1
|
Luo W, Gardenswartz A, Hoang H, Chu Y, Tian M, Liao Y, Ayello J, Rosenblum JM, Mo X, Marcondes AM, Overwijk WW, Cripe TP, Lee DA, Cairo MS. Combinatorial immunotherapy of anti-MCAM CAR-modified expanded natural killer cells and NKTR-255 against neuroblastoma. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200894. [PMID: 39554906 PMCID: PMC11567912 DOI: 10.1016/j.omton.2024.200894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/19/2024] [Accepted: 10/15/2024] [Indexed: 11/19/2024]
Abstract
Pediatric patients with recurrent metastatic neuroblastoma (NB) have a dismal 5-year survival. Novel therapeutic approaches are urgently needed. The melanoma cell adhesion molecule (MCAM/CD146/MUC18) is expressed in a variety of pediatric solid tumors, including NB, and constitutes a novel target for immunotherapy. Here, we developed a chimeric antigen receptor (CAR) expressing natural killer (NK) cell-targeting MCAM by non-viral electroporation of CAR mRNA into ex vivo expanded NK cells. Expression of anti-MCAM CAR significantly enhanced NK cell cytotoxic activity compared to mock NK cells against MCAMhigh but not MCAMlow/knockout NB cells in vitro. Anti-MCAM-CAR-NK cell treatment significantly decreased tumor growth and prolonged animal survival in an NB xenograft mouse model. NKTR-255, a polymer-conjugated recombinant human interleukin-15 agonist, significantly stimulated NK cell proliferation and expansion and further enhanced the in vitro cytotoxic activity and in vivo anti-tumor efficacy of anti-MCAM-CAR-NK cells against NB. Our preclinical studies demonstrate that ex vivo expanded and modified anti-MCAM-CAR-NK cells alone and/or in combination with NKTR-255 are promising novel alternative therapeutic approaches to targeting MCAMhigh malignant NB.
Collapse
Affiliation(s)
- Wen Luo
- Department of Pediatrics, New York Medical College, Valhalla, NY 10595, USA
- Department of Pathology, Immunology and Microbiology, New York Medical College, Valhalla, NY, USA
| | - Aliza Gardenswartz
- Department of Pediatrics, New York Medical College, Valhalla, NY 10595, USA
| | - Hai Hoang
- Department of Pediatrics, New York Medical College, Valhalla, NY 10595, USA
| | - Yaya Chu
- Department of Pediatrics, New York Medical College, Valhalla, NY 10595, USA
| | - Meijuan Tian
- Department of Pediatrics, New York Medical College, Valhalla, NY 10595, USA
| | - Yanling Liao
- Department of Pediatrics, New York Medical College, Valhalla, NY 10595, USA
| | - Janet Ayello
- Department of Pediatrics, New York Medical College, Valhalla, NY 10595, USA
| | | | - Xiaokui Mo
- Center for Biostatistics, Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210, USA
| | | | | | - Timothy P. Cripe
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, USA
- Center for Childhood Cancer Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Dean A. Lee
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, USA
- Center for Childhood Cancer Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Mitchell S. Cairo
- Department of Pediatrics, New York Medical College, Valhalla, NY 10595, USA
- Department of Pathology, Immunology and Microbiology, New York Medical College, Valhalla, NY, USA
- Department of Medicine, New York Medical College, Valhalla, NY, USA
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, USA
| |
Collapse
|
2
|
Lindland K, Malenge MM, Li RG, Wouters R, Bønsdorff TB, Juzeniene A, Dragovic SM. Antigen targeting and anti-tumor activity of a novel anti-CD146 212Pb internalizing alpha-radioimmunoconjugate against malignant peritoneal mesothelioma. Sci Rep 2024; 14:25941. [PMID: 39472474 PMCID: PMC11522520 DOI: 10.1038/s41598-024-76778-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 10/16/2024] [Indexed: 11/02/2024] Open
Abstract
Malignant mesothelioma, a highly aggressive cancer that primarily affects the serosal membranes, has limited therapeutic options, particularly for cavitary tumors, such as peritoneal and pleural malignant mesothelioma. Intracavitary administration of a radioimmunoconjugate to locally target mesothelioma cancer cells has been proposed as a treatment. CD146, upregulated in mesothelioma but not in healthy tissues, is a promising therapeutic target. This study characterized CD146 expression and binding/internalization kinetics of the CD146-targeting antibody OI-3 coupled with 212Pb (212Pb-TCMC-OI-3) in human mesothelioma cells. Flow cytometry showed that both chimeric (chOI-3) and murine (mOI-3) antibodies rapidly bound and internalized within 1-6 h in MSTO-211H cells. 