1
|
Lei D, Chen T, Fan C, Xie Q. Exposure to BaA inhibits trophoblast cell invasion and induces miscarriage by regulating the DEC1/ARHGAP5 axis and promoting ubiquitination-mediated degradation of MMP2. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135594. [PMID: 39191013 DOI: 10.1016/j.jhazmat.2024.135594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/10/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024]
Abstract
Benz[a]anthracene (BaA), a hazardous polycyclic aromatic hydrocarbon classified by the EPA, is a probable reproductive toxicant. Epidemiological studies suggest that BaA exposure may be a risk factor for recurrent miscarriage (RM). However, the underlying mechanisms are not well understood. This study identified DEC1 as a key gene through RNA-seq and single-cell RNA sequencing analysis. DEC1 expression was found to be downregulated in villous tissues from women with RM and in primary extravillous trophoblasts (EVTs) exposed to BaA. BaA suppressed DEC1 expression by promoting abnormal methylation patterns. Further analysis revealed that ARHGAP5 is a direct target of DEC1 in EVTs, where DEC1 inhibits trophoblast invasion by directly regulating ARHGAP5 transcription. Additionally, BaA destabilized matrix metalloproteinase 2 (MMP2) by activating the aryl hydrocarbon receptor (AhR) and promoting E3 ubiquitin ligase MID1-mediated degradation. In a mouse model, BaA induced miscarriage by modulating the DEC1/ARHGAP5 and MID1/MMP2 axes. Notably, BaA-induced miscarriage in mice was prevented by DEC1 overexpression or MID1 knockdown. These findings indicate that BaA exposure leads to miscarriage by suppressing the DEC1/ARHGAP5 pathway and enhancing the MID1/MMP2 pathway in human EVTs.
Collapse
Affiliation(s)
- Di Lei
- Centre for Reproductive Medicine, Renmin Hospital of Wuhan University, Wuhan 430000, China; Department of Obstetrics, Renmin Hospital of Wuhan University, Wuhan 430000, China
| | - Tingting Chen
- Department of Obstetrics, Renmin Hospital of Wuhan University, Wuhan 430000, China
| | - Cuifang Fan
- Department of Obstetrics, Renmin Hospital of Wuhan University, Wuhan 430000, China
| | - Qingzhen Xie
- Centre for Reproductive Medicine, Renmin Hospital of Wuhan University, Wuhan 430000, China.
| |
Collapse
|
2
|
Fasano M, Pirozzi M, Miceli CC, Cocule M, Caraglia M, Boccellino M, Vitale P, De Falco V, Farese S, Zotta A, Ciardiello F, Addeo R. TGF-β Modulated Pathways in Colorectal Cancer: New Potential Therapeutic Opportunities. Int J Mol Sci 2024; 25:7400. [PMID: 39000507 PMCID: PMC11242595 DOI: 10.3390/ijms25137400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
Colorectal cancer (CRC) is the third most commonly diagnosed cancer worldwide, with 20% of patients presenting with metastatic disease at diagnosis. TGF-β signaling plays a crucial role in various cellular processes, including growth, differentiation, apoptosis, epithelial-mesenchymal transition (EMT), regulation of the extracellular matrix, angiogenesis, and immune responses. TGF-β signals through SMAD proteins, which are intracellular molecules that transmit TGF-β signals from the cell membrane to the nucleus. Alterations in the TGF-β pathway and mutations in SMAD proteins are common in metastatic CRC (mCRC), making them critical factors in CRC tumorigenesis. This review first analyzes normal TGF-β signaling and then investigates its role in CRC pathogenesis, highlighting the mechanisms through which TGF-β influences metastasis development. TGF-β promotes neoangiogenesis via VEGF overexpression, pericyte differentiation, and other mechanisms. Additionally, TGF-β affects various elements of the tumor microenvironment, including T cells, fibroblasts, and macrophages, promoting immunosuppression and metastasis. Given its strategic role in multiple processes, we explored different strategies to target TGF-β in mCRC patients, aiming to identify new therapeutic options.
Collapse
Affiliation(s)
- Morena Fasano
- Division of Medical Oncology, Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.F.); (M.P.); (C.C.M.); (M.C.); (S.F.); (A.Z.); (F.C.)
| | - Mario Pirozzi
- Division of Medical Oncology, Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.F.); (M.P.); (C.C.M.); (M.C.); (S.F.); (A.Z.); (F.C.)
| | - Chiara Carmen Miceli
- Division of Medical Oncology, Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.F.); (M.P.); (C.C.M.); (M.C.); (S.F.); (A.Z.); (F.C.)
| | - Mariateresa Cocule
- Division of Medical Oncology, Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.F.); (M.P.); (C.C.M.); (M.C.); (S.F.); (A.Z.); (F.C.)
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy;
- Laboratory of Precision and Molecular Oncology, Biogem Scarl, Institute of Genetic Research, Contrada Camporeale, 83031 Ariano Irpino, Italy
| | - Mariarosaria Boccellino
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy;
| | - Pasquale Vitale
- Oncology Operative Unit, Hospital of Frattamaggiore, ASLNA2NORD, Frattamaggiore, 80027 Naples, Italy; (P.V.); (V.D.F.); (R.A.)
| | - Vincenzo De Falco
- Oncology Operative Unit, Hospital of Frattamaggiore, ASLNA2NORD, Frattamaggiore, 80027 Naples, Italy; (P.V.); (V.D.F.); (R.A.)
| | - Stefano Farese
- Division of Medical Oncology, Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.F.); (M.P.); (C.C.M.); (M.C.); (S.F.); (A.Z.); (F.C.)
| | - Alessia Zotta
- Division of Medical Oncology, Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.F.); (M.P.); (C.C.M.); (M.C.); (S.F.); (A.Z.); (F.C.)
| | - Fortunato Ciardiello
- Division of Medical Oncology, Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.F.); (M.P.); (C.C.M.); (M.C.); (S.F.); (A.Z.); (F.C.)
| | - Raffaele Addeo
- Oncology Operative Unit, Hospital of Frattamaggiore, ASLNA2NORD, Frattamaggiore, 80027 Naples, Italy; (P.V.); (V.D.F.); (R.A.)
| |
Collapse
|
3
|
Chen K, Zhang X, Peng H, Huang F, Sun G, Xu Q, Liao L, Xing Z, Zhong Y, Fang Z, Liao M, Luo S, Chen W, Dong M. Exploring the diagnostic value, prognostic value, and biological functions of NPC gene family members in hepatocellular carcinoma based on a multi-omics analysis. Funct Integr Genomics 2023; 23:264. [PMID: 37541978 DOI: 10.1007/s10142-023-01195-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/26/2023] [Accepted: 07/29/2023] [Indexed: 08/06/2023]
Abstract
Liver cancer is a cunning malignancy with a high incidence and mortality rate among cancers worldwide. The NPC gene family members (NPCs: NPC1, NPC2, and NPC1L1) are closely linked to the development of multiple cancers, but their role in liver cancer remains unclear. As a result, we must investigate their functions in liver hepatocellular carcinoma (LIHC). NPCs were significantly differentially expressed between normal and LIHC tissues, with a high mutation frequency in LIHC. The ROC curve analysis revealed that NPC1/NPC2 had high diagnostic and prognostic values in LIHC. NPC1 expression was also found to be negatively correlated with its methylation level. The differentially expressed genes between high and low NPC1 expression groups in LIHC were mainly related to channel activity, transporter complexes, and plasma membrane adhesion molecules. Additionally, NPC1 expression was significantly associated with multiple immune cells and immunization checkpoints. It was hypothesized that a TUG1/SNHG4-miR-148a-3p-NPC1 regulatory axis is associated with hepatocarcinogenesis. Finally, the protein expression of NPC1 in LIHC tissues and paraneoplastic tissues was detected, and NPC1-knockdown HepG2 cells (NPC1KO) inhibited the proliferation, migration, and invasion. This study helped to identify new prognostic markers and potential immunotherapeutic targets for LIHC and revealed the molecular mechanisms underlying NPC1 regulation in LIHC. The NPCs play a key role in the prognosis and diagnosis of LIHC and may be an important indicator for LIHC prognosis and diagnosis; NPC1 might be a potential therapeutic target in LIHC.
Collapse
Affiliation(s)
- Keheng Chen
- Department of Reproductive Medicine, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
- Modern Industrial College of Biomedicine and Great Health, Youjiang Medical University for Nationalities, Baise, China
| | - Xin Zhang
- Modern Industrial College of Biomedicine and Great Health, Youjiang Medical University for Nationalities, Baise, China
| | - Huixin Peng
- Department of Reproductive Medicine, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
- Center for Clinical Laboratory Diagnosis and Research, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, PR China
| | - Fengdie Huang
- Modern Industrial College of Biomedicine and Great Health, Youjiang Medical University for Nationalities, Baise, China
| | - Guangyu Sun
- Chaozhou People's Hospital, Shantou University Medical College, Chaozhou, China
| | - Qijiang Xu
- Modern Industrial College of Biomedicine and Great Health, Youjiang Medical University for Nationalities, Baise, China
| | - Lusheng Liao
- Modern Industrial College of Biomedicine and Great Health, Youjiang Medical University for Nationalities, Baise, China
| | - Zhiyong Xing
- Modern Industrial College of Biomedicine and Great Health, Youjiang Medical University for Nationalities, Baise, China
| | - Yanping Zhong
- Modern Industrial College of Biomedicine and Great Health, Youjiang Medical University for Nationalities, Baise, China
| | - Zhichao Fang
- Modern Industrial College of Biomedicine and Great Health, Youjiang Medical University for Nationalities, Baise, China
| | - Meihua Liao
- Department of Reproductive Medicine, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Shihua Luo
- Center for Clinical Laboratory Diagnosis and Research, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, PR China.
| | - Wencheng Chen
- Department of Reproductive Medicine, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China.
- Center for Clinical Laboratory Diagnosis and Research, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, PR China.
| | - Mingyou Dong
- Department of Reproductive Medicine, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China.
- Modern Industrial College of Biomedicine and Great Health, Youjiang Medical University for Nationalities, Baise, China.
| |
Collapse
|
4
|
Eun JW, Ahn HR, Baek GO, Yoon MG, Son JA, Weon JH, Yoon JH, Kim HS, Han JE, Kim SS, Cheong JY, Kim BW, Cho HJ. Aberrantly Expressed MicroRNAs in Cancer-Associated Fibroblasts and Their Target Oncogenic Signatures in Hepatocellular Carcinoma. Int J Mol Sci 2023; 24:4272. [PMID: 36901700 PMCID: PMC10002073 DOI: 10.3390/ijms24054272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs) contribute to tumor progression, and microRNAs (miRs) play an important role in regulating the tumor-promoting properties of CAFs. The objectives of this study were to clarify the specific miR expression profile in CAFs of hepatocellular carcinoma (HCC) and identify its target gene signatures. Small-RNA-sequencing data were generated from nine pairs of CAFs and para-cancer fibroblasts isolated from human HCC and para-tumor tissues, respectively. Bioinformatic analyses were performed to identify the HCC-CAF-specific miR expression profile and the target gene signatures of the deregulated miRs in CAFs. Clinical and immunological implications of the target gene signatures were evaluated in The Cancer Genome Atlas Liver Hepatocellular Carcinoma (TCGA_LIHC) database using Cox regression and TIMER analysis. The expressions of hsa-miR-101-3p and hsa-miR-490-3p were significantly downregulated in HCC-CAFs. Their expression in HCC tissue gradually decreased as HCC stage progressed in the clinical staging analysis. Bioinformatic network analysis using miRWalks, miRDB, and miRTarBase databases pointed to TGFBR1 as a common target gene of hsa-miR-101-3p and hsa-miR-490-3p. TGFBR1 expression was negatively correlated with miR-101-3p and miR-490-3p expression in HCC tissues and was also decreased by ectopic miR-101-3p and miR-490-3p expression. HCC patients with TGFBR1 overexpression and downregulated hsa-miR-101-3p and hsa-miR-490-3p demonstrated a significantly poorer prognosis in TCGA_LIHC. TGFBR1 expression was positively correlated with the infiltration of myeloid-derived suppressor cells, regulatory T cells, and M2 macrophages in a TIMER analysis. In conclusion, hsa-miR-101-3p and hsa-miR-490-3p were substantially downregulated miRs in CAFs of HCC, and their common target gene was TGFBR1. The downregulation of hsa-miR-101-3p and hsa-miR-490-3p, as well as high TGFBR1 expression, was associated with poor clinical outcome in HCC patients. In addition, TGFBR1 expression was correlated with the infiltration of immunosuppressive immune cells.
