1
|
Lossaint G, Horvat A, Gire V, Bacevic K, Mrouj K, Charrier-Savournin F, Georget V, Fisher D, Dulic V. Reciprocal regulation of p21 and Chk1 controls the Cyclin D1-RB pathway to mediate senescence onset after G2 arrest. J Cell Sci 2022; 135:274865. [PMID: 35343565 DOI: 10.1242/jcs.259114] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 03/18/2022] [Indexed: 11/20/2022] Open
Abstract
Senescence is an irreversible proliferation withdrawal that can be initiated after DNA damage-induced cell cycle arrest in G2 phase to prevent genomic instability. Senescence onset in G2 requires p53 and RB family tumour suppressors, but how they are regulated to convert a temporary cell cycle arrest into a permanent one remains unknown. Here, we show that a previously unrecognised balance between the CDK inhibitor p21 and Chk1 controls D-type cyclin-CDK activity during G2 arrest. In non-transformed cells, p21 activates RB in G2 by inhibiting Cyclin D1-CDK2/CDK4. The resulting G2 exit, which precedes appearance of senescence markers, is associated with a mitotic bypass, Chk1 downregulation and DNA damage foci reduction. In p53/RB-proficient cancer cells, compromised G2 exit correlates with sustained Chk1 activity, delayed p21 induction, untimely Cyclin E1 re-expression and genome reduplication. Conversely, Chk1 depletion promotes senescence by inducing p21 binding to Cyclin D1 and Cyclin E1-CDK complexes and down-regulating CDK6, whereas Chk2 knockdown enables RB phosphorylation and delays G2 exit. In conclusion, p21 and Chk2 oppose Chk1 to maintain RB activity, thus promoting DNA damage-induced senescence onset in G2.
Collapse
Affiliation(s)
| | | | | | | | - Karim Mrouj
- IGMM, Univ. Montpellier, CNRS, Montpellier, France
| | | | - Virginie Georget
- CRBM, Univ. Montpellier, CNRS, Montpellier, France.,Montpellier Ressources Imagerie, BioCampus, University of Montpellier, CNRS, INSERM, Montpellier, France
| | | | | |
Collapse
|
2
|
Tsao WC, Buj R, Aird KM, Sidorova JM, Eckert KA. Overexpression of oncogenic H-Ras in hTERT-immortalized and SV40-transformed human cells targets replicative and specialized DNA polymerases for depletion. PLoS One 2021; 16:e0251188. [PMID: 33961649 PMCID: PMC8104423 DOI: 10.1371/journal.pone.0251188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/21/2021] [Indexed: 11/26/2022] Open
Abstract
DNA polymerases play essential functions in replication fork progression and genome maintenance. DNA lesions and drug-induced replication stress result in up-regulation and re-localization of specialized DNA polymerases η and κ. Although oncogene activation significantly alters DNA replication dynamics, causing replication stress and genome instability, little is known about DNA polymerase expression and regulation in response to oncogene activation. Here, we investigated the consequences of mutant H-RASG12V overexpression on the regulation of DNA polymerases in h-TERT immortalized and SV40-transformed human cells. Focusing on DNA polymerases associated with the replication fork, we demonstrate that DNA polymerases are depleted in a temporal manner in response to H-RASG12V overexpression. The polymerases targeted for depletion, as cells display markers of senescence, include the Pol α catalytic subunit (POLA1), Pol δ catalytic and p68 subunits (POLD1 and POLD3), Pol η, and Pol κ. Both transcriptional and post-transcriptional mechanisms mediate this response. Pol η (POLH) depletion is sufficient to induce a senescence-like growth arrest in human foreskin fibroblast BJ5a cells, and is associated with decreased Pol α expression. Using an SV-40 transformed cell model, we observed cell cycle checkpoint signaling differences in cells with H-RasG12V-induced polymerase depletion, as compared to Pol η-deficient cells. Our findings contribute to our understanding of cellular events following oncogene activation and cellular transformation.