212Pb-TCMC-chOI-3 exhibited 3.1- to 13.7-fold and 3.1- to 8.5-fold increased internalized 212Pb and 212Bi atoms per cell at 2 and 24 h, respectively, compared to isotype control, underscoring enhanced internalization efficiency. Intraperitoneal administration of 212Pb-TCMC-mOI-3 to mice with intraperitoneal MSTO-211H xenografts improved median survival by a ratio of 1.3 compared to non-binding 212Pb-TCMC-mIgG1. The ability of 212Pb-TCMC-mOI-3 to target and inhibit the growth of intraperitoneal mesothelioma xenografts supports targeted radionuclide therapy's efficacy for metastatic peritoneal mesothelioma. This study highlights the potential of localized CD146-targeted radioimmunotherapy for malignant mesothelioma, offering a new avenue for improving patient outcomes.
Collapse
Affiliation(s)
- Kim Lindland
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0316, Oslo, Norway.
- Department of Radiation Biology, Institute of Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, 0379, Oslo, Norway.
- Oncoinvent ASA, 0484, Oslo, Norway.
| | | | | | - Roxanne Wouters
- Oncoinvent ASA, 0484, Oslo, Norway
- Laboratory of Tumour Immunology and Immunotherapy, Department of Oncology, Leuven Cancer Institute, KU Leuven, 3000, Leuven, Belgium
| | | | - Asta Juzeniene
- Department of Radiation Biology, Institute of Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, 0379, Oslo, Norway
- Department of Physics, University of Oslo, Oslo, Norway
| | | |
Collapse
|
3
|
Dirheimer L, Pons T, François A, Lamy L, Marchal F, Dolivet G, Cortese S, Bezdetnaya L. Peptide-mediated targeting of Quantum Dots in a 3D model of head and neck cancer. Photodiagnosis Photodyn Ther 2024; 49:104337. [PMID: 39332607 DOI: 10.1016/j.pdpdt.2024.104337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/16/2024] [Accepted: 09/20/2024] [Indexed: 09/29/2024]
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) treatment mainly relies on surgery. The status of surgical margin is a major prognostic factor for patients as positive margins are associated with lower survival. However, the anatomical particularities of this area complicate margin establishment. Fluorescence guided surgery (FGS) could be employed as an intraoperative technique to improve tumor resection and margin investigation. Quantum dots (QDs) serve as ideal contrast agents in this technique due to their brightness and stability. Since αVβ6 integrin is overexpressed in OSCC, coupling QDs with A20FMDV2 peptide (QDs-A20) targeting the αVβ6 integrin constitute a real opportunity. This study investigates the accumulation of QDs-A20 in 2D and 3D tongue cancer models, as well as QDs coupled to a scrambled version of this peptide (QDs-Scr) or without peptide (QDs-SPP), for imaging purposes. METHODS CdSeCdS/ZnS quantum dots were coated with sulfobetaine polymers (QDs-SPP) and conjugated to A20FMDV2 peptide (QDs-A20) or its scrambled version (QDs-Scr). Two-dimensional (2D) and three-dimensional (3D) tongue cancer cells HSC-3 were employed to test the effectiveness of intracellular accumulation of all types of QDs. Targeting ability of each QDs was assessed by flow cytometry, while the depth of penetration into cancerous spheroids was assessed by fluorescence microscopy. RESULTS QDs coating with sulfobetaines polymers (QDs-SPP) completely prevented their internalization by HSC-3 cells in 2D and 3D models, making QDs stealthy and preventing their non-specific accumulation. Conversely, peptides conjugated QDs (QDs-A20 & QDs-Scr) labeled HSC-3 monolayers and managed to label spheroid periphery up to 23 µm deep. However, no difference in accumulation was found between these two QDs whereas only A20 peptide could potentially target αVβ6 integrin. It appears that peptide conjugation increased QDs zeta potential, promoting their adsorption and subsequent endocytosis by cells, independently from αVβ6 integrin. CONCLUSIONS The present study highlighted the impact of peptide conjugation on QDs internalization in 2D and 3D tongue cancer cell models. QDs-SPP were stealthy and did not accumulate in cells. Peptides conjugated QDs could be used as contrast agents, but in a passive targeting approach. Modifications to surface chemistry are required to target αVβ6 integrin through active targeting. This study also highlights the need for controls such as scrambled peptides, the absence of which can lead to misinterpretation of results.
