1
|
Close DA, Johnston PA. Miniaturization and characterization of patient derived hepatocellular carcinoma tumor organoid cultures for cancer drug discovery applications. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2025; 30:100201. [PMID: 39662672 DOI: 10.1016/j.slasd.2024.100201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/05/2024] [Accepted: 12/08/2024] [Indexed: 12/13/2024]
Abstract
Patient derived tumor organoid (PDTO) models retain the structural, morphological, genetic, and clonal heterogeneity of the original tumors. The ability to efficiently generate, expand, and biobank PDTOs has the potential to make the clinical diversity of cancer accessible for personalized medicine assay guided therapeutic drug selection and drug discovery. We describe the miniaturization and growth in 96- and 384-well formats of a single non-tumor liver and two Hepatocellular carcinoma (HCC) organoids derived from cryopreserved PDTO cells and the application of high content imaging (HCI) to characterize the models and enhance drug sensitivity testing. Non-invasive sequentially acquired transmitted light images showed that seeding cryopreserved cells from non-tumoral and HCC PDTOs into 96- or 384-well plates in reduced growth factor Matrigel (rgf-MG) that were fed with growth medium every 3 days supported organoid growth up to 15 days. The number and sizes of organoids increased with longer times in culture. HCC PDTO's had more heterogeneous morphologies than non-tumor organoids with respect to size, shape, and optical density. Organoids cultured in rgf-MG could be stained in situ with HCI reagents without mechanical, chemical or enzymatic disruption of the hydrogel matrices and quantitative data extracted by image analysis. Hoechst and live/dead reagents provided organoid numbers and viability comparisons. HCC PDTO's stained with phalloidin or immuno-stained with α-tubulin antibodies revealed F-actin and microtubule cytoskeleton organization. HCC PDTO's stained with antibodies to signaling pathway proteins and their phosphorylation status allowed comparisons of relative expression levels and inference of pathway activation. Images of HCC PDTO's exposed to ellipticine showed that drugs penetrate Matrigel hydrogels and accumulate in organoid cells. 9-day 384-well HCC organoid cultures exhibited robust and reproducible growth signals suitable for cancer drug testing. Complimenting cell viability readouts with multiple HCI parameters including morphological features and dead cell staining improved the analysis of drug impact and enhanced the value that could be extracted from these more physiologically relevant three-dimensional HCC organoid cultures.
Collapse
Affiliation(s)
- David A Close
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Paul A Johnston
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA 15232, USA.
| |
Collapse
|
2
|
Zhang X, Li Z, Zhang X, Yuan Z, Zhang L, Miao P. ATF family members as therapeutic targets in cancer: From mechanisms to pharmacological interventions. Pharmacol Res 2024; 208:107355. [PMID: 39179052 DOI: 10.1016/j.phrs.2024.107355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/09/2024] [Accepted: 08/15/2024] [Indexed: 08/26/2024]
Abstract
The activating transcription factor (ATF)/ cAMP-response element binding protein (CREB) family represents a large group of basic zone leucine zip (bZIP) transcription factors (TFs) with a variety of physiological functions, such as endoplasmic reticulum (ER) stress, amino acid stress, heat stress, oxidative stress, integrated stress response (ISR) and thus inducing cell survival or apoptosis. Interestingly, ATF family has been increasingly implicated in autophagy and ferroptosis in recent years. Thus, the ATF family is important for homeostasis and its dysregulation may promote disease progression including cancer. Current therapeutic approaches to modulate the ATF family include direct modulators, upstream modulators, post-translational modifications (PTMs) modulators. This review summarizes the structural domain and the PTMs feature of the ATF/CREB family and comprehensively explores the molecular regulatory mechanisms. On this basis, their pathways affecting proliferation, metastasis, and drug resistance in various types of cancer cells are sorted out and discussed. We then systematically summarize the status of the therapeutic applications of existing ATF family modulators and finally look forward to the future prospect of clinical applications in the treatment of tumors by modulating the ATF family.
Collapse
Affiliation(s)
- Xueyao Zhang
- Department of Anus and Intestine Surgery, Department of Cardiology, and Department of Respiratory and Critical Care Medicine, The First Hospital of China Medical University, Shenyang 110001, China
| | - Zhijia Li
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xiaochun Zhang
- Department of Anus and Intestine Surgery, Department of Cardiology, and Department of Respiratory and Critical Care Medicine, The First Hospital of China Medical University, Shenyang 110001, China
| | - Ziyue Yuan
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Peng Miao
- Department of Anus and Intestine Surgery, Department of Cardiology, and Department of Respiratory and Critical Care Medicine, The First Hospital of China Medical University, Shenyang 110001, China.
| |
Collapse
|
3
|
Pu S, Pan Y, Zhang Q, You T, Yue T, Zhang Y, Wang M. Endoplasmic Reticulum Stress and Mitochondrial Stress in Drug-Induced Liver Injury. Molecules 2023; 28:molecules28073160. [PMID: 37049925 PMCID: PMC10095764 DOI: 10.3390/molecules28073160] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/26/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Drug-induced liver injury (DILI) is a widespread and harmful disease closely linked to mitochondrial and endoplasmic reticulum stress (ERS). Globally, severe drug-induced hepatitis, cirrhosis, and liver cancer are the primary causes of liver-related morbidity and mortality. A hallmark of DILI is ERS and changes in mitochondrial morphology and function, which increase the production of reactive oxygen species (ROS) in a vicious cycle of mutually reinforcing stress responses. Several pathways are maladapted to maintain homeostasis during DILI. Here, we discuss the processes of liver injury caused by several types of drugs that induce hepatocyte stress, focusing primarily on DILI by ERS and mitochondrial stress. Importantly, both ERS and mitochondrial stress are mediated by the overproduction of ROS, destruction of Ca2+ homeostasis, and unfolded protein response (UPR). Additionally, we review new pathways and potential pharmacological targets for DILI to highlight new possibilities for DILI treatment and mitigation.
Collapse
Affiliation(s)
- Sisi Pu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Yangyang Pan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Qian Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Ting You
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Tao Yue
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuxing Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Meng Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
4
|
Xu M, Liu Y, Wan HL, Wong AM, Ding X, You W, Lo WS, Ng KKC, Wong N. Overexpression of nucleotide metabolic enzyme DUT in hepatocellular carcinoma potentiates a therapeutic opportunity through targeting its dUTPase activity. Cancer Lett 2022; 548:215898. [PMID: 36075487 DOI: 10.1016/j.canlet.2022.215898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 07/24/2022] [Accepted: 08/24/2022] [Indexed: 11/26/2022]
Abstract
Uracil misincorporation during DNA replication is a major cell toxic event, of which cancer cells overcome by activating the dUTPase enzyme. The DUT gene is the only known dUTPase in human. Despite reports on common upregulations in cancers, the role of DUT in human hepatocellular carcinoma (HCC) remains largely undetermined. In this study, we investigated the mechanism underlying DUT biology in HCC and tumor susceptibility to drug targeting dUTPase. Overexpression of DUT was found in 42% of HCC tumors and correlated with advanced stage HCC. Knockout of DUT in HCC cell lines showed suppressed proliferation through cell cycle arrest and a spontaneous induction of DNA damage. A protective effect from oxidative stress was also demonstrated in both knockout and overexpression DUT assays. Transcriptome analysis highlighted the NF-κB survival signaling as the downstream effector pathway of DUT in overriding oxidative stress-induced cell death. Interestingly, stably expressed DUT in liver progenitor organoids conferred drug resistance to TKI Sorafenib. Targeting dUTPase activity by TAS-114, could potentiate suppression of HCC growth that synergized with Sorafenib for better treatment sensitivity. In conclusion, upregulated DUT represents a nucleotide metabolic weakness and therapeutic opportunity in HCC.
