuzio P, Napoli A, Ciampolillo A, Lattarulo S, Pezzolla A, Nuzziello N, Liuni S, Giorgino F, Maiorano E, Perlino E. Clusterin transcript variants expression in thyroid tumor: a potential marker of malignancy? BMC Cancer 2015; 15:349. [PMID: 25934174 PMCID: PMC4422431 DOI: 10.1186/s12885-015-1348-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 04/22/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Clusterin (CLU) is a ubiquitous multifunctional factor involved in neoplastic transformation. The CLU transcript variants and protein forms play a crucial role in balancing cells proliferation and death. METHODS We investigated the regulation of CLU transcript variants expression in an in vivo model system consisting of both neoplastic tissues and fine needle aspiration biopsy (FNAB) samples isolated from patients undergoing thyroidectomy. RESULTS The immunohistochemical analyses showed an overall CLU up-regulation in papillary carcinoma. A specific CLU2 transcript variant increase was registered using qPCR in papillary carcinomas while CLU1 decreased. In addition, the analysis of CLU transcripts expression level showed an increase of the CLU2 transcript in the TIR 3 patients with histologically confirmed thyroid cancer. CONCLUSIONS Our results suggest the existence of a specific alteration of CLU2:CLU1 ratio towards CLU2, thus providing the first circumstantial evidence for the potential use of CLU transcript variants as effective biomarkers for a more accurate assessment of the so called "indeterminate" thyroid nodules.
Collapse
Affiliation(s)
- Paolo Fuzio
- Institute of Biomedical Technologies, National Research Council (CNR), Via G. Amendola, 122/D, 70126, Bari, Italy.
| | - Anna Napoli
- Department of Emergency and Organ Transplantation, Section of Pathological Anatomy, University of Bari Aldo Moro, 70124, Bari, Italy.
| | - Anna Ciampolillo
- Department of Emergency and Organ Transplantation, Section of Endocrinology, University of Bari Aldo Moro, 70124, Bari, Italy.
| | - Serafina Lattarulo
- Department of Emergency and Organ Transplantation, Section of Endocrinology, University of Bari Aldo Moro, 70124, Bari, Italy.
| | - Angela Pezzolla
- Department of Emergency and Organ Transplantation, Section of Endocrinology, University of Bari Aldo Moro, 70124, Bari, Italy.
| | - Nicoletta Nuzziello
- Institute of Biomedical Technologies, National Research Council (CNR), Via G. Amendola, 122/D, 70126, Bari, Italy.
| | - Sabino Liuni
- Institute of Biomedical Technologies, National Research Council (CNR), Via G. Amendola, 122/D, 70126, Bari, Italy.
| | - Francesco Giorgino
- Department of Emergency and Organ Transplantation, Section of Endocrinology, University of Bari Aldo Moro, 70124, Bari, Italy.
| | - Eugenio Maiorano
- Department of Emergency and Organ Transplantation, Section of Pathological Anatomy, University of Bari Aldo Moro, 70124, Bari, Italy.
| | - Elda Perlino
- Institute of Biomedical Technologies, National Research Council (CNR), Via G. Amendola, 122/D, 70126, Bari, Italy.
| |
Collapse
|
19
|
Augmenter of liver regeneration, a protective factor against ROS-induced oxidative damage in muscle tissue of mitochondrial myopathy affected patients. Int J Biochem Cell Biol 2013; 45:2410-9. [DOI: 10.1016/j.biocel.2013.07.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Revised: 06/24/2013] [Accepted: 07/09/2013] [Indexed: 01/21/2023]
|
20
|
Non-secreted clusterin isoforms are translated in rare amounts from distinct human mRNA variants and do not affect Bax-mediated apoptosis or the NF-κB signaling pathway. PLoS One 2013; 8:e75303. [PMID: 24073260 PMCID: PMC3779157 DOI: 10.1371/journal.pone.0075303] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 08/14/2013] [Indexed: 01/08/2023] Open
Abstract
Clusterin, also known as apolipoprotein J, is expressed from a variety of tissues and implicated in pathological disorders such as neurodegenerative diseases, ischemia and cancer. In contrast to secretory clusterin (sCLU), which acts as an extracellular chaperone, the synthesis, subcellular localization and function(s) of intracellular CLU isoforms is currently a matter of intense discussion. By investigating human CLU mRNAs we here unravel mechanisms leading to the synthesis of distinct CLU protein isoforms and analyze their subcellular localization and their impact on apoptosis and on NF-κB-activity. Quantitative PCR-analyses revealed the expression of four different stress-inducible CLU mRNA variants in non-cancer and cancer cell lines. In all cell lines variant 1 represents the most abundant mRNA, whereas all other variants collectively account for no more than 0.34% of total CLU mRNA, even under stressed conditions. Overexpression of CLU cDNAs combined with in vitro mutagenesis revealed distinct translational start sites including a so far uncharacterized non-canonical CUG start codon. We show that all exon 2-containing mRNAs encode sCLU and at least three non-glycosylated intracellular isoforms, CLU1‑449, CLU21‑449 and CLU34‑449, which all reside in the cytosol of unstressed and stressed HEK‑293 cells. The latter is the only form expressed from an alternatively spliced mRNA variant lacking exon 2. Functional analysis revealed that none of these cytosolic CLU forms modulate caspase-mediated intrinsic apoptosis or significantly affects TNF-α-induced NF-κB-activity. Therefore our data challenge some of the current ideas regarding the physiological functions of CLU isoforms in pathologies.