Collapse
Affiliation(s)
- Luca Dirheimer
- Centre de Recherche en Automatique de Nancy, Centre National de la Recherche Scientifique, UMR 7039, Université de Lorraine, Vandœuvre-lès-Nancy, France; Research Department, Institut de Cancérologie de Lorraine, 6 avenue de Bourgogne, 54519 Vandœuvre-lès-Nancy, France
| | - Thomas Pons
- LPEM UMR 8213, ESPCI Paris, PSL University, CNRS, Sorbonne University, Paris, France
| | - Aurélie François
- Centre de Recherche en Automatique de Nancy, Centre National de la Recherche Scientifique, UMR 7039, Université de Lorraine, Vandœuvre-lès-Nancy, France; Research Department, Institut de Cancérologie de Lorraine, 6 avenue de Bourgogne, 54519 Vandœuvre-lès-Nancy, France
| | - Laureline Lamy
- Centre de Recherche en Automatique de Nancy, Centre National de la Recherche Scientifique, UMR 7039, Université de Lorraine, Vandœuvre-lès-Nancy, France; Research Department, Institut de Cancérologie de Lorraine, 6 avenue de Bourgogne, 54519 Vandœuvre-lès-Nancy, France
| | - Frédéric Marchal
- Centre de Recherche en Automatique de Nancy, Centre National de la Recherche Scientifique, UMR 7039, Université de Lorraine, Vandœuvre-lès-Nancy, France; Surgical Department, Institut de Cancérologie de Lorraine, 6 avenue de Bourgogne, 54519 Vandœuvre-lès-Nancy, France
| | - Gilles Dolivet
- Centre de Recherche en Automatique de Nancy, Centre National de la Recherche Scientifique, UMR 7039, Université de Lorraine, Vandœuvre-lès-Nancy, France; Surgical Department, Institut de Cancérologie de Lorraine, 6 avenue de Bourgogne, 54519 Vandœuvre-lès-Nancy, France
| | - Sophie Cortese
- Surgical Department, Institut de Cancérologie de Lorraine, 6 avenue de Bourgogne, 54519 Vandœuvre-lès-Nancy, France
| | - Lina Bezdetnaya
- Centre de Recherche en Automatique de Nancy, Centre National de la Recherche Scientifique, UMR 7039, Université de Lorraine, Vandœuvre-lès-Nancy, France; Research Department, Institut de Cancérologie de Lorraine, 6 avenue de Bourgogne, 54519 Vandœuvre-lès-Nancy, France.
