1
|
Chen J, Wang D, Wu G, Xiong F, Liu W, Wang Q, Kuai Y, Huang W, Qi Y, Wang B, Chen Y. STUB1-mediated K63-linked ubiquitination of UHRF1 promotes the progression of cholangiocarcinoma by maintaining DNA hypermethylation of PLA2G2A. J Exp Clin Cancer Res 2024; 43:260. [PMID: 39267107 PMCID: PMC11395162 DOI: 10.1186/s13046-024-03186-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/07/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND Cholangiocarcinoma (CCA) is a highly malignant tumor characterized by a lack of effective targeted therapeutic strategies. The protein UHRF1 plays a pivotal role in the preservation of DNA methylation and works synergistically with DNMT1. Posttranscriptional modifications (PTMs), such as ubiquitination, play indispensable roles in facilitating this process. Nevertheless, the specific PTMs that regulate UHRF1 in CCA remain unidentified. METHODS We confirmed the interaction between STUB1 and UHRF1 through mass spectrometry analysis. Furthermore, we investigated the underlying mechanisms of the STUB1-UHRF1/DNMT1 axis via co-IP experiments, denaturing IP ubiquitination experiments, nuclear‒cytoplasmic separation and immunofluorescence experiments. The downstream PLA2G2A gene, regulated by the STUB1-UHRF1/DNMT1 axis, was identified via RNA-seq. The negative regulatory mechanism of PLA2G2A was explored via bisulfite sequencing PCR (BSP) experiments to assess changes in promoter methylation. The roles of PLA2G2A and STUB1 in the proliferation, invasion, and migration of CCA cells were assessed using the CCK-8 assay, colony formation assay, Transwell assay, wound healing assay and xenograft mouse model. We evaluated the effects of STUB1/UHRF1 on cholangiocarcinoma by utilizing a primary CCA mouse model. RESULTS This study revealed that STUB1 interacts with UHRF1, resulting in an increase in the K63-linked ubiquitination of UHRF1. Consequently, this facilitates the nuclear translocation of UHRF1 and enhances its binding affinity with DNMT1. The STUB1-UHRF1/DNMT1 axis led to increased DNA methylation of the PLA2G2A promoter, subsequently repressing its expression. Increased STUB1 expression in CCA was inversely correlated with tumor progression and overall survival. Conversely, PLA2G2A functions as a tumor suppressor in CCA by inhibiting cell proliferation, invasion and migration. CONCLUSIONS These findings suggest that the STUB1-mediated ubiquitination of UHRF1 plays a pivotal role in tumor progression by epigenetically silencing PLA2G2A, underscoring the potential of STUB1 as both a prognostic biomarker and therapeutic target for CCA.
Collapse
Affiliation(s)
- Junsheng Chen
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430074, China
| | - Da Wang
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430074, China
| | - Guanhua Wu
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430074, China
| | - Fei Xiong
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Wenzheng Liu
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430074, China
| | - Qi Wang
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430074, China
| | - Yiyang Kuai
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430074, China
| | - Wenhua Huang
- Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430074, China
| | - Yongqiang Qi
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Bing Wang
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430074, China.
| | - Yongjun Chen
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430074, China.
| |
Collapse
|
2
|
Wang C, Zhang X, Zhu S, Hu B, Deng Z, Feng H, Liu B, Luan Y, Liu Z, Wang S, Liu J, Wang T, Wu Y. Prediction of clear cell renal cell carcinoma prognosis based on an immunogenomic landscape analysis. Heliyon 2024; 10:e36156. [PMID: 39247280 PMCID: PMC11379575 DOI: 10.1016/j.heliyon.2024.e36156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/02/2024] [Accepted: 08/11/2024] [Indexed: 09/10/2024] Open
Abstract
Immune cell infiltration and tumor-related immune molecules play key roles in tumorigenesis and tumor progression. The influence of immune interactions on the molecular characteristics and prognosis of clear cell renal cell carcinoma (ccRCC) remains unclear. A machine learning algorithm was applied to the transcriptome data from The Cancer Genome Atlas database to determine the immunophenotypic and immunological characteristics of ccRCC patients. These algorithms included single-sample gene set enrichment analyses and cell type identification. Using bioinformatics techniques, we examined the prognostic potential and regulatory networks of immune-related genes (IRGs) involved in ccRCC immune interactions. Fifteen IRGs (CCL7, CHGA, CMA1, CRABP2, IFNE, ISG15, NPR3, PDIA2, PGLYRP2, PLA2G2A, SAA1, TEK, TGFA, TNFSF14, and UCN2) were identified as prognostic IRGs associated with overall survival and were used to construct a prognostic model. The area under the receiver operating characteristic curve at 1 year was 0.927; 3 years, 0.822; and 5 years, 0.717, indicating good predictive accuracy. Molecular regulatory networks were found to govern immune interactions in ccRCC. Additionally, we developed a nomogram containing the model and clinical characteristics with high prognostic potential. By systematically examining the sophisticated regulatory mechanisms, molecular characteristics, and prognostic potential of ccRCC immune interactions, we provided an important framework for understanding the molecular mechanisms of ccRCC and identifying new prognostic markers and therapeutic targets for future research.
Collapse
Affiliation(s)
- Chengwei Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Xi Zhang
- The First Clinical Medical College of Anhui Medical University, Hefei, 230001, Anhui, China
| | - Shiqing Zhu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Bintao Hu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Zhiyao Deng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Huan Feng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Bo Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Yang Luan
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Zhuo Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Shaogang Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Jihong Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Tao Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, Guangdong, China
| | - Yue Wu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, Guangdong, China
| |
Collapse
|
3
|
Shang JR, Zhu J, Bai L, Kulabiek D, Zhai XX, Zheng X, Qian J. Adipocytes impact on gastric cancer progression: Prognostic insights and molecular features. World J Gastrointest Oncol 2024; 16:3011-3031. [PMID: 39072151 PMCID: PMC11271780 DOI: 10.4251/wjgo.v16.i7.3011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/17/2024] [Accepted: 05/28/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND Adipocytes, especially adipocytes within tumor tissue known as cancer-associated adipocytes, have been increasingly recognized for their pivotal role in the tumor microenvironment of gastric cancer (GC). Their influence on tumor progression and patient prognosis has sparked significant interest in recent research. The main objectives of this study were to investigate adipocyte infiltration, assess its correlation with clinical pathological features, develop a prognostic prediction model based on independent prognostic factors, evaluate the impact of adipocytes on immune cell infiltration and tumor invasiveness in GC, and identify and validate genes associated with high adipocyte expression, exploring their potential diagnostic and prognostic value. AIM To explore the relationship between increased adipocytes within tumor tissue and prognosis in GC patients as well as the associated mechanisms and potential biomarkers, using public databases and clinical data. METHODS Using mRNA microarray datasets from the Gene Expression Omnibus database and clinical samples from Jiangsu Provincial Hospital, survival and regression analyses were conducted to determine the relevant prognostic factors in GC. Feature gene selection was performed using least absolute shrinkage and selection operator and support vector machine recursive feature elimination algorithms, followed by differential gene expression analysis, gene ontology, pathway analysis, and Gene Set Enrichment Analysis. Immune cell infiltration was analyzed using the CIBERSORT algorithm. RESULTS Tumor adipocyte infiltration correlated with poor prognosis in GC, leading to the development of a highly accurate and discriminative prognostic prediction model. Key genes, ADH1B, SFRP1, PLAC9, and FABP4, were identified as associated with high adipocyte expression in GC. The diagnostic and prognostic potential of these identified genes was validated using independent datasets. Downregulation of immune cells was observed in GC with high adipocyte expression. CONCLUSION GC with high intratumoral adipocyte expression demonstrated aggressive tumor biology and a poorer prognosis. The genes ADH1B, SFRP1, PLAC9, and FABP4 have been identified as holding diagnostic and prognostic significance in GC. These findings strongly support the use of adipocyte expression as a valuable indicator of tumor invasiveness and anticipated patient outcomes in GC.
Collapse
Affiliation(s)
- Jia-Rong Shang
- Department of Oncology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210000, Jiangsu Province, China
| | - Jin Zhu
- Department of Oncology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210000, Jiangsu Province, China
| | - Lu Bai
- Department of Oncology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210000, Jiangsu Province, China
| | - Delida Kulabiek
- Department of Oncology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210000, Jiangsu Province, China
| | - Xiao-Xue Zhai
- Department of Oncology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210000, Jiangsu Province, China
| | - Xia Zheng
- Department of Oncology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210000, Jiangsu Province, China
| | - Jun Qian
- Department of Oncology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210000, Jiangsu Province, China
| |
Collapse
|
4
|
Zhu T, Okabe A, Usui G, Fujiki R, Komiyama D, Huang KK, Seki M, Fukuyo M, Abe H, Ning M, Okada T, Minami M, Matsumoto M, Fan Q, Rahmutulla B, Hoshii T, Tan P, Morikawa T, Ushiku T, Kaneda A. Integrated enhancer regulatory network by enhancer-promoter looping in gastric cancer. NAR Cancer 2024; 6:zcae020. [PMID: 38720882 PMCID: PMC11077903 DOI: 10.1093/narcan/zcae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/07/2024] [Accepted: 04/25/2024] [Indexed: 05/12/2024] Open
Abstract
Enhancer cis-regulatory elements play critical roles in gene regulation at many stages of cell growth. Enhancers in cancer cells also regulate the transcription of oncogenes. In this study, we performed a comprehensive analysis of long-range chromatin interactions, histone modifications, chromatin accessibility and expression in two gastric cancer (GC) cell lines compared to normal gastric epithelial cells. We found that GC-specific enhancers marked by histone modifications can activate a population of genes, including some oncogenes, by interacting with their proximal promoters. In addition, motif analysis of enhancer-promoter interacting enhancers showed that GC-specific transcription factors are enriched. Among them, we found that MYB is crucial for GC cell growth and activated by the enhancer with an enhancer-promoter loop and TCF7 upregulation. Clinical GC samples showed epigenetic activation of enhancers at the MYB locus and significant upregulation of TCF7 and MYB, regardless of molecular GC subtype and clinicopathological factors. Single-cell RNA sequencing of gastric mucosa with intestinal metaplasia showed high expression of TCF7 and MYB in intestinal stem cells. When we inactivated the loop-forming enhancer at the MYB locus using CRISPR interference (dCas9-KRAB), GC cell growth was significantly inhibited. In conclusion, we identified MYB as an oncogene activated by a loop-forming enhancer and contributing to GC cell growth.
Collapse
Affiliation(s)
- Tianhui Zhu
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Atsushi Okabe
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
- Health and Disease Omics Center, Chiba University, Chiba 260-8670, Japan
| | - Genki Usui
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Ryoji Fujiki
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Daichi Komiyama
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Kie Kyon Huang
- Program in Cancer and Stem Cell Biology, Duke–NUS Medical School, Singapore 169857, Singapore
| | - Motoaki Seki
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Masaki Fukuyo
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Hiroyuki Abe
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Meng Ning
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Tomoka Okada
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Mizuki Minami
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Makoto Matsumoto
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Qin Fan
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Bahityar Rahmutulla
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Takayuki Hoshii
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Patrick Tan
- Program in Cancer and Stem Cell Biology, Duke–NUS Medical School, Singapore 169857, Singapore
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore 138632, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Teppei Morikawa
- Department of Diagnostic Pathology, NTT Medical Center Tokyo, Tokyo 141-8625, Japan
| | - Tetsuo Ushiku
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Atsushi Kaneda
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
- Health and Disease Omics Center, Chiba University, Chiba 260-8670, Japan
| |
Collapse
|
5
|
Iwabuchi S, Takahashi K, Kawaguchi K, Nagatsu A, Imafuku T, Shichino S, Matsushima K, Taketomi A, Honda M, Hashimoto S. Phospholipase A2 Group IIA Is Associated with Inflammatory Hepatocellular Adenoma. Cancers (Basel) 2023; 16:159. [PMID: 38201587 PMCID: PMC10778238 DOI: 10.3390/cancers16010159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Although benign hepatocellular adenomas (HCA) are very rare, recent observations have shown their occurrence in patients with diabetes mellitus. Consequently, most of these cases are treated by resection due to concerns regarding their potential progression to hepatocarcinoma (HCC). This decision is largely driven by the limited number of studies on HCC subtyping and the lack of molecular and biological insights into the carcinogenic potential of benign tumors. This study aimed to comprehensively investigate the subtype classification of HCA and to compare and analyze gene expression profiling between HCA and HCC tissues. One fresh inflammatory HCA (I-HCA), three non-B non-C HCCs, two hepatitis B virus-HCCs, and one normal liver tissue sample were subjected to single-cell RNA sequencing (scRNA-seq). Comparative analysis of scRNA-seq among different tissues showed that phospholipase A2 group IIA (PLA2G2A) mRNA was specifically expressed in I-HCA, following RNA-seq analysis in formalin-fixed paraffin-embedded tissues from other HCAs. Immunohistochemistry using the PLA2G2A antibody in these tissues indicated that the positive reaction was mainly observed in hepatocytes of I-HCAs and stromal cells surrounding the tumor tissue in HCC were also stained. According to a clinical database, PLA2G2A expression in HCC does not correlate with poor prognosis. This finding may potentially help develop a new definition for I-HCA, resulting in a significant clinical contribution, but it requires validation with other fresh HCA samples.
Collapse
Affiliation(s)
- Sadahiro Iwabuchi
- Department of Molecular Pathophysiology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Wakayama 641-0011, Japan; (S.I.)
| | - Kenta Takahashi
- Department of Human Pathology, Graduate School of Medicine, Kanazawa University, Ishikawa, Kanazawa 920-0934, Japan
| | - Kazunori Kawaguchi
- Department of Gastroenterology, Kanazawa University Hospital, Ishikawa, Kanazawa 920-0934, Japan
| | - Akihisa Nagatsu
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Hokkaido, Sapporo 060-8648, Japan
| | - Tadashi Imafuku
- Department of Molecular Pathophysiology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Wakayama 641-0011, Japan; (S.I.)
| | - Shigeyuki Shichino
- Division of Molecular Regulation of Inflammatory and Immune Disease, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Noda 278-8510, Japan
| | - Kouji Matsushima
- Division of Molecular Regulation of Inflammatory and Immune Disease, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Noda 278-8510, Japan
| | - Akinobu Taketomi
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Hokkaido, Sapporo 060-8648, Japan
| | - Masao Honda
- Department of Gastroenterology, Kanazawa University Hospital, Ishikawa, Kanazawa 920-0934, Japan
| | - Shinichi Hashimoto
- Department of Molecular Pathophysiology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Wakayama 641-0011, Japan; (S.I.)
| |
Collapse
|
6
|
Parisi E, Hidalgo I, Montal R, Pallisé O, Tarragona J, Sorolla A, Novell A, Campbell K, Sorolla MA, Casali A, Salud A. PLA2G12A as a Novel Biomarker for Colorectal Cancer with Prognostic Relevance. Int J Mol Sci 2023; 24:10889. [PMID: 37446068 DOI: 10.3390/ijms241310889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/13/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Metastasis is the leading cause of colorectal cancer (CRC)-related deaths. Therefore, the identification of accurate biomarkers predictive of metastasis is needed to better stratify high-risk patients to provide preferred management and reduce mortality. In this study, we identified 13 new genes that modified circulating tumor cell numbers using a genome-wide genetic screen in a whole animal CRC model. Candidate genes were subsequently evaluated at the gene expression level in both an internal human CRC cohort of 153 patients and an independent cohort from the TCGA including 592 patients. Interestingly, the expression of one candidate, PLA2G12A, significantly correlated with both the time to recurrence and overall survival in our CRC cohort, with its low expression being an indicator of a poor clinical outcome. By examining the TCGA cohort, we also found that low expression of PLA2G12A was significantly enriched in epithelial-mesenchymal transition signatures. Finally, the candidate functionality was validated in vitro using three different colon cancer cell lines, revealing that PLA2G12A deficiency increases cell proliferation, migration, and invasion. Overall, our study identifies PLA2G12A as a prognostic biomarker of early-stage CRC, providing evidence that its deficiency promotes tumor growth and dissemination.