Collapse
|
21
|
Wu K, Xie D, Zou Y, Zhang T, Pong RC, Xiao G, Fazli L, Gleave M, He D, Boothman DA, Hsieh JT. The mechanism of DAB2IP in chemoresistance of prostate cancer cells. Clin Cancer Res 2013; 19:4740-9. [PMID: 23838317 DOI: 10.1158/1078-0432.ccr-13-0954] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE The docetaxel-based chemotherapy is the standard of care for castration-resistant prostate cancer (CRPC), inevitably, patients develop resistance and decease. Until now, the mechanism and predictive marker for chemoresistance are poorly understood. EXPERIMENTAL DESIGN Immortalized normal prostate and cancer cell lines stably manipulated with different DAB2IP expression levels were used and treated with chemotherapeutic drugs commonly used in prostate cancer therapy. Cell proliferation was measured using MTT assay; Western blot, quantitative PCR, and luciferase reporter assays were used to analyze Clusterin gene regulation by DAB2IP. Immunohistochemical analysis was conducted for evaluating DAB2IP, Clusterin and Egr-1 expression in human prostate cancer tissue. RESULTS DAB2IP Knockdown (KD) cells exhibited resistance to several chemotherapeutic drugs, whereas increased DAB2IP in C4-2 cells restored the drug sensitivity. Parallel, DAB2IP KD cells exhibited higher expression of Clusterin, an antiapoptotic factor, whereas elevated DAB2IP in C4-2 cells decreased Clusterin expression. Functionally, knocking down Clusterin by short-hairpin RNA or antisense oligonucleotide OGX-011 decreased drug resistance, whereas overexpressing Clusterin in C4-2 D2 enhanced drug resistance. Mechanistically, DAB2IP blocked the cross-talk between Wnt/β-catenin and IGF-I signaling, leading to the suppression of Egr-1 that is responsible for Clusterin expression. A similar result was observed in the prostate of DAB2IP knockout animals. In addition, we observed a significantly inverse correlation between DAB2IP and Egr-1 or Clusterin expression from clinical tissue microarray. CONCLUSIONS This study unveils a new regulation of the Egr-1/Clusterin signaling network by DAB2IP. Loss of DAB2IP expression in CRPC cells signifies their chemoresistance. Clusterin is a key target for developing more effective CRPC therapy.
Collapse
Affiliation(s)
- Kaijie Wu
- Department of Urology, The First Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Fuzio P, Valletti A, Napoli A, Napoli G, Cormio G, Selvaggi L, Liuni S, Pesole G, Maiorano E, Perlino E. Regulation of the expression of CLU isoforms in endometrial proliferative diseases. Int J Oncol 2013; 42:1929-44. [PMID: 23589125 DOI: 10.3892/ijo.2013.1894] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 02/18/2013] [Indexed: 11/06/2022] Open
Abstract
Clusterin (CLU) is a nearly ubiquitous multifunctional protein synthesized in different functionally divergent isoforms, sCLU and nCLU, playing a crucial role by keeping a balance between cell proliferation and death. Studying in vivo CLU expression we found a higher mRNA expression both in neoplastic and hyperplastic tissues in comparison to normal endometria; in particular, by RT-qPCR we demonstrated an increase of the specific sCLU isoform in the neoplastic and hyperplastic endometrial diseases. On the contrary, no CLU increase was detected at the protein level. The CLU gene transcriptional activity was upregulated in the hyperplastic and neoplastic tissues, indicating the existence of a fine post-trans-criptional regulation of CLU expression possibly responsible for the protein decrease in the malignant disease. A specific CLU immunoreactivity was present in all the endometrial glandular cells in comparison to the other cellular compartments where CLU immunoreactivity was lower or absent. In conclusion, our results suggest the existence of a complex regulatory mechanism of CLU gene expression during the progression from normal to malignant cells, possibly contributing to endometrial carcinogenesis. Moreover, the specific alteration of the sCLU:nCLU ratio associated with the pathological stage, suggests a possible usage of CLU as molecular biomarker for the diagnosis/prognosis of endometrial proliferative diseases.
Collapse
Affiliation(s)
- Paolo Fuzio
- Institute of Biomedical Technologies, ITB-CNR, I-70126 Bari, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Panico F, Casali C, Rossi G, Rizzi F, Morandi U, Bettuzzi S, Davalli P, Corbetta L, Storelli ES, Corti A, Fabbri LM, Astancolle S, Luppi F. Prognostic role of clusterin in resected adenocarcinomas of the lung. Lung Cancer 2012; 79:294-9. [PMID: 23276503 DOI: 10.1016/j.lungcan.2012.11.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 11/27/2012] [Accepted: 11/28/2012] [Indexed: 11/26/2022]
Abstract
RATIONALE Clusterin expression may change in various human malignancies, including lung cancer. Patients with resectable non-small cell lung cancer (NSCLC), including adenocarcinoma, have a poor prognosis, with a relapse rate of 30-50% within 5 years. Nuclear factor kB (Nf-kB) is an intracellular protein involved in the initiation and progression of several human cancers, including the lung. OBJECTIVES We investigate the role of clusterin and Nf-kB expression in predicting the prognosis of patients with early-stage surgically resected adenocarcinoma of the lung. FINDINGS The level of clusterin gradually decreased from well-differentiated to poorly differentiated adenocarcinomas. Clusterin expression was significantly higher in patients with low-grade adenocarcinoma, in early-stage disease and in women. Clusterin expression was inversely related to relapse and survival in both univariate and multivariate analyses. Finally, we observed an inverse correlation between Nf-kB and clusterin. CONCLUSIONS Clusterin expression represents an independent prognostic factor in surgically resected lung adenocarcinoma and was proven to be a useful biomarker for fewer relapses and longer survival in patients in the early stage of disease. The inverse correlation between Nf-kB and clusterin expression confirm the previously reported role of clusterin as potent down regulator of Nf-kB.