| |
Collapse
|
4
|
Luo W, Hoang H, Zhu H, Miller K, Mo X, Eguchi S, Tian M, Liao Y, Ayello J, Rosenblum JM, Marcondes M, Currier M, Mardis E, Cripe T, Lee D, Cairo MS. Circumventing resistance within the Ewing sarcoma microenvironment by combinatorial innate immunotherapy. J Immunother Cancer 2024; 12:e009726. [PMID: 39266215 PMCID: PMC11404285 DOI: 10.1136/jitc-2024-009726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND Pediatric patients with recurrent/metastatic Ewing sarcoma (ES) have a dismal 5-year survival. Novel therapeutic approaches are desperately needed. Natural killer (NK) cell number and function are low in ES patient tumors, in large part due to the immunosuppressive tumor microenvironment (TME). Melanoma cell adhesion molecule (MCAM) is highly expressed on ES and associated with ES metastasis. NKTR-255 is a polymer-conjugated recombinant human interleukin-15 (IL-15) agonist improving NK cell activity and persistence. Magrolimab (MAG) is a CD47 blockade that reactivates the phagocytic activity of macrophages. METHODS Transcriptome profiling coupled with CIBERSORT analyses in both ES mouse xenografts and human patient tumors were performed to identify mechanisms of NK resistance in ES TME. A chimeric antigen receptor (CAR) NK cell targeting MCAM was engineered by CAR mRNA electroporation into ex vivo expanded NK cells. In vitro cytotoxicity assays were performed to investigate the efficacy of anti-MCAM-CAR-NK cell alone or combined with NKTR-255 against ES cells. Interferon-γ and perforin levels were measured by ELISA. The effect of MAG on macrophage phagocytosis of ES cells was evaluated by in vitro phagocytosis assays. Cell-based and patient-derived xenograft (PDX)-based xenograft mouse models of ES were used to investigate the antitumor efficacy of CAR-NK alone and combined with NKTR-255 and MAG in vivo. RESULTS We found that NK cell infiltration and activity were negatively regulated by tumor-associated macrophages (TAM) in ES TME. Expression of anti-MCAM CAR significantly and specifically enhanced NK cytotoxic activity against MCAMhigh but not MCAM-knockout ES cells in vitro, and significantly reduced lung metastasis and extended animal survival in vivo. NKTR-255 and MAG significantly enhanced in vitro CAR-NK cytotoxicity and macrophage phagocytic activity against ES cells, respectively. By combining with NKTR-255 and MAG, the anti-MCAM-CAR-NK cell significantly decreased primary tumor growth and prolonged animal survival in both cell- and PDX-based ES xenograft mouse models. CONCLUSIONS Our preclinical studies demonstrate that immunotherapy via the innate immune system by combining tumor-targeting CAR-NK cells with an IL-15 agonist and a CD47 blockade is a promising novel therapeutic approach to targeting MCAMhigh malignant metastatic ES.
Collapse
Affiliation(s)
- Wen Luo
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA
- Department of Pathology, Immunology and Microbiology, New York Medical College, Valhalla, New York, USA
| | - Hai Hoang
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA
| | - Hongwen Zhu
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA
| | - Katherine Miller
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Columbus, Ohio, USA
- Pediatric Hem/Onc/BMT, Nationwide Children's Hospital Hematology Oncology and Blood and Marrow Transplant, Columbus, Ohio, USA
| | - Xiaokui Mo
- Biomedical Informatics, The Ohio State University, Columbus, Ohio, USA
| | - Shiori Eguchi
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA
| | - Meijuan Tian
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA
| | - Yanling Liao
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA
| | - Janet Ayello
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA
| | - Jeremy M Rosenblum
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA
| | | | - Mark Currier
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Columbus, Ohio, USA
| | - Elaine Mardis
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Columbus, Ohio, USA
- Pediatric Hem/Onc/BMT, Nationwide Children's Hospital Hematology Oncology and Blood and Marrow Transplant, Columbus, Ohio, USA
- Department of Neurosurgery, The Ohio State University, Columbus, Ohio, USA
| | - Timothy Cripe
- Pediatric Hem/Onc/BMT, Nationwide Children's Hospital Hematology Oncology and Blood and Marrow Transplant, Columbus, Ohio, USA
| | - Dean Lee
- Pediatric Hem/Onc/BMT, Nationwide Children's Hospital Hematology Oncology and Blood and Marrow Transplant, Columbus, Ohio, USA
| | - Mitchell S Cairo
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA
- Departments of Pathology, Immunology and Microbiology, Medicine, Cell Biology and Anatomy, New York Medical College, Valhalla, New York, USA
| |
Collapse
|
5
|