Collapse
Affiliation(s)
- Jung Woo Eun
- Department of Gastroenterology, Ajou University School of Medicine, 164 World cup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea
| | - Hye Ri Ahn
- Department of Gastroenterology, Ajou University School of Medicine, 164 World cup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, 164 World cup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea
| | - Geum Ok Baek
- Department of Gastroenterology, Ajou University School of Medicine, 164 World cup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea
| | - Moon Gyeong Yoon
- Department of Gastroenterology, Ajou University School of Medicine, 164 World cup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea
| | - Ju A Son
- Department of Gastroenterology, Ajou University School of Medicine, 164 World cup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, 164 World cup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea
| | - Ji Hyang Weon
- Department of Gastroenterology, Ajou University School of Medicine, 164 World cup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, 164 World cup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea
| | - Jung Hwan Yoon
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Hyung Seok Kim
- Department of Biochemistry, Kosin University College of Medicine, Busan 49267, Republic of Korea
| | - Ji Eun Han
- Department of Gastroenterology, Ajou University School of Medicine, 164 World cup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea
| | - Soon Sun Kim
- Department of Gastroenterology, Ajou University School of Medicine, 164 World cup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea
| | - Jae Youn Cheong
- Department of Gastroenterology, Ajou University School of Medicine, 164 World cup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea
| | - Bong-wan Kim
- Department of General Surgery, Ajou University School of Medicine, 164 World cup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea
| | - Hyo Jung Cho
- Department of Gastroenterology, Ajou University School of Medicine, 164 World cup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea
| |
Collapse
|
5
|
TRIM44 Promotes Endometrial Carcinoma Progression by Activating the FRS2 Signalling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6235771. [PMID: 36387361 PMCID: PMC9663230 DOI: 10.1155/2022/6235771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/04/2022] [Accepted: 08/06/2022] [Indexed: 11/09/2022]
Abstract
The Tripartite Motif Containing 44 (TRIM44) is highly expressed in a variety of tumours. However, the TRIM44's role in endometrial carcinoma (EC) progression remains unknown. To investigate the TRIM44's role in the development and metastasis of EC, we detected TRIM44 expression in EC cell lines and surgical specimens from patients with EC using immunohistochemistry, real-time reverse transcription-polymerase chain reaction, and western blotting analysis. The biological functions of TRIM44 by loss-of-function analysis in RL95-2 and Ishikawa cells were studied. The effect of TRIM44 on the progression of EC in terms of cell proliferation, apoptosis, and invasion was examined and revealed its underlying mechanism in vitro using EC cell lines and in vivo using mouse xenograft models. The TRIM44's expression was positively correlated with EC progression and poor prognosis. The TRIM44 knockdown reduced the EC cell proliferation and invasion while promoting cell apoptosis. Mechanism experiments showed that the TRIM44 interacts with Fibroblast Growth Factor Receptor Substrate 2 (FRS2) and negatively regulates the expression of Bone Morphogenetic Protein 4(BMP4), β-catenin, and Transforming Growth Factor Beta Receptor 1(TGF-βR1). Moreover, the effect of TRIM44 overexpression on EC cell proliferation, invasion, and apoptosis is reversed by the FRS2 knockdown. Our study may provide a new perspective on targeting the TRIM44/FRS2 signaling pathway in treating EC, which deserves further investigation.
Collapse
|
6
|
Yamamoto-Fukuda T, Akiyama N, Tatsumi N, Okabe M, Kojima H. Keratinocyte Growth Factor Stimulates Growth of p75 + Neural Crest Lineage Cells During Middle Ear Cholesteatoma Formation in Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:1573-1591. [PMID: 36210210 DOI: 10.1016/j.ajpath.2022.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 06/20/2022] [Accepted: 07/21/2022] [Indexed: 11/06/2022]
Abstract
During development, cranial neural crest (NC) cells display a striking transition from collective to single-cell migration and undergo a mesenchymal-to-epithelial transformation to form a part of the middle ear epithelial cells (MEECs). While MEECs derived from NC are known to control homeostasis of the epithelium and repair from otitis media, paracrine action of keratinocyte growth factor (KGF) promotes the growth of MEECs and induces middle ear cholesteatoma (cholesteatoma). The animal model of cholesteatoma was previously established by transfecting a human KGF-expression vector. Herein, KGF-inducing cholesteatoma was studied in Wnt1-Cre/Floxed-enhanced green fluorescent protein (EGFP) mice that conditionally express EGFP in the NC lineages. The cytokeratin 14-positive NC lineage expanded into the middle ear and formed cholesteatoma. Moreover, the green fluorescent protein-positive NC lineages comprising the cholesteatoma tissue expressed p75, an NC marker, with high proliferative activity. Similarly, a large number of p75-positive cells were observed in human cholesteatoma tissues. Injections of the immunotoxin murine p75-saporin induced depletion of the p75-positive NC lineages, resulting in the reduction of cholesteatoma in vivo. The p75 knockout in the MEECs had low proliferative activity with or without KGF protein in vitro. Controlling p75 signaling may reduce the proliferation of NC lineages and may represent a new therapeutic target for cholesteatoma.
Collapse
Affiliation(s)
- Tomomi Yamamoto-Fukuda
- Department of Otorhinolaryngology, Jikei University School of Medicine, Tokyo, Japan; Department of Anatomy, Jikei University School of Medicine, Tokyo, Japan.
| | - Naotaro Akiyama
- Department of Anatomy, Jikei University School of Medicine, Tokyo, Japan; Department of Otorhinolaryngology, Toho University School of Medicine, Tokyo, Japan
| | - Norifumi Tatsumi
- Department of Anatomy, Jikei University School of Medicine, Tokyo, Japan
| | - Masataka Okabe
- Department of Anatomy, Jikei University School of Medicine, Tokyo, Japan
| | - Hiromi Kojima
- Department of Otorhinolaryngology, Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
7
|
RNA Editing Enzyme ADAR1 Regulates METTL3 in an Editing Dependent Manner to Promote Breast Cancer Progression via METTL3/ARHGAP5/YTHDF1 Axis. Int J Mol Sci 2022; 23:ijms23179656. [PMID: 36077054 PMCID: PMC9456332 DOI: 10.3390/ijms23179656] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/15/2022] [Accepted: 08/23/2022] [Indexed: 11/29/2022] Open
Abstract
A-to-I RNA editing and m6A modification are two of the most prevalent types of RNA modifications controlling gene expression in mammals and play very important roles in tumorigenesis and tumor progression. However, the functional roles and correlations of these two RNA modifications remain to be further investigated in cancer. Herein, we show that ADAR1, an A-to-I RNA-editing enzyme, interacts with METTL3 and increases its protein level to promote the proliferation, migration and invasion of breast cancer cells through a mechanism connecting ADAR1, METTL3 and YTHDF1. We show that both ADAR1 and METTL3 are upregulated in breast cancer samples, and ADAR1 positively correlates with METTL3; ADAR1 edits METTL3 mRNA and changes its binding site to miR532-5p, leading to increased METTL3 protein, which further targets ARHGAP5, recognized by YTHDF1. Additionally, we show that loss of ADAR1 significantly inhibits breast cancer growth in vivo. Collectively, our findings identify the ADAR1–METTL3 axis as a novel, important pathway that connects A-to-I editing and m6A RNA modifications during breast cancer progression.
Collapse
|
8
|
TGFBR1*6A as a modifier of breast cancer risk and progression: advances and future prospects. NPJ Breast Cancer 2022; 8:84. [PMID: 35853889 PMCID: PMC9296458 DOI: 10.1038/s41523-022-00446-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 06/13/2022] [Indexed: 11/18/2022] Open
Abstract
There is growing evidence that germline mutations in certain genes influence cancer susceptibility, tumor evolution, as well as clinical outcomes. Identification of a disease-causing genetic variant enables testing and diagnosis of at-risk individuals. For breast cancer, several genes such as BRCA1, BRCA2, PALB2, ATM, and CHEK2 act as high- to moderate-penetrance cancer susceptibility genes. Genotyping of these genes informs genetic risk assessment and counseling, as well as treatment and management decisions in the case of high-penetrance genes. TGFBR1*6A (rs11466445) is a common variant of the TGF-β receptor type I (TGFBR1) that has a global minor allelic frequency (MAF) of 0.051 according to the 1000 Genomes Project Consortium. It is emerging as a high frequency, low penetrance tumor susceptibility allele associated with increased cancer risk among several cancer types. The TGFBR1*6A allele has been associated with increased breast cancer risk in women, OR 1.15 (95% CI 1.01–1.31). Functionally, TGFBR1*6A promotes breast cancer cell proliferation, migration, and invasion through the regulation of the ERK pathway and Rho-GTP activation. This review discusses current findings on the genetic, functional, and mechanistic associations between TGFBR1*6A and breast cancer risk and proposes future directions as it relates to genetic association studies and mechanisms of action for tumor growth, metastasis, and immune suppression.
Collapse
|
9
|
OUP accepted manuscript. Carcinogenesis 2022; 43:494-503. [DOI: 10.1093/carcin/bgac015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 01/08/2022] [Accepted: 01/28/2022] [Indexed: 11/12/2022] Open
|
10
|
Wang J, Xiang H, Lu Y, Wu T. Role and clinical significance of TGF‑β1 and TGF‑βR1 in malignant tumors (Review). Int J Mol Med 2021; 47:55. [PMID: 33604683 PMCID: PMC7895515 DOI: 10.3892/ijmm.2021.4888] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/27/2021] [Indexed: 12/24/2022] Open
Abstract
The appearance and growth of malignant tumors is a complicated process that is regulated by a number of genes. In recent years, studies have revealed that the transforming growth factor-β (TGF-β) signaling pathway serves an important role in cell cycle regulation, growth and development, differentiation, extracellular matrix synthesis and immune response. Notably, two members of the TGF-β signaling pathway, TGF-β1 and TGF-β receptor 1 (TGF-βR1), are highly expressed in a variety of tumors, such as breast cancer, colon cancer, gastric cancer and hepatocellular carcinoma. Moreover, an increasing number of studies have demonstrated that TGF-β1 and TGF-βR1 promote proliferation, migration and epithelial-mesenchymal transition of tumor cells by activating other signaling pathways, signaling molecules or microRNAs (miRs), such as the NF-κB signaling pathway and miR-133b. In addition, some inhibitors targeting TGF-β1 and TGF-βR1 have exhibited positive effects in in vitro experiments. The present review discusses the association between TGF-β1 or TGF-βR1 and tumors, and the development of some inhibitors, hoping to provide more approaches to help identify novel tumor markers to restrain and cure tumors.
Collapse
Affiliation(s)
- Junmin Wang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Hongjiao Xiang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Yifei Lu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Tao Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| |
Collapse
|
11
|
Lu X, Xu C, Xu Z, Lu C, Yang R, Zhang F, Zhang G. Piperlongumine inhibits the growth of non-small cell lung cancer cells via the miR-34b-3p/TGFBR1 pathway. BMC Complement Med Ther 2021; 21:15. [PMID: 33413277 PMCID: PMC7791704 DOI: 10.1186/s12906-020-03123-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 10/21/2020] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Non-small cell lung cancer is a common type of lung cancer. Piperlongumine (PL), which is extracted from the roots of piperaceae plant, long pepper, and peppercorn, is an alkaloid amide that inhibits tumor growth and metastasis. However, whether it affects lung cancer cells remains unclear. METHODS We assessed the effects of PL on the proliferation and apoptosis of A549 and H1299 NSCLC cell lines. RESULTS PL was mildly toxic to normal human bronchial epithelial cells and significantly suppressed growth and facilitated apoptosis of A549 and H1299 cells. It also upregulated microRNA (miR)-34b-3p and downregulated the transforming growth factor beta type I receptor (TGFBR1). The dual-luciferase reporter assay showed that TGFBR1 is a target gene of miR-34b-3p. Silencing of miR-34b-3p or overexpression of TGFBR1 partially attenuated the effects of PL on A549 and H1299 cells. CONCLUSIONS PL inhibits proliferation and induces apoptosis of A549 and H1299 cells by upregulating miR-34b-3p and modulating TGFBR1 signaling pathway.