Collapse
Affiliation(s)
- Francesca Panico
- Section of Respiratory Diseases, Department of Oncology, Haematology & Pulmonology, University of Modena and Reggio Emilia, Modena, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Niu Z, Li X, Hu B, Li R, Wang L, Wu L, Wang X. Small interfering RNA targeted to secretory clusterin blocks tumor growth, motility, and invasion in breast cancer. Acta Biochim Biophys Sin (Shanghai) 2012; 44:991-8. [PMID: 23099883 DOI: 10.1093/abbs/gms091] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Clusterin/apolipoprotein J (Clu) is a ubiquitously expressed secreted heterodimeric glycoprotein that is implicated in several physiological processes. It has been reported that the elevated level of secreted clusterin (sClu) protein is associated with poor survival in breast cancer patients and can induce metastasis in rodent models. In this study, we investigated the effects of sClu inhibition with small interfering RNAs (siRNAs) on cell motility, invasion, and growth in vitro and in vivo. MDA-MB-231 cells were transfected with pSuper-siRNA/sClu. Cell survival and proliferation were examined by 3-(4,5-dimethyl-thiazol-2yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium and clonogenic survival assay. The results showed that sClu silencing significantly inhibited the proliferation of MDA-MB-231 cells. The invasion and migration ability were also dramatically decreased, which was detected by matrigel assays. TUNEL staining and caspase-3 activity assay demonstrated that sClu silencing also could increase the apoptosis rate of cells, resulting in the inhibition of cell growth. We also determined the effects of sClu silencing on tumor growth and metastatic progression in an orthotopic breast cancer model. The results showed that orthotopic primary tumors derived from MDA-MB-231/pSuper sClu siRNA cells grew significantly slower than tumors derived from parental MDA-MB-231 or MDA-MB-231/pSuper scramble siRNA cells, and metastasize less to the lungs. These data suggest that secretory clusterin plays a significant role in tumor growth and metastatic progression. Knocking-down sClu gene expression may provide a valuable method for breast cancer therapy.
Collapse
Affiliation(s)
- Zhaohe Niu
- Department of Breast Surgery, Affiliated Hospital of Qingdao Medical College, Qingdao University, Qingdao 266003, China
| | | | | | | | | | | | | |
Collapse
|
25
|
Ma X, Bai Y. IGF-1 activates the P13K/AKT signaling pathway via upregulation of secretory clusterin. Mol Med Rep 2012; 6:1433-7. [PMID: 23027041 DOI: 10.3892/mmr.2012.1110] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 08/24/2012] [Indexed: 11/06/2022] Open
Abstract
Secretory clusterin (sCLU) is a type of stress-induced, pro-survival glycoprotein elevated in early-stage cancer. It enhances cancer cell survival and is associated with several types of cancer progression. In this study, we measured the PI3K/AKT signaling activity by determining the phosphorylation level of the AKT protein, namely pAKT. A549 human non-small cell lung carcinoma (NSCLC) cells were treated with insulin-like growth factor-1 (IGF-1) for various periods of time. The results showed that IGF-1 activated the PI3K/AKT signaling pathway in the A549 cells in a time-dependent manner. Western blot analysis was performed to determine the expression of sCLU protein in A549 cells treated with IGF-1. IGF-1 elevated the expression of sCLU. To determine whether sCLU is required for the IGF-1 activation of the PI3K/AKT signaling pathway, the A549 cells were treated with IGF-1 and sCLU antisense oligonuleotide (sCLU ASO). sCLU ASO blocked the IGF-1 activation of the PI3K/AKT signaling pathway. These results demonstrate that IGF-1 activates the P13K/AKT signaling pathway via the upregulation of sCLU. The present study implies that this pathway may uncover a new mechanism for cancer progression and reveal new targets for drug development in the treatment of NSCLC.
Collapse
Affiliation(s)
- Xiumei Ma
- Department of Radiation Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200120, P.R. China
| | | |
Collapse
|
26
|
Bhutia SK, Das SK, Kegelman TP, Azab B, Dash R, Su ZZ, Wang XY, Rizzi F, Bettuzzi S, Lee SG, Dent P, Grant S, Curiel DT, Sarkar D, Fisher PB. mda-7/IL-24 differentially regulates soluble and nuclear clusterin in prostate cancer. J Cell Physiol 2012; 227:1805-13. [PMID: 21732348 DOI: 10.1002/jcp.22904] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Melanoma differentiation-associated gene-7/interleukin-24 (mda-7/IL-24), a unique member of the IL-10 gene family, displays a broad range of antitumor properties including cancer-specific induction of apoptosis, inhibition of tumor angiogenesis, and modulation of anti-tumor immune responses. Here, we identify clusterin (CLU) as a MDA-7/IL-24 interacting protein in DU-145 cells and investigate the role of MDA-7/IL-24 in regulating CLU expression and mediating the antitumor properties of mda-7/IL-24 in prostate cancer. Ad.mda-7 decreased expression of soluble CLU (sCLU) and increased expression of nuclear CLU (nCLU). In the initial phase of Ad.mda-7 infection sCLU expression increased and CLU interacted with MDA-7/IL-24 producing a cytoprotective effect. Infection of stable clones of DU-145 prostate cancer cells expressing sCLU with Ad.mda-7 resulted in generation of nCLU that correlated with decreased cell viability and increased apoptosis. In the presence of mda-7/IL-24, sCLU-DU-145 cells displayed G(2)/M phase arrest followed by apoptosis. Similarly, Ad.mda-7 infection decreased cell migration by altering cytoskeleton in sCLU-DU-145 cells. Ad.mda-7-treated sCLU-DU-145 cells displayed a significant reduction in tumor growth in mouse xenograft models and reduced angiogenesis when compared to the vector control group. Tumor tissue lysates demonstrated enhanced nCLU generated from sCLU with increased apoptosis in the presence of MDA-7/IL-24. Our findings reveal novel aspects relative to the role of sCLU/nCLU in regulating the anticancer properties of MDA-7/IL-24 that may be exploited for developing enhanced therapies for prostate cancer.
Collapse
Affiliation(s)
- Sujit K Bhutia
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
The role of clusterin in Alzheimer's disease: pathways, pathogenesis, and therapy. Mol Neurobiol 2012; 45:314-26. [PMID: 22274961 DOI: 10.1007/s12035-012-8237-1] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 01/12/2012] [Indexed: 10/14/2022]
Abstract
Genetic variation in clusterin gene, also known as apolipoprotein J, has been associated with Alzheimer's disease (AD) through replicated genome-wide studies, and plasma clusterin levels are associated with brain atrophy, baseline prevalence and severity, and rapid clinical progression in patients with AD, highlighting the importance of clusterin in AD pathogenesis. Emerging data suggest that clusterin contributes to AD through various pathways, including amyloid-β aggregation and clearance, lipid metabolism, neuroinflammation, and neuronal cell cycle control and apoptosis. Moreover, epigenetic regulation of the clusterin expression also seems to play an important role in the pathogenesis of AD. Emerging knowledge of the contribution of clusterin to the pathogenesis of AD presents new opportunities for AD therapy.