Collapse
Affiliation(s)
- Eva Parisi
- Research Group of Cancer Biomarkers, Biomedical Research Institute of Lleida (IRBLleida), 25198 Lleida, Spain
- Department of Experimental Medicine, University of Lleida, 25198 Lleida, Spain
| | - Ivan Hidalgo
- Research Group of Cancer Biomarkers, Biomedical Research Institute of Lleida (IRBLleida), 25198 Lleida, Spain
| | - Robert Montal
- Research Group of Cancer Biomarkers, Biomedical Research Institute of Lleida (IRBLleida), 25198 Lleida, Spain
- Department of Medical Oncology, Arnau de Vilanova University Hospital (HUAV), 25198 Lleida, Spain
- Department of Basic Medical Sciences, University of Lleida and IRBLleida, 25198 Lleida, Spain
| | - Ona Pallisé
- Research Group of Cancer Biomarkers, Biomedical Research Institute of Lleida (IRBLleida), 25198 Lleida, Spain
- Department of Medical Oncology, Arnau de Vilanova University Hospital (HUAV), 25198 Lleida, Spain
| | - Jordi Tarragona
- Department of Pathology and Molecular Genetics/Oncologic Pathology Group, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, CIBERONC, 25198 Lleida, Spain
| | - Anabel Sorolla
- Research Group of Cancer Biomarkers, Biomedical Research Institute of Lleida (IRBLleida), 25198 Lleida, Spain
| | - Anna Novell
- Research Group of Cancer Biomarkers, Biomedical Research Institute of Lleida (IRBLleida), 25198 Lleida, Spain
| | - Kyra Campbell
- School of Biosciences, The University of Sheffield, Sheffield S10 2TN, UK
| | - Maria Alba Sorolla
- Research Group of Cancer Biomarkers, Biomedical Research Institute of Lleida (IRBLleida), 25198 Lleida, Spain
| | - Andreu Casali
- Department of Basic Medical Sciences, University of Lleida and IRBLleida, 25198 Lleida, Spain
| | - Antonieta Salud
- Research Group of Cancer Biomarkers, Biomedical Research Institute of Lleida (IRBLleida), 25198 Lleida, Spain
- Department of Medical Oncology, Arnau de Vilanova University Hospital (HUAV), 25198 Lleida, Spain
- Department of Medicine, University of Lleida, 25198 Lleida, Spain
| |
Collapse
|
7
|
Shim J, Park J, Jung YJ, Jang KT, Kwon EJ, Lee JH, Lee D. Molecular characterization of onychomatricoma: Spatial profiling reveals the role of onychofibroblasts in its pathogenesis. Exp Dermatol 2022; 32:491-501. [PMID: 36579368 DOI: 10.1111/exd.14736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/30/2022]
Abstract
Onychomatricoma (OM) is a rare nail unit tumour with a characteristic presentation of finger-like projections arising from the nail matrix. Due to the lack of transcriptome information, the mechanisms underlying its development are largely unknown. To characterize molecular features involved in the disease pathogenesis, we used digital spatial profiling (DSP) in 2 cases of OM and normal control nail units. Based on the histological evaluation, we selectively profiled 69 regions of interest covering epithelial and stromal compartments of each tissue section. Dermoscopic and histopathologic findings were reviewed in 6 cases. Single-cell RNA sequencing of nail units and DSP were combined to define cell type contributions of OM. We identified 173 genes upregulated in stromal compartments of OM compared to onychodermis, specialized nail mesenchyme. Gene ontology analysis of the upregulated genes suggested the role of Wnt pathway activation in OM pathogenesis. We also found PLA2G2A, a known modulator of Wnt signalling, is strongly and specifically expressed in the OM stroma. The potential role of Wnt pathway was further supported by strong nuclear localization of β-catenin in OM. Compared to the nail matrix epithelium, only a few genes were increased in OM epithelium. Deconvolution of nail unit cell types showed that onychofibroblasts are the dominant cell type in OM stroma. Altogether, integrated spatial and single-cell multi-omics concluded that OM is a tumour that derives a significant proportion of its origin from onychofibroblasts and is associated with upregulation of Wnt signals, which play a key role in the disease pathogenesis.
Collapse
Affiliation(s)
- Joonho Shim
- Department of Dermatology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jihye Park
- Department of Dermatology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yeon Joo Jung
- Department of Dermatology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kee-Taek Jang
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Eun Ji Kwon
- Department of Dermatology, Columbia University Irving Medical Center, New York City, New York, USA
| | - Jong Hee Lee
- Department of Dermatology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Department of Medical Device Management & Research, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, Korea
| | - Dongyoun Lee
- Department of Dermatology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
8
|
Knight-Schrijver VR, Davaapil H, Bayraktar S, Ross ADB, Kanemaru K, Cranley J, Dabrowska M, Patel M, Polanski K, He X, Vallier L, Teichmann S, Gambardella L, Sinha S. A single-cell comparison of adult and fetal human epicardium defines the age-associated changes in epicardial activity. NATURE CARDIOVASCULAR RESEARCH 2022; 1:1215-1229. [PMID: 36938497 PMCID: PMC7614330 DOI: 10.1038/s44161-022-00183-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/03/2022] [Indexed: 12/24/2022]
Abstract
Re-activating quiescent adult epicardium represents a potential therapeutic approach for human cardiac regeneration. However, the exact molecular differences between inactive adult and active fetal epicardium are not known. In this study, we combined fetal and adult human hearts using single-cell and single-nuclei RNA sequencing and compared epicardial cells from both stages. We found that a migratory fibroblast-like epicardial population only in the fetal heart and fetal epicardium expressed angiogenic gene programs, whereas the adult epicardium was solely mesothelial and immune responsive. Furthermore, we predicted that adult hearts may still receive fetal epicardial paracrine communication, including WNT signaling with endocardium, reinforcing the validity of regenerative strategies that administer or reactivate epicardial cells in situ. Finally, we explained graft efficacy of our human embryonic stem-cell-derived epicardium model by noting its similarity to human fetal epicardium. Overall, our study defines epicardial programs of regenerative angiogenesis absent in adult hearts, contextualizes animal studies and defines epicardial states required for effective human heart regeneration.
Collapse
Affiliation(s)
- Vincent R. Knight-Schrijver
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Hongorzul Davaapil
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Semih Bayraktar
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Alexander D. B. Ross
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
- Department of Paediatrics, University of Cambridge, Cambridge, UK
- Department of Medical Genetics, University of Cambridge, Cambridge, UK
| | | | - James Cranley
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Monika Dabrowska
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Minal Patel
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | | | - Xiaoling He
- John van Geest Centre for Brain Repair, Cambridge University, Cambridge, UK
| | - Ludovic Vallier
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
- Berlin Institute of Health (BIH), BIH Centre for Regenerative Therapies (BCRT), Charité - Universitätsmedizin, Berlin, Germany
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Sarah Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK
| | - Laure Gambardella
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- These authors jointly supervised this work: Laure Gambardella, Sanjay Sinha
| | - Sanjay Sinha
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
- These authors jointly supervised this work: Laure Gambardella, Sanjay Sinha
| |
Collapse
|
9
|
Analysis of the Effect of Sichs on Gastric Ulcer Rats Based on RNA Sequencing Technique. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:9325836. [PMID: 35734779 PMCID: PMC9208952 DOI: 10.1155/2022/9325836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 04/25/2022] [Indexed: 11/17/2022]
Abstract
Objective To research the mechanism of action and transcriptomic characteristics for the intervention effect of self-made Chaihuang decoction (Sichs) on gastric ulcer (GU) rats with liver qi stagnation and spleen deficiency and to clarify the therapeutic pathway and effective target. Methods Thirty SD rats were randomly divided into the control group, model group, and Sichs group (10 rats per group). The model of GU rats with liver qi stagnation and spleen deficiency was established through multifactor compound simulation of traditional Chinese medical (TCM) etiology and acetic acid method. Histopathological changes in the gastric antrum tissue were observed with H&E staining. RNA sequencing (RNA-seq) was utilized to check differentially expressed genes (DEGs) in the gastric antrum tissues of rats, and gene ontology (GO) and KEGG pathway enrichment analyses were performed. The key DEGs were validated using qRT-PCR. Results Sichs could ameliorate gastric antrum tissue injury in GU rats with liver qi stagnation and spleen deficiency. After RNA-seq, it was found that Sichs could reverse 225 upregulated genes and 26 downregulated genes in the model group. And the DEGs between the Sichs group and the model group were related to cell division, complement activation, and phospholipase A2 (Pla2g2a) activity. According to KEGG pathway analysis, DEGs between the two groups were mainly enriched in signaling pathways such as cell cycle, p53 signaling pathway, and linolenic acid metabolism. The validation results of the four key DEGs were consistent with the analysis trend of sequencing results. Conclusion Sichs can effectively improve GU with liver qi stagnation and spleen deficiency in rats through the signaling pathways related to cell cycle and lipid metabolism.
Collapse
|
10
|
Comprehensive Analysis of a Novel Lipid Metabolism-Related Gene Signature for Predicting the Prognosis and Immune Landscape in Uterine Corpus Endometrial Carcinoma. JOURNAL OF ONCOLOGY 2022; 2022:8028825. [PMID: 35190739 PMCID: PMC8858058 DOI: 10.1155/2022/8028825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/17/2022] [Indexed: 12/17/2022]
Abstract
Lipid metabolism is important in various cancers. However, the association between lipid metabolism and uterine corpus endometrial carcinoma (UCEC) is still unclear. In this study, we collected clinicopathologic parameters and the expression of lipid metabolism-related genes (LMRGs) from the Cancer Genome Atlas (TCGA). A lipid metabolism-related risk model was built and verified. The risk score was developed based on 11 selected LMRGs. The expression of 11 LMRGs was confirmed by qRT-PCR in clinical samples. We found that the model was an independent prediction factor of UCEC in terms of multivariate analysis. The overall survival (OS) of low-risk group was higher than that in the high-risk group. GSEA revealed that MAPK signaling pathway, ERBB signaling pathway, ECM receptor interaction, WNT pathway, and TGF-β signaling pathway were enriched in the high-risk group. Low-risk group was characterized by high tumor mutation burden (TMB) and showed sensitive response to immunotherapy and chemotherapy. In brief, we built a lipid metabolism gene expression-based risk signature which can reflect the prognosis of UCEC patients and their response to chemotherapeutics and immune therapy.
Collapse
|
11
|
Ionica E, Gaina G, Tica M, Chifiriuc MC, Gradisteanu-Pircalabioru G. Contribution of Epithelial and Gut Microbiome Inflammatory Biomarkers to the Improvement of Colorectal Cancer Patients' Stratification. Front Oncol 2022; 11:811486. [PMID: 35198435 PMCID: PMC8859258 DOI: 10.3389/fonc.2021.811486] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/20/2021] [Indexed: 12/24/2022] Open
Abstract
In order to ensure that primary endpoints of clinical studies are attained, the patients' stratification is an important aspect. Selection criteria include age, gender, and also specific biomarkers, such as inflammation scores. These criteria are not sufficient to achieve a straightforward selection, however, in case of multifactorial diseases, with unknown or partially identified mechanisms, occasionally including host factors, and the microbiome. In these cases, the efficacy of interventions is difficult to predict, and as a result, the selection of subjects is often random. Colorectal cancer (CRC) is a highly heterogeneous disease, with variable clinical features, outcomes, and response to therapy; the CRC onset and progress involves multiple sequential steps with accumulation of genetic alterations, namely, mutations, gene amplification, and epigenetic changes. The gut microbes, either eubiotic or dysbiotic, could influence the CRC evolution through a complex and versatile crosstalk with the intestinal and immune cells, permanently changing the tumor microenvironment. There have been significant advances in the development of personalized approaches for CRC screening, treatment, and potential prevention. Advances in molecular techniques bring new criteria for patients' stratification-mutational analysis at the time of diagnosis to guide treatment, for example. Gut microbiome has emerged as the main trigger of gut mucosal homeostasis. This may impact cancer susceptibility through maintenance of the epithelial/mucus barrier and production of protective metabolites, such as short-chain fatty acids (SCFAs) via interactions with the hosts' diet and metabolism. Microbiome dysbiosis leads to the enrichment of cancer-promoting bacterial populations, loss of protective populations or maintaining an inflammatory chronic state, all of which contribute to the development and progression of CRC. Meanwhile, variations in patient responses to anti-cancer immuno- and chemotherapies were also linked to inter-individual differences in intestine microbiomes. The authors aim to highlight the contribution of epithelial and gut microbiome inflammatory biomarkers in the improvement of CRC patients' stratification towards a personalized approach of early diagnosis and treatment.