Garcia J, Daniels J, Lee Y, Zhu I, Cheng K, Liu Q, Goodman D, Burnett C, Law C, Thienpont C, Alavi J, Azimi C, Montgomery G, Roybal KT, Choi J. Naturally occurring T cell mutations enhance engineered T cell therapies. Nature 2024; 626:626-634. [PMID: 38326614 PMCID: PMC11573425 DOI: 10.1038/s41586-024-07018-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 01/02/2024] [Indexed: 02/09/2024]
Abstract
Adoptive T cell therapies have produced exceptional responses in a subset of patients with cancer. However, therapeutic efficacy can be hindered by poor T cell persistence and function1. In human T cell cancers, evolution of the disease positively selects for mutations that improve fitness of T cells in challenging situations analogous to those faced by therapeutic T cells. Therefore, we reasoned that these mutations could be co-opted to improve T cell therapies. Here we systematically screened the effects of 71 mutations from T cell neoplasms on T cell signalling, cytokine production and in vivo persistence in tumours. We identify a gene fusion, CARD11-PIK3R3, found in a CD4+ cutaneous T cell lymphoma2, that augments CARD11-BCL10-MALT1 complex signalling and anti-tumour efficacy of therapeutic T cells in several immunotherapy-refractory models in an antigen-dependent manner. Underscoring its potential to be deployed safely, CARD11-PIK3R3-expressing cells were followed up to 418 days after T cell transfer in vivo without evidence of malignant transformation. Collectively, our results indicate that exploiting naturally occurring mutations represents a promising approach to explore the extremes of T cell biology and discover how solutions derived from evolution of malignant T cells can improve a broad range of T cell therapies.
Collapse
MESH Headings
- Humans
- CARD Signaling Adaptor Proteins/genetics
- CARD Signaling Adaptor Proteins/metabolism
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- Cytokines/biosynthesis
- Cytokines/immunology
- Cytokines/metabolism
- Evolution, Molecular
- Guanylate Cyclase/genetics
- Guanylate Cyclase/metabolism
- Immunotherapy, Adoptive/methods
- Lymphoma, T-Cell, Cutaneous/genetics
- Lymphoma, T-Cell, Cutaneous/immunology
- Lymphoma, T-Cell, Cutaneous/pathology
- Lymphoma, T-Cell, Cutaneous/therapy
- Mutation
- Phosphatidylinositol 3-Kinases
- Signal Transduction/genetics
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- T-Lymphocytes/transplantation
Collapse
Affiliation(s)
- Julie Garcia
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Moonlight Bio, Seattle, WA, USA
| | - Jay Daniels
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Moonlight Bio, Seattle, WA, USA
| | - Yujin Lee
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Iowis Zhu
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Kathleen Cheng
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Qing Liu
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Daniel Goodman
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Cassandra Burnett
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Calvin Law
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Chloë Thienpont
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Josef Alavi
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Camillia Azimi
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Garrett Montgomery
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Kole T Roybal
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA.
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
- Department of Anesthesia, University of California, San Francisco, San Francisco, CA, USA.
- Gladstone-UCSF Institute for Genomic Immunology, San Francisco, CA, USA.
- UCSF Cell Design Institute, San Francisco, CA, USA.
| | - Jaehyuk Choi
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA.
- Center for Human Immunobiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
6
|
Yang Q, Huang W, Hsu JC, Song L, Sun X, Li C, Cai W, Kang L. CD146-targeted nuclear medicine imaging in cancer: state of the art. VIEW 2023; 4:20220085. [PMID: 38076327 PMCID: PMC10703309 DOI: 10.1002/viw.20220085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/02/2023] [Indexed: 01/02/2024] Open
Abstract
The transmembrane glycoprotein adhesion molecule CD146 is overexpressed in a wide variety of cancers. Through molecular imaging, a specific biomarker's expression and distribution can be viewed in vivo non-invasively. Radionuclide-labeled monoclonal antibodies or relevant fragments that target CD146 may find potential applications in cancer imaging, thereby offering tremendous value in cancer diagnosis, staging, prognosis evaluation, and prediction of drug resistance. This review discusses the recent developments of CD146-targeted molecular imaging via nuclear medicine, especially in malignant melanoma, brain tumor, lung cancer, liver cancer, breast cancer, and pancreatic cancer. Many studies have proved that CD146 targeting may present a promising strategy for cancer theranostics.