Collapse
|
28
|
Clusterin interaction with Bcl-xL is associated with seizure-induced neuronal death. Epilepsy Res 2011; 99:240-51. [PMID: 22197644 DOI: 10.1016/j.eplepsyres.2011.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 11/29/2011] [Accepted: 12/01/2011] [Indexed: 11/21/2022]
Abstract
Status epilepticus causes significant damage to the brain, and cellular injury due to prolonged seizures may cause the pathogenesis of epilepsy or cognitive deficits. Clusterin mediates several cell signaling pathways, including cell death or survival pathways in the brain. A nuclear form of clusterin protein has been suggested to have pro-apoptotic properties. Bcl-x(L) functions as a dominant-negative modulator of the pro-apoptotic protein Bax. However, the relationship between clusterin and Bcl-x(L) in cell death signaling in the brain remains unknown. Therefore, we examined whether clusterin interacts with Bcl-x(L) after seizures or whether this interaction is related to neuronal death. We found increased levels of nuclear clusterin and cleaved caspase-3 in CA3 neurons after prolonged seizures induced by systemic kainic acid, along with extensive hippocampal cell death, as evidenced by terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL) and anti-active caspase-3 staining. Furthermore, co-immunoprecipitation and double immunofluorescence analyses revealed that clusterin interacted with Bcl-x(L) in dying CA3 neurons while the levels of Bcl-x(L), Bad or Bax remained constant. These findings provide evidence that nuclear clusterin signals cell death at least via an interaction with Bcl-x(L) in the hippocampus after seizures, suggesting that targeting nuclear clusterin may be a promising novel strategy to protect against seizure-induced neuronal injury.
Collapse
|
29
|
Kim N, Yoo JC, Han JY, Hwang EM, Kim YS, Jeong EY, Sun CH, Yi GS, Roh GS, Kim HJ, Kang SS, Cho GJ, Park JY, Choi WS. Human nuclear clusterin mediates apoptosis by interacting with Bcl-XL through C-terminal coiled coil domain. J Cell Physiol 2011; 227:1157-67. [DOI: 10.1002/jcp.22836] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
30
|
Abstract
Clusterin (CLU) is a multifunctional glycoprotein that has secretory and nuclear isoforms. The two isoforms are known to play opposite roles in cell survival/death. In this review, we summarize recent progress on the pro-apoptotic function of nuclear CLU in vitro and in vivo and discuss previous reports on the role of CLU in brain damage and neurodegeneration.
Collapse
Affiliation(s)
- Nayoung Kim
- Department of Anatomy and Neurobiology, Medical Research Center for Neural Dysfunction, Institute of Health Science, Gyeongsang National University School of Medicine, Jinju, Korea
| | | |
Collapse
|
31
|
Hassan MK, Watari H, Christenson L, Bettuzzi S, Sakuragi N. Intracellular clusterin negatively regulates ovarian chemoresistance: compromised expression sensitizes ovarian cancer cells to paclitaxel. Tumour Biol 2011; 32:1031-47. [PMID: 21761117 DOI: 10.1007/s13277-011-0207-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 06/29/2011] [Indexed: 12/20/2022] Open
Abstract
Understanding the molecular events that lead to paclitaxel (TX) resistance is necessary to identify effective means to prevent chemoresistance. Previously, results from our lab revealed that secretory clusterin (CLU) form positively mediates TX response in ovarian cancer cells. Thus, we had interest to study the role of another non-secreted form (intracellular clusterin (i-CLU)) in chemo-response. Here, we provide evidences that i-CLU form localizes mainly in the nucleus and differentially expressed in the TX-responsive KF cells, versus TX-resistant, KF-TX, ovarian cancer cells and negatively regulate cellular chemo-response. I-CLU was cloned, by deleting the secretion-leading signaling peptide from full-length CLU cDNA, and transiently over-expressed in OVK-18 cells. Forced expression of truncated i-CLU was mainly detectable in the nuclei and significantly reduced cellular growth, accumulating cells in G1 phase which finally died through apoptosis. Importantly, compromised expression of i-CLU under an inducible promoter was tolerated and did not induce apoptosis but sensitized ovarian cancer cells to TX. We then demonstrated that this sensitization mechanism was cell cycle independent and relied on i-CLU/Ku70 binding probably due to controlling the free amount of Ku70 available for DNA repair in the nucleus. Results from CLU immunohistochemistry in ovarian tumor tissues verified the retardation of nuclear CLU staining in the recurrent tumor even though their primary counterparts showed nuclear CLU staining. Thus, the controversial data on CLU function in chemo-response/resistance may be explained by a shift in the pattern of CLU expression and intracellular localization as well when tumor acquires chemoresistance.
Collapse
Affiliation(s)
- Mohamed Kamel Hassan
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Hokkaido University, Nishi Ku, Kita-15, Nishi-7, 060-8638, Sapporo, Japan.
| | | | | | | | | |
Collapse
|
32
|
Taniuchi K, Nishimori I, Hollingsworth MA. The N-terminal domain of G3BP enhances cell motility and invasion by posttranscriptional regulation of BART. Mol Cancer Res 2011; 9:856-66. [PMID: 21665939 DOI: 10.1158/1541-7786.mcr-10-0574] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The regulation of mRNA stability plays an important role in the control of gene expression during cell motility and invasion. We previously reported that GTPase-activating protein [Src homology 3 (SH3) domain] binding protein (G3BP), a marker of cytoplasmic stress granules that are formed in stressed cells and regulate mRNA stability, binds and degrades the mRNA of binder of Arl two (BART) that inhibits retroperitoneal invasion and hepatic metastasis of pancreatic cancer cells. Here, we report that overexpression of the amino (N)-terminal region of G3BP, including the binding region for BART mRNA, dominant-negatively inhibits formation of the complex between endogenous G3BP and BART mRNA, and increases the expression of BART. This, in turn, inhibits the invasiveness of pancreatic cancer cells. On the other hand, the carboxy (C)-terminal region of G3BP is associated with phosphorylation of eukaryotic translation initiation factor 2α (eIF2α) that initiates stress granule assembly but does not modulate the posttranscriptional regulation of BART mRNA. N-terminal G3BP also plays a role in regulating secreted matrix metalloproteinases, transcription factors, and a variety of genes involved in cell adhesion and motility. These results suggest that N-terminal G3BP contributes to posttranscriptional regulation of cell motility and invasive capacity of pancreatic cancer.