Collapse
Affiliation(s)
- Elena Ionica
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Gisela Gaina
- Laboratory of Cell Biology, Neuroscience and Experimental Miology, Victor Babes National Institute of Pathology, Bucharest, Romania
| | - Mihaela Tica
- Bucharest Emergency University Hospital, Bucharest, Romania
| | - Mariana-Carmen Chifiriuc
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania
- Biological Science Division, Romanian Academy of Sciences, Bucharest, Romania
| | | |
Collapse
|
12
|
Yao J, Li G, Liu M, Yang S, Su H, Ye C. lnc‑MICAL2‑1 sponges miR‑25 to regulate DKK3 expression and inhibits activation of the Wnt/β‑catenin signaling pathway in breast cancer. Int J Mol Med 2022; 49:23. [PMID: 34970696 DOI: 10.3892/ijmm.2021.5078] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 10/19/2021] [Indexed: 11/06/2022] Open
Abstract
The Dickkopf 3 (DKK3) protein antagonizes the Wnt receptor complex in the Wnt signaling pathway; however, to date, there have been no relevant studies investigating its upstream regulatory mechanism in breast cancer (BC), to the best of our knowledge. The present study aimed to explore whether long non‑coding RNA MICAL2‑1 (lnc‑MICAL2‑1) sponged microRNA (miR)‑25 to regulate DKK3 and inhibit activation of the Wnt/β‑catenin signaling pathway. The Atlas of non‑coding RNA in Cancer database was used to measure the expression levels of lnc‑MICAL2‑1 and their correlation with DKK3 expression levels. In addition, cell proliferation, invasion and migration were determined following the silencing or overexpression of lnc‑MICAL2‑1. The binding between lnc‑MICAL2‑1 and miR‑25, or miR‑25 and DKK3 was verified using RNA pull‑down and dual‑luciferase reporter assays. The effects of overexpression or knockdown of lnc‑MICAL2‑1 on DKK3 expression and the Wnt signaling pathway were further evaluated in a nude mouse xenograft model. The results revealed that, compared with in adjacent normal tissue, the expression levels of lnc‑MICAL2‑1 were downregulated in BC tissues, and the expression levels of lnc‑MICAL2‑1 were found to be positively correlated with DKK3 expression. The overexpression of lnc‑MICAL2‑1 in BC cells upregulated the mRNA expression levels of DKK3 and inhibited their proliferation. Results from the RNA pull‑down and dual luciferase reporter assays validated that lnc‑MICAL2‑1 could bind to miR‑25, which targets DKK3. The in vivo experimental data demonstrated that lnc‑MICAL2‑1 inhibited tumor growth via regulating the Wnt signaling pathway. In conclusion, the findings of the present study highlighted a novel molecular mechanism through which lnc‑MICAL2‑1 may regulate the DKK3‑mediated Wnt signaling pathway in BC, highlighting potential targets for the treatment of the disease.
Collapse
Affiliation(s)
- Jia Yao
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510650, P.R. China
| | - Guanqiao Li
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510650, P.R. China
| | - Minfeng Liu
- Department of General Surgery‑Breast Center, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong 510650, P.R. China
| | - Shiping Yang
- Department of Radiotherapy, Hainan General Hospital, Haikou, Hainan 570311, P.R. China
| | - Huiluan Su
- Department of Radiotherapy, Hainan General Hospital, Haikou, Hainan 570311, P.R. China
| | - Changsheng Ye
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510650, P.R. China
| |
Collapse
|
13
|
Chada S, Wiederhold D, Menander KB, Sellman B, Talbott M, Nemunaitis JJ, Ahn HM, Jung BK, Yun CO, Sobol RE. Tumor suppressor immune gene therapy to reverse immunotherapy resistance. Cancer Gene Ther 2022; 29:825-834. [PMID: 34349241 PMCID: PMC9209327 DOI: 10.1038/s41417-021-00369-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/21/2021] [Accepted: 07/13/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND While immune checkpoint inhibitors are becoming a standard of care for multiple types of cancer, the majority of patients do not respond to this form of immunotherapy. New approaches are required to overcome resistance to immunotherapies. METHODS We investigated the effects of adenoviral p53 (Ad-p53) gene therapy in combination with immune checkpoint inhibitors and selective IL2 or IL15 CD122/132 agonists in the aggressive B16F10 tumor model resistant to immunotherapies. To assess potential mechanisms of action, pre- and post- Ad-p53 treatment biopsies were evaluated for changes in gene-expression profiles by Nanostring IO 360 assays. RESULTS The substantial synergy of "triplet" Ad-p53 + CD122/132 + anti-PD-1 therapy resulted in potential curative effects associated with the complete tumor remissions of both the primary and contralateral tumors. Interestingly, contralateral tumors, which were not injected with Ad-p53 showed robust abscopal effects resulting in statistically significant decreases in tumor size and increased survival (p < 0.001). None of the monotherapies or doublet treatments induced the complete tumor regressions. Ad-p53 treatment increased interferon, CD8+ T cell, immuno-proteosome antigen presentation, and tumor inflammation gene signatures. Ad-p53 treatment also decreased immune-suppressive TGF-beta, beta-catenin, macrophage, and endothelium gene signatures, which may contribute to enhanced immune checkpoint inhibitor (CPI) efficacy. Unexpectedly, a number of previously unidentified, strongly p53 downregulated genes associated with stromal pathways and IL10 expression identified novel anticancer therapeutic applications. CONCLUSIONS These results imply the ability of Ad-p53 to induce efficacious local and systemic antitumor immune responses with the potential to reverse resistance to immune checkpoint inhibitor therapy when combined with CD122/132 agonists and immune checkpoint blockade. Our findings further imply that Ad-p53 has multiple complementary immune mechanisms of action, which support future clinical evaluation of triplet Ad-p53, CD122/132 agonist, and immune checkpoint inhibitor combination treatment.
Collapse
Affiliation(s)
| | | | | | | | | | - John J. Nemunaitis
- grid.411726.70000 0004 0628 5895University of Toledo Medical Center, Eleanor N. Dana Cancer Center, Toledo, OH USA
| | - Hyo Min Ahn
- grid.49606.3d0000 0001 1364 9317Hanyang University, Seoul, South Korea
| | - Bo-Kyeong Jung
- grid.49606.3d0000 0001 1364 9317Hanyang University, Seoul, South Korea
| | - Chae-Ok Yun
- grid.49606.3d0000 0001 1364 9317Hanyang University, Seoul, South Korea ,grid.49606.3d0000 0001 1364 9317Institute of Nano Science and Technology (INST), Hanyang University, Seoul, South Korea
| | | |
Collapse
|
14
|
Wu W, Li WX, Huang CH. Phospholipase A 2, a nonnegligible enzyme superfamily in gastrointestinal diseases. Biochimie 2021; 194:79-95. [PMID: 34974145 DOI: 10.1016/j.biochi.2021.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 12/25/2021] [Accepted: 12/28/2021] [Indexed: 11/16/2022]
Abstract
Gastrointestinal tract is important for digestion, absorption, detoxification and immunity. Gastrointestinal diseases are mainly caused by the imbalance of protective and attacking factors in gastrointestinal mucosa, which can seriously harm human health. Phospholipase A2 (PLA2) is a large family closely involved in lipid metabolism and is found in almost all human cells. A growing number of studies have revealed that its metabolites are deeply implicated in various inflammatory pathways and also regulates the maintenance of numerous biological events such as dietary digestion, membrane remodeling, barrier action, and host immunity. In addition to their phospholipase activity, some members of the superfamily also have other catalytic activities. Based on the in-depth effects of phospholipase A2 on bioactive lipid metabolism and inflammatory cytokines, PLA2 and its metabolites are likely to be involved in the pathogenesis, development or prevention of gastrointestinal diseases. Therefore, this review will focus on the physiological and pathogenic roles of several important PLA2 enzymes in the gastrointestinal tract, and reveals the potential of PLA2 as a therapeutic target for gastrointestinal diseases.
Collapse
Affiliation(s)
- Wei Wu
- Queen Mary School, Medical Department, Nanchang University, Nanchang, Jiangxi, China
| | - Wen-Xuan Li
- Queen Mary School, Medical Department, Nanchang University, Nanchang, Jiangxi, China
| | - Chun-Hong Huang
- School of Basic Medical Sciences, 330006, Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
15
|
Lee IS, Ahn J, Kim K, Okugawa Y, Toiyama Y, Hur H, Goel A. A blood-based transcriptomic signature for noninvasive diagnosis of gastric cancer. Br J Cancer 2021; 125:846-853. [PMID: 34163003 DOI: 10.1038/s41416-021-01461-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/01/2021] [Accepted: 06/02/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Delayed detection of tumours contributes to poor prognosis in patients with gastric cancer (GC). The invasive nature of endoscopy and the absence of an effective serum markers highlight the need to develop novel, noninvasive biomarkers. METHODS We performed biomarker discovery and validation to identify candidate genes in three gene expression data sets. After validating the gene panel in clinical tissues, we translated the gene panel into serum samples by performing training and validation in 89 samples from GC patients and 54 from healthy donors in two independent cohorts. RESULTS We identified a nine-gene panel in the discovery phase, with subsequent validation in tissue specimens. Using a serum training cohort, we developed a 5-gene risk prediction formulae for the diagnosis of GC; bootstrapped analysis exhibited an AUC of 0.896. We validated this 5-gene biomarker panel using an independent serum cohort, yielding an AUC of 0.947. This biomarker panel successfully identified GC, regardless of tumour histology. Notably, biomarker performance for detection of stage 1 and 2 GC displayed an AUC of 0.928 and 0.980 in both serum cohorts. CONCLUSIONS We identified a novel 5-gene biomarker panel for noninvasive diagnosis of GC, which might serve as a potential diagnostic tool for early detection.
Collapse
Affiliation(s)
- In-Seob Lee
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Monrovia, CA, USA.,Department of Surgery, Asan Medical Centre, University of Ulsan College of Medicine, Seoul, Korea
| | - Jiyoung Ahn
- Transdisciplinary Department of Medicine and Advanced Technology, Seoul National University Hospital, Seoul, Korea
| | - Kwangsoo Kim
- Transdisciplinary Department of Medicine and Advanced Technology, Seoul National University Hospital, Seoul, Korea
| | - Yoshinaga Okugawa
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Mie, Japan
| | - Yuji Toiyama
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Mie, Japan
| | - Hoon Hur
- Department of Surgery, Ajou University of School of Medicine, Suwon, Korea.,Cancer Biology Graduate Program, Ajou University Graduate School of Medicine, Suwon, Korea
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Monrovia, CA, USA. .,City of Hope Comprehensive Cancer Centre, Duarte, CA, USA.
| |
Collapse
|
16
|
Kadam W, Wei B, Li F. Metabolomics of Gastric Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1280:291-301. [PMID: 33791990 DOI: 10.1007/978-3-030-51652-9_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Gastric cancer is the fourth most common malignancy worldwide and the third leading cause of cancer deaths. Recent metabolomics research has advanced our understanding of the relationship between metabolic reprogramming and gastric cancer progression and led to the discovery of metabolic targets for potential clinical applications and therapeutic interventions. As a powerful tool for metabolite and flux measurement, metabolomics not only allows a comprehensive analysis of metabolites and related metabolic pathways but also can investigate the interactions between gastric cancer cells and tumour microenvironment as well as between the cancer cells and gastric microbiome. In this chapter, we aim to summarize the recent advances in gastric cancer metabolism and discuss the applications of metabolomics for target discovery in gastric cancer.
Collapse
Affiliation(s)
| | - Bowen Wei
- UCLA School of Medicine, Los Angeles, CA, USA
| | - Feng Li
- UCLA School of Dentistry, Los Angeles, CA, USA.
| |
Collapse
|
17
|
Davies R, Liu L, Taotao S, Tuano N, Chaturvedi R, Huang KK, Itman C, Mandoli A, Qamra A, Hu C, Powell D, Daly RJ, Tan P, Rosenbluh J. CRISPRi enables isoform-specific loss-of-function screens and identification of gastric cancer-specific isoform dependencies. Genome Biol 2021; 22:47. [PMID: 33499898 PMCID: PMC7836456 DOI: 10.1186/s13059-021-02266-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 01/07/2021] [Indexed: 12/26/2022] Open
Abstract
Introduction Genes contain multiple promoters that can drive the expression of various transcript isoforms. Although transcript isoforms from the same gene could have diverse and non-overlapping functions, current loss-of-function methodologies are not able to differentiate between isoform-specific phenotypes. Results Here, we show that CRISPR interference (CRISPRi) can be adopted for targeting specific promoters within a gene, enabling isoform-specific loss-of-function genetic screens. We use this strategy to test functional dependencies of 820 transcript isoforms that are gained in gastric cancer (GC). We identify a subset of GC-gained transcript isoform dependencies, and of these, we validate CIT kinase as a novel GC dependency. We further show that some genes express isoforms with opposite functions. Specifically, we find that the tumour suppressor ZFHX3 expresses an isoform that has a paradoxical oncogenic role that correlates with poor patient outcome. Conclusions Our work finds isoform-specific phenotypes that would not be identified using current loss-of-function approaches that are not designed to target specific transcript isoforms. Supplementary Information The online version contains supplementary material available at 10.1186/s13059-021-02266-6.
Collapse
Affiliation(s)
- Rebecca Davies
- Cancer Research Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Ling Liu
- Cancer Research Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Sheng Taotao
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, 169857, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore.,Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, Singapore, 138672, Singapore.,SingHealth/Duke-NUS Institute of Precision Medicine, National Heart Centre Singapore, Singapore, 169856, Singapore.,Cellular and Molecular Research, National Cancer Centre, Singapore, 169610, Singapore.,Singapore Gastric Cancer Consortium, Singapore, 119074, Singapore
| | - Natasha Tuano
- Cancer Research Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Richa Chaturvedi
- Cancer Research Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Kie Kyon Huang
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, 169857, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore.,Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, Singapore, 138672, Singapore.,SingHealth/Duke-NUS Institute of Precision Medicine, National Heart Centre Singapore, Singapore, 169856, Singapore.,Cellular and Molecular Research, National Cancer Centre, Singapore, 169610, Singapore.,Singapore Gastric Cancer Consortium, Singapore, 119074, Singapore
| | - Catherine Itman
- Functional Genomics Platform, Monash University, Clayton, VIC, 3800, Australia
| | - Amit Mandoli
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Aditi Qamra
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, 169857, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore.,Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, Singapore, 138672, Singapore.,SingHealth/Duke-NUS Institute of Precision Medicine, National Heart Centre Singapore, Singapore, 169856, Singapore.,Cellular and Molecular Research, National Cancer Centre, Singapore, 169610, Singapore.,Singapore Gastric Cancer Consortium, Singapore, 119074, Singapore
| | - Changyuan Hu
- Cancer Research Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - David Powell
- Monash Bioinformatics Platform, Monash University, Clayton, VIC, 3800, Australia
| | - Roger J Daly
- Cancer Research Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Patrick Tan
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, 169857, Singapore. .,Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore. .,Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, Singapore, 138672, Singapore. .,SingHealth/Duke-NUS Institute of Precision Medicine, National Heart Centre Singapore, Singapore, 169856, Singapore. .,Cellular and Molecular Research, National Cancer Centre, Singapore, 169610, Singapore. .,Singapore Gastric Cancer Consortium, Singapore, 119074, Singapore.
| | - Joseph Rosenbluh
- Cancer Research Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia. .,Functional Genomics Platform, Monash University, Clayton, VIC, 3800, Australia.
| |
Collapse
|
18
|
Peng Z, Chang Y, Fan J, Ji W, Su C. Phospholipase A2 superfamily in cancer. Cancer Lett 2020; 497:165-177. [PMID: 33080311 DOI: 10.1016/j.canlet.2020.10.021] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 10/11/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022]
Abstract
Phospholipase A2 enzymes (PLA2s) comprise a superfamily that is generally divided into six subfamilies known as cytosolic PLA2s (cPLA2s), calcium-independent PLA2s (iPLA2s), secreted PLA2s (sPLA2s), lysosomal PLA2s, platelet-activating factor (PAF) acetylhydrolases, and adipose specific PLA2s. Each subfamily consists of several isozymes that possess PLA2 activity. The first three PLA2 subfamilies play important roles in inflammation-related diseases and cancer. In this review, the roles of well-studied enzymes sPLA2-IIA, cPLA2α and iPLA2β in carcinogenesis and cancer development were discussed. sPLA2-IIA seems to play conflicting roles and can act as a tumor suppressor or a tumor promoter according to the cancer type, but cPLA2α and iPLA2β play protumorigenic role in most cancers. The mechanisms of PLA2-mediated signal transduction and crosstalk between cancer cells and endothelial cells in the tumor microenvironment are described. Moreover, the mechanisms by which PLA2s mediate lipid reprogramming and glycerophospholipid remodeling in cancer cells are illustrated. PLA2s as the upstream regulators of the arachidonic acid cascade are generally high expressed and activated in various cancers. Therefore, they can be considered as potential pharmacological targets and biomarkers in cancer. The detailed information summarized in this review may aid in understanding the roles of PLA2s in cancer, and provide new clues for the development of novel agents and strategies for tumor prevention and treatment.