Collapse
Affiliation(s)
- Xinhua Lu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou City, 450052, Henan Province, China
| | - Chenyang Xu
- Luoyang Orthopedic-Traumatological Hospital of Henan Province (Henan Provincial Orthopedic Hospital), Zhengzhou, 450015, China
| | - Zhexuan Xu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou City, 450052, Henan Province, China
| | - Chunya Lu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou City, 450052, Henan Province, China
| | - Rui Yang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou City, 450052, Henan Province, China
| | - Furui Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou City, 450052, Henan Province, China
| | - Guojun Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou City, 450052, Henan Province, China.
| |
Collapse
|
12
|
Liu Q, Hodge J, Wang J, Wang Y, Wang L, Singh UP, Li Y, Yao Y, Wang D, Ai W, Nagarkatti P, Chen H, Xu P, Murphy EA, Fan D. Emodin reduces Breast Cancer Lung Metastasis by suppressing Macrophage-induced Breast Cancer Cell Epithelial-mesenchymal transition and Cancer Stem Cell formation. Am J Cancer Res 2020; 10:8365-8381. [PMID: 32724475 PMCID: PMC7381725 DOI: 10.7150/thno.45395] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/12/2020] [Indexed: 12/16/2022] Open
Abstract
Our previous studies demonstrated that the natural compound emodin blocks the tumor-promoting feedforward interactions between cancer cells and macrophages, and thus ameliorates the immunosuppressive state of the tumor microenvironment. Since tumor-associated macrophages (TAMs) also affect epithelial mesenchymal-transition (EMT) and cancer stem cell (CSC) formation, here we aimed to test if emodin as a neoadjuvant therapy halts breast cancer metastasis by attenuating TAM-induced EMT and CSC formation of breast cancer cells. Methods: Bioinformatical analysis was performed to examine the correlation between macrophage abundance and EMT/CSC markers in human breast tumors. Cell culture and co-culture studies were performed to test if emodin suppresses TGF-β1 or macrophage-induced EMT and CSC formation of breast cancer cells, and if it inhibits breast cancer cell migration and invasion. Using mouse models, we tested if short-term administration of emodin before surgical removal of breast tumors halts breast cancer post-surgery metastatic recurrence in the lungs. The effects of emodin on TGF-β1 signaling pathways in breast cancer cells were examined by western blots and immunofluorescent imaging. Results: Macrophage abundance positively correlates with EMT and CSC markers in human breast tumors. Emodin suppressed TGF-β1 production in breast cancer cells and macrophages and attenuated TGF-β1 or macrophage-induced EMT and CSC formation of breast cancer cells. Short-term administration of emodin before surgery halted breast cancer post-surgery metastatic recurrence in the lungs by reducing tumor-promoting macrophages and suppressing EMT and CSC formation in the primary tumors. Mechanistic studies revealed that emodin inhibited both canonical and noncanonical TGF-β1 signaling pathways in breast cancer cells and suppressed transcription factors key to EMT and CSC. Conclusion: Natural compound emodin suppresses EMT and CSC formation of breast cancer cells by blocking TGF-β1-mediated crosstalk between TAMs and breast cancer cells. Our study provides evidence suggesting that emodin harbors the potential for clinical development as a new effective and safe agent to halt metastatic recurrence of breast cancer.
Collapse
|
13
|
Nakamura R, Oyama T, Inokuchi M, Ishikawa S, Hirata M, Kawashima H, Ikeda H, Dobashi Y, Ooi A. The relation between anti-TGBFR1 immunohistochemical reaction and low Ki67, small tumor size and high estrogen receptor expression in invasive breast cancer. Pathol Int 2020; 70:330-339. [PMID: 32103597 DOI: 10.1111/pin.12914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 02/04/2020] [Indexed: 11/28/2022]
Abstract
Most breast cancers are derived from the luminal epithelium, which composes the inside of the breast ductal structure. Ductal carcinoma in situ (DCIS) leads to invasive ductal carcinoma, but noncancerous intraductal proliferative lesions are also a risk factor for ductal carcinoma. The transforming growth factor beta (TGFB) signaling pathway behaves as a tumor suppressor in the early stage of cancer, and conversely as a tumor growth factor in invasive stages in several cancers. In this study, we performed immunohistochemistry with an antibody that detects the cytoplasmic region of TGFB receptor 1 (TGFBR1) and elucidated TGFBR1 protein expression in luminal epithelial cells of noncancerous breast ducts and in several cases of DCIS and invasive carcinoma. TGFBR1 expression was higher in noncancerous breast tissue than in cancerous tissue, and a difference in expression was also seen among histological subtypes. Comparing the expression level of TGFBR1 in cancer cells and clinico-pathological parameters, cases expressing low TGFBR1 tended to show low estrogen receptor expression, large tumor size (≥10 mm), and a high Ki67 labeling index. These data suggested that TGFBR1 protein expression may be related to the suppression of breast cancer cell growth.
Collapse
Affiliation(s)
- Ritsuko Nakamura
- Department of Molecular and Cellular Pathology, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, Japan
| | - Takeru Oyama
- Department of Molecular and Cellular Pathology, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, Japan
| | - Masafumi Inokuchi
- Department of Breast Oncology, Division of Cancer Medicine, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, Japan.,Department of Breast and Endocrine Surgery, Kanazawa Medical University, Ishikawa, Japan
| | - Satoko Ishikawa
- Department of Breast Oncology, Division of Cancer Medicine, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, Japan
| | - Miki Hirata
- Department of Breast Oncology, Division of Cancer Medicine, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, Japan
| | - Hiroko Kawashima
- Radiology Division, Kanazawa University Hospital, Ishikawa, Japan
| | - Hiroko Ikeda
- Diagnostic Pathology, Kanazawa University Hospital, Ishikawa, Japan
| | - Yoh Dobashi
- Department of Pathology, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Akishi Ooi
- Department of Molecular and Cellular Pathology, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, Japan
| |
Collapse
|
14
|
Chen L, Chen F, Wang X, Chen Q, Lin J, Bao X, Wang R, Wang J, Yan L, Lin L, Qiu Y, Pan L, Shi B, Zheng X, Liu F, He B. Prognostic value of transforming growth factor beta receptor 1 polymorphisms in patients with oral cancer. J Oral Pathol Med 2019; 49:137-144. [PMID: 31651066 DOI: 10.1111/jop.12967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 10/07/2019] [Accepted: 10/18/2019] [Indexed: 01/17/2023]
Abstract
OBJECTIVE To investigate possible associations between disease-specific survival (DSS) of oral cancer and single nucleotide polymorphisms (SNPs) in transforming growth factor beta receptor 1 (TGFBR1). METHODS Using iPLEX Sequenom MassARRAY platform, three SNPs in TGFBR1 gene were genotyped in 356 newly diagnosed patients with histologically confirmed primary oral cancer. Demographic and clinical information of all cases were obtained from face-to-face interviews and electronic medical records, and telephone interviews were carried out every 6 months to timely gain follow-up data. Univariate and multivariate Cox proportional hazards model were used to assess the association between the polymorphisms of tagging loci and DSS of oral cancer. RESULTS TGFBR1 rs33438 polymorphism was protective against death of oral cancer in codominant (AG vs AA: HR = 0.55, 95% CI = 0.35-0.88) and dominant (GG + AG vs AA: HR = 0.57, 95% CI = 0.38-0.87) models. Moreover, better DSS was particularly significant in radiotherapy patients who carrying GG + AG genotype. There also existed a positive multiplicative interaction on DSS between the polymorphism of TGFBR1 rs334348 and radiotherapy (P = .001). Not any associations between TGFBR1 rs334354 or rs3739798 polymorphism and DSS were observed. CONCLUSIONS This preliminary prospective study suggests that polymorphism of TGFBR1 rs334348 may act as a potentially independent factor and novel genetic biomarker to predict oral cancer DSS especially for patients with radiotherapy. A much more extensive investigation will need to confirm our findings.
Collapse
Affiliation(s)
- Lin Chen
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Fa Chen
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Xiaoxia Wang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Qing Chen
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Jing Lin
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Xiaodan Bao
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Rui Wang
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Jing Wang
- Laboratory Center, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Lingjun Yan
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Lisong Lin
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yu Qiu
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Lizhen Pan
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Bin Shi
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Xiaoyan Zheng
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Fengqiong Liu
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Baochang He
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| |
Collapse
|
15
|
Jiang F, Yu Q, Chu Y, Zhu X, Lu W, Liu Q, Wang Q. MicroRNA-98-5p inhibits proliferation and metastasis in non-small cell lung cancer by targeting TGFBR1. Int J Oncol 2018; 54:128-138. [PMID: 30387848 PMCID: PMC6255066 DOI: 10.3892/ijo.2018.4610] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/09/2018] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRNAs or miRs) have recently emerged as key regulators of various types of cancer, including non‑small cell lung cancer (NSCLC). The disrupted expression of miRNAs is associated with tumorigenesis and metastasis; however, the underlying mechanisms remain unclear. In this study, we demonstrate that miR‑98‑5p is downregulated in NSCLC and that miR‑98‑5p deficiency is associated with an advanced clinical stage and metastasis. A dual‑luciferase reporter assay was performed to confirm that transforming growth factor beta receptor 1 (TGFBR1), a key stimulator of tumor proliferation and metastasis, was a direct target of miR‑98‑5p. miR‑98‑5p overexpression resulted in the downregulation of TGFBR1 and the suppression of the viability, proliferation, migration and invasion of A549 and H1299 cells. Furthermore, miR‑98‑5p was demonstrated to be an efficient suppressor of tumor growth in an A549 subcutaneous xenograft tumor mouse model. Finally, miR‑98‑5p overexpression exerted a significant anti‑metastatic effect in a mouse model of pulmonary metastasis. On the whole, the results of the present study suggest that miR‑98‑5p/TGFBR1 may serve as promising targets for NSCLC therapy.