Collapse
Affiliation(s)
- Keisuke Taniuchi
- Eppley Institute for Research in Cancer and Allied Diseases, and Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA.
| | | | | |
Collapse
|
33
|
Interaction of a putative BH3 domain of clusterin with anti-apoptotic Bcl-2 family proteins as revealed by NMR spectroscopy. Biochem Biophys Res Commun 2011; 408:541-7. [DOI: 10.1016/j.bbrc.2011.04.054] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 04/09/2011] [Indexed: 11/22/2022]
|
34
|
SREBP-1c regulates glucose-stimulated hepatic clusterin expression. Biochem Biophys Res Commun 2011; 408:720-5. [PMID: 21549685 DOI: 10.1016/j.bbrc.2011.04.111] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Accepted: 04/21/2011] [Indexed: 12/29/2022]
Abstract
Clusterin is a stress-response protein that is involved in diverse biological processes, including cell proliferation, apoptosis, tissue differentiation, inflammation, and lipid transport. Its expression is upregulated in a broad spectrum of diverse pathological states. Clusterin was recently reported to be associated with diabetes, metabolic syndrome, and their sequelae. However, the regulation of clusterin expression by metabolic signals was not addressed. In this study we evaluated the effects of glucose on hepatic clusterin expression. Interestingly, high glucose concentrations significantly increased clusterin expression in primary hepatocytes and hepatoma cell lines, but the conventional promoter region of the clusterin gene did not respond to glucose stimulation. In contrast, the first intronic region was transcriptionally activated by high glucose concentrations. We then defined a glucose response element (GlRE) of the clusterin gene, showing that it consists of two E-box motifs separated by five nucleotides and resembles carbohydrate response element (ChoRE). Unexpectedly, however, these E-box motifs were not activated by ChoRE binding protein (ChREBP), but were activated by sterol regulatory element binding protein-1c (SREBP-1c). Furthermore, we found that glucose induced recruitment of SREBP-1c to the E-box of the clusterin gene intronic region. Taken together, these results suggest that clusterin expression is increased by glucose stimulation, and SREBP-1c plays a crucial role in the metabolic regulation of clusterin.
Collapse
|
35
|
Chapter 9: Oxidative stress in malignant progression: The role of Clusterin, a sensitive cellular biosensor of free radicals. Adv Cancer Res 2010; 104:171-210. [PMID: 19878777 DOI: 10.1016/s0065-230x(09)04009-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Clusterin/Apolipoprotein J (CLU) gene is expressed in most human tissues and encodes for two protein isoforms; a conventional heterodimeric secreted glycoprotein and a truncated nuclear form. CLU has been functionally implicated in several physiological processes as well as in many pathological conditions including ageing, diabetes, atherosclerosis, degenerative diseases, and tumorigenesis. A major link of all these, otherwise unrelated, diseases is that they are characterized by increased oxidative injury due to impaired balance between production and disposal of reactive oxygen or nitrogen species. Besides the aforementioned diseases, CLU gene is differentially regulated by a wide variety of stimuli which may also promote the production of reactive species including cytokines, interleukins, growth factors, heat shock, radiation, oxidants, and chemotherapeutic drugs. Although at low concentration reactive species may contribute to normal cell signaling and homeostasis, at increased amounts they promote genomic instability, chronic inflammation, lipid oxidation, and amorphous aggregation of target proteins predisposing thus cells for carcinogenesis or other age-related disorders. CLU seems to intervene to these processes due to its small heat-shock protein-like chaperone activity being demonstrated by its property to inhibit protein aggregation and precipitation, a main feature of oxidant injury. The combined presence of many potential regulatory elements in the CLU gene promoter, including a Heat-Shock Transcription Factor-1 and an Activator Protein-1 element, indicates that CLU gene is an extremely sensitive cellular biosensor of even minute alterations in the cellular oxidative load. This review focuses on CLU regulation by oxidative injury that is the common molecular link of most, if not all, pathological conditions where CLU has been functionally implicated.
Collapse
|
36
|
Rizzi F, Coletta M, Bettuzzi S. Chapter 2: Clusterin (CLU): From one gene and two transcripts to many proteins. Adv Cancer Res 2010; 104:9-23. [PMID: 19878770 DOI: 10.1016/s0065-230x(09)04002-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Clusterin (CLU) has kept many researchers engaged for a long time since its first discovery and characterization in the attempt to unravel its biological role in mammals. Although there is a general consensus on the fact that CLU is supposed to play important roles in nearly all fundamental biological phenomena and in many human diseases including cancer, after about 10 years of work CLU has been defined as an "enigmatic" protein. This sense of frustration among the researchers is originated by the fact that, despite considerable scientific production concerning CLU, there is still a lack of basic information about the complex regulation of its expression. The CLU gene is a single 9-exon gene expressed at very different levels in almost all major tissues in mammals. The gene produces at least three protein forms with different subcellular localization and diverse biological functions. The molecular mechanism of production of these protein forms remains unclear. The best known is the glycosylated mature form of CLU (sCLU), secreted with very big quantitative differences at different body sites. Hormones and growth factors are the most important regulators of CLU gene expression. Before 2006, it was believed that a unique transcript of about 1.9 kb was originated by transcription of the CLU gene. Now we know that alternative transcriptional initiation, possibly driven by two distinct promoters, may produce at least two distinct CLU mRNA isoforms differing in their unique first exon, named Isoform 1 and Isoform 2. A third transcript, named Isoform 11036, has been recently found as one of the most probable mRNA variants. Approaches like cloning, expression, and functional characterization of the different CLU protein products have generated a critical mass of information teaching us an important lesson about CLU gene expression regulation. Nevertheless, further studies are necessary to better understand the tissue-specific regulation of CLU expression and to identify the specific signals triggering the expression of different/alternative transcript isoforms and protein forms in different cell types at appropriate time.