Collapse
Affiliation(s)
- Wei-chung Tsao
- Department of Pathology, The Jake Gittlen Laboratories for Cancer Research, Penn State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Raquel Buj
- Department of Cellular and Molecular Physiology, Penn State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Katherine M. Aird
- Department of Cellular and Molecular Physiology, Penn State University College of Medicine, Hershey, Pennsylvania, United States of America
- Penn State Cancer Institute, Pennsylvania State University, Hershey, Pennsylvania, United States of America
| | - Julia M. Sidorova
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
| | - Kristin A. Eckert
- Department of Pathology, The Jake Gittlen Laboratories for Cancer Research, Penn State University College of Medicine, Hershey, Pennsylvania, United States of America
- Penn State Cancer Institute, Pennsylvania State University, Hershey, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
3
|
Axitinib induces senescence-associated cell death and necrosis in glioma cell lines: The proteasome inhibitor, bortezomib, potentiates axitinib-induced cytotoxicity in a p21(Waf/Cip1) dependent manner. Oncotarget 2018; 8:3380-3395. [PMID: 27926485 PMCID: PMC5356889 DOI: 10.18632/oncotarget.13769] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 11/18/2016] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma is associated with a poor overall survival despite new treatment advances. Antiangiogenic strategies targeting VEGF based on tyrosine kinase inhibitors (TKIs) are currently undergoing extensive research for the treatment of glioma. Herein we demonstrated that the TKI axitinib induces DNA damage response (DDR) characterized by γ-H2AX phosphorylation and Chk1 kinase activation leading to G2/M cell cycle arrest and mitotic catastrophe in U87, T98 and U251 glioma cell lines. Moreover, we found that p21(Waf1/Cip1) increased levels correlates with induction of ROS and senescence-associated cell death in U87 and T98 cell lines, which are reverted by N-acetyl cysteine pretreatment. Conversely, U251 cell line showed a resistant phenotype in response to axitinib treatment, as evidenced by cell cycle arrest but no sign of cell death. The combinatorial use of axitinib with other therapies, with the aim of inhibiting multiple signaling pathways involved in tumor growth, can increase the efficiency of this TKI. Thus, we addressed the combined effects of axitinib with no toxic doses of the proteasome inhibitor bortezomib on the growth of U87 and T98 axitinib-sensitive and axitinib-resistant U251 cell lines. Compared to single treatments, combined exposure was more effective in inhibiting cell viability of all glioma cell lines, although with different cell death modalities. The regulation of key DDR and cell cycle proteins, including Chk1, γ-H2AX and p21(Waf1/Cip1) was also studied in glioma cell lines. Collectively, these findings provide new perspectives for the use of axitinib in combination with Bortezomib to overcome the therapy resistance in gliomas.
Collapse
|
4
|
Morelli MB, Amantini C, Santoni M, Soriani A, Nabissi M, Cardinali C, Santoni A, Santoni G. Axitinib induces DNA damage response leading to senescence, mitotic catastrophe, and increased NK cell recognition in human renal carcinoma cells. Oncotarget 2016; 6:36245-59. [PMID: 26474283 PMCID: PMC4742174 DOI: 10.18632/oncotarget.5768] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 09/12/2015] [Indexed: 01/26/2023] Open
Abstract
Tyrosine kinase inhibitors (TKIs) including axitinib have been introduced in the treatment of renal cell carcinoma (RCC) because of their anti-angiogenic properties. However, no evidence are presently available on a direct cytotoxic anti-tumor activity of axitinib in RCC. Herein we reported by western blot analysis that axitinib treatment induces a DNA damage response (DDR) initially characterized by γ-H2AX phosphorylation and Chk1 kinase activation and at later time points by p21 overexpression in A-498 and Caki-2 RCC cells although with a different potency. Analysis by immunocytochemistry for the presence of 8-oxo-7,8-dihydro-2′-deoxyguanosine in cellular DNA and flow cytometry using the redox-sensitive fluorescent dye DCFDA, demonstrated that DDR response is accompanied by the presence of oxidative DNA damage and reactive oxygen species (ROS) generation. This response leads to G2/M cell cycle arrest and induces a senescent-like phenotype accompanied by enlargement of cells and increased senescence-associated β-galactosidase activity, which are abrogated by N-acetyl cysteine (NAC) pre-treatment. In addition, axitinib-treated cells undergo to cell death through mitotic catastrophe characterized by micronucleation and abnormal microtubule assembly as assessed by fluorescence microscopy. On the other hand, axitinib, through the DDR induction, is also able to increase the surface NKG2D ligand expression. Accordingly, drug treatment promotes NK cell recognition and degranulation in A-498 RCC cells in a ROS-dependent manner. Collectively, our results indicate that both cytotoxic and immunomodulatory effects on RCC cells can contribute to axitinib anti-tumor activity.