Collapse
Affiliation(s)
- Qi Yang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Wenpeng Huang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Jessica C. Hsu
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States of America
| | - Lele Song
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Xinyao Sun
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Cuicui Li
- Department of Nuclear Medicine, Beijing Friendship Hospital of Capital Medical University, Beijing 100050, China
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States of America
| | - Lei Kang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| |
Collapse
|
7
|
Quantum Dots Mediated Imaging and Phototherapy in Cancer Spheroid Models: State of the Art and Perspectives. Pharmaceutics 2022; 14:pharmaceutics14102136. [PMID: 36297571 PMCID: PMC9611360 DOI: 10.3390/pharmaceutics14102136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 11/16/2022] Open
Abstract
Quantum Dots (QDs) are fluorescent nanoparticles known for their exceptional optical properties, i.e., high fluorescence emission, photostability, narrow emission spectrum, and broad excitation wavelength. These properties make QDs an exciting choice for bioimaging applications, notably in cancer imaging. Challenges lie in their ability to specifically label targeted cells. Numerous studies have been carried out with QDs coupled to various ligands like peptides, antibodies, aptamers, etc., to achieve efficient targeting. Most studies were conducted in vitro with two-dimensional cell monolayers (n = 8902) before evolving towards more sophisticated models. Three-dimensional multicellular tumor models better recapitulate in vivo conditions by mimicking cell-to-cell and cell-matrix interactions. To date, only few studies (n = 34) were conducted in 3D in vitro models such as spheroids, whereas these models could better represent QDs behavior in tumors compared to monolayers. Thus, the purpose of this review is to present a state of the art on the studies conducted with Quantum Dots on spheroid models for imaging and phototherapy purposes.
Collapse
|
8
|
Hyrenius-Wittsten A, Su Y, Park M, Garcia JM, Alavi J, Perry N, Montgomery G, Liu B, Roybal KT. SynNotch CAR circuits enhance solid tumor recognition and promote persistent antitumor activity in mouse models. Sci Transl Med 2021; 13:eabd8836. [PMID: 33910981 PMCID: PMC8594452 DOI: 10.1126/scitranslmed.abd8836] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 01/11/2021] [Accepted: 03/16/2021] [Indexed: 12/21/2022]
Abstract
The first clinically approved engineered chimeric antigen receptor (CAR) T cell therapies are remarkably effective in a subset of hematological malignancies with few therapeutic options. Although these clinical successes have been exciting, CAR T cells have hit roadblocks in solid tumors that include the lack of highly tumor-specific antigens to target, opening up the possibility of life-threatening "on-target/off-tumor" toxicities, and problems with T cell entry into solid tumor and persistent activity in suppressive tumor microenvironments. Here, we improve the specificity and persistent antitumor activity of therapeutic T cells with synthetic Notch (synNotch) CAR circuits. We identify alkaline phosphatase placental-like 2 (ALPPL2) as a tumor-specific antigen expressed in a spectrum of solid tumors, including mesothelioma and ovarian cancer. ALPPL2 can act as a sole target for CAR therapy or be combined with tumor-associated antigens such as melanoma cell adhesion molecule (MCAM), mesothelin, or human epidermal growth factor receptor 2 (HER2) in synNotch CAR combinatorial antigen circuits. SynNotch CAR T cells display superior control of tumor burden when compared to T cells constitutively expressing a CAR targeting the same antigens in mouse models of human mesothelioma and ovarian cancer. This was achieved by preventing CAR-mediated tonic signaling through synNotch-controlled expression, allowing T cells to maintain a long-lived memory and non-exhausted phenotype. Collectively, we establish ALPPL2 as a clinically viable cell therapy target for multiple solid tumors and demonstrate the multifaceted therapeutic benefits of synNotch CAR T cells.