Collapse
Affiliation(s)
- Federica Rizzi
- Dipartimento di Medicina Sperimentale, Sezione di Biochimica, Biochimica Clinica e Biochimica dell'Esercizio Fisico, Parma, Italy
| | | | | |
Collapse
|
37
|
Chapter 8: Clusterin: A multifacet protein at the crossroad of inflammation and autoimmunity. Adv Cancer Res 2010; 104:139-70. [PMID: 19878776 DOI: 10.1016/s0065-230x(09)04008-1] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
For years, clusterin has been recognized as a secreted protein and a large number of works demonstrated that this ubiquitously expressed protein has multiple activities. Among the described activities several were related to inflammation and immunity such as its regulatory activity on complement. Then it became clear that a nuclear form of the protein with proapoptotic property existed and more recently that a cytoplasmic form could regulate NF-kappaB pathway. Again, these activities have a strong repercussion in inflammation and immunity. On the other hand, data available on the exact role of CLU in these processes and autoimmunity were quite scarce until recently. Indeed, in the last few years, a differential CLU expression in subtype of T cells, the regulation of CLU expression by proinflammatory cytokines and molecules, the regulation of expression and function of CLU depending on its subcellular localization, the interaction of CLU with nuclear and intracellular proteins were all reported. Adding these new roles of CLU to the already reported functions of this protein allows a better understanding of its role and potential involvement in several inflammatory and immunological processes and, in particular, autoimmunity. In this sense, rheumatoid arthritis appears to be a very attractive disease to build a new paradigm of the role and function of CLU because it makes the link between proliferation, inflammation, and autoimmunity. We will try to see in this review how to bring altogether the old and new knowledge on CLU with inflammation and autoimmunity. Nevertheless, it is clear that CLU has not yet revealed all its secrets in inflammation and autoimmunity.
Collapse
|
38
|
Abstract
The possible biological role played by Clusterin (CLU) has been puzzling researchers for a long time since its first discovery and characterization. CLU has been often described as an "enigmatic" gene, a clear indication that too many aspects of this issue have been obscure or difficult to interpret for long. The good news is that this is certainly no longer true. Since the beginning, CLU was believed to play important roles in nearly all most important biological phenomena. The diversity, sometime the contradictions, of its biological action is now likely explained by the existence of different protein products all generated by the same single copy CLU gene. The relatively recent discovery that CLU can be retained inside the cell and targeted to many intracellular sites and organelles, including the nucleus, provided us a very different view from that solely deriving from its possible role in the outer cellular environment. In particular, nuclear localization of CLU (nCLU) was found to trigger cell death in many systems. In this chapter, a critical review of previous work will enable us to reinterpret old data and observations in the attempt to progressively unravelling the CLU "enigma" by considering its localization inside and outside the cell. The final picture would supposedly reconciliate different or alternative hypothesis. Starting with an "historical" approach demonstrating that nCLU was right under our eyes since the beginning, up to the more recent contributions we will describe which stimuli would inhibit secretion and maturation of CLU leading at least one protein product to target the nucleus and kill the cell. A better understanding of this complex issue is not an easy work, considering the thoughtfulness in reviewing the existing literature and the known controversial reports. We hope that the information contained in this article will be useful for the reader to enlighten this field.
Collapse
Affiliation(s)
- Saverio Bettuzzi
- Dipartimento di Medicina Sperimentale, Sezione di Biochimica, Biochimica Clinica e Biochimica dell'Esercizio Fisico, Parma, Italy
| | | |
Collapse
|
39
|
The role of clusterin (CLU) in malignant transformation and drug resistance in breast carcinomas. Adv Cancer Res 2010; 105:21-43. [PMID: 19879421 DOI: 10.1016/s0065-230x(09)05002-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Breast cancer is the main cause of cancer-related death among women in Western countries. Current research is focused on identifying antiapoptotic proteins which could be a possible target for novel chemotherapeutic drugs. Secretory clusterin (sCLU) is an extracellular chaperone that has been functionally implicated in DNA repair, cell-cycle regulation, apoptotic cell death and tumorigenesis. The implication of sCLU in carcinogenesis and the progression of breast carcinomas make it an interesting gene, worthy of investigation. It has been reported to present powerful antiapoptotic activity and to perform a prosurvival function with most therapeutic treatments for breast cancer. This review summarizes our current understanding of the role of CLU in tumorigenesis, progression, and response to treatment in breast carcinomas.
Collapse
|
40
|
Panico F, Rizzi F, Fabbri LM, Bettuzzi S, Luppi F. Clusterin (CLU) and lung cancer. Adv Cancer Res 2010; 105:63-76. [PMID: 19879423 DOI: 10.1016/s0065-230x(09)05004-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Lung cancer is the leading cause of cancer-related mortality. It is categorized into two histological groups that have distinct clinical behaviors, the nonsmall cell lung cancers (NSCLC) and the small cell lung cancer (SCLC). When identified at an early stage, NSCLC is treated by surgical resection. However, patients who undergo surgical resection still have a relative low survival rate, primarily for tumor recurrence. Unfortunately, advances in cytotoxic therapy have reached a plateau and new approaches to treatment are needed together with new and better parameters for more accurate prediction of the outcome and more precise indication of the efficacy of the treatment. Several in vitro studies have examined the role of Clusterin (CLU) in carcinogenesis, lung cancer progression, and response to chemo- and radiotherapy. Studies performed in lung cancer cell lines and animal models showed that CLU is upregulated after exposure to chemo- and radiotherapy. A potential role proposed for the protein is cytoprotective. In vitro, CLU silencing by antisense oligonucleotides (ASO) and small-interfering RNAs (siRNA) directed against CLU mRNA in CLU-rich lung cancer cell lines sensitized cells to chemotherapy and radiotherapy and decreased their metastatic potential. In vivo, a recent work analyzed the prognostic role of CLU in NSCLC, showing that CLU-positive patients with lung cancer had a better overall survival and disease-free survival than those with CLU-negative tumors. These data are contradictory to the promising in vitro results. From the results of these studies we may hypothesize that in early-stage lung cancers CLU represents a positive biomarker correlating with better overall survival. In advanced patients, already treated with chemo- and radiotherapy, the induction of CLU may confer resistance to the treatments. However, many studies are needed to better understand the role of CLU in early-stage and advanced lung cancers with the aim to discriminate patients and specific local conditions that could benefit for a CLU knocking down treatment.