Collapse
Affiliation(s)
- Zhangxiao Peng
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital & National Center for Liver Cancer, Navy Military Medical University, Shanghai, 200438, China.
| | - Yanxin Chang
- Department of Biliary Tract Surgery IV, Eastern Hepatobiliary Surgical Hospital, Navy Military Medical University, Shanghai, 200438, China.
| | - Jianhui Fan
- Mengchao Hepatobiliary Hospital, Fujian Medical University, Fuzhou, 350025, Fujian Province, China.
| | - Weidan Ji
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital & National Center for Liver Cancer, Navy Military Medical University, Shanghai, 200438, China.
| | - Changqing Su
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital & National Center for Liver Cancer, Navy Military Medical University, Shanghai, 200438, China.
| |
Collapse
|
19
|
Androgen receptor signaling regulates the transcriptome of prostate cancer cells by modulating global alternative splicing. Oncogene 2020; 39:6172-6189. [PMID: 32820253 PMCID: PMC7515832 DOI: 10.1038/s41388-020-01429-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 07/28/2020] [Accepted: 08/10/2020] [Indexed: 12/13/2022]
Abstract
Androgen receptor (AR), is a transcription factor and a member of a hormone receptor superfamily. AR plays a vital role in the progression of prostate cancer and is a crucial target for therapeutic interventions. While the majority of advanced-stage prostate cancer patients will initially respond to the androgen deprivation, the disease often progresses to castrate-resistant prostate cancer (CRPC). Interestingly, CRPC tumors continue to depend on hyperactive AR signaling and will respond to potent second-line antiandrogen therapies, including bicalutamide (CASODEX®) and enzalutamide (XTANDI®). However, the progression-free survival rate for the CRPC patients on antiandrogen therapies is only 8–19 months. Hence, there is a need to understand the mechanisms underlying CRPC progression and eventual treatment resistance. Here, we have leveraged next-generation sequencing and newly developed analytical methodologies to evaluate the role of AR signaling in regulating the transcriptome of prostate cancer cells. The genomic and pharmacologic stimulation and inhibition of AR activity demonstrates that AR regulates alternative splicing within cancer-relevant genes. Furthermore, by integrating transcriptomic data from in vitro experiments and in prostate cancer patients, we found that a significant number of AR-regulated splicing events are associated with tumor progression. For example, we found evidence for an inadvertent AR-antagonist-mediated switch in IDH1 and PL2G2A isoform expression, which is associated with a decrease in overall survival of patients. Mechanistically, we discovered that the epithelial-specific splicing regulators (ESRP1 and ESRP2), flank many AR-regulated alternatively spliced exons. And, using 2D invasion assays, we show that the inhibition of ESRPs can suppress AR-antagonist-driven tumor invasion. Our work provides evidence for a new mechanism by which AR alters the transcriptome of prostate cancer cells by modulating alternative splicing. As such, our work has important implications for CRPC progression and development of resistance to treatment with bicalutamide and enzalutamide.
Collapse
|
20
|
Luan F, Li X, Cheng X, Huangfu L, Han J, Guo T, Du H, Wen X, Ji J. TNFRSF11B activates Wnt/β-catenin signaling and promotes gastric cancer progression. Int J Biol Sci 2020; 16:1956-1971. [PMID: 32398963 PMCID: PMC7211174 DOI: 10.7150/ijbs.43630] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 03/23/2020] [Indexed: 12/24/2022] Open
Abstract
Tumor necrosis factor receptor superfamily member 11B (TNFRSF11B) has been studied to be involved in the development and progression of several human malignancies. However, little is unveiled regarding the complex mechanisms of TNFRSF11B in human gastric cancer (GC). The clinical significance of TNFRSF11B was assessed in 70 and 160 GC tissues using immunohistochemistry method and gene microarray analysis, respectively. The biological function of TNFRSF11B was studied in vitro and in vivo assays. Immunofluorescence assay was used to evaluate the expression of β-catenin in the nucleus. The expression of β-catenin and related protein was determined by Western blot. The interaction between TNFRSF11B and GSK3β was detected by co-immunoprecipitation. We demonstrated that TNFRSF11B was highly expressed in the cytoplasm of GC and associated with the patient poor outcome. Our studies showed that TNFRSF11B in GC cells significantly promoted cell proliferation, migration, invasion in vitro and tumorigenic ability in vitro and in vivo. Meanwhile, TNFRSF11B inhibited GC cell apoptosis. The proportion of nuclear active β-catenin showed positively correlation with TNFRSF11B expression. TNFRSF11B directly combined with GSK-3β upregulating its phosphorylation, and increased expression of β-catenin and its downstream effectors. Collectively, these findings demonstrate that TNFRSF11B promote the aggressive phenotypes of GC cells and activated Wnt/β-catenin signaling. Accordingly, TNFRSF11B had potential as a biomarker and inhibition of TNFRSF11B expression might offer a new therapeutic target for GC patients.
Collapse
Affiliation(s)
- Fengming Luan
- Key laboratory of Carcinogenesis and Translational Research (Ministry of education), Division of gastrointestinal Cancer Translational Research laboratory, Peking University Cancer Hospital & Institute, Beijing, China
- Department of gastrointestinal surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xiaomei Li
- Key laboratory of Carcinogenesis and Translational Research (Ministry of education), Division of gastrointestinal Cancer Translational Research laboratory, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xiaojing Cheng
- Key laboratory of Carcinogenesis and Translational Research (Ministry of education), Division of gastrointestinal Cancer Translational Research laboratory, Peking University Cancer Hospital & Institute, Beijing, China
| | - Longtao Huangfu
- Key laboratory of Carcinogenesis and Translational Research (Ministry of education), Division of gastrointestinal Cancer Translational Research laboratory, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jing Han
- Key laboratory of Carcinogenesis and Translational Research (Ministry of education), Division of gastrointestinal Cancer Translational Research laboratory, Peking University Cancer Hospital & Institute, Beijing, China
| | - Ting Guo
- Key laboratory of Carcinogenesis and Translational Research (Ministry of education), Division of gastrointestinal Cancer Translational Research laboratory, Peking University Cancer Hospital & Institute, Beijing, China
| | - Hong Du
- Key laboratory of Carcinogenesis and Translational Research (Ministry of education), Division of gastrointestinal Cancer Translational Research laboratory, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xianzi Wen
- Key laboratory of Carcinogenesis and Translational Research (Ministry of education), Division of gastrointestinal Cancer Translational Research laboratory, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jiafu Ji
- Key laboratory of Carcinogenesis and Translational Research (Ministry of education), Division of gastrointestinal Cancer Translational Research laboratory, Peking University Cancer Hospital & Institute, Beijing, China
- Department of gastrointestinal surgery, Peking University Cancer Hospital & Institute, Beijing, China
| |
Collapse
|
21
|
Ozturk K, Onal MS, Efiloglu O, Nikerel E, Yildirim A, Telci D. Association of 5'UTR polymorphism of secretory phospholipase A2 group IIA (PLA2G2A) gene with prostate cancer metastasis. Gene 2020; 742:144589. [PMID: 32179174 DOI: 10.1016/j.gene.2020.144589] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/19/2020] [Accepted: 03/12/2020] [Indexed: 01/21/2023]
Abstract
Phospholipase A2 (PLA2) enzymes are small lipolytic hydrolases that can regulate immune responses through generation of Arachidonic Acid (AA), a precursor molecule of lipid mediators like prostaglandins, leukotrienes and thromboxanes. One of the family members of PLA2, secretory Phospholipase A2 Group IIA (PLA2G2A), was associated with different types of malignancies including prostate cancer. Elevated serum levels of PLA2G2A was found in prostate cancer (PCa) patients and associated with increased tumor grade in literature. 5'UTR regions have regulatory role in protein expression by controlling the accessibility of factors necessary for the translation initiation. Single nucleotide polymorphisms at 5'UTR regions have the potential to affect mRNA translation efficiency resulting in altered protein levels depending on structure and nucleotide content. Given that the 5'UTR polymorphism in PLA2G2A gene (rs11573156) is associated with increased serum levels of PLA2G2A, the association of this 5'UTR polymorphism with PCa susceptibility and metastasis was investigated in this study. Total of 261 PCa patients and 128 control individuals were genotyped with polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Individuals with heterozygous CG genotype was found to have significantly reduced risk of PCa metastasis with an Odds Ratio (OR) of 0.405 (p = 0.028, 95%CI = 0.181-0.906), compared to the carriers of homozygous CC genotype (p > 0.05) suggesting an anti-metastatic effect for the G allele. No association was found between PCa susceptibility and Gleason score (p > 0.05) in Turkish population.
Collapse
Affiliation(s)
- Kaan Ozturk
- Department of Genetics and Bioengineering, Yeditepe University, Istanbul, Turkey
| | - Meltem Selen Onal
- Department of Genetics and Bioengineering, Yeditepe University, Istanbul, Turkey
| | - Ozgur Efiloglu
- Department of Urology, Faculty of Medicine, Istanbul Medeniyet University, Istanbul, Turkey
| | - Emrah Nikerel
- Department of Genetics and Bioengineering, Yeditepe University, Istanbul, Turkey
| | - Asif Yildirim
- Department of Urology, Faculty of Medicine, Istanbul Medeniyet University, Istanbul, Turkey
| | - Dilek Telci
- Department of Genetics and Bioengineering, Yeditepe University, Istanbul, Turkey.
| |
Collapse
|
22
|
Establishment of novel long-term cultures from EpCAM positive and negative circulating tumour cells from patients with metastatic gastroesophageal cancer. Sci Rep 2020; 10:539. [PMID: 31953491 PMCID: PMC6968999 DOI: 10.1038/s41598-019-57164-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/09/2019] [Indexed: 12/19/2022] Open
Abstract
Circulating tumour cell (CTC) enumeration and profiling has been established as a valuable clinical tool in many solid malignancies. A key challenge in CTC research is the limited number of cells available for study. Ex vivo CTC culture permits expansion of these rare cell populations for detailed characterisation, functional assays including drug sensitivity testing, and investigation of the pathobiology of metastases. We report for the first time the establishment and characterisation of two continuous CTC lines from patients with gastroesophageal cancer. The two cell lines (designated UWG01CTC and UWG02CTC) demonstrated rapid tumorigenic growth in immunodeficient mice and exhibit distinct genotypic and phenotypic profiles which are consistent with the tumours of origin. UWG02CTC exhibits an EpCAM+, cytokeratin+, CD44+ phenotype, while UWG01CTC, which was derived from a patient with metastatic neuroendocrine cancer, displays an EpCAM−, weak cytokeratin phenotype, with strong expression of neuroendocrine markers. Further, the two cell lines show distinct differences in drug and radiation sensitivity which match differential cancer-associated gene expression pathways. This is strong evidence implicating EpCAM negative CTCs in metastasis. These novel, well characterised, long-term CTC cell lines from gastroesophageal cancer will facilitate ongoing research into metastasis and the discovery of therapeutic targets.
Collapse
|
23
|
A Potential Role of Phospholipase 2 Group IIA (PLA 2-IIA) in P. gingivalis-Induced Oral Dysbiosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019. [PMID: 31732936 DOI: 10.1007/978-3-030-28524-1_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Porphyromonas gingivalis is an oral pathogen with the ability to induce oral dysbiosis and periodontal disease. Nevertheless, the mechanisms by which P. gingivalis could abrogate the host-microbe symbiotic relationship leading to oral dysbiosis remain unclear. We have recently demonstrated that P. gingivalis specifically increased the antimicrobial properties of oral epithelial cells, through a strong induction of the expression of PLA2-IIA in a mechanism that involves activation of the Notch-1 receptor. Moreover, gingival expression of PLA2-IIA was significantly increased during initiation and progression of periodontal disease in non-human primates and interestingly, those PLA2-IIA expression changes were concurrent with oral dysbiosis. In this chapter, we present an innovative hypothesis of a potential mechanism involved in P. gingivalis-induced oral dysbiosis and inflammation based on our previous observations and a robust body of literature that supports the antimicrobial and proinflammatory properties of PLA2-IIA as well as its role in other chronic inflammatory diseases.
Collapse
|
24
|
Xu X, Liu Z, Tian F, Xu J, Chen Y. Clinical Significance of Transcription Factor 7 (TCF7) as a Prognostic Factor in Gastric Cancer. Med Sci Monit 2019; 25:3957-3963. [PMID: 31133633 PMCID: PMC6556064 DOI: 10.12659/msm.913913] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Background Transcription factor 7 (TCF7) plays an essential role in Wnt signaling by interacting with β-catenin. Emerging evidence demonstrates that overexpression of TCF7 promotes progression or correlates with poor progression in several types of cancers, but the functions of TCF7 in gastric cancer (GC) have not been revealed. Material/Methods A total of 168 patients with GC who underwent radical surgeries were collected and regarded as the test cohort. The expression of TCF7 in the 168 patients was detected with immunohistochemistry. Moreover, the mRNA levels of TCF7 in 11 pairs of GC and adjacent tissues were detected with quantitative real-time PCR (qRT-PCR). The correlations between TCF7 and the clinicopathological factors were evaluated with the chi-square test, and the prognostic value of TCF7 in GC was investigated with univariate analysis and multivariate analysis. Results The mRNA levels of TCF7 in GC tissues were significantly higher than in corresponding tumor adjacent tissues. The patients of low TCF7 expression and high TCF7 expression accounted for 76.79% (129/168) and 23.21% (39/168), respectively. In our experiments, TCF7 was significantly associated with positive lymphatic invasion (P=0.022) and metastasis (P<0.001). The high expression of TCF7 was correlated with low survival rates (P=0.012) and was confirmed as an independent prognostic factor (HR=1.92, 95%CI =1.06–3.47, P=0.031) of GC in multivariate analysis. Conclusions TCF7 expression is correlated with metastasis and is an independent prognostic factor of GC. TCF7 detection of GC could help stratify the patients with high risk and guide precise treatment.