Collapse
Affiliation(s)
- Mingjing Xu
- Department of Surgery, Sir Y.K. Pao Centre for Cancer, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Yue Liu
- Department of Surgery, Sir Y.K. Pao Centre for Cancer, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Ho Lee Wan
- Department of Surgery, Sir Y.K. Pao Centre for Cancer, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Alissa M Wong
- Department of Surgery, Sir Y.K. Pao Centre for Cancer, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Xiaofan Ding
- Department of Surgery, Sir Y.K. Pao Centre for Cancer, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Wenxing You
- Department of Surgery, Sir Y.K. Pao Centre for Cancer, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Wing Sze Lo
- Department of Surgery, Sir Y.K. Pao Centre for Cancer, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Kelvin K-C Ng
- Department of Surgery, Sir Y.K. Pao Centre for Cancer, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Nathalie Wong
- Department of Surgery, Sir Y.K. Pao Centre for Cancer, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, China; State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| |
Collapse
|
5
|
Chen M, Liu Y, Yang Y, Qiu Y, Wang Z, Li X, Zhang W. Emerging roles of activating transcription factor (ATF) family members in tumourigenesis and immunity: Implications in cancer immunotherapy. Genes Dis 2022; 9:981-999. [PMID: 35685455 PMCID: PMC9170601 DOI: 10.1016/j.gendis.2021.04.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 04/20/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022] Open
Abstract
Activating transcription factors, ATFs, are a group of bZIP transcription factors that act as homodimers or heterodimers with a range of other bZIP factors. In general, ATFs respond to extracellular signals, indicating their important roles in maintaining homeostasis. The ATF family includes ATF1, ATF2, ATF3, ATF4, ATF5, ATF6, and ATF7. Consistent with the diversity of cellular processes reported to be regulated by ATFs, the functions of ATFs are also diverse. ATFs play an important role in cell proliferation, apoptosis, differentiation and inflammation-related pathological processes. The expression and phosphorylation status of ATFs are also related to neurodegenerative diseases and polycystic kidney disease. Various miRNAs target ATFs to regulate cancer proliferation, apoptosis, autophagy, sensitivity and resistance to radiotherapy and chemotherapy. Moreover, ATFs are necessary to maintain cell redox homeostasis. Therefore, deepening our understanding of the regulation and function of ATFs will provide insights into the basic regulatory mechanisms that influence how cells integrate extracellular and intracellular signals into genomic responses through transcription factors. Under pathological conditions, especially in cancer biology and response to treatment, the characterization of ATF dysfunction is important for understanding how to therapeutically utilize ATF2 or other pathways controlled by transcription factors. In this review, we will demonstrate how ATF1, ATF2, ATF3, ATF4, ATF5, ATF6, and ATF7 function in promoting or suppressing cancer development and identify their roles in tumour immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wenling Zhang
- Corresponding author. Department of Medical Laboratory Science, the Third Xiangya Hospital, Central South University, Tongzipo Road 172, Yuelu District, Changsha, Hunan 410013, PR China.
| |
Collapse
|
6
|
Paerhati P, Liu J, Jin Z, Jakoš T, Zhu S, Qian L, Zhu J, Yuan Y. Advancements in Activating Transcription Factor 5 Function in Regulating Cell Stress and Survival. Int J Mol Sci 2022; 23:ijms23137129. [PMID: 35806136 PMCID: PMC9266924 DOI: 10.3390/ijms23137129] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022] Open
Abstract
Activating transcription factor 5 (ATF5) belongs to the activating transcription factor/cyclic adenosine monophosphate (cAMP) response element-binding protein family of basic region leucine zipper transcription factors. ATF5 plays an important role in cell stress regulation and is involved in cell differentiation and survival, as well as centrosome maintenance and development. Accumulating evidence demonstrates that ATF5 plays an oncogenic role in cancer by regulating gene expressions involved in tumorigenesis and tumor survival. Recent studies have indicated that ATF5 may also modify the gene expressions involved in other diseases. This review explores in detail the regulation of ATF5 expression and signaling pathways and elucidates the role of ATF5 in cancer biology. Furthermore, an overview of putative therapeutic strategies that can be used for restoring aberrant ATF5 activity in different cancer types is provided.
Collapse
Affiliation(s)
- Pameila Paerhati
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University College of Pharmacy, Shanghai 200240, China; (P.P.); (J.L.); (Z.J.); (T.J.); (J.Z.)
| | - Jing Liu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University College of Pharmacy, Shanghai 200240, China; (P.P.); (J.L.); (Z.J.); (T.J.); (J.Z.)
| | - Zhedong Jin
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University College of Pharmacy, Shanghai 200240, China; (P.P.); (J.L.); (Z.J.); (T.J.); (J.Z.)
| | - Tanja Jakoš
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University College of Pharmacy, Shanghai 200240, China; (P.P.); (J.L.); (Z.J.); (T.J.); (J.Z.)
| | - Shunyin Zhu
- Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China; (S.Z.); (L.Q.)
| | - Lan Qian
- Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China; (S.Z.); (L.Q.)
| | - Jianwei Zhu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University College of Pharmacy, Shanghai 200240, China; (P.P.); (J.L.); (Z.J.); (T.J.); (J.Z.)
| | - Yunsheng Yuan
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University College of Pharmacy, Shanghai 200240, China; (P.P.); (J.L.); (Z.J.); (T.J.); (J.Z.)
- Correspondence:
| |
Collapse
|
7
|
Zhang D, Wu F, Song J, Meng M, Fan X, Lu C, Weng Q, Fang S, Zheng L, Tang B, Yang Y, Tu J, Xu M, Zhao Z, Ji J. A role for the NPM1/PTPN14/YAP axis in mediating hypoxia-induced chemoresistance to sorafenib in hepatocellular carcinoma. Cancer Cell Int 2022; 22:65. [PMID: 35135548 PMCID: PMC8822852 DOI: 10.1186/s12935-022-02479-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 01/20/2022] [Indexed: 12/21/2022] Open
Abstract
Background Tumor microenvironments are characterized by resistance to chemotherapeutic agents and radiotherapy. Hypoxia plays an important role in the development of tumor resistance, as well as the generation of metastatic potential. YAP also participates in the regulation of hypoxia-mediated chemoresistance, and is negatively regulated by protein tyrosine phosphatase non-receptor type 14 (PTPN14). Methods The PTPN14 expression in hepatocellular carcinoma (HCC) tissues were evaluated by qRT-PCR, western blot and tissue microarrays. The effect of PTPN14 on HCC progression was investigated in vitro and in vivo. Results Here, we report that PTPN14 expression was downregulated in HCC tissues and cell lines. Silencing PTPN14 significantly enhanced proliferation, migration, invasion of HepG2 cells in vitro and tumor growth and metastasis in vivo, whereas overexpression of PTPN14 significantly inhibited these abilities in SK-Hep1 cells. We also found that hypoxia-induced nuclear translocation and accumulation of PTPN14 led to resistance to sorafenib in HCC cells. Further mechanistic studies suggested that NPM1 regulates PTPN14 localization, and that NPM1 regulates YAP by retaining PTPN14 in the nucleus under hypoxic conditions. Conclusions These data suggest that a therapeutic strategy against chemoresistant HCC may involve disruption of NPM1-mediated regulation of YAP by retaining PTPN14 in the nucleus under hypoxic conditions. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02479-0.