Collapse
Affiliation(s)
- F Panico
- Department of Oncology, Hematology and Respiratory Diseases, Section of Respiratory Diseases, University of Modena and Reggio Emilia, 41100 Modena, Italy
| | | | | | | | | |
Collapse
|
41
|
He LR, Liu MZ, Li BK, Rao HL, Liao YJ, Zhang LJ, Guan XY, Zeng YX, Xie D. Clusterin as a predictor for chemoradiotherapy sensitivity and patient survival in esophageal squamous cell carcinoma. Cancer Sci 2009; 100:2354-60. [PMID: 19793084 PMCID: PMC11158670 DOI: 10.1111/j.1349-7006.2009.01349.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Clusterin (CLU) is frequently overexpressed and correlates closely with chemotherapy and radiotherapy resistance and poor prognosis in many human cancers. However, the significance of CLU expression in chemoradiotherapy (CRT) sensitivity and its effect on the prognosis of esophageal squamous cell carcinoma (ESCC) are still unknown. In the present study, we used the methods of immunohistochemistry and terminal deoxyuridine triphosphate nick-end labeling assay to examine the expression status of CLU and apoptotic index in 110 pretreated biopsy specimens of ESCC patients treated with definitive CRT. High expression of CLU was observed in 42.7% of epithelium and 50.0% of stroma in ESCC. A significant association of high CLU stromal expression with large tumor size (P = 0.012) and locoregional progression (P = 0.001) was observed, and high epithelial expression of CLU showed a significant correlation with the lack of complete response (P = 0.028) and low apoptotic index (P = 0.001). Univariate analysis revealed that high CLU stromal expression was associated with poor locoregional progression-free survival, distant progression-free survival, and overall survival. Furthermore, ESCC patients with high CLU expression in both epithelium and stroma have the shortest survival time among the subgroups of different CLU expression status. In multivariate analysis, CLU stromal expression was evaluated as an independent prognostic factor for locoregional progression-free survival, distant progression-free survival, and overall survival. These findings suggest an important role for CLU, especially in stroma, in ESCC progression, and that high CLU epithelial expression might be a promising predictor of ESCC resistance to CRT.
Collapse
Affiliation(s)
- Li-Ru He
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou, China
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Transcriptome profiling of a TGF-beta-induced epithelial-to-mesenchymal transition reveals extracellular clusterin as a target for therapeutic antibodies. Oncogene 2009; 29:831-44. [PMID: 19935703 DOI: 10.1038/onc.2009.399] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Transforming growth factor (TGF)-beta plays a dual role in tumorigenesis, switching from acting as a growth inhibitory tumor suppressor early in the process, to a tumor promoter in late-stage disease. Since TGF-beta's prometastatic role may be linked to its ability to induce tumor cell epithelial-to-mesenchymal transition (EMT), we explored TGF-beta's EMT-promoting pathways by analysing the transcriptome changes occurring in BRI-JM01 mammary tumor epithelial cells undergoing a TGF-beta-induced EMT. We found the clusterin gene to be the most highly upregulated throughout most of the TGF-beta time course, and showed that this results in an increase of the secreted form of clusterin. By monitoring several hallmark features of EMT, we demonstrated that antibodies targeting secreted clusterin inhibit the TGF-beta-induced EMT of BRI-JM01 cells, as well as the invasive phenotype of several other breast and prostate tumor cell lines (4T1, NMuMG, MDA-MB231LM2 and PC3), without affecting the proliferation of these cells. These results indicate that secreted clusterin is a functionally important EMT mediator that lies downstream within TGF-beta's EMT-promoting transcriptional cascade, but not within its growth-inhibitory pathways. To further investigate the role played by secreted clusterin in tumor metastasis, we assessed the effect of several anti-clusterin monoclonal antibodies in vivo using a 4T1 syngeneic mouse breast cancer model and found that these antibodies significantly reduce lung metastasis. Taken together, our results reveal a role for secreted clusterin as an important extracellular promoter of EMT, and suggest that antibodies targeting clusterin may inhibit tumor metastasis without reducing the beneficial growth inhibitory effects of TGF-beta.