Collapse
Affiliation(s)
- Feng Jiang
- Department of Cardiothoracic Surgery, Wujin People's Hospital of Changzhou, Changzhou, Jiangsu 213017, P.R. China
| | - Qiuhua Yu
- Department of Cardiothoracic Surgery, Wujin People's Hospital of Changzhou, Changzhou, Jiangsu 213017, P.R. China
| | - Ying Chu
- Central Laboratory, Wujin People's Hospital of Changzhou, Changzhou, Jiangsu 213017, P.R. China
| | - Xiaobo Zhu
- Department of Cardiothoracic Surgery, Wujin People's Hospital of Changzhou, Changzhou, Jiangsu 213017, P.R. China
| | - Wenbin Lu
- Department of Oncology, Wujin People's Hospital of Changzhou, Changzhou, Jiangsu 213017, P.R. China
| | - Qian Liu
- Department of Oncology, Wujin People's Hospital of Changzhou, Changzhou, Jiangsu 213017, P.R. China
| | - Qiang Wang
- Department of Cardiothoracic Surgery, Wujin People's Hospital of Changzhou, Changzhou, Jiangsu 213017, P.R. China
| |
Collapse
|
16
|
Zhou R, Huang Y, Cheng B, Wang Y, Xiong B. TGFBR1*6A is a potential modifier of migration and invasion in colorectal cancer cells. Oncol Lett 2018; 15:3971-3976. [PMID: 29467907 DOI: 10.3892/ol.2018.7725] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 10/26/2017] [Indexed: 12/13/2022] Open
Abstract
Type 1 transforming growth factor β receptor (TGFBR1)*6A, a common hypomorphic variant of TGFBR1, may act as a susceptibility allele in colorectal cancer. However, the contribution of TGFBR1*6A to colorectal cancer development is largely unknown. To test the hypothesis that TGFBR1*6A promotes colorectal cancer invasion and metastasis via Smad-independent transforming growth factor-β (TGF-β) signaling, the effect of TGFBR1*6A on the invasion of colorectal cancer cells was assessed. pCMV5-TGFBR1*6A-HA plasmids were transfected into SW48 and DLD-1 cells by Lipofectamine-mediated DNA transfection. The effect of TGF-β1 on the proliferation of SW48 and DLD-1 cells transfected with TGFBR1*6A was determined by MTT assay. The effects of the TGF-β1 on the invasion of the transfected SW48 and DLD-1 cells were determined using Matrigel-coated plates. Transforming migrating chambers were used to determine the effects of TGF-β1 on the migration of the transfected SW48 and DLD-1 cells. Western blot analysis was used to determine the expression of phosphorylated (p-) extracellular-signal-regulated kinase (ERK), p-P38 and p-SMAD family member 2 in SW48 cells. Using transfected TGFBR1*6A SW48 and DLD-1 cell lines our group demonstrated that, in comparison with TGFBR1*9A, TGFBR1*6A is capable of switching TGF-β1 growth-inhibitory signals into growth-stimulatory signals which significantly increased the invasion of SW48 and DLD-1 cells. Functional assays indicated that TGFBR1*6A weakened Smad-signaling but increased ERK and p38 signaling, which are crucial mediators of cell migration and invasion. From this, it was possible to conclude that TGFBR1*6A enhanced SW48 cell migration and invasion through the mitogen-activated protein kinase pathway and that it may contribute to colorectal cancer progression in a TGF-β1/Smad signaling-independent manner. This suggests that TGFBR1*6A may possess oncogenic properties and that it may affect the migration and invasion of colorectal cancer cells.
Collapse
Affiliation(s)
- Rui Zhou
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Ying Huang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Boran Cheng
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Yulei Wang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Bin Xiong
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China.,Hubei Key Laboratory of Tumor Biological Behaviors and Hubei Cancer Clinical Study Center, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
17
|
Aryappalli P, Al-Qubaisi SS, Attoub S, George JA, Arafat K, Ramadi KB, Mohamed YA, Al-Dhaheri MM, Al-Sbiei A, Fernandez-Cabezudo MJ, Al-Ramadi BK. The IL-6/STAT3 Signaling Pathway Is an Early Target of Manuka Honey-Induced Suppression of Human Breast Cancer Cells. Front Oncol 2017; 7:167. [PMID: 28856117 PMCID: PMC5557744 DOI: 10.3389/fonc.2017.00167] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 07/25/2017] [Indexed: 12/28/2022] Open
Abstract
There is renewed interest in the potential use of natural compounds in cancer therapy. Previously, we demonstrated the anti-tumor properties of manuka honey (MH) against several cancers. However, the underlying mechanism and molecular targets of this activity remain unknown. For this study, the early targets of MH and its modulatory effects on proliferation, invasiveness, and angiogenic potential were investigated using two human breast cancer cell lines, the triple-negative MDA-MB-231 cells and estrogen receptor-positive MCF-7 cells, and the non-neoplastic breast epithelial MCF-10A cell line. Exposure to MH at concentrations of 0.3-1.25% (w/v) induced a dose-dependent inhibition of the proliferation of MDA-MB-231 and MCF-7, but not MCF-10A, cells. This inhibition was independent of the sugar content of MH as a solution containing equivalent concentrations of its three major sugars failed to inhibit cell proliferation. At higher concentrations (>2.5%), MH was found to be generally deleterious to the growth of all three cell lines. MH induced apoptosis of MDA-MB-231 cells through activation of caspases 8, 9, 6, and 3/7 and this correlated with a loss of Bcl-2 and increased Bax protein expression in MH-treated cells. Incubation with MH induced a time-dependent translocation of cytochrome c from mitochondria to the cytosol and Bax translocation from the cytosol into the mitochondria. MH also induced apoptosis of MCF-7 cells via the activation of caspases 9 and 6. Low concentrations of MH (0.03-1.25% w/v) induced a rapid reduction in tyrosine-phosphorylated STAT3 (pY-STAT3) in MDA-MB-231 and MCF-7 cells. Maximum inhibition of pY-STAT3 was observed at 1 h with a loss of >80% and coincided with decreased interleukin-6 (IL-6) production. Moreover, MH inhibited the migration and invasion of MDA-MB-231 cells as well as the angiogenic capacity of human umbilical vein endothelial cells. Our findings identify multiple functional pathways affected by MH in human breast cancer and highlight the IL-6/STAT3 signaling pathway as one of the earliest potential targets in this process.
Collapse
Affiliation(s)
- Priyanka Aryappalli
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Sarah S Al-Qubaisi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Samir Attoub
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Junu A George
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.,Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Kholoud Arafat
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Khalil B Ramadi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Yassir A Mohamed
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mezoon M Al-Dhaheri
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ashraf Al-Sbiei
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Maria J Fernandez-Cabezudo
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Basel K Al-Ramadi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
18
|
TGF-β-Dependent Growth Arrest and Cell Migration in Benign and Malignant Breast Epithelial Cells Are Antagonistically Controlled by Rac1 and Rac1b. Int J Mol Sci 2017; 18:ijms18071574. [PMID: 28726720 PMCID: PMC5536062 DOI: 10.3390/ijms18071574] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 07/14/2017] [Accepted: 07/16/2017] [Indexed: 12/20/2022] Open
Abstract
Despite improvements in diagnosis and treatment, breast cancer is still the most common cancer type among non-smoking females. TGF-β can inhibit breast cancer development by inducing cell cycle arrest in both, cancer cells and, as part of a senescence program in normal human mammary epithelial cells (HMEC). Moreover, TGF-β also drives cell migration and invasion, in part through the small GTPases Rac1 and Rac1b. Depletion of Rac1b or Rac1 and Rac1b in MDA-MB-231 or MDA-MB-435s breast cancer cells by RNA interference enhanced or suppressed, respectively, TGF-β1-induced migration/invasion. Rac1b depletion in MDA-MB-231 cells also increased TGF-β-induced p21WAF1 expression and ERK1/2 phosphorylation. Senescent HMEC (P15/P16), when compared to their non-senescent counterparts (P11/P12), presented with dramatically increased migratory activity. These effects were paralleled by elevated expression of genes associated with TGF-β signaling and metastasis, downregulated Rac1b, and upregulated Rac1. Our data suggest that acquisition of a motile phenotype in HMEC resulted from enhanced autocrine TGF-β signaling, invasion/metastasis-associated gene expression, and a shift in the ratio of antimigratory Rac1b to promigratory Rac1. We conclude that although enhanced TGF-β signaling is considered antioncogenic in HMEC by suppressing oncogene-induced transformation, this occurs at the expense of a higher migration and invasion potential.
Collapse
|
19
|
A truncated splice variant of human lysyl oxidase-like 2 promotes migration and invasion in esophageal squamous cell carcinoma. Int J Biochem Cell Biol 2016; 75:85-98. [DOI: 10.1016/j.biocel.2016.04.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 03/25/2016] [Accepted: 04/06/2016] [Indexed: 02/04/2023]
|
20
|
TGFBR1 polymorphism and risk of breast cancer in Iranian women. Int J Biol Markers 2015; 30:e414-7. [PMID: 26165686 DOI: 10.5301/jbm.5000102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2014] [Indexed: 11/20/2022]
Abstract
Numerous epidemiological studies have evaluated the association between transforming growth factor beta receptor type 1 (TGFBR1) polymorphisms and the risk of cancer; however, the results remain inconclusive and controversial. To determine the association between breast cancer risk and the *6A polymorphism of the TGFBR1 gene, a case-control study of 280 breast cancer patients and 280 controls was performed in Iranian women. Our study demonstrates that women who carry the TGFBR1*6A allele are at lower risk of developing breast cancer. The highest protection against breast cancer was observed in 6A/6A homozygotes (OR = 0.32, p = 0.04). A lower frequency of the TGFBR1*6A allele in breast cancer patients may be an important genetic determinant that contributes to a lower risk of breast cancer in Iranian women. The results also showed that the allelic length of TGFBR1 polymorphisms had no significant association with the age at onset or the grade of disease, nor with the expression of progesterone and estrogen receptors and HER2.
Collapse
|
21
|
Cheruku HR, Mohamedali A, Cantor DI, Tan SH, Nice EC, Baker MS. Transforming growth factor-β, MAPK and Wnt signaling interactions in colorectal cancer. EUPA OPEN PROTEOMICS 2015. [DOI: 10.1016/j.euprot.2015.06.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
22
|
Guo L, Song C, Wang P, Dai L, Zhang J, Wang K. A systems biology approach to detect key pathways and interaction networks in gastric cancer on the basis of microarray analysis. Mol Med Rep 2015; 12:7139-45. [PMID: 26324226 DOI: 10.3892/mmr.2015.4242] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 07/31/2015] [Indexed: 11/05/2022] Open
Abstract
The aim of the present study was to explore key molecular pathways contributing to gastric cancer (GC) and to construct an interaction network between significant pathways and potential biomarkers. Publicly available gene expression profiles of GSE29272 for GC, and data for the corresponding normal tissue, were downloaded from Gene Expression Omnibus. Pre‑processing and differential analysis were performed with R statistical software packages, and a number of differentially expressed genes (DEGs) were obtained. A functional enrichment analysis was performed for all the DEGs with a BiNGO plug‑in in Cytoscape. Their correlation was analyzed in order to construct a network. The modularity analysis and pathway identification operations were used to identify graph clusters and associated pathways. The underlying molecular mechanisms involving these DEGs were also assessed by data mining. A total of 249 DEGs, which were markedly upregulated and downregulated, were identified. The extracellular region contained the most significantly over‑represented functional terms, with respect to upregulated and downregulated genes, and the closest topological matches were identified for taste transduction and regulation of autophagy. In addition, extracellular matrix‑receptor interactions were identified as the most relevant pathway associated with the progression of GC. The genes for fibronectin 1, secreted phosphoprotein 1, collagen type 4 variant α‑1/2 and thrombospondin 1, which are involved in the pathways, may be considered as potential therapeutic targets for GC. A series of associations between candidate genes and key pathways were also identified for GC, and their correlation may provide novel insights into the pathogenesis of GC.
Collapse
Affiliation(s)
- Leilei Guo
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Chunhua Song
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Peng Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Liping Dai
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Jianying Zhang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Kaijuan Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| |
Collapse
|
23
|
Ibrahim T, Yazbeck C, Maalouly G, Baz M, Haddad F, Sabbagh C, Chahine G. TGFBR1*6A polymorphism in sporadic and familial colorectal Carcinoma: a case-control study and systematic literature review. J Gastrointest Cancer 2015; 45:441-7. [PMID: 24880985 DOI: 10.1007/s12029-014-9625-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND The role of genetic factors in colorectal cancer pathogenesis is widely accepted. Polymorphisms are actually thought to play a role in the unexplained colorectal cancer (CRC) susceptibility. There is conflicting data regarding the role of the transforming growth factor beta receptor 1 polymorphism 6A (TGFBR1*6A) in the increased incidence of CRC. PURPOSE Our aim is to test the association between this polymorphism and sporadic/familial CRC in the Lebanese population paying attention to lead time bias in the control group. This is a case-control study conducted in two Lebanese hospital centers. MATERIALS AND METHODS Cases were diagnosed with CRC during the period of 1 year prior to the study. Controls were healthy subjects aged >50 years with a history of normal colonoscopy during the period of 5 years prior to the beginning of the study. A total of 96 cases (57 sporadic/39 familial) and 97 controls were genotyped. The odds ratios for 6A carrier status was statistically significant for sporadic CRC, odds ratio (OR) = 2.314 (95 % confidence interval (CI) 1.030-5.195) but not for familial CRC. RESULTS No association was found between 6A carrier status and mean age at diagnosis of CRC. This is the first article in the literature to evaluate the association between 6A polymorphism and total, sporadic, and familial CRC in a single study with reduction of bias in the control group. Results are in conjunction with other studies and meta-analysis.