Collapse
Affiliation(s)
- Maria Beatrice Morelli
- School of Pharmacy, Experimental Medicine Section, University of Camerino, Camerino, Italy.,Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - Consuelo Amantini
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Matteo Santoni
- Department of Medical Oncology, AOU Ospedali Riuniti, Polytechnic University of the Marche Region, Ancona, Italy
| | | | - Massimo Nabissi
- School of Pharmacy, Experimental Medicine Section, University of Camerino, Camerino, Italy
| | - Claudio Cardinali
- School of Pharmacy, Experimental Medicine Section, University of Camerino, Camerino, Italy.,Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - Angela Santoni
- Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - Giorgio Santoni
- School of Pharmacy, Experimental Medicine Section, University of Camerino, Camerino, Italy
| |
Collapse
|
5
|
Venkatesh R, Ramaiah MJ, Gaikwad HK, Janardhan S, Bantu R, Nagarapu L, Sastry GN, Ganesh AR, Bhadra M. Luotonin-A based quinazolinones cause apoptosis and senescence via HDAC inhibition and activation of tumor suppressor proteins in HeLa cells. Eur J Med Chem 2015; 94:87-101. [PMID: 25757092 DOI: 10.1016/j.ejmech.2015.02.057] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 01/06/2015] [Accepted: 02/28/2015] [Indexed: 12/19/2022]
Abstract
A series of novel quinazolinone hybrids were synthesized by employing click chemistry and evaluated for anti-proliferative activities against MCF-7, HeLa and K562 cell lines. Among these cell lines, HeLa cells were found to respond effectively to these quinazolinone hybrids with IC50 values ranging from 5.94 to 16.45 μM. Some of the hybrids (4q, 4r, 4e, 4k, 4t, 4w) with promising anti-cancer activity were further investigated for their effects on the cell cycle distribution. FACS analysis revealed the G1 cell cycle arrest nature of these hybrids. Further to assess the senescence inducing ability of these compounds, a senescence associated β-gal assay was performed. The senescence inducing nature of these compounds was supported by the effect of hybrid (4q) on p16 promoter activity, the marker for senescence. Moreover, cells treated with most effective compound (4q) show up-regulation of p53, p21 and down-regulation of HDAC-1, HDAC-2, HDAC-5 and EZH2 mRNA levels. Docking results suggest that, the triazole nitrogen showed Zn(+2) mediated interactions with the histidine residue of HDACs.
Collapse
Affiliation(s)
- Ramineni Venkatesh
- Organic Chemistry Division II, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, India
| | - M Janaki Ramaiah
- Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500607, India
| | - Hanmant K Gaikwad
- Organic Chemistry Division II, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, India
| | - Sridhara Janardhan
- Centre for Molecular Modeling, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500607, India
| | - Rajashaker Bantu
- Organic Chemistry Division II, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, India
| | - Lingaiah Nagarapu
- Organic Chemistry Division II, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, India.
| | - G Narahari Sastry
- Centre for Molecular Modeling, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500607, India
| | - A Raksha Ganesh
- Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500607, India
| | - Manikapal Bhadra
- Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500607, India
| |
Collapse
|
6
|
Burzynski SR, Janicki TJ, Burzynski GS, Marszalek A. The response and survival of children with recurrent diffuse intrinsic pontine glioma based on phase II study of antineoplastons A10 and AS2-1 in patients with brainstem glioma. Childs Nerv Syst 2014; 30:2051-61. [PMID: 24718705 PMCID: PMC4223571 DOI: 10.1007/s00381-014-2401-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 03/06/2014] [Indexed: 11/10/2022]
Abstract
BACKGROUND Brainstem gliomas (BSG) are relatively rare tumors of which recurrent pediatric diffuse intrinsic pontine gliomas (RPDIPG) comprise a distinct group. Numerous trials have been conducted on RPDIPG, none of which have resulted in identifying any proven pharmacological treatment benefit. This study included 40 patients diagnosed with different types of BSG, but it was decided to describe first the encouraging results in the most challenging group of RPDIPG. MATERIALS AND METHODS This single-arm phase II study evaluated the efficacy and safety of the combination of antineoplastons A10 and AS2-1 (ANP) in patients with RPDIPG. Seventeen patients (median age 8.8 years) were enrolled, and all were diagnosed with RPDIPG. ANP was administered intravenously daily. Efficacy analyses were conducted in this group of patients. RESULTS In this group, complete responses were observed in 6 % of patients, partial responses in 23.5 %, and stable disease in 11.8 %. Six-month progression-free survival was 35.3 %. One-year overall survival was 29.4 %, 2 years 11.8 %, and 5, 10, and 15 years 5.9 %. One patient with DIPG is alive over 15 years post-treatment. Grade 3 and higher toxicities including hypokalemia and fatigue occurred in 6 %, hypernatremia in 18 %, fatigue and urinary incontinence in 6 %, and somnolence in 12 %. In a single patient, grade 4 hypernatremia occurred when he was on mechanical ventilation. He was disconnected from the ventilator and died from brain tumor according to the attending physician. Responding patients experienced improved quality of life. CONCLUSION The results suggest that ANP shows efficacy and acceptable tolerability profile in patients with RPDIPG.