Collapse
Affiliation(s)
- Dengke Zhang
- Zhejiang Provincial Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Fazong Wu
- Zhejiang Provincial Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Jingjing Song
- Zhejiang Provincial Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Miaomiao Meng
- Zhejiang Provincial Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Xiaoxi Fan
- Zhejiang Provincial Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Chenying Lu
- Zhejiang Provincial Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Qiaoyou Weng
- Zhejiang Provincial Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Shiji Fang
- Zhejiang Provincial Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Liyun Zheng
- Zhejiang Provincial Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Bufu Tang
- Zhejiang Provincial Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Yang Yang
- Zhejiang Provincial Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Jianfei Tu
- Zhejiang Provincial Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Min Xu
- Zhejiang Provincial Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Zhongwei Zhao
- Zhejiang Provincial Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China.
| | - Jiansong Ji
- Zhejiang Provincial Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China.
| |
Collapse
|
8
|
Hu M, Li H, Xie H, Fan M, Wang J, Zhang N, Ma J, Che S. ELF1 Transcription Factor Enhances the Progression of Glioma via ATF5 promoter. ACS Chem Neurosci 2021; 12:1252-1261. [PMID: 33720698 DOI: 10.1021/acschemneuro.1c00070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A key transcriptional activator, activating transcription factor 5 (ATF5), is aberrantly overexpressed in glioma and supports both poor prognosis and antiapototic potential. Unfortunately, data on ATF5 is largely based on its regulatory mechanism. Further investigation of the upstream regulatory factor for ATF5 transcription in glioma is required. Clinical data for patients with diagnosed glioma were obtained from The Cancer Genome Atlas (TCGA). Additionally, transcription factors potentially regulating the ATF5 promoter in glioma were screened with bioinformatics. A further experimental study was performed to investigate both the role of E74-like factor 1 (ELF1) and the binding of ELF1 and the ATF5 promoter in glioma. We show that ATF5 expression is upregulated in glioma tissues and associated with tumor malignancy and worse prognosis. As a putative upstream regulator, silencing ELF1 inhibits glioma cell growth and migration with ATF5 involvement. Moreover, ELF1 upregulation is also associated with poor prognosis in glioma. Importantly, the luciferase assay and chromatin immunoprecipitation (ChIP) reveal that the ATF5 gene promoter is essential for ELF1-dependent activation of ATF5 gene transcription. These results indicate that a high expression of ELF1 may be related to the malignant behavior of human glioma and ELF1 promotes glioma development mediated by transactivation of the ATF5 gene.
Collapse
Affiliation(s)
- Ming Hu
- Department of Special Medicine, Basic Medicine College, Qingdao University, Qingdao, Shandong 266071, P. R. China
| | - Huanting Li
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P. R. China
| | - Hongwei Xie
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P. R. China
| | - Mingchao Fan
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P. R. China
| | - Jianpeng Wang
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P. R. China
| | - Niankai Zhang
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P. R. China
| | - Junwei Ma
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P. R. China
| | - Shusheng Che
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P. R. China
| |
Collapse
|
9
|
Chow EYC, Zhang J, Qin H, Chan TF. Characterization of Hepatocellular Carcinoma Cell Lines Using a Fractionation-Then-Sequencing Approach Reveals Nuclear-Enriched HCC-Associated lncRNAs. Front Genet 2019; 10:1081. [PMID: 31781161 PMCID: PMC6857473 DOI: 10.3389/fgene.2019.01081] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 10/09/2019] [Indexed: 12/13/2022] Open
Abstract
Background: Advances in sequencing technologies have greatly improved our understanding of long noncoding RNA (lncRNA). These transcripts with lengths of >200 nucleotides may play significant regulatory roles in various biological processes. Importantly, the dysregulation of better characterized lncRNAs has been associated with multiple types of cancers, including hepatocellular carcinoma (HCC). There are many studies on altered lncRNA expression levels, very few, however, have focused on their subcellular localizations, from which accumulating evidences have indicated their close relationships to lncRNA functions. A transcriptome-wide investigation of the subcellular distributions of lncRNAs might thus provide new insights into their roles and functions in cancers. Results: In this study, we subjected eight patient-derived HCC cell lines to subcellular fractionation and independently sequenced RNAs from the nuclear and cytoplasmic compartments. With the integration of tumor and tumor-adjacent RNA-seq datasets of liver hepatocellular carcinoma (LIHC) from The Cancer Genome Atlas (TCGA), de novo transcriptome assembly and differential expression analysis were conducted successively and identified 26 nuclear-enriched HCC-associated lncRNAs shared between the HCC samples and the TCGA datasets, including the reported cancer driver PXN-AS1. The majority of nuclear-enriched HCC-associated lncRNAs were associated with the survival outcomes of HCC patients, exhibited characteristics similar to those of many experimentally supported HCC prognostic lncRNAs, and were co-expressed with protein-coding genes that have been linked to disease progression in various cancer types. Conclusion: We adopted a fractionation-then-sequencing approach on multiple patient-derived HCC samples and identified nuclear-enriched, HCC-associated lncRNAs that could serve as important targets for HCC diagnosis and therapeutic development. This approach could be widely applicable to other studies into the disease etiologies of lncRNA.
Collapse
Affiliation(s)
| | - Jizhou Zhang
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Hao Qin
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ting-Fung Chan
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong.,State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
10
|
Natri HM, Wilson MA, Buetow KH. Distinct molecular etiologies of male and female hepatocellular carcinoma. BMC Cancer 2019; 19:951. [PMID: 31615477 PMCID: PMC6794913 DOI: 10.1186/s12885-019-6167-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 09/16/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Sex-differences in cancer occurrence and mortality are evident across tumor types; men exhibit higher rates of incidence and often poorer responses to treatment. Targeted approaches to the treatment of tumors that account for these sex-differences require the characterization and understanding of the fundamental biological mechanisms that differentiate them. Hepatocellular Carcinoma (HCC) is the second leading cause of cancer death worldwide, with the incidence rapidly rising. HCC exhibits a male-bias in occurrence and mortality, but previous studies have failed to explore the sex-specific dysregulation of gene expression in HCC. METHODS Here, we characterize the sex-shared and sex-specific regulatory changes in HCC tumors in the TCGA LIHC cohort using combined and sex-stratified differential expression and eQTL analyses. RESULTS By using a sex-specific differential expression analysis of tumor and tumor-adjacent samples, we uncovered etiologically relevant genes and pathways differentiating male and female HCC. While both sexes exhibited activation of pathways related to apoptosis and cell cycle, males and females differed in the activation of several signaling pathways, with females showing PPAR pathway enrichment while males showed PI3K, PI3K/AKT, FGFR, EGFR, NGF, GF1R, Rap1, DAP12, and IL-2 signaling pathway enrichment. Using eQTL analyses, we discovered germline variants with differential effects on tumor gene expression between the sexes. 24.3% of the discovered eQTLs exhibit differential effects between the sexes, illustrating the substantial role of sex in modifying the effects of eQTLs in HCC. The genes that showed sex-specific dysregulation in tumors and those that harbored a sex-specific eQTL converge in clinically relevant pathways, suggesting that the molecular etiologies of male and female HCC are partially driven by differential genetic effects on gene expression. CONCLUSIONS Sex-stratified analyses detect sex-specific molecular etiologies of HCC. Overall, our results provide new insight into the role of inherited genetic regulation of transcription in modulating sex-differences in HCC etiology and provide a framework for future studies on sex-biased cancers.