Collapse
|
43
|
Gunawardana CG, Kuk C, Smith CR, Batruch I, Soosaipillai A, Diamandis EP. Comprehensive Analysis of Conditioned Media from Ovarian Cancer Cell Lines Identifies Novel Candidate Markers of Epithelial Ovarian Cancer. J Proteome Res 2009; 8:4705-13. [DOI: 10.1021/pr900411g] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- C. Geeth Gunawardana
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada, Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, Canada, and Department of Clinical Biochemistry, University Health Network, Toronto, ON, Canada
| | - Cynthia Kuk
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada, Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, Canada, and Department of Clinical Biochemistry, University Health Network, Toronto, ON, Canada
| | - Chris R. Smith
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada, Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, Canada, and Department of Clinical Biochemistry, University Health Network, Toronto, ON, Canada
| | - Ihor Batruch
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada, Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, Canada, and Department of Clinical Biochemistry, University Health Network, Toronto, ON, Canada
| | - Antoninus Soosaipillai
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada, Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, Canada, and Department of Clinical Biochemistry, University Health Network, Toronto, ON, Canada
| | - Eleftherios P. Diamandis
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada, Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, Canada, and Department of Clinical Biochemistry, University Health Network, Toronto, ON, Canada
| |
Collapse
|
44
|
Rizzi F, Caccamo AE, Belloni L, Bettuzzi S. Clusterin is a short half-life, poly-ubiquitinated protein, which controls the fate of prostate cancer cells. J Cell Physiol 2009; 219:314-23. [DOI: 10.1002/jcp.21671] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
45
|
Chou TY, Chen WC, Lee AC, Hung SM, Shih NY, Chen MY. Clusterin silencing in human lung adenocarcinoma cells induces a mesenchymal-to-epithelial transition through modulating the ERK/Slug pathway. Cell Signal 2009; 21:704-11. [PMID: 19166932 DOI: 10.1016/j.cellsig.2009.01.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Accepted: 01/03/2009] [Indexed: 12/24/2022]
Abstract
The ubiquitously expressed glycoprotein Clusterin (CLU) is implicated in diverse cellular processes, yet its genuine molecular function remains undefined. CLU expression has been associated with various human malignancies, yet the mechanisms by which CLU promotes cancer progression and metastasis are not elucidated. In this study, using human lung adenocarcinoma cell lines as a model, we explored the involvement of CLU in modulating invasiveness of cancer cells. We discovered that CLU levels positively correlated with the degree of invasiveness in human lung adenocarcinoma cell lines. The observation that CLU-rich cells displayed a spindle-shape morphology while those with low CLU levels were cuboidal in shape prompted us to investigate if CLU modulates epithelial-to-mesenchymal transitions (EMT). CLU silencing by siRNA in a highly invasive, CLU-rich lung adenocarcinoma cell line induced a mesenchymal-to-epithelial transition (MET) evidenced by the spindle-to-cuboidal morphological change, increased E-cadherin expression, and decreased fibronectin expression. Compared with the vector-transfected cells, CLU-knocked-down (CLUi) cells showed reduced migration and invasion in vitro, as well as decreased metastatic potential in experimental metastasis. Re-expression of CLU in CLUi cells reversed the MET and restored the mesenchymal and invasive phenotypes. We found that Slug, a zinc-finger-containing transcriptional repressor of E-cadherin, was downregulated in CLUi cells. We also discovered that levels of activated ERK correlated with those of CLU and Slug. Taken together, our data suggest that CLU may regulate EMT and aggressive behaviour of human lung adenocarcinoma cells through modulating ERK signalling and Slug expression.
Collapse
Affiliation(s)
- Teh-Ying Chou
- Institute of Clinical Medicine, National Yang-Ming University, Taiwan.
| | | | | | | | | | | |
Collapse
|
46
|
Klock G, Baiersdörfer M, Koch-Brandt C. Chapter 7 Cell Protective Functions of Secretory Clusterin (sCLU). Adv Cancer Res 2009; 104:115-38. [DOI: 10.1016/s0065-230x(09)04007-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
47
|
|
48
|
Zhong L, Roybal J, Chaerkady R, Zhang W, Choi K, Alvarez CA, Tran H, Creighton CJ, Yan S, Strieter RM, Pandey A, Kurie JM. Identification of secreted proteins that mediate cell-cell interactions in an in vitro model of the lung cancer microenvironment. Cancer Res 2008; 68:7237-45. [PMID: 18757440 DOI: 10.1158/0008-5472.can-08-1529] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Non-small cell lung cancer (NSCLC) cells with somatic mutations in K-ras recruit to the tumor a variety of cell types (hereafter collectively termed "stromal cells") that can promote or inhibit tumorigenesis by mechanisms that have not been fully elucidated. Here, we postulated that stromal cells in the tumor microenvironment alter the tumor cell secretome, including those proteins required for tumor growth and dissemination, and we developed an in vitro model to test this hypothesis. Coculturing a murine K-ras mutant lung adenocarcinoma cell line (LKR-13) with a murine lung stromal cell (macrophage, endothelial cell, or fibroblast) enhanced stromal cell migration, induced endothelial tube formation, increased LKR-13 cell proliferation, and regulated the secretion of proteins involved in angiogenesis, inflammation, cell proliferation, and epithelial-to-mesenchymal transition. Among these proteins, CXCL1 has been reported to promote NSCLC development, whereas interleukin-18 (IL-18) has an undefined role. Genetic and pharmacologic strategies to inhibit CXCL1 and IL-18 revealed that stromal cell migration, LKR-13 cell proliferation, and LKR-13 cell tumorigenicity required one or both of these proteins. We conclude that stromal cells enhanced LKR-13 cell tumorigenicity partly through their effects on the secretome of LKR-13 cells. Strategies to inhibit tumor/stromal cell interactions may be useful as therapeutic approaches in NSCLC patients.
Collapse
Affiliation(s)
- Li Zhong
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas-M. D. Anderson Cancer Center, Houston, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Rauhala HE, Porkka KP, Saramäki OR, Tammela TLJ, Visakorpi T. Clusterin is epigenetically regulated in prostate cancer. Int J Cancer 2008; 123:1601-9. [PMID: 18649357 DOI: 10.1002/ijc.23658] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Lack of good models has complicated investigations on the mechanisms of prostate cancer. By far, the most commonly used transgenic mouse model of prostate cancer is TRAMP, which, however, has not been fully characterized for genetic and epigenetic aberrations. Here, we screened TRAMP-derived C2 cell line for the alterations using different microarray approaches, and compared it to human prostate cancer. TRAMP-C2 had relatively few genomic copy number alterations according to array comparative genomic hybridization (aCGH). However, the gene copy number and expression were significantly correlated (p < 0.001). Screening genes for promoter hypermethylation using demethylation treatment with 5-aza-2'-deoxycytidine and subsequent expression profiling indicated 43 putatively epigenetically silenced genes. Further studies revealed that clusterin is methylated in the TRAMP-C2 cell line, as well as in the human prostate cancer cell line LNCaP. Its expression was found to be significantly reduced (p < 0.01) in untreated and hormone-refractory human prostate carcinomas. Together with known function of clusterin, the data suggest an epigenetic component in the regulation of clusterin in prostate cancer.
Collapse
Affiliation(s)
- Hanna E Rauhala
- Institute of Medical Technology, University of Tampere, and Tampere University Hospital, Tampere, Finland
| | | | | | | | | |
Collapse
|