Collapse
Affiliation(s)
| | | | | | - Ania Marszalek
- Burzynski Clinic, 9432 Katy Freeway, Houston, TX 77055 USA
| |
Collapse
|
7
|
Zaidi S, McLaughlin M, Bhide SA, Eccles SA, Workman P, Nutting CM, Huddart RA, Harrington KJ. The HSP90 inhibitor NVP-AUY922 radiosensitizes by abrogation of homologous recombination resulting in mitotic entry with unresolved DNA damage. PLoS One 2012; 7:e35436. [PMID: 22523597 PMCID: PMC3327673 DOI: 10.1371/journal.pone.0035436] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 03/16/2012] [Indexed: 12/27/2022] Open
Abstract
Background Heat shock protein 90 (HSP90) is a molecular chaperone responsible for the conformational maintenance of a number of client proteins that play key roles in cell cycle arrest, DNA damage repair and apoptosis following radiation. HSP90 inhibitors exhibit antitumor activity by modulating the stabilisation and activation of HSP90 client proteins. We sought to evaluate NVP-AUY922, the most potent HSP90 inhibitor yet reported, in preclinical radiosensitization studies. Principal Findings NVP-AUY922 potently radiosensitized cells in vitro at low nanomolar concentrations with a concurrent depletion of radioresistance-linked client proteins. Radiosensitization by NVP-AUY922 was verified for the first time in vivo in a human head and neck squamous cell carcinoma xenograft model in athymic mice, as measured by delayed tumor growth and increased surrogate end-point survival (p = <0.0001). NVP-AUY922 was shown to ubiquitously inhibit resolution of dsDNA damage repair correlating to delayed Rad51 foci formation in all cell lines tested. Additionally, NVP-AUY922 induced a stalled mitotic phenotype, in a cell line-dependent manner, in HeLa and HN5 cell lines irrespective of radiation exposure. Cell cycle analysis indicated that NVP-AUY922 induced aberrant mitotic entry in all cell lines tested in the presence of radiation-induced DNA damage due to ubiquitous CHK1 depletion, but resultant downstream cell cycle effects were cell line dependent. Conclusions These results identify NVP-AUY922 as the most potent HSP90-mediated radiosensitizer yet reported in vitro, and for the first time validate it in a clinically relevant in vivo model. Mechanistic analysis at clinically achievable concentrations demonstrated that radiosensitization is mediated by the combinatorial inhibition of cell growth and survival pathways, ubiquitous delay in Rad51-mediated homologous recombination and CHK1-mediated G2/M arrest, but that the contribution of cell cycle perturbation to radiosensitization may be cell line specific.