Collapse
Affiliation(s)
- Heini M Natri
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA.
| | - Melissa A Wilson
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Kenneth H Buetow
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
11
|
Identification of differentially expressed genes regulated by molecular signature in breast cancer-associated fibroblasts by bioinformatics analysis. Arch Gynecol Obstet 2017; 297:161-183. [PMID: 29063236 DOI: 10.1007/s00404-017-4562-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 09/21/2017] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Breast cancer is a severe risk to public health and has adequately convoluted pathogenesis. Therefore, the description of key molecular markers and pathways is of much importance for clarifying the molecular mechanism of breast cancer-associated fibroblasts initiation and progression. Breast cancer-associated fibroblasts gene expression dataset was downloaded from Gene Expression Omnibus database. METHODS A total of nine samples, including three normal fibroblasts, three granulin-stimulated fibroblasts and three cancer-associated fibroblasts samples, were used to identify differentially expressed genes (DEGs) between normal fibroblasts, granulin-stimulated fibroblasts and cancer-associated fibroblasts samples. The gene ontology (GO) and pathway enrichment analysis was performed, and protein-protein interaction (PPI) network of the DEGs was constructed by NetworkAnalyst software. RESULTS Totally, 190 DEGs were identified, including 66 up-regulated and 124 down-regulated genes. GO analysis results showed that up-regulated DEGs were significantly enriched in biological processes (BP), including cell-cell signalling and negative regulation of cell proliferation; molecular function (MF), including insulin-like growth factor II binding and insulin-like growth factor I binding; cellular component (CC), including insulin-like growth factor binding protein complex and integral component of plasma membrane; the down-regulated DEGs were significantly enriched in BP, including cell adhesion and extracellular matrix organization; MF, including N-acetylgalactosamine 4-sulfate 6-O-sulfotransferase activity and calcium ion binding; CC, including extracellular space and extracellular matrix. WIKIPATHWAYS analysis showed the up-regulated DEGs were enriched in myometrial relaxation and contraction pathways. WIKIPATHWAYS, REACTOME, PID_NCI and KEGG pathway analysis showed the down-regulated DEGs were enriched endochondral ossification, TGF beta signalling pathway, integrin cell surface interactions, beta1 integrin cell surface interactions, malaria and glycosaminoglycan biosynthesis-chondroitin sulfate/dermatan sulphate. The top 5 up-regulated hub genes, CDKN2A, MME, PBX1, IGFBP3, and TFAP2C and top 5 down-regulated hub genes VCAM1, KRT18, TGM2, ACTA2, and STAMBP were identified from the PPI network, and subnetworks revealed these genes were involved in significant pathways, including myometrial relaxation and contraction pathways, integrin cell surface interactions, beta1 integrin cell surface interaction. Besides, the target hsa-mirs for DEGs were identified. hsa-mir-759, hsa-mir-4446-5p, hsa-mir-219a-1-3p and hsa-mir-26a-5p were important miRNAs in this study. CONCLUSIONS We pinpoint important key genes and pathways closely related with breast cancer-associated fibroblasts initiation and progression by a series of bioinformatics analysis on DEGs. These screened genes and pathways provided for a more detailed molecular mechanism underlying breast cancer-associated fibroblasts occurrence and progression, holding promise for acting as molecular markers and probable therapeutic targets.
Collapse
|
12
|
Sears TK, Angelastro JM. The transcription factor ATF5: role in cellular differentiation, stress responses, and cancer. Oncotarget 2017; 8:84595-84609. [PMID: 29137451 PMCID: PMC5663623 DOI: 10.18632/oncotarget.21102] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 08/31/2017] [Indexed: 12/26/2022] Open
Abstract
Activating transcription factor 5 (ATF5) is a cellular prosurvival transcription factor within the basic leucine zipper (bZip) family that is involved in cellular differentiation and promotes cellular adaptation to stress. Recent studies have characterized the oncogenic role of ATF5 in the development of several different types of cancer, notably glioblastoma. Preclinical assessment of a systemically deliverable dominant-negative ATF5 (dnATF5) biologic has found that targeting ATF5 results in tumor regression and tumor growth inhibition of glioblastoma xenografts in mouse models. In this review, we comprehensively and critically detail the current scientific literature on ATF5 in the context of cellular differentiation, survival, and response to stressors in normal tissues. Furthermore, we will discuss how the prosurvival role of ATF5 aides in cancer development, followed by current advances in targeting ATF5 using dominant-negative biologics, and perspectives on future research.
Collapse
Affiliation(s)
- Thomas K Sears
- Department of Molecular Biosciences, University of California, Davis School of Veterinary Medicine, Davis, 95616 CA, USA
| | - James M Angelastro
- Department of Molecular Biosciences, University of California, Davis School of Veterinary Medicine, Davis, 95616 CA, USA
| |
Collapse
|
13
|
Wang LN, Tang YL, Zhang YC, Zhang ZH, Liu XJ, Ke ZY, Li Y, Tan HZ, Huang LB, Luo XQ. Arsenic trioxide and all-trans-retinoic acid selectively exert synergistic cytotoxicity against FLT3-ITD AML cells via co-inhibition of FLT3 signaling pathways. Leuk Lymphoma 2017; 58:2426-2438. [PMID: 28276286 DOI: 10.1080/10428194.2017.1289522] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
FLT3-ITD mutations occur in approximately 30% of acute myeloid leukemia (AML) and are associated with a poor outcome. Currently available FLT3 inhibitors have in vitro but limited clinical activity in FLT3-ITD AML. Reports have shown that an arsenic trioxide (ATO)/all-trans-retinoic acid (ATRA) combination improves prognosis in acute promyelocytic leukemia, especially with FLT3-ITD, and ATO or ATRA alone enhances apoptosis in FLT3-ITD AML cells treated with FLT3 inhibitors, providing a rationale to investigate the role of ATO/ATRA in FLT3-ITD AML. Here, we demonstrate that an ATO/ATRA combination selectively exerts synergistic cytotoxicity against FLT3-ITD AML cell lines (MV4;11/MOLM-13). The signaling pathways affected by ATO/ATRA include FLT3/STAT5/MYC, FLT3/STAT5/E2F1, FLT3/ERK/ATF5 and FLT3/AKT/ATF5.ATF5 may function as an oncogene in FLT3-ITD AML. Our findings provide experimental evidence that supports further exploration of ATO/ATRA in FLT3-ITD AML in vivo and warrants a clinical evaluation of regimens comprising an ATO/ATRA combination.