Collapse
Affiliation(s)
- Xiaoguang Xu
- Department of Gastroenterology, Linyi Central Hospital, Linyi, Shandong, China (mainland)
| | - Zhaoxia Liu
- Department of Gastroenterology, Linyi Central Hospital, Linyi, Shandong, China (mainland)
| | - Feng Tian
- Department of Gastroenterology, Linyi Central Hospital, Linyi, Shandong, China (mainland)
| | - Jian Xu
- Department of Gastroenterology, Linyi Central Hospital, Linyi, Shandong, China (mainland)
| | - Yimin Chen
- Department of General Surgery, Taizhou Tiantai County People's Hospital, Taizhou, Zhejiang, China (mainland)
| |
Collapse
|
25
|
Guo T, Wen XZ, Li ZY, Han HB, Zhang CG, Bai YH, Xing XF, Cheng XJ, Du H, Hu Y, Wang XH, Jia YN, Nie ML, Xie M, Li QD, Ji JF. ISL1 predicts poor outcomes for patients with gastric cancer and drives tumor progression through binding to the ZEB1 promoter together with SETD7. Cell Death Dis 2019; 10:33. [PMID: 30674889 PMCID: PMC6393520 DOI: 10.1038/s41419-018-1278-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 11/29/2018] [Accepted: 11/30/2018] [Indexed: 02/06/2023]
Abstract
ISL1, a LIM-homeodomain transcription factor, serves as a biomarker of metastasis in multiple tumors. However, the function and underlying mechanisms of ISL1 in gastric cancer (GC) have not been fully elucidated. Here we found that ISL1 was frequently overexpressed in GC FFPE samples (104/196, 53.06%), and associated with worse clinical outcomes. Furthermore, the overexpression of ISL1 and loss-of-function of ISL1 influenced cell proliferation, invasion and migration in vitro and in vivo, including GC patient-derived xenograft models. We used ChIP-seq and RNA-seq to identify that ISL1 influenced the regulation of H3K4 methylation and bound to ZEB1, a key regulator of the epithelial–mesenchymal transition (EMT). Meanwhile, we validated ISL1 as activating ZEB1 promoter through influencing H3K4me3. We confirmed that a complex between ISL1 and SETD7 (a histone H3K4-specific methyltransferase) can directly bind to the ZEB1 promoter to activate its expression in GC cells by immunoprecipitation, mass spectrometry, and ChIP-re-ChIP. Moreover, ZEB1 expression was significantly positively correlated with ISL1 and was positively associated with a worse outcome in primary GC specimens. Our paper uncovers a molecular mechanism of ISL1 promoting metastasis of GC through binding to the ZEB1 promoter together with co-factor SETD7. ISL1 might be a potential prognostic biomarker of GC.
Collapse
Affiliation(s)
- Ting Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xian-Zi Wen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zi-Yu Li
- Department of Gastrointestinal Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Hai-Bo Han
- The Tissue Bank, Peking University Cancer Hospital & Institute, Beijing, China
| | - Chen-Guang Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yan-Hua Bai
- Department of Pathology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xiao-Fang Xing
- The Tissue Bank, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xiao-Jing Cheng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Beijing, China
| | - Hong Du
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Beijing, China
| | - Ying Hu
- The Tissue Bank, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xiao-Hong Wang
- The Tissue Bank, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yong-Ning Jia
- Department of Gastrointestinal Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Meng-Lin Nie
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Beijing, China
| | - Meng Xie
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Beijing, China
| | - Qing-Da Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jia-Fu Ji
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Beijing, China. .,Department of Gastrointestinal Surgery, Peking University Cancer Hospital & Institute, Beijing, China.
| |
Collapse
|
26
|
Condello V, Torregrossa L, Sartori C, Denaro M, Poma AM, Piaggi P, Valerio L, Materazzi G, Elisei R, Vitti P, Basolo F. mRNA and miRNA expression profiling of follicular variant of papillary thyroid carcinoma with and without distant metastases. Mol Cell Endocrinol 2019; 479:93-102. [PMID: 30261209 DOI: 10.1016/j.mce.2018.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 09/14/2018] [Accepted: 09/22/2018] [Indexed: 12/19/2022]
Abstract
Follicular Variant of Papillary Thyroid Carcinoma (FVPTC) is usually associated with a good outcome. Nevertheless, in rare cases, it develops distant metastases (1-9%). Our goal was to investigate whether mRNA and miRNA expression profiles may help distinguish between metastatic versus non-metastatic FVPTCs. Twenty-four primary FVPTCs, 12 metastatic and 12 non-metastatic, with similar clinicopathological features were selected and analyzed by nanoString nCounter technology using two distinct panels for expression analysis of 740 mRNA and 798 miRNAs. Data analysis was performed using the nanoString nSolver 3.0 software. Forty-seven mRNA and 35 miRNAs were differentially expressed between the two groups. Using these mRNA and miRNAs, metastatic and non-metastatic FVPTCs were clearly divided into two distinct clusters. Our results indicate that FVPTCs with metastatic abilities have different expression profiles compared to the non-metastatic. A prospective validation is needed to evaluate the usefulness of this molecular approach in the early identification of high-risk FVPTCs.
Collapse
Affiliation(s)
- Vincenzo Condello
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University Hospital of Pisa, via Savi 10, 56126, Pisa, Italy
| | - Liborio Torregrossa
- Division of Surgical Pathology, University Hospital of Pisa, via Paradisa 2, 56124, Pisa, Italy
| | - Chiara Sartori
- Division of Surgical Pathology, University Hospital of Pisa, via Paradisa 2, 56124, Pisa, Italy
| | - Maria Denaro
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University Hospital of Pisa, via Savi 10, 56126, Pisa, Italy
| | - Anello Marcello Poma
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University Hospital of Pisa, via Savi 10, 56126, Pisa, Italy
| | - Paolo Piaggi
- National Institute of Diabetes and Digestive and Kidney Disease, Phoenix, AZ, USA
| | - Laura Valerio
- Department of Clinical and Experimental Medicine (Endocrine Unit), University Hospital of Pisa, via Paradisa 2, 56124, Pisa, Italy
| | - Gabriele Materazzi
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University Hospital of Pisa, via Savi 10, 56126, Pisa, Italy
| | - Rossella Elisei
- Department of Clinical and Experimental Medicine (Endocrine Unit), University Hospital of Pisa, via Paradisa 2, 56124, Pisa, Italy
| | - Paolo Vitti
- Department of Clinical and Experimental Medicine (Endocrine Unit), University Hospital of Pisa, via Paradisa 2, 56124, Pisa, Italy
| | - Fulvio Basolo
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University Hospital of Pisa, via Savi 10, 56126, Pisa, Italy.
| |
Collapse
|
27
|
Ee Uli J, Yong CSY, Yeap SK, Alitheen NB, Rovie-Ryan JJ, Mat Isa N, Tan SG. RNA sequencing of kidney and liver transcriptome obtained from wild cynomolgus macaque (Macaca fascicularis) originating from Peninsular Malaysia. BMC Res Notes 2018; 11:923. [PMID: 30577850 PMCID: PMC6303865 DOI: 10.1186/s13104-018-4014-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 12/12/2018] [Indexed: 01/22/2023] Open
Abstract
Objective Using high-throughput RNA sequencing technology, this study aimed to sequence the transcriptome of kidney and liver tissues harvested from Peninsular Malaysia cynomolgus macaque (Macaca fascicularis). M. fascicularis are significant nonhuman primate models in the biomedical field, owing to the macaque’s biological similarities with humans. The additional transcriptomic dataset will supplement the previously described Peninsular Malaysia M. fascicularis transcriptomes obtained in a past endeavour. Results A total of 75,350,240 sequence reads were obtained via Hi-seq 2500 sequencing technology. A total of 5473 significant differentially expressed genes were called. Gene ontology functional categorisation showed that cellular process, catalytic activity, and cell part categories had the highest number of expressed genes, while the metabolic pathways category possessed the highest number of expressed genes in the KEGG pathway analysis. The additional sequence dataset will further enrich existing M. fascicularis transcriptome assemblies, and provide a dataset for further downstream studies. Electronic supplementary material The online version of this article (10.1186/s13104-018-4014-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Joey Ee Uli
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Christina Seok-Yien Yong
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - Swee Keong Yeap
- China-ASEAN College of Marine Sciences, Xiamen University, Sepang, Selangor, Malaysia
| | - Noorjahan Banu Alitheen
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Jeffrine J Rovie-Ryan
- National Wildlife Forensic Laboratory, Ex-Situ Conservation Division, Department of Wildlife and National Parks, Kuala Lumpur, Malaysia
| | - Nurulfiza Mat Isa
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Soon Guan Tan
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
28
|
Su C, Wang W, Wang C. IGF-1-induced MMP-11 expression promotes the proliferation and invasion of gastric cancer cells through the JAK1/STAT3 signaling pathway. Oncol Lett 2018; 15:7000-7006. [PMID: 29731870 PMCID: PMC5921070 DOI: 10.3892/ol.2018.8234] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 08/23/2017] [Indexed: 12/14/2022] Open
Abstract
The present study aimed to investigate the association between insulin-like growth factor-1 (IGF-1) and matrix metalloproteinase-11 (MMP-11) expression in gastric cancer (GC) and the underlying mechanisms in SGC-7901 cells. Reverse transcription-quantitative polymerase chain reaction analysis revealed that the expression of IGF-1 and MMP-11 was significantly upregulated in GC tissues compared with normal gastric tissue. Furthermore, IGF-1 significantly and dose-dependently promoted MMP-11. Western blotting revealed that the addition of IGF-1 to SGC-7901 cells led to an evident enhancement in signal transducer and activator of transcription 3 (STAT3), IGF-1R and Janus kinase 1 (JAK1) phosphorylation at 20 and 40 min. A decrease in the extent of the elevated expression of MMP-11 and the enhanced phosphorylation of STAT3, JAK1 and IGF-1 receptor (IGF-1R) induced by IGF-1 in SGC-7901 cells were observed following treatment with NT157 (an IGF-1R inhibitor). Furthermore, piceatannol (a JAK1 inhibitor) or small interfering RNA against STAT3 reduced the extent of the increased expression of MMP-11 induced by IGF-1 in SGC-7901 cells. Piceatannol treatment induced the dose-dependent decline in the enhancement of STAT3 phosphorylation induced by IGF-1, indicating that the JAK1/STAT3 pathway may be implicated in the elevated expression of MMP-11 induced by IGF-1 in SGC-7901 cells. Finally, IGF-1 treatment significantly promoted the proliferation and invasion of SGC-7901 cells, which was inhibited following NT157, piceatannol or si-STAT3 treatment. The present study therefore demonstrated that IGF-1-induced MMP-11 may have facilitated the proliferation and invasion of SGC-7901 cells via the JAK1/STAT3 pathway.
Collapse
Affiliation(s)
- Chao Su
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, P.R. China.,Department of Gastrointestinal Surgery, The Municipal Hospital of Weihai, Weihai, Shandong 264200, P.R. China
| | - Wenchang Wang
- Department of Gastrointestinal Surgery, The Municipal Hospital of Weihai, Weihai, Shandong 264200, P.R. China
| | - Cunchuan Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, P.R. China
| |
Collapse
|
29
|
Xiao S, Zhou L. Gastric cancer: Metabolic and metabolomics perspectives (Review). Int J Oncol 2017; 51:5-17. [PMID: 28535006 DOI: 10.3892/ijo.2017.4000] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 05/02/2017] [Indexed: 12/14/2022] Open
Abstract
Gastric cancer is one of the most malignant tumors worldwide and remains a major health threat in Asia-Pacific regions, while its pathological mechanism is generally unknown. Recent research has advanced the understanding of the relationship between metabolic reprogramming and carcinogenesis. In particular, metabolic regulation and cancer research are being further brought into sharp focus with the emergence of metabolomics. Not only can metabolomics provide global information on metabolic profiles of specific tumors, but it can also act as a promising tool to discover biomarkers regarding diagnosis, metastatic surveillance and chemotherapeutic sensitivity prediction. Meanwhile, metabolism-based anticancer therapies will be further discovered. Up to now, accumulative studies have highlighted the application of metabolomics in gastric cancer research regarding different aspects; therefore we summarized the current available results of how metabolic changes are linked to gastric carcinogenesis, and how metabolomics holds promise for the diagnosis, metastatic surveillance, treatment and prognosis prediction of gastric cancer.
Collapse
Affiliation(s)
- Shiyu Xiao
- Department of Gastroenterology, Peking University Third Hospital, Haidian, Beijing 100191, P.R. China
| | - Liya Zhou
- Department of Gastroenterology, Peking University Third Hospital, Haidian, Beijing 100191, P.R. China
| |
Collapse
|
30
|
Zeng XQ, Wang J, Chen SY. Methylation modification in gastric cancer and approaches to targeted epigenetic therapy (Review). Int J Oncol 2017; 50:1921-1933. [DOI: 10.3892/ijo.2017.3981] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 03/22/2017] [Indexed: 11/06/2022] Open
|
31
|
Dong T, Peng Y, Zhong N, Liu F, Zhang H, Xu M, Liu R, Han M, Tian X, Jia J, Chang LK, Guo LH, Liu S. Perfluorodecanoic acid (PFDA) promotes gastric cell proliferation via sPLA2-IIA. Oncotarget 2017; 8:50911-50920. [PMID: 28881615 PMCID: PMC5584216 DOI: 10.18632/oncotarget.17284] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 04/05/2017] [Indexed: 01/09/2023] Open
Abstract
The association of perfluorodecanoicacid (PFDA) with tumor promotion and associated effects is not clear. Given that PDFA is mostly consumed with food and drinking water, we evaluated the effects of PFDA on a gastric cell line. When added to cell cultures, PFDA significantly increased growth rate and colony forming ability compared with control treatment. We found that suppression of cell senescence, but not apoptosis or autophagy was associated with PFDA-induced promotion of cell amount. To determine the molecular mechanism that was involved, DNA microarray assays was used to analyze changes in gene expression in response to PFDA treatment. Data analysis demonstrated that the vascular endothelial growth factor signaling pathway had the lowest p-value, with sPLA2-IIA (pla2g2a) exhibits the most altered expression pattern within the pathway. Moreover, sPLA2-IIA and its transcription factor TCF4, known as a direct target and a binding partner of Wnt/β-catenin signaling in gastric cells respectively, were the third and second most varied genes globally. Cells transfected with expression plasmids pENTER-tcf4 and pENTER-pla2g2a show reduced cell proliferation by more than 60% and 30% respectively. Knockdown with sPLA2-IIA siRNA provided additional evidence that sPLA2-IIA was a mediator of PFDA-induced cell senescence suppression. The results suggest for the first time that PFDA induced suppression of cell senescence through inhibition of sPLA2-IIA protein expression and might increased the proliferative capacity of an existing tumor.