Collapse
Affiliation(s)
- Tony Ibrahim
- Hemato-Oncology Department, Hotel Dieu de France teaching Hospital of Saint Joseph University, 11-5076, Riad El Solh-Beirut, 1107 2180, Beirut, Lebanon,
| | | | | | | | | | | | | |
Collapse
|
24
|
He H, Wang L, Zhou W, Zhang Z, Wang L, Xu S, Wang D, Dong J, Tang C, Tang H, Yi X, Ge J. MicroRNA Expression Profiling in Clear Cell Renal Cell Carcinoma: Identification and Functional Validation of Key miRNAs. PLoS One 2015; 10:e0125672. [PMID: 25938468 PMCID: PMC4418764 DOI: 10.1371/journal.pone.0125672] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 03/17/2015] [Indexed: 01/11/2023] Open
Abstract
OBJECTIVE This study aims to profile dysregulated microRNA (miRNA) expression in clear cell renal cell carcinoma (ccRCC) and to identify key regulatory miRNAs in ccRCC. METHODS AND RESULTS miRNA expression profiles in nine pairs of ccRCC tumor samples at three different stages and the adjacent, non-tumorous tissues were investigated using miRNA arrays. Eleven miRNAs were identified to be commonly dysregulated, including three up-regulated (miR-487a, miR-491-3p and miR-452) and eight down-regulated (miR-125b, miR-142-3p, miR-199a-5p, miR-22, miR-299-3p, miR-29a, miR-429, and miR-532-5p) in tumor tissues as compared with adjacent normal tissues. The 11 miRNAs and their predicted target genes were analyzed by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, and three key miRNAs (miR-199a-5p, miR-22 and miR-429) were identified by microRNA-gene network analysis. Dysregulation of the three key miRNAs were further validated in another cohort of 15 ccRCC samples, and the human kidney carcinoma cell line 786-O, as compared with five normal kidney samples. Further investigation showed that over-expression of miR-199a-5p significantly inhibited the invasion ability of 786-O cells. Luciferase reporter assays indicated that miR-199a-5p regulated expression of TGFBR1 and JunB by directly interacting with their 3' untranslated regions. Transfection of miR-199a-5p successfully suppressed expression of TGFBR1 and JunB in the human embryonic kidney 293T cells, further confirming the direct regulation of miR-199a-5p on these two genes. CONCLUSIONS This study identified 11 commonly dysregulated miRNAs in ccRCC, three of which (miR-199a-5p, miR-22 and miR-429) may represent key miRNAs involved in the pathogenesis of ccRCC. Further studies suggested that miR-199a-5p plays an important role in inhibition of cell invasion of ccRCC cells by suppressing expression of TGFBR1 and JunB.
Collapse
Affiliation(s)
- Haowei He
- Department of Urology, Jinling Hospital, Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Linhui Wang
- Department of Urology, Changzheng Hospital, Second Military Medical University, Shanghai, Shanghai, China
| | - Wenquan Zhou
- Department of Urology, Jinling Hospital, Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Zhengyu Zhang
- Department of Urology, Jinling Hospital, Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Longxin Wang
- Department of Urology, Jinling Hospital, Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Song Xu
- Department of Urology, Jinling Hospital, Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Dong Wang
- Department of Urology, Jinling Hospital, Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Jie Dong
- Department of Urology, Jinling Hospital, Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Chaopeng Tang
- Department of Urology, Jinling Hospital, Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Hao Tang
- Department of Urology, Jinling Hospital, Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Xiaoming Yi
- Department of Urology, Jinling Hospital, Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Jingping Ge
- Department of Urology, Jinling Hospital, Nanjing University Medical School, Nanjing, Jiangsu, China
- * E-mail:
| |
Collapse
|
25
|
Principe DR, Doll JA, Bauer J, Jung B, Munshi HG, Bartholin L, Pasche B, Lee C, Grippo PJ. TGF-β: duality of function between tumor prevention and carcinogenesis. J Natl Cancer Inst 2014; 106:djt369. [PMID: 24511106 DOI: 10.1093/jnci/djt369] [Citation(s) in RCA: 396] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Several mechanisms underlying tumor progression have remained elusive, particularly in relation to transforming growth factor beta (TGF-β). Although TGF-β initially inhibits epithelial growth, it appears to promote the progression of advanced tumors. Defects in normal TGF-β pathways partially explain this paradox, which can lead to a cascade of downstream events that drive multiple oncogenic pathways, manifesting as several key features of tumorigenesis (uncontrolled proliferation, loss of apoptosis, epithelial-to-mesenchymal transition, sustained angiogenesis, evasion of immune surveillance, and metastasis). Understanding the mechanisms of TGF-β dysregulation will likely reveal novel points of convergence between TGF-β and other pathways that can be specifically targeted for therapy.
Collapse
Affiliation(s)
- Daniel R Principe
- Affiliations of authors: Department of Medicine, Division of Gastroenterology (DRP, JB, BJ) and Division of Hematology/Oncology (HGM), Department of Surgery, Division of GI Surgical Oncology (DRP, PJG), and Department of Urology (CL), Northwestern University Feinberg School of Medicine, Chicago, IL; Department of Biomedical Engineering. McCormick School of Engineering, Northwestern University, Evanston, IL (DRP); Department of Biomedical Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI (JAD); UMR INSERM U1052, CNRS 5286, Université Lyon 1, Centre de Recherche en Cancérologie de Lyon, Lyon, France (LB); Division of Hematology/Oncology, Department of Medicine, University of Alabama-Birmingham, Birmingham, AL (BP); Department of Pathology and Laboratory Medicine, University of California-Irvine, Irvine, CA (CL)
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Kuo IY, Wu CC, Chang JM, Huang YL, Lin CH, Yan JJ, Sheu BS, Lu PJ, Chang WL, Lai WW, Wang YC. Low SOX17 expression is a prognostic factor and drives transcriptional dysregulation and esophageal cancer progression. Int J Cancer 2014; 135:563-73. [PMID: 24407731 DOI: 10.1002/ijc.28695] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 12/11/2013] [Accepted: 12/13/2013] [Indexed: 11/09/2022]
Affiliation(s)
- I-Ying Kuo
- Institute of Basic Medical Sciences College of Medicine; National Cheng Kung University; Tainan Taiwan Republic of China
| | - Ching-Chi Wu
- Department of Pharmacology College of Medicine; National Cheng Kung University; Tainan Taiwan Republic of China
| | - Jia-Ming Chang
- Institute of Clinical Medicine College of Medicine; National Cheng Kung University; Tainan Taiwan Republic of China
- Department of Surgery; Chia-Yi Christian Hospital; Chiayi Taiwan Republic of China
| | - Yu-Lin Huang
- Department of Pharmacology College of Medicine; National Cheng Kung University; Tainan Taiwan Republic of China
| | - Chien-Hsun Lin
- Department of Pharmacology College of Medicine; National Cheng Kung University; Tainan Taiwan Republic of China
| | - Jing-Jou Yan
- Department of Pathology; National Cheng Kung University Hospital; Tainan Taiwan Republic of China
| | - Bor-Shyang Sheu
- Department of Internal Medicine; National Cheng Kung University Hospital; Tainan Taiwan Republic of China
| | - Pei-Jung Lu
- Institute of Clinical Medicine College of Medicine; National Cheng Kung University; Tainan Taiwan Republic of China
| | - Wei-Lun Chang
- Department of Internal Medicine; National Cheng Kung University Hospital; Tainan Taiwan Republic of China
| | - Wu-Wei Lai
- Department of Surgery; National Cheng Kung University Hospital; Tainan Taiwan Republic of China
| | - Yi-Ching Wang
- Institute of Basic Medical Sciences College of Medicine; National Cheng Kung University; Tainan Taiwan Republic of China
- Department of Pharmacology College of Medicine; National Cheng Kung University; Tainan Taiwan Republic of China
| |
Collapse
|
27
|
Pasche B, Pennison MJ, Jimenez H, Wang M. TGFBR1 and cancer susceptibility. TRANSACTIONS OF THE AMERICAN CLINICAL AND CLIMATOLOGICAL ASSOCIATION 2014; 125:300-312. [PMID: 25125747 PMCID: PMC4112675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Transforming growth factor beta (TGF-β) is a potent inhibitor of cell growth. TGFBR1 6A is a polymorphism consisting of a 9-base pair in-frame deletion within exon 1 of the type I TGF-β receptor (TGFBR1), which results in a receptor with decreased TGF-β signaling capability. The discovery of an association between TGFBR1*6A and cancer susceptibility led to the hypothesis that hypomorphic variants of the TGF-β signaling pathway may predispose to the development of cancer. This hypothesis was tested in vivo with the development of a mouse model of Tgfbr1 haploinsufficiency. Tgfbr1 (+/-) mice developed twice as many intestinal tumors as Tgfbr1 (+/+). Tgfbr1 haploinsufficiency was also associated with early onset adenocarcinoma and increased tumor cell proliferation. A case control study identified two haplotypes associated with constitutively decreased TGFBR1 and substantially increased colorectal cancer risk indicating that TGFBR1 may act as a potent modifier of cancer risk.
Collapse
MESH Headings
- Animals
- Biomarkers, Tumor/deficiency
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Genetic Predisposition to Disease
- Humans
- Mice, Knockout
- Neoplasms/genetics
- Neoplasms/metabolism
- Neoplasms/pathology
- Phenotype
- Protein Serine-Threonine Kinases/deficiency
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Receptor, Transforming Growth Factor-beta Type I
- Receptors, Transforming Growth Factor beta/deficiency
- Receptors, Transforming Growth Factor beta/genetics
- Receptors, Transforming Growth Factor beta/metabolism
- Risk Factors
- Signal Transduction
- Transforming Growth Factor beta/metabolism
Collapse
Affiliation(s)
- Boris Pasche
- Correspondence and reprint requests: Boris Pasche, MD, PhD,
Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University, Medical Center Blvd, Winston Salem, NC 27157-1082336-716-7971336-716-0293
| | | | | | | |
Collapse
|
28
|
Liu NN, Xi Y, Callaghan MU, Fribley A, Moore-Smith L, Zimmerman JW, Pasche B, Zeng Q, Li YL. SMAD4 is a potential prognostic marker in human breast carcinomas. Tumour Biol 2013; 35:641-50. [PMID: 23975369 DOI: 10.1007/s13277-013-1088-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 08/05/2013] [Indexed: 12/23/2022] Open
Abstract
SMAD4 is a downstream mediator of transforming growth factor beta. While its tumor suppressor function has been investigated as a prognostic biomarker in several human malignancies, its role as a prognostic marker in breast carcinoma is still undefined. We investigated SMAD4 expression in breast carcinoma samples of different histologic grades to evaluate the association between SMAD4 and outcome in breast cancer. We also investigated the role of SMAD4 expression status in MDA-MB-468 breast cancer cells in responding to TGF-β stimulation. SMAD4 expression was assessed in 53 breast ductal carcinoma samples and in the surrounding normal tissue from 50 of the samples using immunohistochemistry, Western blot, and real-time PCR. TGF-β-SMAD and non-SMAD signaling was assessed by Western blot in MDA-MB-468 cells with and without SMAD4 restoration. SMAD4 expression was reduced in ductal breast carcinoma as compared to surrounding uninvolved ductal breast epithelia (p < 0.05). SMAD4 expression levels decreased from Grade 1 to Grade 3 ductal breast carcinoma as assessed by immunohistochemistry (p < 0.05). Results were recapitulated by tissue array. In addition, immunohistochemistry results were further confirmed at the protein and mRNA level. We then found that non-SMAD MEK/MAPK signaling was significantly different between SMAD4 expressing MDA-MB-468 cells and SMAD4-null MDA-MB-468 cells. This is the first study indicating that SMAD4 plays a key role in shifting MAPK signaling. Further, we have demonstrated that SMAD4 has a potential role in the development of breast carcinoma and SMAD4 was a potential prognostic marker of breast carcinoma. Our findings further support the role of SMAD4 in breast carcinoma development. In addition, we observed an inverse relationship between SMAD4 levels and breast carcinoma histological grade. Our finding indicated that SMAD4 expression level in breast cancer cells played a role in responding non-SMAD signaling but not the canonic SMAD signaling. Further mechanistic studies are necessary to establish the role of SMAD4 in breast carcinoma prognosis and potential specific targeting.