Collapse
Affiliation(s)
- Li-Na Wang
- a Department of Pediatrics , The First Affiliated Hospital of Sun Yat-sen University , Guangzhou , China
| | - Yan-Lai Tang
- a Department of Pediatrics , The First Affiliated Hospital of Sun Yat-sen University , Guangzhou , China
| | - Yin-Chuan Zhang
- a Department of Pediatrics , The First Affiliated Hospital of Sun Yat-sen University , Guangzhou , China
| | - Zu-Han Zhang
- a Department of Pediatrics , The First Affiliated Hospital of Sun Yat-sen University , Guangzhou , China
| | - Xiao-Jian Liu
- a Department of Pediatrics , The First Affiliated Hospital of Sun Yat-sen University , Guangzhou , China
| | - Zhi-Yong Ke
- a Department of Pediatrics , The First Affiliated Hospital of Sun Yat-sen University , Guangzhou , China
| | - Yu Li
- a Department of Pediatrics , The First Affiliated Hospital of Sun Yat-sen University , Guangzhou , China
| | - Hui-Zhen Tan
- a Department of Pediatrics , The First Affiliated Hospital of Sun Yat-sen University , Guangzhou , China
| | - Li-Bin Huang
- a Department of Pediatrics , The First Affiliated Hospital of Sun Yat-sen University , Guangzhou , China
| | - Xue-Qun Luo
- a Department of Pediatrics , The First Affiliated Hospital of Sun Yat-sen University , Guangzhou , China
| |
Collapse
|
14
|
Zhang S, Shu R, Yue M, Zhang S. Effect of Over-Expression of Zinc-Finger Protein (ZFX) on Self-Renewal and Drug-Resistance of Hepatocellular Carcinoma. Med Sci Monit 2016; 22:3025-34. [PMID: 27566731 PMCID: PMC5012459 DOI: 10.12659/msm.897699] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background X-chromosome-coupled zinc finger protein (ZFX) in the Zfy protein family is abundantly expressed in both embryonic and hematopoietic stem cells (HSCs). ZFX exist in various tumor cells and is correlated with proliferation and survival of tumor cells. As a malignant tumor with high invasiveness, hepatocellular carcinoma (HCC) may present resistance against chemotherapy and features of stem cells. This study aimed to explore the expression of ZFX in HCC cells, in an attempt to illustrate the role of ZFX in tumorigenesis. Material/Methods The expression of ZFX in tumor tissues was quantified by RT-PCR. The ZFX expression was then silenced to evaluate the stem cell-like features of HCC cells, including self-renewal, colony formation, and cell cycle, along with the sensitivity to cisplatin. Xenograft of ZFX-overexpressed HCC on nude mice was performed to evaluate the in vivo effect of ZFX on tumor growth. Results Quantitative RT-PCR showed over-expression of ZFX in 51.8% of HCC tumors. The silencing of ZFX gene inhibited the self-renewal, colony formation, and proliferation ability of HCC cells (p<0.05 in all cases) via the cell cycle arrest at G0/G1 phase, in addition to the elevated sensitivity of tumor cells to cisplatin (p<0.001). Further studies showed that binding between ZFX and promoter regions of Nanog or SOX-2 regulatory factor initiate their expression in HCC cells. The xenograft experiment indicated the potentiation of tumor growth by ZFX over-expression. Conclusions ZFX is over-expressed in HCC cells, and correlates with stem cell-like features and pleiotropic characteristics.
Collapse
Affiliation(s)
- Shuhong Zhang
- Department of Gastroenterology, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong, China (mainland)
| | - Ronghua Shu
- Department of Gastroenterology, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong, China (mainland)
| | - Meng Yue
- Department of Gastroenterology, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong, China (mainland)
| | - Shuhong Zhang
- Department of Gastroenterology, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong, China (mainland)
| |
Collapse
|
15
|
Hua XM, Wang J, Qian DM, Song JY, Chen H, Zhu XL, Zhou R, Zhao YD, Zhou XZ, Li L, Zhang L, Song XX, Wang B. DNA methylation level of promoter region of activating transcription factor 5 in glioma. J Zhejiang Univ Sci B 2016; 16:757-62. [PMID: 26365117 DOI: 10.1631/jzus.b1500067] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Transcription factors, which represent an important class of proteins that play key roles in controlling cellular proliferation and cell cycle modulation, are attractive targets for cancer therapy. Previous researches have shown that the expression level of activating transcription factor 5 (ATF5) was frequently increased in glioma and its acetylation level was related to glioma. The purposes of this study were to explore the methylation level of ATF5 in clinical glioma tissues and to explore the effect of ATF5 methylation on the expression of ATF5 in glioma. Methylation of the promoter region of ATF5 was assayed by bisulfite-specific polymerase chain reaction (PCR) sequencing analysis in 35 cases of glioma and 5 normal tissues. Quantitative real-time PCR (qRT-PCR) was also performed to detect ATF5 mRNA expression in 35 cases of glioma and 5 normal tissues. Clinical data were collected from the patients and analyzed. The percentages of methylation of the ATF5 gene in the promoter region in healthy control, patients with well-differentiated glioma, and those with poorly differentiated glioma were 87.78%, 73.89%, and 47.70%, respectively. Analysis of the methylation status of the promoter region of the ATF5 gene showed a gradually decreased methylation level in poorly differentiated glioma, well-differentiated glioma, and normal tissues (P<0.05). There was also a significant difference between well-differentiated glioma and poorly differentiated glioma (P<0.05). ATF5 mRNA expression in glioma was significantly higher than that in the normal tissues (P<0.05). This study provides the first evidence that the methylation level of ATF5 decreased, and its mRNA expression was evidently up-regulated in glioma.
Collapse
Affiliation(s)
- Xiao-min Hua
- Department of Microbiology, Qingdao University Medical College, Qingdao 266071, China
| | - Juan Wang
- Department of Biotechnology, Binzhou Medical College, Yantai 264003, China
| | - Dong-meng Qian
- Department of Microbiology, Qingdao University Medical College, Qingdao 266071, China
| | - Jing-yi Song
- Department of Microbiology, Qingdao University Medical College, Qingdao 266071, China
| | - Hao Chen
- Department of Microbiology, Qingdao University Medical College, Qingdao 266071, China
| | - Xiu-li Zhu
- Department of Microbiology, Qingdao University Medical College, Qingdao 266071, China
| | - Rui Zhou
- Department of Microbiology, Qingdao University Medical College, Qingdao 266071, China
| | - Yu-dan Zhao
- Department of Microbiology, Qingdao University Medical College, Qingdao 266071, China
| | - Xiu-zhi Zhou
- Department of Microbiology, Qingdao University Medical College, Qingdao 266071, China
| | - Ling Li
- Department of Microbiology, Qingdao University Medical College, Qingdao 266071, China
| | - Li Zhang
- Department of Microbiology, Qingdao University Medical College, Qingdao 266071, China
| | - Xu-xia Song
- Department of Microbiology, Qingdao University Medical College, Qingdao 266071, China
| | - Bin Wang
- Department of Microbiology, Qingdao University Medical College, Qingdao 266071, China
| |
Collapse
|
16
|
Bellato HM, Hajj GNM. Translational control by eIF2α in neurons: Beyond the stress response. Cytoskeleton (Hoboken) 2016; 73:551-565. [PMID: 26994324 DOI: 10.1002/cm.21294] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 03/14/2016] [Accepted: 03/14/2016] [Indexed: 12/21/2022]
Abstract
The translation of mRNAs is a tightly controlled process that responds to multiple signaling pathways. In neurons, this control is also exerted locally due to the differential necessity of proteins in axons and dendrites. The phosphorylation of the alpha subunit of the translation initiation factor 2 (eIF2α) is one of the mechanisms of translational control. The phosphorylation of eIF2α has classically been viewed as a stress response, halting translation initiation. However, in the nervous system this type of regulation has been related to other mechanisms besides stress response, such as behavior, memory consolidation and nervous system development. Additionally, neurodegenerative diseases have a major stress component, thus eIF2α phosphorylation plays a preeminent role and its modulation is currently viewed as a new opportunity for therapeutic interventions. This review consolidates current information regarding eIF2α phosphorylation in neurons and its impact in neurodegenerative diseases. © 2016 Wiley Periodicals, Inc.