Collapse
Affiliation(s)
- Tianyi Dong
- School of Medicine, Shandong University, Jinan, Shandong, 250012, China.,Department of Breast Thyroid Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
| | - Yanping Peng
- School of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Ning Zhong
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Fengyan Liu
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Hanyu Zhang
- School of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Mengchen Xu
- School of Environmental Science and Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Mingyong Han
- Cancer Therapy and Research Center, Shandong Provincial Hospital, Shandong university, Jinan, Shandong 250021, China
| | - Xingsong Tian
- Department of Breast Thyroid Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
| | - Jihui Jia
- School of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Lap Kam Chang
- School of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Liang-Hong Guo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Shili Liu
- School of Medicine, Shandong University, Jinan, Shandong, 250012, China
| |
Collapse
|
32
|
Smebye ML, Haugom L, Davidson B, Trope CG, Heim S, Skotheim RI, Micci F. Bilateral ovarian carcinomas differ in the expression of metastasis-related genes. Oncol Lett 2017; 13:184-190. [PMID: 28123539 PMCID: PMC5245063 DOI: 10.3892/ol.2016.5384] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 07/01/2016] [Indexed: 11/06/2022] Open
Abstract
The mechanisms behind bilaterality of ovarian carcinomas are not fully understood, as the two tumors could possibly represent two primary tumors, a primary tumor and a metastasis, or two metastases. The gene expression profiles from bilateral high-grade serous carcinomas (HGSCs) and clear cell carcinomas (CCCs) of the ovary were compared to study the association between the tumors of the two sides. A separate analysis of genes from chromosome 19 was also performed, since this chromosome is frequently rearranged in ovarian carcinomas. Tumors from four patients were included (three pairs of HGSC and one pair of CCC). The gene expression was analyzed at the exon level, and bilateral tumors were compared to identify within-pair differences. Gene expression data were also compared with genomic information on the same tumors. Similarities in gene expression were observed between the tumors within each pair, as expected if the two tumors were clonally related. However, certain genes exhibited differences in expression between the two sides, indicating metastasis involvement. Among the most differently expressed genes, one gene was common to all four pairs: Immunoglobulin J. In all HGSC pairs, serpin peptidase inhibitor, clade B (ovalbumin), member 2, serpin family E member 1 and phospholipase A2, group IIA (platelets, synovial fluid) were also among the differentially expressed genes. The specific analysis of chromosome 19 highlighted expression differences in the zinc finger protein 36 gene. These results indicate that bilateral ovarian tumors represent different stages during progression of a single clonal process. Several of the genes observed to be differently expressed are known to be metastasis-related, and are likely to be also involved in spreading from one side to the other in the bilateral cancer cases examined.
Collapse
Affiliation(s)
- Marianne Lislerud Smebye
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, NO-0424 Oslo, Norway; Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, NO-0316 Oslo, Norway
| | - Lisbeth Haugom
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, NO-0424 Oslo, Norway; Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, NO-0316 Oslo, Norway
| | - Ben Davidson
- Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, NO-0424 Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, NO-0316 Oslo, Norway
| | - Claes Göran Trope
- Department of Gynecology, The Norwegian Radium Hospital, Oslo University Hospital, NO-0424 Oslo, Norway
| | - Sverre Heim
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, NO-0424 Oslo, Norway; Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, NO-0316 Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, NO-0316 Oslo, Norway
| | - Rolf Inge Skotheim
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, NO-0316 Oslo, Norway; Department of Molecular Oncology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, NO-0424 Oslo, Norway
| | - Francesca Micci
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, NO-0424 Oslo, Norway; Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, NO-0316 Oslo, Norway
| |
Collapse
|
33
|
Zhu C, Song H, Shen B, Wu L, Liu F, Liu X. Promoting effect of hepatitis B virus on the expressoin of phospholipase A2 group IIA. Lipids Health Dis 2017; 16:5. [PMID: 28077172 PMCID: PMC5225502 DOI: 10.1186/s12944-016-0400-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 12/27/2016] [Indexed: 02/07/2023] Open
Abstract
Background Hepatitis B virus (HBV) infection causes acute and chronic liver disease, ultimately leading to the development of liver cirrhosis (LC) and hepatocellular carcinoma (HCC). Phospholipase A2 group IIA (PLA2G2A) plays important roles in the development and progression of many tumors. Thus far, there have been no reports on the association between HBV and PLA2G2A. The present study investigated the effect of HBV infection on PLA2G2A expression and its application in the diagnosis of HBV-related diseases. Methods Serum levels of PLA2G2A in 308 HBV-infected patients and 185 healthy controls were measured using an enzyme-linked immunosorbent assay (ELISA). The difference in serum levels of PLA2G2A was analyzed among chronic hepatitis B (CHB), LC, and HCC patients. PLA2G2A mRNA and protein expression in HepG2 and HepG2.2.15 cells carrying the integrated HBV genome were measured using reverse transcription polymerase chain reaction (RT-PCR) and western blot assays. The HBV infectious clone pHBV1.3, the control plasmid pBlue-ks and PLA2G2A gene promoter were transfected into HepG2 and HepG2.2.15 cells. After transfection, the luciferase activity was measured in the cells. PLA2G2A mRNA and protein expression levels were examined using RT-PCR and western blot assays. Results The serum levels of PLA2G2A were 258.3 ± 20.3ng/dl in the healthy controls and 329.0 ± 22.5ng/dl, 385.4 ± 29.3ng/dl and 459.2 ± 38.6ng/dl in the CHB, LC, and HCC patients, respectively. Statistical analyses revealed significantly higher serum levels of PLA2G2A in CHB, LC, and HCC patients than in the healthy controls (P < 0.05), and PLA2G2A levels were elevated in the order of HCC > LC > CHB group. High serum PLA2G2A levels in HCC patients were associated with a lower prevalence of lymph node metastasis and a lower TNM stage. HepG2.2.15 cells carrying the HBV genome expressed higher levels of PLA2G2A mRNA and protein than the HepG2 cells. In addition, HBV triggered PLA2G2A promoter activity and enhanced PLA2G2A mRNA and protein expression compared to the empty vector pBlue-ks. Conclusion HBV can upregulate the expression of PLA2G2A, and serum levels of PLA2G2A are associated with the progression of HBV-related diseases.
Collapse
Affiliation(s)
- Chengliang Zhu
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China
| | - Hui Song
- Department of Clinical Laboratory, Shanghai Gongli Hospital, the Second Military Medical University, Pudong New Area, Shanghai, 200135, People's Republic of China
| | - Bingzheng Shen
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China
| | - Long Wu
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China
| | - Fang Liu
- The State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, People's Republic of China
| | - Xinghui Liu
- Department of Clinical Laboratory, Shanghai Gongli Hospital, the Second Military Medical University, Pudong New Area, Shanghai, 200135, People's Republic of China.
| |
Collapse
|
34
|
Shariati M, Aghaei M, Movahedian A, Somi MH, Dolatkhah H, Aghazade AM. The effect of ω-fatty acids on the expression of phospholipase A 2 group 2A in human gastric cancer patients. JOURNAL OF RESEARCH IN MEDICAL SCIENCES 2016; 21:10. [PMID: 27904556 PMCID: PMC5122218 DOI: 10.4103/1735-1995.177358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Revised: 12/05/2015] [Accepted: 12/13/2015] [Indexed: 11/24/2022]
Abstract
Background: Studies show that polyunsaturated fatty acids (PUFAs) may have an inhibitory role in carcinogenesis. It was previously shown that PLA2 group 2A (PLA2G2A) messenger RNA (mRNA) expression is associated with less frequent metastasis and longer survival in gastric adenocarcinoma. This study intends to investigate the effect of PUFAs on the expression of PLA2G2A in patients with gastric cancer. Materials and Methods: Thirty-four patients with gastric cancer (GC) were randomly divided into two groups. The first group received cisplatin medication. The second group received cisplatin medication and supplements of ω-fatty acids for three courses. The total RNA was extracted from the tissues and cDNA was synthesized. The gene expression of PLA2G2A was evaluated by the real-time polymerase chain reaction (PCR) method. To confirm the changes in gene expression, frozen section was utilized. The frozen tissue samples were sectioned and stained using the immunohistochemistry technique. Results: After chemotherapy and chemotherapy plus supplement, the relative mean of PLA2G2A gene expression increased 1.5 ± 0.5-fold and 7.4 ± 2.6-fold, respectively (P = 0.006). The relative mean of gene expression in patients who received cisplatin and ω-fatty acids supplement increased more significantly (7.5 ± 3.3-fold) than in patients who received only cisplatin (P = 0.016). Conclusion: It was found that PUFAs increased the gene and protein expression of PLA2G2A in gastric cancer. Concerning the fact that studies reveal protective function of PLA2G2A in gastric cancer, it is suggested that increased expression of PLA2G2A is helpful. Furthermore, PUFAs can be considered as a useful therapeutic supplement for patients with gastric cancer.
Collapse
Affiliation(s)
- Mahboube Shariati
- Department of Clinical Biochemistry, Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutics Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahmoud Aghaei
- Department of Clinical Biochemistry, Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutics Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ahmad Movahedian
- Department of Clinical Biochemistry, Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutics Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Hosein Somi
- Department of Clinical Biochemistry, Tabriz Liver and Gastrointestinal Disease Research Center, Tabriz, Iran
| | - Homayun Dolatkhah
- Department of Clinical Biochemistry, Tabriz Liver and Gastrointestinal Disease Research Center, Tabriz, Iran
| | - Ahmad Mirza Aghazade
- Department of Basic Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
35
|
Wang JB, Wang ZW, Li Y, Huang CQ, Zheng CH, Li P, Xie JW, Lin JX, Lu J, Chen QY, Cao LL, Lin M, Tu RH, Lin Y, Huang CM. CDK5RAP3 acts as a tumor suppressor in gastric cancer through inhibition of β-catenin signaling. Cancer Lett 2016; 385:188-197. [PMID: 27793695 DOI: 10.1016/j.canlet.2016.10.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 10/13/2016] [Accepted: 10/18/2016] [Indexed: 12/18/2022]
Abstract
CDK5RAP3 was isolated as a binding protein of the Cdk5 activator p35. Although CDK5RAP3 has been implicated in cancer progression, its expression and function have not been investigated in gastric cancer. Our study demonstrated that the mRNA and protein levels of CDK5RAP3 were markedly decreased in gastric tumor tissues when compared with respective adjacent non-tumor tissues. CDK5RAP3 in gastric cancer cells significantly reduced cell proliferation, migration, invasion and tumor xenograft growth through inhibition of β-catenin. Secondly, CDK5RAP3 was found to suppress the phosphorylation of GSK-3β (Ser9), leading to the phosphorylation (Ser37/Thr41) and subsequent degradation of β-catenin. Lastly, the prognostic value of CDK5RAP3 for overall survival was found to be dependent on β-catenin cytoplasm/nucleus localization in human gastric cancer samples. Collectively, our results demonstrated that CDK5RAP3 negatively regulates the β-catenin signaling pathway by repressing GSK-3β phosphorylation and could be a potential therapeutic target for gastric cancer.
Collapse
Affiliation(s)
- Jia-Bin Wang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou 350001, Fujian Province, People's Republic of China
| | - Zu-Wei Wang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou 350001, Fujian Province, People's Republic of China
| | - Yun Li
- Key Laboratory of the Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, People's Republic of China
| | - Chao-Qun Huang
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, Fujian Province, People's Republic of China
| | - Chao-Hui Zheng
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou 350001, Fujian Province, People's Republic of China
| | - Ping Li
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou 350001, Fujian Province, People's Republic of China
| | - Jian-Wei Xie
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou 350001, Fujian Province, People's Republic of China
| | - Jian-Xian Lin
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou 350001, Fujian Province, People's Republic of China
| | - Jun Lu
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou 350001, Fujian Province, People's Republic of China
| | - Qi-Yue Chen
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou 350001, Fujian Province, People's Republic of China
| | - Long-Long Cao
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou 350001, Fujian Province, People's Republic of China
| | - Mi Lin
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou 350001, Fujian Province, People's Republic of China
| | - Ru-Hong Tu
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou 350001, Fujian Province, People's Republic of China
| | - Yao Lin
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, Fujian Province, People's Republic of China.
| | - Chang-Ming Huang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou 350001, Fujian Province, People's Republic of China.
| |
Collapse
|
36
|
Yarla NS, Bishayee A, Sethi G, Reddanna P, Kalle AM, Dhananjaya BL, Dowluru KSVGK, Chintala R, Duddukuri GR. Targeting arachidonic acid pathway by natural products for cancer prevention and therapy. Semin Cancer Biol 2016; 40-41:48-81. [PMID: 26853158 DOI: 10.1016/j.semcancer.2016.02.001] [Citation(s) in RCA: 234] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 01/23/2016] [Accepted: 02/01/2016] [Indexed: 12/16/2022]
Abstract
Arachidonic acid (AA) pathway, a metabolic process, plays a key role in carcinogenesis. Hence, AA pathway metabolic enzymes phospholipase A2s (PLA2s), cyclooxygenases (COXs) and lipoxygenases (LOXs) and their metabolic products, such as prostaglandins and leukotrienes, have been considered novel preventive and therapeutic targets in cancer. Bioactive natural products are a good source for development of novel cancer preventive and therapeutic drugs, which have been widely used in clinical practice due to their safety profiles. AA pathway inhibitory natural products have been developed as chemopreventive and therapeutic agents against several cancers. Curcumin, resveratrol, apigenin, anthocyans, berberine, ellagic acid, eugenol, fisetin, ursolic acid, [6]-gingerol, guggulsteone, lycopene and genistein are well known cancer chemopreventive agents which act by targeting multiple pathways, including COX-2. Nordihydroguaiaretic acid and baicalein can be chemopreventive molecules against various cancers by inhibiting LOXs. Several PLA2s inhibitory natural products have been identified with chemopreventive and therapeutic potentials against various cancers. In this review, we critically discuss the possible utility of natural products as preventive and therapeutic agents against various oncologic diseases, including prostate, pancreatic, lung, skin, gastric, oral, blood, head and neck, colorectal, liver, cervical and breast cancers, by targeting AA pathway. Further, the current status of clinical studies evaluating AA pathway inhibitory natural products in cancer is reviewed. In addition, various emerging issues, including bioavailability, toxicity and explorability of combination therapy, for the development of AA pathway inhibitory natural products as chemopreventive and therapeutic agents against human malignancy are also discussed.