Collapse
Affiliation(s)
- Nan-nan Liu
- The Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China,
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Genetic variations in stem cell-related genes and colorectal cancer prognosis. J Gastrointest Cancer 2013; 43:584-93. [PMID: 22528324 DOI: 10.1007/s12029-012-9388-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Many properties of cancer cells are reminiscent of those in normal stem cells. Genes important to stem cell development have been significantly implicated in the etiology and clinical outcome of colorectal cancer (CRC). However, the associations of genetic variations in these genes with CRC prognosis have not yet been elucidated. METHODS We analyzed the effects of eight potentially functional single nucleotide polymorphisms (SNPs) in six stem cell-related genes on the prognosis of a well-characterized population of 380 Chinese CRC patients diagnosed from February 2006 to January 2010. RESULTS The most significant finding was related to rs879882, a variant in the 5' region of POU5F1 gene which encodes a protein essential for embryonic stem cell self-renewal and pluripotency, and induced pluripotent stem cell reprogramming. The variant-containing genotypes of rs879882 were associated with an increased risk of recurrence (hazard ratio [HR] = 2.10, 95% confidence interval [CI] 1.17-3.76, P = 0.01). In chemotherapy-stratified analysis, the association remained borderline significant in patients receiving chemotherapy (HR = 1.97, 95% CI 0.89-4.34, P = 0.09). In addition, a nonsynonymous SNP of APC gene was also significantly associated with recurrence risk in chemotherapy-treated patients (HR = 2.63, 95% CI 1.14-6.06 P = 0.02). Further analyses showed a combined effect of the two SNPs in predicting CRC recurrence in patients receiving chemotherapy (P = 0.04) but not in those without chemotherapy (P = 0.43). Moreover, an exploratory multivariate assessment model indicated that these two variants enhanced the power to predict recurrence after chemotherapy. CONCLUSION We presented one of the first epidemiologic studies showing that stem cell-related genetic variants may impact CRC clinical outcomes, especially in chemotherapy-treated patients.
Collapse
|
30
|
Zhang A, Wang Q, Han Z, Hu W, Xi L, Gao Q, Wang S, Zhou J, Xu G, Meng L, Chen G, Ma D. Reduced expression of Snail decreases breast cancer cell motility by downregulating the expression and inhibiting the activity of RhoA GTPase. Oncol Lett 2013; 6:339-346. [PMID: 24137327 PMCID: PMC3788855 DOI: 10.3892/ol.2013.1385] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 01/30/2013] [Indexed: 11/05/2022] Open
Abstract
Several lines of evidence support an important role for Snail, a transcriptional factor, in breast cancer. Overexpression of Snail has been associated with breast cancer metastasis, although the specific role of Snail in the process remains unclear. To address this issue, the expression levels of Snail, RhoA and fibronectin, as well as MMP-2, were reduced in the breast tumor cell lines MDA-MB-231 and MDA-MB-435S, and their biological responses were studied in vitro and in vivo. For the first time, it was observed that downregulated Snail expression is correlated with a significant inhibition of the expression and activity of RhoA GTPase, as well as MMP-2. The present data provide evidence that Snail promotes tumor cell motility and angiogenesis which is mainly mediated through the regulation of RhoA activity. In conclusion, the present findings demonstrate a key regulatory role for Snail in breast tumor growth and progression.
Collapse
Affiliation(s)
- Ali Zhang
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030; ; Radiotherapy and Chemotherapy Department, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430000
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Suppression of alkylating agent induced cell transformation and gastric ulceration by low-dose alkylating agent pretreatment. Biochem Biophys Res Commun 2013; 435:714-9. [PMID: 23702486 DOI: 10.1016/j.bbrc.2013.05.049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 05/11/2013] [Indexed: 11/22/2022]
Abstract
Exposure to mild stress by chemicals and radiation causes DNA damage and leads to acquired stress resistance. Although the linear no-threshold (LNT) model of safety assessment assumes risk from any dose, evidence from radiological research demonstrates a conflicting hormetic phenomenon known as the hormesis effect. However, the mechanisms underlying radiation hormesis have not yet been clarified, and little is known about the effects of low doses of chemical carcinogens. We analyzed the efficacy of pretreatment with low doses of the alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) on the subsequent induction of cell transformation and gastric ulceration by high-dose MNNG. We used an in vitro Balb/3T3 A31-1-1 cell transformation test and monitored the formation of gastric ulcers in 5-week-old male ICR mice that were administered MNNG in drinking water. The treatment concentrations of MNNG were determined by the cell survival rate and past reports. For low-dose in vitro and in vivo experiments, MNNG was used at 0.028 μM, and 2.8 μg/mL, respectively. The frequency of cell transformation induced by 10 μm MNNG was decreased by low-dose MNNG pretreatment to levels similar to that of spontaneous transformation. In addition, reactive oxygen species (ROS) and mutation frequencies induced by 10 μm MNNG were decreased by low-dose MNNG pretreatment. Importantly, low-dose MNNG pretreatment had no effect on cell proliferation. In vivo studies showed that the number of gastric ulcers induced by 1 mg/mL MNNG decreased after low-dose MNNG pretreatment. These data indicate that low-dose pretreatment with carcinogens may play a beneficial role in the prevention of chemical toxicity under specified conditions.
Collapse
|
32
|
CpG island shore methylation regulates caveolin-1 expression in breast cancer. Oncogene 2012; 32:4519-28. [PMID: 23128390 PMCID: PMC3787796 DOI: 10.1038/onc.2012.474] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 08/10/2012] [Accepted: 08/29/2012] [Indexed: 12/21/2022]
Abstract
Caveolin-1 (Cav1) is an integral membrane, scaffolding protein found in plasma membrane invaginations (caveolae). Cav1 regulates multiple cancer-associated processes. In breast cancer, a tumor suppressive role for Cav1 has been suggested; however, Cav1 is frequently overexpressed in aggressive breast cancer subtypes, suggesting an oncogenic function in advanced-stage disease. To further delineate Cav1 function in breast cancer progression, we evaluated its expression levels among a panel of cell lines representing a spectrum of breast cancer phenotypes. In basal-like (the most aggressive BC subtype) breast cancer cells, Cav1 was consistently upregulated, and positively correlated with increased cell proliferation, anchorage-independent growth, and migration and invasion. To identify mechanisms of Cav1 gene regulation, we compared DNA methylation levels within promoter ‘CpG islands' (CGIs) with ‘CGI shores', recently described regions that flank CGIs with less CG-density. Integration of genome-wide DNA methylation profiles (‘methylomes') with Cav1 expression in 30 breast cancer cell lines showed that differential methylation of CGI shores, but not CGIs, significantly regulated Cav1 expression. In breast cancer cell lines having low Cav1 expression (despite promoter CGI hypomethylation), we found that treatment with a DNA methyltransferase inhibitor induced Cav1 expression via CGI shore demethylation. In addition, further methylome assessments revealed that breast cancer aggressiveness associated with Cav1 CGI shore methylation levels, with shore hypermethylation in minimally aggressive, luminal breast cancer cells and shore hypomethylation in highly aggressive, basal-like cells. Cav1 CGI shore methylation was also observed in human breast tumors, and overall survival rates of breast cancer patients lacking estrogen receptor α (ERα) negatively correlated with Cav1 expression. Based on this first study of Cav1 (a potential oncogene) CGI shore methylation, we suggest this phenomenon may represent a new prognostic marker for ERα-negative, basal-like breast cancer.
Collapse
|
33
|
Liu Y, Wang DL, Chen S, Zhao L, Sun FL. Oncogene Ras/phosphatidylinositol 3-kinase signaling targets histone H3 acetylation at lysine 56. J Biol Chem 2012; 287:41469-80. [PMID: 22982396 PMCID: PMC3510844 DOI: 10.1074/jbc.m112.367847] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
It is well established that the small GTPase Ras promotes tumor initiation by activating at least three different mediators: Raf, PI3K, and Ras-like (Ral) guanine nucleotide exchange factors. However, the exact mechanisms that underlie these different Ras signaling pathways, which are involved in tumor progression, remain to be elucidated. In this study, we report that the Ras-PI3K pathway, but not Raf or the Ral guanine nucleotide exchange factors, specifically targets the acetylation of H3 at lysine 56 (H3K56ac), thereby regulating tumor cell activity. We demonstrate that the Ras-PI3K-induced reduction in H3K56ac is associated with the proliferation and migration of tumor cells by targeting the transcription of tumor-associated genes. The depletion of the histone deacetyltransferases Sirt1 and Sirt2 rescues the Ras-PI3K-induced decrease in H3K56ac, gene transcription, tumor cell proliferation, and tumor cell migration. Furthermore, we demonstrate that the Ras-PI3K-AKT pathway regulates H3K56ac via the MDM2-dependent degradation of CREB-binding protein/p300. Taken together, the results of this study demonstrate that the Ras-PI3K signaling pathway targets specific epigenetic modifications in tumor cells.
Collapse
Affiliation(s)
- Yan Liu
- Institute of Epigenetics and Cancer Research, School of Medicine, Tsinghua University, Beijing 100084, China
| | | | | | | | | |
Collapse
|
34
|
Zimmerman JW, Pennison MJ, Brezovich I, Yi N, Yang CT, Ramaker R, Absher D, Myers RM, Kuster N, Costa FP, Barbault A, Pasche B. Cancer cell proliferation is inhibited by specific modulation frequencies. Br J Cancer 2011; 106:307-13. [PMID: 22134506 PMCID: PMC3261663 DOI: 10.1038/bjc.2011.523] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Background: There is clinical evidence that very low and safe levels of amplitude-modulated electromagnetic fields administered via an intrabuccal spoon-shaped probe may elicit therapeutic responses in patients with cancer. However, there is no known mechanism explaining the anti-proliferative effect of very low intensity electromagnetic fields. Methods: To understand the mechanism of this novel approach, hepatocellular carcinoma (HCC) cells were exposed to 27.12 MHz radiofrequency electromagnetic fields using in vitro exposure systems designed to replicate in vivo conditions. Cancer cells were exposed to tumour-specific modulation frequencies, previously identified by biofeedback methods in patients with a diagnosis of cancer. Control modulation frequencies consisted of randomly chosen modulation frequencies within the same 100 Hz–21 kHz range as cancer-specific frequencies. Results: The growth of HCC and breast cancer cells was significantly decreased by HCC-specific and breast cancer-specific modulation frequencies, respectively. However, the same frequencies did not affect proliferation of nonmalignant hepatocytes or breast epithelial cells. Inhibition of HCC cell proliferation was associated with downregulation of XCL2 and PLP2. Furthermore, HCC-specific modulation frequencies disrupted the mitotic spindle. Conclusion: These findings uncover a novel mechanism controlling the growth of cancer cells at specific modulation frequencies without affecting normal tissues, which may have broad implications in oncology.