Collapse
|
17
|
Integrated analyses of DNA methylation and hydroxymethylation reveal tumor suppressive roles of ECM1, ATF5, and EOMES in human hepatocellular carcinoma. Genome Biol 2014; 15:533. [PMID: 25517360 PMCID: PMC4253612 DOI: 10.1186/s13059-014-0533-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 11/06/2014] [Indexed: 12/15/2022] Open
Abstract
Background Differences in 5-hydroxymethylcytosine, 5hmC, distributions may complicate previous observations of abnormal cytosine methylation statuses that are used for the identification of new tumor suppressor gene candidates that are relevant to human hepatocarcinogenesis. The simultaneous detection of 5-methylcytosine and 5-hydroxymethylcytosine is likely to stimulate the discovery of aberrantly methylated genes with increased accuracy in human hepatocellular carcinoma. Results Here, we performed ultra-performance liquid chromatography/tandem mass spectrometry and single-base high-throughput sequencing, Hydroxymethylation and Methylation Sensitive Tag sequencing, HMST-seq, to synchronously measure these two modifications in human hepatocellular carcinoma samples. After identification of differentially methylated and hydroxymethylated genes in human hepatocellular carcinoma, we integrate DNA copy-number alterations, as determined using array-based comparative genomic hybridization data, with gene expression to identify genes that are potentially silenced by promoter hypermethylation. Conclusions We report a high enrichment of genes with epigenetic aberrations in cancer signaling pathways. Six genes were selected as tumor suppressor gene candidates, among which, ECM1, ATF5 and EOMES are confirmed via siRNA experiments to have potential anti-cancer functions. Electronic supplementary material The online version of this article (doi:10.1186/s13059-014-0533-9) contains supplementary material, which is available to authorized users.
Collapse
|
18
|
Wu Y, Wu B, Chen R, Zheng Y, Huang Z. High ATF5 expression is a favorable prognostic indicator in patients with hepatocellular carcinoma after hepatectomy. Med Oncol 2014; 31:269. [DOI: 10.1007/s12032-014-0269-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 09/23/2014] [Indexed: 12/12/2022]
|
19
|
Lai KP, Chen J, He M, Ching AKK, Lau C, Lai PBS, To KF, Wong N. Overexpression of ZFX confers self-renewal and chemoresistance properties in hepatocellular carcinoma. Int J Cancer 2014; 135:1790-9. [PMID: 24585547 DOI: 10.1002/ijc.28819] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 01/30/2014] [Accepted: 01/31/2014] [Indexed: 12/24/2022]
Abstract
Zinc finger protein X-linked (ZFX) is a zinc finger protein of Zfy family, which is highly conserved in vertebrates. This transcriptional regulator is not only highly expressed in embryonic stem cells (ESC) and hematopoietic stem cells, but is also upregulated in a number of human cancers where it is functional related to cell proliferation and survival. Hepatocellular carcinoma (HCC) is highly aggressive cancer that commonly resistant to most chemotherapies and displays stemness characteristics. In this study, we examined the expression of ZFX in HCC and its possible functional implications in liver tumorigenesis. Quantitative RT-PCR analysis showed common overexpressions of ZFX in 51.8% HCC tumors when compared with their adjacent nonmalignant liver (n = 43/83; p = 0.004). Inline with the pluripotency role of ZFX, we found silencing of ZFX readily inhibited self-renewal capability (p = 0.0022), colony formation ability (p < 0.0001) and cell proliferation (p < 0.0001) through G0/G1 cell cycle arrest of HCC cells (p = 0.0038). In addition, suppression of ZFX sensitized HCC cells to chemotherapeutic agent cisplatin (p < 0.0001). Further investigations suggested that ZFX bind on the promoter of two important mediators, namely Nanog and SOX-2, activating their expressions in HCC (p < 0.0001). Moreover, in vivo xenograft study demonstrated that overexpression of ZFX would promote the tumor growth (p = 0.031). Taken together, our results show, for the first time, commonly overexpressions of ZFX in HCC, where it likely contributes to the stemness and pluripotent behavior of this highly malignant cancer.
Collapse
Affiliation(s)
- Keng Po Lai
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT, Hong Kong, China
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Hatano M, Umemura M, Kimura N, Yamazaki T, Takeda H, Nakano H, Takahashi S, Takahashi Y. The 5'-untranslated region regulates ATF5 mRNA stability via nonsense-mediated mRNA decay in response to environmental stress. FEBS J 2013; 280:4693-707. [PMID: 23876217 DOI: 10.1111/febs.12440] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 07/08/2013] [Accepted: 07/15/2013] [Indexed: 11/28/2022]
Abstract
We previously reported that activating transcription factor 5 (ATF5) mRNA increases in response to amino acid limitation, and that this increase is dependent on mRNA stabilization. The ATF5 gene allows transcription of mRNAs with two alternative 5'-UTRs, 5'-UTRα and 5'-UTRβ, derived from exon 1α and exon 1β. 5'-UTRα contains the upstream open reading frames uORF1 and uORF2. Phosphorylation of eukaryotic initiation factor 2α during the integrated stress response had been previously shown to lead to bypassing of uORF2 translation and production of ATF5 protein. Translation of uORF2 is expected to result in translational termination at a position 125 nucleotides upstream of the exon junction, and this fits the criterion of a nonsense-mediated decay target mRNA. We investigated the potential role of 5'-UTRα in the control of mRNA stabilization, and found that 5'-UTRα reduced the stability of ATF5 mRNA. 5'-UTRα-regulated destabilization of mRNA was suppressed by knockdown of the nonsense-mediated decay factors Upf1 and Upf2. Mutation of the downstream AUG (uAUG2) rendered mRNA refractory to Upf1 and Upf2 knockdown. Moreover, 5'-UTRα-regulated down-regulation was hindered by amino acid limitation and tunicamycin treatment, and stress-induced phosphorylation of eukaryotic initiation factor 2α was involved in stabilization of ATF5 mRNA. These studies show that ATF5 mRNA is a naturally occurring normal mRNA target of nonsense-mediated decay, and provide evidence for linkage between stress-regulated translational regulation and the mRNA decay pathway. This linkage constitutes a mechanism that regulates expression of stress response genes.