Collapse
Affiliation(s)
- Shane Zaidi
- Targeted Therapy Team, Institute of Cancer Research, Chester Beatty Laboratories, London, United Kingdom
| | - Martin McLaughlin
- Targeted Therapy Team, Institute of Cancer Research, Chester Beatty Laboratories, London, United Kingdom
- * E-mail:
| | - Shreerang A. Bhide
- Targeted Therapy Team, Institute of Cancer Research, Chester Beatty Laboratories, London, United Kingdom
| | - Suzanne A. Eccles
- Tumour Biology and Metastasis Team, Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, Haddow Laboratories, Sutton, Surrey, United Kingdom
| | - Paul Workman
- Signal Transduction and Molecular Pharmacology Team, Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, Haddow Laboratories, Sutton, Surrey, United Kingdom
| | | | | | - Kevin J. Harrington
- Targeted Therapy Team, Institute of Cancer Research, Chester Beatty Laboratories, London, United Kingdom
- The Royal Marsden Hospital, London, United Kingdom
| |
Collapse
|
8
|
Sherman MY, Meng L, Stampfer M, Gabai VL, Yaglom JA. Oncogenes induce senescence with incomplete growth arrest and suppress the DNA damage response in immortalized cells. Aging Cell 2011; 10:949-61. [PMID: 21824272 DOI: 10.1111/j.1474-9726.2011.00736.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Activation of the Her2 (ErbB2) oncogene is implicated in the development of breast, ovary and other cancers. Here, we show that expression of NeuT, a mutant-activated rodent isoform of Her2, in immortalized breast epithelial cells, while promoting senescence-associated morphological changes, up-regulation of senescence-associated β-galactosidase activity, and accumulation of the cyclin-dependent kinase inhibitor p21, failed to trigger the major senescence end-point, i.e. permanent growth arrest. Similar senescence-associated phenotype with incomplete growth arrest, which we dubbed senescence with incomplete growth arrest (SWING), could also be triggered by the expression of the Ras oncogene. SWING phenotype was stable, and persisted in tumor xenografts established from NeuT-transduced cells. Furthermore, a significant population of cells in SWING state was found in tumors in the MMTV/NeuT transgenic mouse model. SWING cells showed downregulation of histone H2AX, critical for repair of double-stranded DNA breaks, and impaired activation of Chk1 kinase. Overall, SWING cells were characterized by increased DNA instability and hypersensitivity to genotoxic stresses. We propose that the SWING state could be a stage in the process of cancer development.
Collapse
Affiliation(s)
- Michael Y Sherman
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | | | | | | | | |
Collapse
|
9
|
Poehlmann A, Habold C, Walluscheck D, Reissig K, Bajbouj K, Ullrich O, Hartig R, Gali-Muhtasib H, Diestel A, Roessner A, Schneider-Stock R. Cutting edge: Chk1 directs senescence and mitotic catastrophe in recovery from G₂ checkpoint arrest. J Cell Mol Med 2011; 15:1528-41. [PMID: 20716119 PMCID: PMC3823197 DOI: 10.1111/j.1582-4934.2010.01143.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Besides the well-understood DNA damage response via establishment of G2 checkpoint arrest, novel studies focus on the recovery from arrest by checkpoint override to monitor cell cycle re-entry. The aim of this study was to investigate the role of Chk1 in the recovery from G2 checkpoint arrest in HCT116 (human colorectal cancer) wt, p53–/– and p21–/– cell lines following H2O2 treatment. Firstly, DNA damage caused G2 checkpoint activation via Chk1. Secondly, overriding G2 checkpoint led to (i) mitotic slippage, cell cycle re-entry in G1 and subsequent G1 arrest associated with senescence or (ii) premature mitotic entry in the absence of p53/p21WAF1 causing mitotic catastrophe. We revealed subtle differences in the initial Chk1-involved G2 arrest with respect to p53/p21WAF1: absence of either protein led to late G2 arrest instead of the classic G2 arrest during checkpoint initiation, and this impacted the release back into the cell cycle. Thus, G2 arrest correlated with downstream senescence, but late G2 arrest led to mitotic catastrophe, although both cell cycle re-entries were linked to upstream Chk1 signalling. Chk1 knockdown deciphered that Chk1 defines long-term DNA damage responses causing cell cycle re-entry. We propose that recovery from oxidative DNA damage-induced G2 arrest requires Chk1. It works as cutting edge and navigates cells to senescence or mitotic catastrophe. The decision, however, seems to depend on p53/p21WAF1. The general relevance of Chk1 as an important determinant of recovery from G2 checkpoint arrest was verified in HT29 colorectal cancer cells.