Collapse
Affiliation(s)
- Nagendra Sastry Yarla
- Department of Biochemisty/Bionformatics, Institute of Science, GITAM University, Rushikonda, Visakhapatnam 530 045, Adhra Pradesh, India
| | - Anupam Bishayee
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin Health Sciences Institute, 18301 N. Miami Avenue, Miami, FL 33169, USA.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; School of Biomedical Sciences, Curtin Health Innovation Research Institute, Biosciences Research Precinct, Curtin University, Western Australia 6009, Australia
| | - Pallu Reddanna
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500 046, Telagana, India
| | - Arunasree M Kalle
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500 046, Telagana, India; Department of Environmental Health Sciences, Laboratory of Human Environmental Epigenomes, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Bhadrapura Lakkappa Dhananjaya
- Toxinology/Toxicology and Drug Discovery Unit, Center for Emerging Technologies, Jain Global Campus, Jain University, Kanakapura Taluk, Ramanagara 562 112, Karnataka, India
| | - Kaladhar S V G K Dowluru
- Department of Biochemisty/Bionformatics, Institute of Science, GITAM University, Rushikonda, Visakhapatnam 530 045, Adhra Pradesh, India; Department of Microbiology and Bioinformatics, Bilaspur University, Bilaspur 495 001, Chhattisgarh, India
| | - Ramakrishna Chintala
- Department of Environmental Sciences, Institute of Science, GITAM University, Rushikonda, Visakhapatnam 530 045, Adhra Pradesh, India
| | - Govinda Rao Duddukuri
- Department of Biochemisty/Bionformatics, Institute of Science, GITAM University, Rushikonda, Visakhapatnam 530 045, Adhra Pradesh, India.
| |
Collapse
|
37
|
GalNAc-T14 promotes metastasis through Wnt dependent HOXB9 expression in lung adenocarcinoma. Oncotarget 2016; 6:41916-28. [PMID: 26544896 PMCID: PMC4747198 DOI: 10.18632/oncotarget.6019] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 10/15/2015] [Indexed: 12/20/2022] Open
Abstract
While metastasis, the main cause of lung cancer-related death, has been extensively studied, the underlying molecular mechanism remains unclear. A previous clinicogenomic study revealed that expression of N-acetylgalactosaminyltransferase (GalNAc-T14), is highly inversely correlated with recurrence-free survival in those with non-small cell lung cancer (NSCLC). However, the underlying molecular mechanism(s) has not been determined. Here, we showed that GalNAc-T14 expression was positively associated with the invasive phenotype. Microarray and biochemical analyses revealed that HOXB9, the expression of which was increased in a GalNAc-T14-dependent manner, played an important role in metastasis. GalNAc-T14 increased the sensitivity of the WNT response and increased the stability of the β-catenin protein, leading to induced expression of HOXB9 and acquisition of an invasive phenotype. Pharmacological inhibition of β-catenin in GalNAc-T14-expressing cancer cells suppressed HOXB9 expression and invasion. A meta-analysis of clinical genomics data revealed that expression of GalNAc-T14 or HOXB9 was strongly correlated with reduced recurrence-free survival and increased hazard risk, suggesting that targeting β-catenin within the GalNAc-T14/WNT/HOXB9 axis may be a novel therapeutic approach to inhibit metastasis in NSCLC.
Collapse
|
38
|
Takeda S, Tanigawa T, Watanabe T, Tatsuwaki H, Nadatani Y, Otani K, Nagami Y, Tanaka F, Kamata N, Yamagami H, Shiba M, Tominaga K, Fujiwara Y, Muguruma K, Ohira M, Hirakawa K, Arakawa T. Reduction of prostaglandin transporter predicts poor prognosis associated with angiogenesis in gastric adenocarcinoma. J Gastroenterol Hepatol 2016; 31:376-83. [PMID: 26250887 DOI: 10.1111/jgh.13079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 07/25/2015] [Accepted: 08/01/2015] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIM Prostaglandin (PG) E2 promotes gastrointestinal carcinogenesis and tumor progression. The total amount of biologically active PGE2 in tissues is determined by a balance of PG biosynthesis and degradation pathways, which involve the PG transporter (PGT). We investigated PGT in gastric adenocarcinoma by determining its expression pattern and examining associations of PGT with prognosis and tumor angiogenesis. METHODS PGT expression was determined by immunohistochemistry in advanced gastric adenocarcinoma specimens obtained from 96 patients who underwent surgical resection. Correlations between PGT expression level and clinicopathological factors were statistically analyzed. Angiogenesis in the tumor tissue was evaluated by counting the number of microvessels. The role of PGT in mRNA and protein expression of vascular endothelial growth factor (VEGF) was examined in gastric cancer cells stimulated by PGE2 . RESULTS Based on multivariate and Kaplan-Meier analyses, negativity for PGT expression was an independent poor prognostic factor. There were more microvessels in PGT-negative tumors than in PGT-positive tumors. Transfection of AGS and MKN7 gastric cancer cells with PGT-specific siRNA led to increased VEGF mRNA and protein expression accompanied by increased PGE2 in the culture media. CONCLUSIONS PGT expression is an independent predictor of poor survival and is associated with tumor angiogenesis in gastric adenocarcinoma.
Collapse
Affiliation(s)
- Shogo Takeda
- Departments of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka City, Osaka, Japan
| | - Tetsuya Tanigawa
- Departments of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka City, Osaka, Japan
| | - Toshio Watanabe
- Departments of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka City, Osaka, Japan
| | - Hiroshi Tatsuwaki
- Departments of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka City, Osaka, Japan
| | - Yuji Nadatani
- Departments of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka City, Osaka, Japan
| | - Koji Otani
- Departments of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka City, Osaka, Japan
| | - Yasuaki Nagami
- Departments of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka City, Osaka, Japan
| | - Fumio Tanaka
- Departments of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka City, Osaka, Japan
| | - Noriko Kamata
- Departments of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka City, Osaka, Japan
| | - Hirokazu Yamagami
- Departments of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka City, Osaka, Japan
| | - Masatsugu Shiba
- Departments of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka City, Osaka, Japan
| | - Kazunari Tominaga
- Departments of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka City, Osaka, Japan
| | - Yasuhiro Fujiwara
- Departments of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka City, Osaka, Japan
| | - Kazuya Muguruma
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka City, Osaka, Japan
| | - Masaichi Ohira
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka City, Osaka, Japan
| | - Kosei Hirakawa
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka City, Osaka, Japan
| | - Tetsuo Arakawa
- Departments of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka City, Osaka, Japan
| |
Collapse
|
39
|
Menschikowski M, Hagelgans A, Nacke B, Jandeck C, Mareninova OA, Asatryan L, Siegert G. Epigenetic control of group V phospholipase A2 expression in human malignant cells. Tumour Biol 2015; 37:8097-105. [PMID: 26715269 DOI: 10.1007/s13277-015-4670-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 12/16/2015] [Indexed: 12/27/2022] Open
Abstract
Secreted phospholipases A2 (sPLA2) are suggested to play an important role in inflammation and tumorigenesis. Different mechanisms of epigenetic regulation are involved in the control of group IIA, III and X sPLA2s expression in cancer cells, but group V sPLA2 (GV-PLA2) in this respect has not been studied. Here, we demonstrate the role of epigenetic mechanisms in regulation of GV-PLA2 expression in different cell lines originating from leukaemia and solid cancers. In blood leukocytes from leukaemic patients, levels of GV-PLA2 transcripts were significantly lower in comparison to those from healthy individuals. Similarly, in DU-145 and PC-3 prostate and CAL-51 and MCF-7 mammary cancer cell lines, levels of GV-PLA2 transcripts were significantly lower in relation to those found in normal epithelial cells of prostate or mammary. By sequencing and methylation-specific high-resolution melting (MS-HRM) analyses of bisulphite-modified DNA, distinct CpG sites in the GV-PLA2 promoter region were identified that were differentially methylated in cancer cells in comparison to normal epithelial and endothelial cells. Spearman rank order analysis revealed a significant negative correlation between the methylation degree and the cellular expression of GV-PLA2 (r = -0.697; p = 0.01). The effects of demethylating agent (5-aza-2'-deoxycytidine) and histone deacetylase inhibitor (trichostatin A) on GV-PLA2 transcription in the analysed cells confirmed the importance of DNA methylation and histone modification in the regulation of the GV-PLA2 gene expression in leukaemic, prostate and mammary cancer cell lines. The exposure of tumour cells to human recombinant GV-PLA2 resulted in a reduced colony forming activity of MCF-7, HepG2 and PC-3 cells, but not of DU-145 cells suggesting a cell-type-dependent effect of GV-PLA2 on cell growth. In conclusion, our results suggest that epigenetic mechanisms such as DNA methylation and histone modification play an important role in downregulation of GV-PLA2 expression in cancer cells.
Collapse
Affiliation(s)
- Mario Menschikowski
- Institute of Clinical Chemistry and Laboratory Medicine, Carl Gustav Carus University Hospital, Technical University of Dresden, Fetscherstr. 74, D-01307, Dresden, Germany.
| | - Albert Hagelgans
- Institute of Clinical Chemistry and Laboratory Medicine, Carl Gustav Carus University Hospital, Technical University of Dresden, Fetscherstr. 74, D-01307, Dresden, Germany
| | - Brit Nacke
- Institute of Clinical Chemistry and Laboratory Medicine, Carl Gustav Carus University Hospital, Technical University of Dresden, Fetscherstr. 74, D-01307, Dresden, Germany
| | - Carsten Jandeck
- Institute of Clinical Chemistry and Laboratory Medicine, Carl Gustav Carus University Hospital, Technical University of Dresden, Fetscherstr. 74, D-01307, Dresden, Germany
| | - Olga A Mareninova
- Veterans Affairs Greater Los Angeles Healthcare System and University of California at Los Angeles, Los Angeles, CA, USA
| | - Liana Asatryan
- Titus Family Department of Clinical Pharmacy, USC School of Pharmacy, Los Angeles, CA, USA
| | - Gabriele Siegert
- Institute of Clinical Chemistry and Laboratory Medicine, Carl Gustav Carus University Hospital, Technical University of Dresden, Fetscherstr. 74, D-01307, Dresden, Germany
| |
Collapse
|
40
|
Malignant transformation of human gastric epithelium cells via reactive oxygen species production and Wnt/β-catenin pathway activation following 40-week exposure to ochratoxin A. Cancer Lett 2015; 372:36-47. [PMID: 26721203 DOI: 10.1016/j.canlet.2015.12.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 12/04/2015] [Accepted: 12/04/2015] [Indexed: 12/15/2022]
Abstract
Ochratoxin A (OTA), one of the most abundant food-contaminating mycotoxins, is a possible carcinogenic to humans. We previously demonstrated that OTA treatment induced oxidative damage in human gastric epithelium cells (GES-1) in vitro. In this study, we found that long-term OTA treatment could result in increased proliferation, migration, and invasion abilities of GES-1 cells and induce anchorage-independent growth of cells in soft agar. Inoculation of OTA-treated GES-1 cells resulted in the formation of tumor xenografts in Balb/c nude mice in vivo, confirming that long-term OTA treatment can induce the malignant transformation of GES-1 cells. In addition, we found that long-term OTA treatment induced oxidative stress and activated the Wnt/β-catenin pathway, including the nuclear transition of β-catenin and the upregulation of the downstream molecules of the pathway. Finally, pretreatment with the antioxidant N-acetyl-L-cysteine (NAC) inhibited ROS formation and activation of the Wnt pathway in OTA-transformed GES-1 cells, which decreased the tumor formation abilities of these cells after inoculation in nude mice. These findings suggest that long-term OTA exposure induces the malignant transformation of GES-1 cells via intracellular ROS production and activation of the Wnt/β-catenin signaling pathway.
Collapse
|
41
|
Abstract
Crohn's disease (CD) is associated with a multitude of genetic defects, many of which likely affect Paneth cell function. Paneth cells reside in the small intestine and produce antimicrobial peptides essential for the host barrier, principally human α-defensin 5 (HD5) and HD6. Patients with CD of the ileum are characterized by reduced constitutive expression of these peptides and, accordingly, compromised antimicrobial barrier function. Here, we present a previously unidentified regulatory mechanism of Paneth cell defensins. Using cultures of human ileal tissue, we showed that the secretome of peripheral blood mononuclear cells (PBMCs) from healthy controls restored the attenuated Paneth cell α-defensin expression characteristic of patients with ileal CD. Analysis of the Wnt pathway in both cultured biopsies and intestinal epithelial cells implicated Wnt ligands driving the PBMC effect, whereas various tested cytokines were ineffective. We further detected another defect in patients with ileal CD, because the PBMC secretomes derived from patients with CD were unable to restore the reduced HD5/HD6 expression. Accordingly, analysis of PBMC subtypes showed that monocytes of patients with CD express significantly lower levels of canonical Wnt ligands, including Wnt3, Wnt3a, Wnt1, and wntless Wnt ligand secretion mediator (Evi/Wls). These studies reveal an important cross-talk between bone marrow-derived cells and epithelial secretory Paneth cells. Defective Paneth cell-mediated innate immunity due to inadequate Wnt ligand stimulation by monocytes provides an additional mechanism in CD. Because defects of Paneth cell function stemming from various etiologies are overcome by Wnt ligands, this mechanism is a potential therapeutic target for this disease.
Collapse
|
42
|
Tan P, Yeoh KG. Genetics and Molecular Pathogenesis of Gastric Adenocarcinoma. Gastroenterology 2015; 149:1153-1162.e3. [PMID: 26073375 DOI: 10.1053/j.gastro.2015.05.059] [Citation(s) in RCA: 324] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/18/2015] [Accepted: 05/20/2015] [Indexed: 02/07/2023]
Abstract
Gastric cancer (GC) is globally the fifth most common cancer and third leading cause of cancer death. A complex disease arising from the interaction of environmental and host-associated factors, key contributors to GC's high mortality include its silent nature, late clinical presentation, and underlying biological and genetic heterogeneity. Achieving a detailed molecular understanding of the various genomic aberrations associated with GC will be critical to improving patient outcomes. The recent years has seen considerable progress in deciphering the genomic landscape of GC, identifying new molecular components such as ARID1A and RHOA, cellular pathways, and tissue populations associated with gastric malignancy and progression. The Cancer Genome Atlas (TCGA) project is a landmark in the molecular characterization of GC. Key challenges for the future will involve the translation of these molecular findings to clinical utility, by enabling novel strategies for early GC detection, and precision therapies for individual GC patients.