Collapse
Affiliation(s)
- Axel Hyrenius-Wittsten
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA 94143, USA
| | - Yang Su
- Department of Anesthesia, University of California, San Francisco, San Francisco, CA 94110, USA
| | - Minhee Park
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Julie M Garcia
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Josef Alavi
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Nathaniel Perry
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Garrett Montgomery
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Bin Liu
- Parker Institute for Cancer Immunotherapy, San Francisco, CA 94143, USA.
- Department of Anesthesia, University of California, San Francisco, San Francisco, CA 94110, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kole T Roybal
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA.
- Parker Institute for Cancer Immunotherapy, San Francisco, CA 94143, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
- Gladstone-UCSF Institute for Genomic Immunology, San Francisco, CA 94158, USA
- UCSF Cell Design Institute, San Francisco, CA 94158, USA
| |
Collapse
|
9
|
Salisbury T, Churg A. CD146 immunohistochemical staining for the separation of benign from malignant mesothelial proliferations. Virchows Arch 2021; 479:1047-1050. [PMID: 33721119 DOI: 10.1007/s00428-021-03077-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/02/2021] [Accepted: 03/07/2021] [Indexed: 10/21/2022]
Abstract
The separation of benign from malignant mesothelial cells is often a challenging problem. Some studies have suggested that immunohistochemical staining of CD146 can be used to make this distinction, but there are marked differences in the reported results. Here, we assessed CD146 expression in tissue microarray specimens of 32 epithelioid reactive mesothelial hyperplasias, 17 spindle cell reactive mesothelial proliferations, 43 epithelioid mesotheliomas, and 31 sarcomatoid mesotheliomas. We found that, although the specificity of CD146 for epithelioid mesotheliomas versus reactive epithelial mesothelial proliferations was high (94%), staining intensity and extent was usually low and sensitivity was poor (23%). For sarcomatoid mesotheliomas versus reactive spindle cell mesothelial processes, both measures (33% sensitivity, 76% specificity) were inadequate. Furthermore, strong staining of endothelial cells and fibroblasts often created difficulties in interpretation. In comparison, BAP1 was lost in 21/43 (49%) epithelioid and 9/31 (29%) sarcomatoid mesotheliomas and methylthioadenosine phosphorylase (MTAP) was lost in 9/40 (23%) epithelioid and 7/29 (24%) sarcomatoid mesotheliomas from these TMAs. There was no association between CD146 staining and BAP1 or MTAP retention/loss. We conclude that CD146 staining is probably not useful for separating malignant from benign mesothelial proliferations.
Collapse
Affiliation(s)
- Taylor Salisbury
- Department of Pathology, Vancouver General Hospital, JPPN 1401, 910 West 10th Ave, Vancouver, BC, V5Z 1M9, Canada.,Department of Pathology, University of British Columbia, Vancouver, BC, Canada
| | - Andrew Churg
- Department of Pathology, Vancouver General Hospital, JPPN 1401, 910 West 10th Ave, Vancouver, BC, V5Z 1M9, Canada. .,Department of Pathology, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
10
|
Su Y, Zhang X, Bidlingmaier S, Behrens CR, Lee NK, Liu B. ALPPL2 Is a Highly Specific and Targetable Tumor Cell Surface Antigen. Cancer Res 2020; 80:4552-4564. [PMID: 32868383 PMCID: PMC7572689 DOI: 10.1158/0008-5472.can-20-1418] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/29/2020] [Accepted: 08/19/2020] [Indexed: 11/16/2022]
Abstract
Identification of tumor-specific cell surface antigens has proven challenging, as the vast majority of tumor-associated antigens are also expressed in normal tissues. In mesothelioma, we identified a highly specific tumor cell surface antigen that can be targeted for therapy development. Mesothelioma is caused by malignant transformation of the mesothelium, is incurable, and can be categorized into three histologic subtypes: epithelioid, biphasic, and sarcomatoid. To identity novel mesothelioma cell surface antigens with broad subtype coverage and high tissue specificity, we have previously selected phage antibody display libraries on live mesothelioma cells and tissues