Collapse
Affiliation(s)
- J W Zimmerman
- Division of Hematology/Oncology, Department of Medicine, University of Alabama at Birmingham and UAB Comprehensive Cancer Center, 1802 6th Avenue South, NP 2566, Birmingham, AL 35294-3300, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Kristiansen G, Hu J, Wichmann D, Stiehl DP, Rose M, Gerhardt J, Bohnert A, ten Haaf A, Moch H, Raleigh J, Varia MA, Subarsky P, Scandurra FM, Gnaiger E, Gleixner E, Bicker A, Gassmann M, Hankeln T, Dahl E, Gorr TA. Endogenous myoglobin in breast cancer is hypoxia-inducible by alternative transcription and functions to impair mitochondrial activity: a role in tumor suppression? J Biol Chem 2011; 286:43417-28. [PMID: 21930697 DOI: 10.1074/jbc.m111.227553] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Recently, immunohistochemical analysis of myoglobin (MB) in human breast cancer specimens has revealed a surprisingly widespread expression of MB in this nonmuscle context. The positive correlation with hypoxia-inducible factor 2α (HIF-2α) and carbonic anhydrase IX suggested that oxygen regulates myoglobin expression in breast carcinomas. Here, we report that MB mRNA and protein levels are robustly induced by prolonged hypoxia in breast cancer cell lines, in part via HIF-1/2-dependent transactivation. The hypoxia-induced MB mRNA originated from a novel alternative transcription start site 6 kb upstream of the ATG codon. MB regulation in normal and tumor tissue may thus be fundamentally different. Functionally, the knockdown of MB in MDA-MB468 breast cancer cells resulted in an unexpected increase of O(2) uptake and elevated activities of mitochondrial enzymes during hypoxia. Silencing of MB transcription attenuated proliferation rates and motility capacities of hypoxic cancer cells and, surprisingly, also fully oxygenated breast cancer cells. Endogenous MB in cancer cells is apparently involved in controlling oxidative cell energy metabolism, contrary to earlier findings on mouse heart, where the targeted disruption of the Mb gene did not effect myocardial energetics and O(2) consumption. This control function of MB seemingly impacts mitochondria and influences cell proliferation and motility, but it does so in ways not directly related to the facilitated diffusion or storage of O(2). Hypothetically, the mitochondrion-impairing role of MB in hypoxic cancer cells is part of a novel tumor-suppressive function.
Collapse
Affiliation(s)
- Glen Kristiansen
- Institute of Pathology, University Hospital Bonn, 53127 Bonn, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Transforming growth factor β signaling pathway associated gene polymorphisms may explain lower breast cancer risk in western Indian women. PLoS One 2011; 6:e21866. [PMID: 21829601 PMCID: PMC3150347 DOI: 10.1371/journal.pone.0021866] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 06/08/2011] [Indexed: 11/19/2022] Open
Abstract
Transforming growth factor β1 (TGFB1) T29C and TGF β receptor type 1 (TGFBR1) 6A/9A polymorphisms have been implicated in the modulation of risk for breast cancer in Caucasian women. We analyzed these polymorphisms and combinations of their genotypes, in pre menopausal breast cancer patients (N = 182) and healthy women (N = 236) from western India as well as in breast cancer patients and healthy women from the Parsi community (N = 48 & 171, respectively). Western Indian women were characterized by a higher frequency of TGFB1*C allele of the TGF β T29C polymorphism (0.48 vs 0.44) and a significantly lower frequency of TGFBR1*6A allele of the TGFBR1 6A/9A polymorphism (0.02 vs 0.068, p<0.01) as compared to healthy Parsi women. A strong protective effect of TGFB1*29C allele was seen in younger western Indian women (<40 yrs; OR = 0.45, 95% CI 0.25-0.81). Compared to healthy women, the strikingly higher frequencies of low or intermediate TGF β signalers in patients suggested a strong influence of the combination of these genotypes on the risk for breast cancer in Parsi women (for intermediate signalers, OR = 4.47 95%CI 1.01-19.69). The frequency of low signalers in Parsi healthy women, while comparable to that reported in Europeans and Americans, was three times higher than that in healthy women from western India (10.6% vs 3.3%, p<0.01). These observations, in conjunction with the low incidence rate of breast cancer in Indian women compared to White women, raise a possibility that the higher frequency of TGFB1*29C allele and lower frequency of TGFBR1*6A allele may represent important genetic determinants that together contribute to a lower risk of breast cancer in western Indian women.
Collapse
|
37
|
Moore-Smith L, Pasche B. TGFBR1 signaling and breast cancer. J Mammary Gland Biol Neoplasia 2011; 16:89-95. [PMID: 21461994 PMCID: PMC4753062 DOI: 10.1007/s10911-011-9216-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Accepted: 03/21/2011] [Indexed: 10/18/2022] Open
Abstract
Over the past decade mutations discovered in genes such as BRCA1, BRCA2, TP53 and PTEN, have emerged as high-penetrance susceptibility genes and are clinically relevant for determination of breast cancer risk. Genetic counseling and subsequent screening for mutations and gene rearrangement has improved patient outcome through early detection and prophylactic interventions in patients with familial breast cancer syndromes. However, these high-penetrance genes only account for a small fraction of the hereditary linked breast cancers. It is currently believed that low-penetrance susceptibility alleles and/or environmental factors may play an important role in the remaining cases. TGFBR1*6A (*6A) is a common hypomorphic variant of the type I TGF-β receptor gene (TGFBR1) that has been associated with risk for several forms of cancer, in particular breast cancer. Several epidemiological studies have suggested that patients who carry the *6A allele have an increased risk of breast cancer. Furthermore, functional analysis suggests that this mutation alters TGF-β signaling and promotes tumorigenesis. Although a decade of research has provided basic information in regards to the prevalence of this mutation in several cancer types and populations the molecular underpinning of its functional effects are poorly understood. A better understanding of the molecular mechanism of TGFBR1 signaling in breast cancer may have an impact on breast cancer risk assessment and breast cancer prevention.
Collapse
|
38
|
Abstract
Colorectal cancer is the second most common cause of cancer-related death in the United States. Twin studies suggest that 35% of all colorectal cancer cases are inherited. High-penetrance tumor susceptibility genes account for at most 3-6% of all colorectal cancer cases and the remainder of the unexplained risk is likely due to a combination of low to moderate penetrance genes. Recent genome-wide association studies have identified several SNPs near genes belonging to the transforming growth factor beta (TGF-beta) superfamily such as GREM1 and SMAD7. Together with the recent discovery that constitutively decreased TGFBR1 expression is a potent modifier of colorectal cancer risk, these findings strongly suggest that germline variants of the TGF-beta superfamily may account for a sizeable proportion of colorectal cancer cases. The TGF-beta superfamily signaling pathways mediate many different biological processes during embryonic development, and in adult organisms they play a role in tissue homeostasis. TGF-beta has a central role in inhibiting cell proliferation and also modulates processes such as cell invasion, immune regulation, and microenvironment modification. Mutations in the TGF-beta type II receptor (TGFBR2) are estimated to occur in approximately 30% of colorectal carcinomas. Mutations in SMAD4 and BMPR1A are found in patients with familial juvenile polyposis, an autosomal dominant condition associated with an increased risk of colorectal cancer. This chapter provides an overview of the genetic basis of colorectal cancer and discusses recent discoveries related to alterations in the TGF-beta pathways and their role in the development of colorectal cancer.
Collapse
Affiliation(s)
- Naresh Bellam
- Division of Hematology/Oncology, Department of Medicine, UAB Comprehensive Cancer Center, The University of Alabama, Birmingham, AL 35294-3300, USA
| | | |
Collapse
|
39
|
Hu YS, Pan Y, Li WH, Zhang Y, Li J, Ma BA. Association between TGFBR1*6A and osteosarcoma: a Chinese case-control study. BMC Cancer 2010; 10:169. [PMID: 20429896 PMCID: PMC2875216 DOI: 10.1186/1471-2407-10-169] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Accepted: 04/29/2010] [Indexed: 12/17/2022] Open
Abstract
Background TGFBR1*6A is a common hypomorphic variant of transforming growth factor β receptor 1 (TGFBR1). TGFBR1*6A is associated with an increased cancer risk, but the association of this polymorphism with osteosarcoma remains unknown. We have measured the frequency of TGFBR1*6A variants in osteosarcoma cases and controls. Methods Our case-control study is based on 168 osteosarcoma patients and 168 age- and gender-matched controls. Blood samples were obtained and the TGFBR1*6A variant determined by PCR amplification and DNA sequencing. The odds ratio (OR) and 95% confidence interval (95% CI) for the TGFBR1*6A polymorphism were calculated by unconditional logistic regression, adjusted for both age and gender. Three models - dominant, additive and recessive - were used to analyze the contribution of the TGFBR1*6A variant to osteosarcoma susceptibility. Results Heterozygotic and homozygotic TGFBR1*6A variants represented 50.4% and 6.0% of the 168 cases, whereas the controls had 18. 5% and 1.3%, respectively. ORs for homozygosity and heterozygosity of the TGFBR1*6A allele were 4.6 [95% CI, 2.33-7.97] and 2.9 [95% CI, 1.59-5.34] in the additive model. There were significant increases in the TGFBR1*6A variants in osteosarcoma cases compared to control in all 3 models. Further analysis showed that TGFBR1*6A genotypes were not associated with gender, age, or tumor location. However, TGFBR1*6A was significantly associated with less metastasis. Conclusions TGFBR1*6A, a dominant polymorphism of TGFBR1, is associated with increased susceptibility and metastasis spread of osteosarcoma.
Collapse
Affiliation(s)
- Yun-Sheng Hu
- Center of Orthopaedic Surgery, Orthopaedic Oncology Institute of PLA, Tangdu Hospital, Fourth Military Medical University, Xi'an, China.
| | | | | | | | | | | |
Collapse
|
40
|
Pasche B, Yi N. Candidate gene association studies: successes and failures. Curr Opin Genet Dev 2010; 20:257-61. [PMID: 20417090 DOI: 10.1016/j.gde.2010.03.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 03/12/2010] [Accepted: 03/15/2010] [Indexed: 12/30/2022]
Abstract
Epidemiologic studies of twins indicate that 20-40% of common tumors such as breast, colorectal, and prostate cancers are inherited. However, the effect of high penetrance tumor susceptibility genes such as APC, BRCA1, BRAC2, MSH1, MLH2 and MSH6 only accounts for a small fraction of these cancers. Low to moderate penetrance tumor susceptibility genes likely account for the large remaining proportion of familial cancer risk. Candidate tumor susceptibility genes have been identified based on the discovery of tumor-specific mutations, in vitro experiments, as well as animal models of cancer. Translational studies based on in vitro and in vivo discoveries have led to the identification of novel phenotypes and genotypes associated with cancer in humans. Case-control studies followed by validation studies and meta-analyses have unveiled several novel tumor susceptibility genes, several of which belong to genes encoding metabolizing enzymes and genes from the TGF-beta signaling pathway. Together with genome-wide association studies, candidate gene approaches are likely to fill a large gap in our knowledge of the genetic basis of cancer within the next decade.
Collapse
Affiliation(s)
- Boris Pasche
- Division of Hematology/Oncology, Department of Medicine, University of Alabama at Birmingham and UAB Comprehensive Cancer Center, Birmingham, AL 35294-3300, USA.
| | | |
Collapse
|
41
|
Försti A, Li X, Wagner K, Tavelin B, Enquist K, Palmqvist R, Altieri A, Hallmans G, Hemminki K, Lenner P. Polymorphisms in the transforming growth factor beta 1 pathway in relation to colorectal cancer progression. Genes Chromosomes Cancer 2010; 49:270-81. [PMID: 19998449 DOI: 10.1002/gcc.20738] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Transforming growth factor beta1 (TGFB1) acts as a growth inhibitor of normal colonic epithelial cells, however, as a tumor promoter of colorectal cancer (CRC) cells. To explore the association between genetic polymorphisms in the TGFB1 pathway and CRC susceptibility and clinical outcome, we carried out a case-control study on a Swedish population of 308 CRC cases and 585 age- and gender-matched controls. The cases were sampled prospectively and had up to 16 years follow-up, making the study material particularly suitable for survival analysis. On the basis of their reported or predicted functional effect, nine single-nucleotide polymorphisms (TGFB1: Leu10Pro; TGFBR1: 9A/6A and IVS7G+24A; FURIN: C-229T; THBS1: T+42C; LTBP1L: C-256G; LTBP4: T-893G and Thr750Ala; BAMBI: T-779A) were selected for genotyping. We evaluated the associations between genotypes and CRC and Dukes' stage. Survival probabilities were compared between different subgroups. The observed statistically significant associations included a decreased CRC risk for TGFBR1 IVS7G+24A minor allele carriers (odds ratio (OR): 0.72, 95% confidence interval (CI): 0.53-0.97), less aggressive tumors with Dukes' stage A+B for carriers of LTBP4 Thr750Ala and BAMBI T-779A minor alleles (OR: 0.58, 95%CI: 0.36-0.93 and OR: 0.51, 95%CI: 0.29-0.89, respectively) and worse survival for FURIN C-229T heterozygotes (hazard ratio: 1.63, 95%CI: 1.08-2.46). As this is the first study about the influence of the polymorphisms in the TGFB1 pathway on CRC progression, further studies in large independent cohorts are warranted.