Collapse
Affiliation(s)
- Patrick Tan
- Cancer and Stem Cell Biology Program, Duke-National University of Singapore Graduate Medical School, Singapore; Genome Institute of Singapore, Agency for Science, Technology, and Research, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore; Cellular and Molecular Research, National Cancer Centre Singapore, Singapore; Singapore Gastric Cancer Consortium, Singapore.
| | - Khay-Guan Yeoh
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Gastroenterology and Hepatology, National University Health System, Singapore; Singapore Gastric Cancer Consortium, Singapore.
| |
Collapse
|
43
|
Chen L, Zhang C, Gui Q, Chen Y, Yang Y. Ultra‑performance liquid chromatography coupled with quadrupole time‑of‑flight mass spectrometry‑based metabolic profiling of human serum prior to and following radical resection of colorectal carcinoma. Mol Med Rep 2015; 12:6879-86. [PMID: 26352758 DOI: 10.3892/mmr.2015.4289] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 08/17/2015] [Indexed: 11/06/2022] Open
Abstract
Nearly one quarter of patients with colorectal carcinoma (CRC) were diagnosed at an advanced stage. Under these circumstances, radical resection of the tumor is the best strategy to enhance the five-year survival rate. However, up to 50% of post-operative patients experience cancer recurrence within the first few years. Therefore, post‑operative surveillance is important. However, currently performed post‑operative monitoring relies on relatively dated methods with insufficient sensitivity and specificity. The present study applied an advanced technology of ultra‑performance liquid chromatography coupled with quadrupole time‑of‑flight mass spectrometry in order to examine changes in metabolite patterns in serum with the aim of identifying reliable biomarkers in patients with CRC at various time-points. Serum samples were collected from and 20 CRC patients prior to radical resection (group 1) and one month following radical resection (group 2) as well as from 20 healthy volunteers (group 3). Multivariate pattern recognition was used to identify potential biomarkers of CRC. Compared with healthy volunteers, three groups of biomarkers were identified in patients with CRC (P<0.05), namely phosphatidylcholines (PCs), lysophosphatidylcholines (LPCs) and diacylglycerols (DAGs). However, no statistical difference in the levels of these biomarkers between pre‑operative and post‑operative CRC patients was identified (P>0.05). PCs and LPCs, which contain polyunsaturated fatty acids, were decreased, whereas LPCs and DAGs, which contain saturated fatty acids, were increased in CRC patients. The present study demonstrated that obvious metabolic disturbances occur during the development of CRC and provided a novel analytic method, which is likely to be used as a diagnostic tool for CRC and may help to improve the patients' prognosis.
Collapse
Affiliation(s)
- Lufang Chen
- Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Chunxia Zhang
- Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Qifeng Gui
- Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Yue Chen
- Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Yunmei Yang
- Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
44
|
Zhai YC, Dong B, Wei WQ, He Y, Li XQ, Cormier RT, Wang W, Liu F. Overexpression of phospholipase A2 Group IIA in esophageal squamous cell carcinoma and association with cyclooxygenase-2 expression. Asian Pac J Cancer Prev 2015; 15:9417-21. [PMID: 25422234 DOI: 10.7314/apjcp.2014.15.21.9417] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Esophageal cancer is one of the most frequently occurring malignancies and the seventh leading cause of cancer-related deaths in the world. The esophageal squamous cell carcinoma (ESCC) is the most common histological type of esophageal cancer worldwide. MATERIALS AND METHODS Our goal in this study was to detect phospholipase A2 Group IIA (PLA2G2A) and cyclooxygenase-2 (COX-2) immuno-expression in ESCC in a high- risk population in China. RESULTS Positive expression of PLA2G2A protein was observed in 57.2% (166/290) of the cases, while COX-2 was found in 257 of 290 samples (88.6%), both PLA2G2A and COX-2 being expressed in 153 cases (52.8%), with a significant agreement (Kappa=0.091, p=0.031).Overexpression of PLA2G2A was significantly correlated with the depth of invasion (p=0.001). Co-expression of PLA2G2A and COX-2 not only significantly correlated with the depth of invasion (p=0.004) but also with TNM stage (p=0.04). CONCLUSIONS Our results showed that in patients with ESCC, PLA2G2A overexpression and PLA2G2A co-expression with COX-2 is significantly correlated with advanced stage. The biological role and pathophysiologic regulation of PLA2G2A and COX-2 overexpression in ESCC deserve further investigation.
Collapse
Affiliation(s)
- Yan-Chun Zhai
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China E-mail : ,
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Chiurillo MA. Role of the Wnt/β-catenin pathway in gastric cancer: An in-depth literature review. World J Exp Med 2015; 5:84-102. [PMID: 25992323 PMCID: PMC4436943 DOI: 10.5493/wjem.v5.i2.84] [Citation(s) in RCA: 228] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 12/05/2014] [Accepted: 03/20/2015] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer remains one of the most common cancers worldwide and one of the leading cause for cancer-related deaths. Gastric adenocarcinoma is a multifactorial disease that is genetically, cytologically and architecturally more heterogeneous than other gastrointestinal carcinomas. The aberrant activation of the Wnt/β-catenin signaling pathway is involved in the development and progression of a significant proportion of gastric cancer cases. This review focuses on the participation of the Wnt/β-catenin pathway in gastric cancer by offering an analysis of the relevant literature published in this field. Indeed, it is discussed the role of key factors in Wnt/β-catenin signaling and their downstream effectors regulating processes involved in tumor initiation, tumor growth, metastasis and resistance to therapy. Available data indicate that constitutive Wnt signalling resulting from Helicobacter pylori infection and inactivation of Wnt inhibitors (mainly by inactivating mutations and promoter hypermethylation) play an important role in gastric cancer. Moreover, a number of recent studies confirmed CTNNB1 and APC as driver genes in gastric cancer. The identification of specific membrane, intracellular, and extracellular components of the Wnt pathway has revealed potential targets for gastric cancer therapy. High-throughput “omics” approaches will help in the search for Wnt pathway antagonist in the near future.
Collapse
|
46
|
Cheung CT, Bendris N, Paul C, Hamieh A, Anouar Y, Hahne M, Blanchard JM, Lemmers B. Cyclin A2 modulates EMT via β-catenin and phospholipase C pathways. Carcinogenesis 2015; 36:914-24. [PMID: 25993989 DOI: 10.1093/carcin/bgv069] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 05/06/2015] [Indexed: 12/15/2022] Open
Abstract
We have previously demonstrated that Cyclin A2 is involved in cytoskeletal dynamics, epithelial-mesenchymal transition (EMT) and metastasis. This phenotype was potentiated by activated oncogenic H-Ras. However, the mechanisms governing EMT in these cells have not yet been elucidated. Here, we dissected the pathways that are responsible for EMT in cells deficient for Cyclin A2. In Cyclin A2-depleted normal murine mammary gland (NMuMG) cells expressing RasV12, we found that β-catenin was liberated from the cell membrane and cell-cell junctions and underwent nuclear translocation and activation. Components of the canonical wingless (WNT) pathway, including WNT8b, WNT10a, WNT10b, frizzled 1 and 2 and TCF4 were upregulated at the messenger RNA and protein levels following Cyclin A2 depletion. However, suppression of the WNT pathway using the acetyltransferase porcupine inhibitor C59 did not reverse EMT whereas a dominant negative form of TCF4 as well as inhibition of phospholipase C using U73122 were able to do so. This suggests that a WNT-independent mechanism of β-catenin activation via phospholipase C is involved in the EMT induced by Cyclin A2 depletion. Our findings will broaden our knowledge on how Cyclin A2 contributes to EMT and metastasis.
Collapse
Affiliation(s)
- Caroline T Cheung
- Institut de Génétique Moléculaire de Montpellier, CNRS, France-Université Montpellier 2, France-Université Montpellier 1, Montpellier, France
| | - Nawal Bendris
- Institut de Génétique Moléculaire de Montpellier, CNRS, France-Université Montpellier 2, France-Université Montpellier 1, Montpellier, France, UT Southwestern Medical Center, Department of Cell Biology, Dallas, TX, USA and
| | - Conception Paul
- Institut de Génétique Moléculaire de Montpellier, CNRS, France-Université Montpellier 2, France-Université Montpellier 1, Montpellier, France
| | - Abdallah Hamieh
- INSERM U982, Neuronal and Neuroendocrine Differentiation and Communication, Université de Rouen, Mont-Saint-Aignan, France
| | - Youssef Anouar
- INSERM U982, Neuronal and Neuroendocrine Differentiation and Communication, Université de Rouen, Mont-Saint-Aignan, France
| | - Michael Hahne
- Institut de Génétique Moléculaire de Montpellier, CNRS, France-Université Montpellier 2, France-Université Montpellier 1, Montpellier, France
| | - Jean-Marie Blanchard
- Institut de Génétique Moléculaire de Montpellier, CNRS, France-Université Montpellier 2, France-Université Montpellier 1, Montpellier, France,
| | - Bénédicte Lemmers
- Institut de Génétique Moléculaire de Montpellier, CNRS, France-Université Montpellier 2, France-Université Montpellier 1, Montpellier, France,
| |
Collapse
|
47
|
Brglez V, Lambeau G, Petan T. Secreted phospholipases A2 in cancer: Diverse mechanisms of action. Biochimie 2014; 107 Pt A:114-23. [DOI: 10.1016/j.biochi.2014.09.023] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 09/25/2014] [Indexed: 12/24/2022]
|
48
|
Nedd4-1 is an exceptional prognostic biomarker for gastric cardia adenocarcinoma and functionally associated with metastasis. Mol Cancer 2014; 13:248. [PMID: 25395181 PMCID: PMC4239324 DOI: 10.1186/1476-4598-13-248] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 10/29/2014] [Indexed: 12/12/2022] Open
Abstract
Background Gastric cardia adenocarcinoma (GCA) is the most aggressive subtype of gastric carcinoma. New molecular markers and therapeutic targets are needed for diagnosis, prognosis and treatment of GCA. This study is to establish the E3 ubiquitin ligase Nedd4-1 as a prognostic biomarker to predict the survival and guide the treatment of GCA patients. Methods Expression of Nedd4-1 in 214 GCA tumor samples was detected by immunohistochemistry staining (IHC) using tissue microarray assay (TMA). Association of Nedd4-1 with cumulative survival of the TNM stages I-III patients and clinicopathological characteristics was statistically analyzed. The role of Nedd4-1 in gastric cancer cell migration and invasion were determined by transwell and wound healing assays. Results Nedd4-1 is overexpressed in 83% of the GCA tumors. The 5-year survival rate in Nedd4-1 negative GCA patients is as high as 96%. Log-rank analysis indicated that overexpression of Nedd4-1 is inversely correlated with cumulative survival (χ2 = 21.885, p <0.001). Multivariate logistic regression analysis showed that overexpression of Nedd4-1 is associated with an extremely low GCA survival rate with a hazard ratio (HR) = 0.068 (p = 0.008) in TNM stages I-III patients. Statistical analysis of association of Nedd4-1 overexpression with clinicopathological characteristics revealed that overexpression of Nedd4-1 is tightly associated with TNM stage (p < 0.001). Knockdown of Nedd4-1 in gastric cancer cell lines AGS and N87 dramatically inhibited the gastric cancer cell migration and invasion. Conclusions Our results indicate that Nedd4-1 is an exceptional prognostic biomarker for GCA and suggest that Nedd4-1 may play an essential role in GCA metastasis. Electronic supplementary material The online version of this article (doi:10.1186/1476-4598-13-248) contains supplementary material, which is available to authorized users.
Collapse
|
49
|
Otani K, Dong Y, Li X, Lu J, Zhang N, Xu L, Go MYY, Ng EKW, Arakawa T, Chan FKL, Sung JJY, Yu J. Odd-skipped related 1 is a novel tumour suppressor gene and a potential prognostic biomarker in gastric cancer. J Pathol 2014; 234:302-15. [PMID: 24931004 PMCID: PMC4277686 DOI: 10.1002/path.4391] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 05/26/2014] [Accepted: 06/10/2014] [Indexed: 01/12/2023]
Abstract
We report that the odd-skipped related 1 (OSR1) gene encoding a zinc-finger transcription factor was preferentially methylated in gastric cancer by genome-wide methylation screening. OSR1 expression was frequently silenced or down-regulated in gastric cancer cell lines. OSR1 expression was also significantly down-regulated at both mRNA and protein levels in primary gastric cancer tissues compared with adjacent normal tissues. The silencing or down-regulation of OSR1 was closely associated with promoter hypermethylation. Overexpression of OSR1 significantly inhibited cell growth, arrested the cell cycle, and induced apoptosis in the gastric cancer cell lines AGS, MKN28, and MGC803. Conversely, knockdown of OSR1 by OSR1-short hairpin RNA significantly enhanced cell growth, promoted the cell cycle, and inhibited apoptosis in the normal gastric epithelial cell line GES1. The dual-luciferase reporter assay revealed that OSR1 activated p53 transcription and repressed the T-cell factor (TCF)/lymphoid enhancer factor (LEF). Complementary DNA expression array and western blotting showed that OSR1 increased the expression of nuclear p53, p21, Fas, and death receptor-5, and suppressed the expression of cyclin D1 and cyclin-dependent kinase 4 in the p53 signalling pathway. In addition, OSR1 suppressed the expression of cytoplasmic β-catenin, TCF-1, and LEF1 in the Wnt/β-catenin signalling pathway. OSR1 methylation was detected in 51.8% of primary gastric cancer patients (85 of 164) by bisulphite genomic sequencing. Multivariate Cox regression analysis showed that OSR1 methylation was an independent predictor of poor survival. Kaplan–Meier survival curves revealed that OSR1 methylation was associated with shortened survival in TNM stage I–III patients. In conclusion, OSR1 acts as a functional tumour suppressor through the transcriptional activation of p53 and repression of TCF/LEF in gastric cancer. Detection of OSR1 methylation may serve as a potential biomarker of the early stage of gastric cancer. © 2014 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Koji Otani
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Shatin, Hong Kong; Department of Gastroenterology, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Liao CJ, Wu TI, Huang YH, Chang TC, Lai CH, Jung SM, Hsueh C, Lin KH. Glucose-regulated protein 58 modulates β-catenin protein stability in a cervical adenocarcinoma cell line. BMC Cancer 2014; 14:555. [PMID: 25081282 PMCID: PMC4129111 DOI: 10.1186/1471-2407-14-555] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 07/22/2014] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Cervical cancer continues to threaten women's health worldwide, and the incidence of cervical adenocarcinoma (AD) is rising in the developed countries. Previously, we showed that glucose-regulated protein 58 (Grp58) served as an independent factor predictive of poor prognosis of patients with cervical AD. However, the molecular mechanism underlying the involvement of Grp58 in cervical carcinogenesis is currently unknown. METHODS DNA microarray and enrichment analysis were used to identify the pathways disrupted by knockdown of Grp58 expression. RESULTS Among the pathway identified, the WNT signaling pathway was one of those that were significantly associated with knockdown of Grp58 expression in HeLa cells. Our experiments showed that β-catenin, a critical effector of WNT signaling, was stabilized thereby accumulated in stable Grp58 knockdown cells. Membrane localization of β-catenin was observed in Grp58 knockdown, but not control cells. Using a transwell assay, we found that accumulated β-catenin induced by Grp58 knockdown or lithium chloride treatment inhibited the migration ability of HeLa cells. Furthermore, an inverse expression pattern of Grp58 and β-catenin was observed in cervical tissues. CONCLUSIONS Our results demonstrate that β-catenin stability is negatively regulated by Grp58 in HeLa cells. Overexpression of Grp58 may be responsible for the loss of or decrease in membranous β-catenin expression in cervical AD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Kwang-Huei Lin
- Department of Biochemistry, Chang-Gung University, 259 Wen-hwa 1 Road, Taoyuan 333, Taiwan.
| |
Collapse
|