Collapse
Affiliation(s)
- Angela Poehlmann
- Department of Pathology, Otto-von-Guericke University Magdeburg, Leipziger Strasse 44, Magdeburg, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Teh MT, Gemenetzidis E, Chaplin T, Young BD, Philpott MP. Upregulation of FOXM1 induces genomic instability in human epidermal keratinocytes. Mol Cancer 2010; 9:45. [PMID: 20187950 PMCID: PMC2907729 DOI: 10.1186/1476-4598-9-45] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Accepted: 02/26/2010] [Indexed: 12/24/2022] Open
Abstract
Background The human cell cycle transcription factor FOXM1 is known to play a key role in regulating timely mitotic progression and accurate chromosomal segregation during cell division. Deregulation of FOXM1 has been linked to a majority of human cancers. We previously showed that FOXM1 was upregulated in basal cell carcinoma and recently reported that upregulation of FOXM1 precedes malignancy in a number of solid human cancer types including oral, oesophagus, lung, breast, kidney, bladder and uterus. This indicates that upregulation of FOXM1 may be an early molecular signal required for aberrant cell cycle and cancer initiation. Results The present study investigated the putative early mechanism of UVB and FOXM1 in skin cancer initiation. We have demonstrated that UVB dose-dependently increased FOXM1 protein levels through protein stabilisation and accumulation rather than de novo mRNA expression in human epidermal keratinocytes. FOXM1 upregulation in primary human keratinocytes triggered pro-apoptotic/DNA-damage checkpoint response genes such as p21, p38 MAPK, p53 and PARP, however, without causing significant cell cycle arrest or cell death. Using a high-resolution Affymetrix genome-wide single nucleotide polymorphism (SNP) mapping technique, we provided the evidence that FOXM1 upregulation in epidermal keratinocytes is sufficient to induce genomic instability, in the form of loss of heterozygosity (LOH) and copy number variations (CNV). FOXM1-induced genomic instability was significantly enhanced and accumulated with increasing cell passage and this instability was increased even further upon exposure to UVB resulting in whole chromosomal gain (7p21.3-7q36.3) and segmental LOH (6q25.1-6q25.3). Conclusion We hypothesise that prolonged and repeated UVB exposure selects for skin cells bearing stable FOXM1 protein causes aberrant cell cycle checkpoint thereby allowing ectopic cell cycle entry and subsequent genomic instability. The aberrant upregulation of FOXM1 serves as a 'first hit' where cells acquire genomic instability which in turn predisposes cells to a 'second hit' whereby DNA-damage checkpoint response (eg. p53 or p16) is abolished to allow damaged cells to proliferate and accumulate genetic aberrations/mutations required for cancer initiation.
Collapse
Affiliation(s)
- Muy-Teck Teh
- Centre for Clinical and Diagnostic Oral Sciences, Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Turner Street, London E1 2AD, UK.
| | | | | | | | | |
Collapse
|
11
|
HSP72 depletion suppresses γH2AX activation by genotoxic stresses via p53/p21 signaling. Oncogene 2010; 29:1952-62. [DOI: 10.1038/onc.2009.480] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
12
|
Phosphorylation of human DNA ligase I regulates its interaction with replication factor C and its participation in DNA replication and DNA repair. Mol Cell Biol 2009; 29:2042-52. [PMID: 19223468 DOI: 10.1128/mcb.01732-08] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Human DNA ligase I (hLigI) participates in DNA replication and excision repair via an interaction with proliferating cell nuclear antigen (PCNA), a DNA sliding clamp. In addition, hLigI interacts with and is inhibited by replication factor C (RFC), the clamp loader complex that loads PCNA onto DNA. Here we show that a mutant version of hLigI, which mimics the hyperphosphorylated M-phase form of hLigI, does not interact with and is not inhibited by RFC, demonstrating that inhibition of ligation is dependent upon the interaction between hLigI and RFC. To examine the biological relevance of hLigI phosphorylation, we isolated derivatives of the hLigI-deficient cell line 46BR.1G1 that stably express mutant versions of hLigI in which four serine residues phosphorylated in vivo were replaced with either alanine or aspartic acid. The cell lines expressing the phosphorylation site mutants of hLigI exhibited a dramatic reduction in proliferation and DNA synthesis and were also hypersensitive to DNA damage. The dominant-negative effects of the hLigI phosphomutants on replication and repair are due to the activation of cellular senescence, presumably because of DNA damage arising from replication abnormalities. Thus, appropriate phosphorylation of hLigI is critical for its participation in DNA replication and repair.
Collapse
|