Collapse
Affiliation(s)
- Asta Försti
- Department of Molecular Genetic Epidemiology, German Cancer Research Center, Heidelberg, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Changes in expression, and/or mutations in TGF-beta receptors (TGF-beta RI and TGF-beta RII) and Smad 4 in human ovarian tumors. J Cancer Res Clin Oncol 2010; 136:351-61. [PMID: 19916025 DOI: 10.1007/s00432-009-0703-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2009] [Accepted: 10/19/2009] [Indexed: 10/20/2022]
Abstract
PURPOSE Loss of sensitivity to transforming growth factor beta (TGF-beta) signaling typically occurs in human ovarian cancer cells, but there is paucity of information regarding this in human ovarian tumors. Thus the association of inactivating mutations and/or variations in expression levels of TGF-beta signaling components with human ovarian tumors was evaluated. METHODS Forty human ovarian tissue samples were analyzed for mutations and/or variations in the expression of transforming growth factor beta signaling components. Mutation studies were done through reverse transcription (RT) PCR, single strand conformation polymorphism analysis and automated DNA sequencing. Expression studies were carried out by semi quantitative RT PCR and western blotting. DNA binding ability of Smad complexes and expression of downstream targets were also analyzed. RESULTS The six alanine repeat containing variant of TGF-beta RI was seen in 27% of the tumor cases studied, in addition to the 45 bp nucleotide deletions in exon 1 of the receptor in two ovarian tumor samples. A deletion in the polyadenine tract of exon 3 of TGF-beta RII was seen in 22% of the tumor samples. We also report a loss or decrease in the expression of Smad 4 protein in tumor samples with a concurrent loss or reduced DNA binding ability of the Smad complex and deregulated expression of p21 and c-Myc. CONCLUSIONS Our results suggest that mutations and/or alterations in expression of TGF-beta receptors and loss of Smad 4 are frequent in human ovarian cancers and may potentially explain the frequent loss of TGF-beta responsiveness that typically occurs in human ovarian cancer.
Collapse
|
43
|
Bu DX, Rai V, Shen X, Rosario R, Lu Y, D'Agati V, Yan SF, Friedman RA, Nuglozeh E, Schmidt AM. Activation of the ROCK1 branch of the transforming growth factor-beta pathway contributes to RAGE-dependent acceleration of atherosclerosis in diabetic ApoE-null mice. Circ Res 2010; 106:1040-51. [PMID: 20133903 DOI: 10.1161/circresaha.109.201103] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
RATIONALE The multiligand RAGE (receptor for advanced glycation end products) contributes to atherosclerosis in apolipoprotein (Apo)E-null mice. OBJECTIVE To delineate the specific mechanisms by which RAGE accelerated atherosclerosis, we performed Affymetrix gene expression arrays on aortas of nondiabetic and diabetic ApoE-null mice expressing RAGE or devoid of RAGE at nine weeks of age, as this reflected a time point at which frank atherosclerotic lesions were not yet present, but that we would be able to identify the genes likely involved in diabetes- and RAGE-dependent atherogenesis. METHODS AND RESULTS We report that there is very little overlap of the genes that are differentially expressed both in the onset of diabetes in ApoE-null mice, and in the effect of RAGE deletion in diabetic ApoE-null mice. Pathway-Express analysis revealed that the transforming growth factor-beta pathway and focal adhesion pathways might be expected to play a significant role in both the mechanism by which diabetes facilitates the formation of atherosclerotic plaques in ApoE-null mice, and the mechanism by which deletion of RAGE ameliorates this effect. Quantitative polymerase chain reaction studies, Western blotting, and confocal microscopy in aortic tissue and in primary cultures of murine aortic smooth muscle cells supported these findings. CONCLUSIONS Taken together, our work suggests that RAGE-dependent acceleration of atherosclerosis in ApoE-null mice is dependent, at least in part, on the action of the ROCK1 (rho-associated protein kinase 1) branch of the transforming growth factor-beta pathway.
Collapse
Affiliation(s)
- De-xiu Bu
- Division of Surgical Science, Department of Surgery, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Lei Z, Liu RY, Zhao J, Liu Z, Jiang X, You W, Chen XF, Liu X, Zhang K, Pasche B, Zhang HT. TGFBR1 haplotypes and risk of non-small-cell lung cancer. Cancer Res 2009; 69:7046-52. [PMID: 19690145 DOI: 10.1158/0008-5472.can-08-4602] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Transforming growth factor beta (TGF-beta) receptors are centrally involved in TGF-beta-mediated cell growth and differentiation and are frequently inactivated in non-small-cell lung cancer (NSCLC). Constitutively decreased type I TGF-beta receptor (TGFBR1) expression is emerging as a novel tumor-predisposing phenotype. The association of TGFBR1 haplotypes with risk for NSCLC has not yet been studied. We tested the hypothesis that single-nucleotide polymorphisms (SNP) and/or TGFBR1 haplotypes are associated with risk of NSCLC. We genotyped six TGFBR1 haplotype-tagging SNPs (htSNP) by PCR-RFLP assays and one htSNP by PCR-single-strand conformation polymorphism assay in two case-control studies. Case-control study 1 included 102 NSCLC patients and 104 healthy controls from Suzhou. Case-control study 2 included 131 patients with NSCLC and 133 healthy controls from Wuxi. Individuals included in both case-control studies were Han Chinese. Haplotypes were reconstructed according to the genotyping data and linkage disequilibrium status of these seven htSNPs. None of the htSNP was associated with NSCLC risk in either study. However, a four-marker CTGC haplotype was significantly more common among controls than among cases in both studies (P = 0.014 and P = 0.010, respectively), indicating that this haplotype is associated with decreased NSCLC risk {adjusted odds ratio [OR], 0.09 [95% confidence interval (95% CI), 0.01-0.61] and 0.11 [95% CI, 0.02-0.59], respectively}. Combined analysis of both studies shows a strong association of this four-marker haplotype with decreased NSCLC risk (adjusted OR, 0.11; 95% CI, 0.03-0.39). This is the first evidence of an association between a TGFBR1 haplotype and risk for NSCLC.
Collapse
Affiliation(s)
- Zhe Lei
- Laboratory of Medical Genetics, School of Basic Medicine and Biological Sciences, The First Affiliated Hospital, Medical College of Soochow University, Suzhou, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Zeng Q, Phukan S, Xu Y, Sadim M, Rosman DS, Pennison M, Liao J, Yang GY, Huang CC, Valle L, Di Cristofano A, de la Chapelle A, Pasche B. Tgfbr1 haploinsufficiency is a potent modifier of colorectal cancer development. Cancer Res 2009; 69:678-86. [PMID: 19147584 DOI: 10.1158/0008-5472.can-08-3980] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Transforming growth factor-beta (TGF-beta) signaling is frequently altered in colorectal cancer. Using a novel model of mice heterozygous for a targeted null mutation of Tgfbr1 crossed with Apc(Min/+) mice, we show that Apc(Min/+);Tgfbr1(+/-) mice develop twice as many intestinal tumors as Apc(Min/+);Tgfbr1(+/+) mice, as well as adenocarcinoma of the colon, without loss of heterozygosity at the Tgfbr1 locus. Decreased Smad2 and Smad3 phosphorylation and increased cellular proliferation are observed in the colonic epithelium crypts of Apc(Min/+); Tgfbr1(+/-) mice. Smad-mediated TGF-beta signaling is preserved in both Apc(Min/+);Tgfbr1(+/+) and Apc(Min/+);Tgfbr1(+/-) intestinal tumors, but cyclin D1 expression and cellular proliferation are significantly higher in Apc(Min/+);Tgfbr1(+/-) tumors. These results show that constitutively reduced Tgfbr1-mediated TGF-beta signaling significantly enhances colorectal cancer development and results in increased tumor cell proliferation. These findings provide a plausible molecular mechanism for colorectal cancer development in individuals with constitutively altered TGFBR1 expression, a recently identified common form of human colorectal cancer.
Collapse
Affiliation(s)
- Qinghua Zeng
- Department of Medicine, Division of Hematology/Oncology, Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama 35294-3300, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Li H, Ung CY, Ma XH, Li BW, Low BC, Cao ZW, Chen YZ. Simulation of crosstalk between small GTPase RhoA and EGFR-ERK signaling pathway via MEKK1. ACTA ACUST UNITED AC 2008; 25:358-64. [PMID: 19074159 DOI: 10.1093/bioinformatics/btn635] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
MOTIVATION Small GTPase RhoA regulates cell-cycle progression via several mechanisms. Apart from its actions via ROCK, RhoA has recently been found to activate a scaffold protein MEKK1 known to promote ERK activation. We examined whether RhoA can substantially affect ERK activity via this MEKK1-mediated crosstalk between RhoA and EGFR-ERK pathway. By extending the published EGFR-ERK simulation models represented by ordinary differential equations, we developed a simulation model that includes this crosstalk, which was validated with a number of experimental findings and published simulation results. RESULTS Our simulation suggested that, via this crosstalk, RhoA elevation substantially prolonged duration of ERK activation at both normal and reduced Ras levels. Our model suggests ERK may be activated in the absence of Ras. When Ras is overexpressed, RhoA elevation significantly prolongs duration of ERK activation but reduces the amount of active ERK partly due to competitive binding between ERK and RhoA to MEKK1. Our results indicated possible roles of RhoA in affecting ERK activities via MEKK1-mediated crosstalk, which seems to be supported by indications from several experimental studies that may also implicate the collective regulation of cell fate and progression of cancer and other diseases.
Collapse
Affiliation(s)
- Hu Li
- Bioinformatics and Drug Design Group, Department of Pharmacy, National University of Singapore, Blk S16, Level 8, 3 Science Drive 2, Singapore 117543
| | | | | | | | | | | | | |
Collapse
|
47
|
Caramel J, Quignon F, Delattre O. RhoA-dependent regulation of cell migration by the tumor suppressor hSNF5/INI1. Cancer Res 2008; 68:6154-61. [PMID: 18676838 DOI: 10.1158/0008-5472.can-08-0115] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Malignant rhabdoid tumors (MRT) are extremely aggressive pediatric tumors caused by the inactivation of the hSNF5/INI1 tumor suppressor gene, which encodes a core member of the SWI/SNF chromatin remodeling complex. Roles for hSNF5/INI1 in cell cycle and differentiation have been documented. Based on the observation that MRTs are highly invasive, we investigated a role for hSNF5/INI1 in cell migration. MRT cell lines exhibit high migration properties that are dramatically reduced upon hSNF5/INI1 expression. This effect is associated with the disorganization of the actin stress fiber network and is mediated by the inhibition of the activity of the small GTPase RhoA, through a nuclear, SWI/SNF-dependent transcriptional mechanism. We further show that the knockdown of hSNF5/INI1 in epithelial 293T or MCF7 cells results in increased cell size, loss of cell-cell adhesions, and enhanced migration, associated with an increased RhoA activity. Finally, we show that the SNF5 homology domain is required for hSNF5/INI1-mediated inhibition of migration, and that a missense mutation (S284L) associated with cancer is sufficient to impair hSNF5/INI1 function in migration. We conclude that the inhibition of migration is another crucial tumor suppressor function of hSNF5/INI1, in addition to its previously described functions in proliferation and differentiation, and that its loss-of-function in MRTs may account for the high invasiveness and metastatic potential of these tumors.
Collapse
Affiliation(s)
- Julie Caramel
- Institut Curie and Institut National de la Santé et de la Recherche Medicale U830, Unité de Génétique et Biologie des Cancers, Paris, France
| | | | | |
Collapse
|