Collapse
Affiliation(s)
- Masaya Hatano
- Laboratory of Environmental Molecular Physiology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Transcriptional regulators in hepatocarcinogenesis--key integrators of malignant transformation. J Hepatol 2012; 57:186-95. [PMID: 22446689 DOI: 10.1016/j.jhep.2011.11.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 11/28/2011] [Accepted: 11/30/2011] [Indexed: 12/26/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most frequent human malignancies with poor prognosis and increasing incidence in the Western world. Only for a minority of HCC patients, surgical treatment options offer potential cure and therapeutic success of pharmacological approaches is limited. Highly specific approaches (e.g., kinase inhibitors) did not significantly improve the situation so far, possibly due to functional compensation, genetic heterogeneity of HCC, and development of resistance under selective pressure. In contrast, transcriptional regulators (especially transcription factors and co-factors) may integrate and process input signals of different (oncogenic) pathways and therefore represent cellular bottlenecks that regulate tumor cell biology. In this review, we want to summarize the current knowledge about central transcriptional regulators in human hepatocarcinogenesis and their potential as therapeutic target structures. Genomic and transcriptomic data of primary human HCC revealed that many of these factors showed up in subgroups of HCCs with a more aggressive phenotype, suggesting that aberrant activity of transcriptional regulators collect input information to promote tumor initiation and progression. Therefore, expression and dysfunction of transcription factors and co-factors may gain relevance for diagnostics and therapy of HCC.
Collapse
|
22
|
Leong DT, Abraham MC, Gupta A, Lim TC, Chew FT, Hutmacher DW. ATF5, a possible regulator of osteogenic differentiation in human adipose-derived stem cells. J Cell Biochem 2012; 113:2744-53. [DOI: 10.1002/jcb.24150] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
23
|
Liu X, Liu D, Qian D, Dai J, An Y, Jiang S, Stanley B, Yang J, Wang B, Liu X, Liu DX. Nucleophosmin (NPM1/B23) interacts with activating transcription factor 5 (ATF5) protein and promotes proteasome- and caspase-dependent ATF5 degradation in hepatocellular carcinoma cells. J Biol Chem 2012; 287:19599-609. [PMID: 22528486 DOI: 10.1074/jbc.m112.363622] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Nucleophosmin (NPM1/B23) and the activating transcription factor 5 (ATF5) are both known to subject to cell type-dependent regulation. NPM1 is expressed weakly in hepatocytes and highly expressed in hepatocellular carcinomas (HCC) with a clear correlation between enhanced NPM1 expression and increased tumor grading and poor prognosis, whereas in contrast, ATF5 is expressed abundantly in hepatocytes and down-regulated in HCC. Re-expression of ATF5 in HCC inhibits cell proliferation. We report here that using an unbiased approach, tandem affinity purification (TAP) followed with mass spectrometry (MS), we identified NPM1 as a novel ATF5-interacting protein. Unlike many other NPM1-interacting proteins that interact with the N-terminal oligomerization domain of NPM1, ATF5 binds via its basic leucine zipper to the C-terminal region of NPM1 where its nucleolar localization signal is located. NPM1 association with ATF5, whose staining patterns partially overlap in the nucleoli, promotes ATF5 protein degradation through proteasome-dependent and caspase-dependent pathways. NPM1-c, a mutant NPM1 that is defective in nucleolar localization, failed to stimulate ATF5 polyubiquitination and was unable to down-regulate ATF5. NPM1 interaction with ATF5 displaces HSP70, a known ATF5-interacting protein, from ATF5 protein complexes and antagonizes its role in stabilization of ATF5 protein. NPM1-promoted ATF5 down-regulation diminished ATF5-mediated repression of cAMP-responsive element-dependent gene transcription and abrogates ATF5-induced G(2)/M cell cycle blockade and inhibition of cell proliferation in HCC cells. Our study establishes a mechanistic link between elevated NPM1 expression and depressed ATF5 in HCC and suggests that regulation of ATF5 by NPM1 plays an important role in the proliferation and survival of HCC.
Collapse
Affiliation(s)
- Xijun Liu
- Penn State College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
KONG XIANGHENG, MENG WENJIAN, ZHOU ZONGGUANG, LI YUAN, ZHOU BIN, WANG RONG, ZHAN LAN. Overexpression of activating transcription factor 5 in human rectal cancer. Exp Ther Med 2011; 2:827-831. [PMID: 22977583 PMCID: PMC3440731 DOI: 10.3892/etm.2011.295] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Accepted: 05/31/2011] [Indexed: 01/03/2023] Open
Abstract
The aim of this study was to investigate the relationship between the expression of activating transcription factor 5 (ATF5) and clinicopathological features in human rectal cancer. Relative quantitative real-time RT-PCR and immunohistochemical staining were used to detect ATF5 mRNA and protein expression in 92 paired samples of rectal cancer and distant normal tissues. Immunohistochemical staining of the matched rectal tissue samples revealed that the positive expression rate of the ATF5 protein in rectal cancer was significantly higher compared to that in the normal tissue. Furthermore, the expression of ATF5 in poorly differentiated cancers was higher compared to that in well to moderately differentiated cancers (P=0.013). However, there was no significant association between ATF5 protein expression and patient age, gender, histological tumor type, cell differentiation, invasive depth, lymph node metastasis or distant metastasis (P>0.05). However, to our surprise, there was no difference in the relative mRNA expression levels of ATF5 between normal tissues and rectal cancers. Our findings indicate that overexpression of ATF5 protein may be an important biomarker of the degree of malignancy, and increased expression may be related to the post-transcriptional regulation of ATF5 in rectal cancer tissues.
Collapse
Affiliation(s)
- XIANGHENG KONG
- Institute of Digestive Surgery
- Departments of Gastrointestinal Surgery, and
| | - WENJIAN MENG
- Institute of Digestive Surgery
- Departments of Gastrointestinal Surgery, and
| | - ZONGGUANG ZHOU
- Institute of Digestive Surgery
- Departments of Gastrointestinal Surgery, and
| | - YUAN LI
- Institute of Digestive Surgery
| | | | - RONG WANG
- Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R.
China
| | - LAN ZHAN
- Institute of Digestive Surgery
- Departments of Gastrointestinal Surgery, and
| |
Collapse
|
25
|
Sheng Z, Evans SK, Green MR. An activating transcription factor 5-mediated survival pathway as a target for cancer therapy? Oncotarget 2011; 1:457-60. [PMID: 21311102 DOI: 10.18632/oncotarget.100914] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Genes that are highly expressed in cancer cells and are essential for their viability are attractive targets for the development of novel cancer therapeutics. Activating transcription factor 5 (ATF5) is an anti-apoptotic protein that is highly expressed in malignant glioma but not normal brain tissues, and is essential for glioma cell survival. Recent work has revealed an essential survival pathway mediated by ATF5 in malignant glioma; pharmacological inhibition of this pathway leads to tumor regression in mice. ATF5 is also highly expressed in a variety of other cancers, and preliminary studies have shown that the ATF5-mediated survival pathway is active in diverse human cancer cell lines. Targeting this pathway may therefore have therapeutic implications for the treatment of a wide range of cancers. In this perspective, we summarize recent advances in ATF5 research, focusing on its role in promoting cancer and its potential as a target for cancer therapy.
Collapse
Affiliation(s)
- Zhi Sheng
- Howard Hughes Medical Institute, Program in Gene Function, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | |
Collapse
|
26
|
Dluzen D, Li G, Tacelosky D, Moreau M, Liu DX. BCL-2 is a downstream target of ATF5 that mediates the prosurvival function of ATF5 in a cell type-dependent manner. J Biol Chem 2011; 286:7705-13. [PMID: 21212266 DOI: 10.1074/jbc.m110.207639] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ATF5 loss of function has been shown previously to cause apoptotic cell death in glioblastoma and breast cancer cells but not in non-transformed astrocytes and human breast epithelial cells. The mechanism for the cell type-dependent survival function of ATF5 is unknown. We report here that the anti-apoptotic factor BCL-2 is a downstream target of ATF5 that mediates the prosurvival function of ATF5 in C6 glioma cells and MCF-7 breast cancer cells. ATF5 binds to an ATF5-specific regulatory element that is downstream of and adjacent to the negative regulatory element in the BCL-2 P2 promoter, stimulating BCL-2 expression. Highlighting the critical role of BCL-2 in ATF5-dependent cancer cell survival, expression of BCL-2 blocks death of C6 and MCF-7 cells induced by dominant-negative ATF5, and depletion of BCL-2 impairs ATF5-promoted cell survival. Moreover, we found that BCL-2 expression is not regulated by ATF5 in non-transformed rat astrocytes, mouse embryonic fibroblasts, and human breast epithelial cells, where expression of BCL-2 but not ATF5 is required for cell survival. These findings identify BCL-2 as an essential mediator for the cancer-specific cell survival function of ATF5 in glioblastoma and breast cancer cells and provide direct evidence that the cell type-specific function of ATF5 derives from differential regulation of downstream targets by ATF5 in different types of cells.
Collapse
Affiliation(s)
- Douglas Dluzen
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | | | | | |
Collapse
|
27
|
Sheng Z, Evans SK, Green MR. An activating transcription factor 5-mediated survival pathway as a target for cancer therapy? Oncotarget 2010; 1:457-460. [PMID: 21311102 PMCID: PMC3069685 DOI: 10.18632/oncotarget.180] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2010] [Accepted: 09/28/2010] [Indexed: 11/25/2022] Open
Abstract
Genes that are highly expressed in cancer cells and are essential for their viability are attractive targets for the development of novel cancer therapeutics. Activating transcription factor 5 (ATF5) is an anti-apoptotic protein that is highly expressed in malignant glioma but not normal brain tissues, and is essential for glioma cell survival. Recent work has revealed an essential survival pathway mediated by ATF5 in malignant glioma; pharmacological inhibition of this pathway leads to tumor regression in mice. ATF5 is also highly expressed in a variety of other cancers, and preliminary studies have shown that the ATF5-mediated survival pathway is active in diverse human cancer cell lines. Targeting this pathway may therefore have therapeutic implications for the treatment of a wide range of cancers. In this perspective, we summarize recent advances in ATF5 research, focusing on its role in promoting cancer and its potential as a target for cancer therapy.
Collapse
|
28
|
Wei Y, Ge Y, Zhou F, Chen H, Cui C, Liu D, Yang Z, Wu G, Gu J, Jiang J. Identification and characterization of the promoter of human ATF5 gene. J Biochem 2010; 148:171-8. [DOI: 10.1093/jb/mvq047] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
29
|
Pandey AK, Munjal N, Datta M. Gene expression profiling and network analysis reveals lipid and steroid metabolism to be the most favored by TNFalpha in HepG2 cells. PLoS One 2010; 5:e9063. [PMID: 20140224 PMCID: PMC2816217 DOI: 10.1371/journal.pone.0009063] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Accepted: 01/12/2010] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The proinflammatory cytokine, TNFalpha, is a crucial mediator of the pathogenesis of several diseases, more so in cases involving the liver wherein it is critical in maintaining liver homeostasis since it is a major determiner of hepatocyte life and death. Gene expression profiling serves as an appropriate strategy to unravel the underlying signatures to envisage such varied responses and considering this, gene transcription profiling was examined in control and TNFalpha treated HepG2 cells. METHODS AND FINDINGS Microarray experiments between control and TNFalpha treated HepG2 cells indicated that TNFalpha could significantly alter the expression profiling of 140 genes; among those up-regulated, several GO (Gene Ontology) terms related to lipid and fat metabolism were significantly (p<0.01) overrepresented indicating a global preference of fat metabolism within the hepatocyte and those within the down-regulated dataset included genes involved in several aspects of the immune response like immunoglobulin receptor activity and IgE binding thereby indicating a compromise in the immune defense mechanism(s). Conserved transcription factor binding sites were identified in identically clustered genes within a common GO term and SREBP-1 and FOXJ2 depicted increased occupation of their respective binding elements in the presence of TNFalpha. The interacting network of "lipid metabolism, small molecule biochemistry" was derived to be significantly overrepresented that correlated well with the top canonical pathway of "biosynthesis of steroids". CONCLUSIONS TNFalpha alters the transcriptome profiling within HepG2 cells with an interesting catalog of genes being affected and those involved in lipid and steroid metabolism to be the most favored. This study represents a composite analysis of the effects of TNFalpha in HepG2 cells that encompasses the altered transcriptome profiling, the functional analysis of the up- and down- regulated genes and the identification of conserved transcription factor binding sites. These could possibly determine TNFalpha mediated alterations mainly the phenotypes of hepatic steatosis and fatty liver associated with several hepatic pathological states.
Collapse
Affiliation(s)
- Amit K. Pandey
- Institute of Genomics and Integrative Biology (Council of Scientific and Industrial Research), Delhi, India
| | - Neha Munjal
- Institute of Genomics and Integrative Biology (Council of Scientific and Industrial Research), Delhi, India
| | - Malabika Datta
- Institute of Genomics and Integrative Biology (Council of Scientific and Industrial Research), Delhi, India
| |
Collapse
|
30
|
Li G, Li W, Angelastro JM, Greene LA, Liu DX. Identification of a novel DNA binding site and a transcriptional target for activating transcription factor 5 in c6 glioma and mcf-7 breast cancer cells. Mol Cancer Res 2009; 7:933-43. [PMID: 19531563 DOI: 10.1158/1541-7786.mcr-08-0365] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recent reports indicate that the activating transcription factor 5 (ATF5) is required for the survival of cancer cells but not for noncancer cells. However, the mechanisms by which ATF5 regulates genes and promotes cell survival are not clear. Using a cyclic amplification and selection of targets (CASTing) approach, we identified a novel ATF5 consensus DNA binding sequence. We show in C6 glioma and MCF-7 breast cancer cells that ATF5 occupies this sequence and that ATF5 activates reporter gene expression driven by this site. Conversely, reporter activity is diminished when ATF5 activity is blocked or when ATF5 expression is down-regulated by serum withdrawal. We further show that early growth response factor 1 (Egr-1), whose promoter contains two adjacent ATF5 consensus binding sites at a conserved promoter position in rat, mouse, and human, is targeted and regulated by ATF5 in C6 and MCF-7 cells. These data provide new insight on the mechanisms by which ATF5 promotes gene regulation and cancer-specific cell survival.
Collapse
Affiliation(s)
- Guangfu Li
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, 17033, USA
| | | | | | | | | |
Collapse
|
31
|
Shimizu YI, Morita M, Ohmi A, Aoyagi S, Ebihara H, Tonaki D, Horino Y, Iijima M, Hirose H, Takahashi S, Takahashi Y. Fasting induced up-regulation of activating transcription factor 5 in mouse liver. Life Sci 2009; 84:894-902. [DOI: 10.1016/j.lfs.2009.04.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Revised: 03/27/2009] [Accepted: 03/31/2009] [Indexed: 10/20/2022]
|