following counterselection on normal cells and identified a panel of human antibodies that bind all subtypes of mesothelioma, but not normal mesothelium. One of the antibodies, M25, showed high specificity against an antigen we identify here as ALPPL2. IHC on normal human tissues found that ALPPL2 is expressed only on placental trophoblasts, but not on any other normal tissues. This significant tissue specificity and broad tumor type coverage suggest that ALPPL2 could be an excellent cell surface target for therapeutic development against mesothelioma. To evaluate therapeutic potential of ALPPL2 targeting, an ALPPL2-targeted antibody-drug conjugate was developed and demonstrated potent and specific tumor killing in vitro and in vivo against both epithelioid and sarcomatoid mesothelioma. Thus, ALPPL2 belongs to a rare class of cell surface antigens classified as truly tumor specific and is well suited for therapy development against ALPPL2-expressing tumors. SIGNIFICANCE: These findings identify ALPP2 as a true tumor-specific cell surface antigen whose tissue specificity enables the development of novel therapies.
Collapse
Affiliation(s)
- Yang Su
- Department of Anesthesia, University of California, San Francisco, San Francisco, California
| | - Xin Zhang
- Department of Anesthesia, University of California, San Francisco, San Francisco, California
| | - Scott Bidlingmaier
- Department of Anesthesia, University of California, San Francisco, San Francisco, California
| | - Christopher R Behrens
- Department of Anesthesia, University of California, San Francisco, San Francisco, California
| | - Nam-Kyung Lee
- Department of Anesthesia, University of California, San Francisco, San Francisco, California
| | - Bin Liu
- Department of Anesthesia, University of California, San Francisco, San Francisco, California.
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
| |
Collapse
|
11
|
Nicolini F, Bocchini M, Angeli D, Bronte G, Delmonte A, Crinò L, Mazza M. Fully Human Antibodies for Malignant Pleural Mesothelioma Targeting. Cancers (Basel) 2020; 12:E915. [PMID: 32276524 PMCID: PMC7226231 DOI: 10.3390/cancers12040915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/04/2020] [Accepted: 04/07/2020] [Indexed: 12/13/2022] Open
Abstract
Immunotherapy is the most promising therapeutic approach against malignant pleural mesothelioma (MPM). Despite technological progress, the number of targetable antigens or specific antibodies is limited, thus hindering the full potential of recent therapeutic interventions. All possibilities of finding new targeting molecules must be exploited. The specificity of targeting is guaranteed by the use of monoclonal antibodies, while fully human antibodies are preferred, as they are functional and generate no neutralizing antibodies. The aim of this review is to appraise the latest advances in screening methods dedicated to the identification and harnessing of fully human antibodies. The scope of identifying useful molecules proceeds along two avenues, i.e., through the antigen-first or binding-first approaches. The first relies on screening human antibody libraries or plasma from immunized transgenic mice or humans to isolate binders to specific antigens. The latter takes advantage of specific binding to tumor cells of antibodies present in phage display libraries or in responders' plasma samples without prior knowledge of the antigens. Additionally, next-generation sequencing analysis of B-cell receptor repertoire pre- and post-therapy in memory B-cells from responders allows for the identification of clones expanded and matured upon treatment. Human antibodies identified can be subsequently reformatted to generate a plethora of therapeutics like antibody-drug conjugates, immunotoxins, and advanced cell-therapeutics such as chimeric antigen receptor-transduced T-cells.
Collapse
Affiliation(s)
- Fabio Nicolini
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy; (F.N.); (M.B.)
| | - Martine Bocchini
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy; (F.N.); (M.B.)
| | - Davide Angeli
- Unit of Biostatistics and Clinical Trials, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy;
| | - Giuseppe Bronte
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy; (G.B.); (A.D.); (L.C.)
| | - Angelo Delmonte
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy; (G.B.); (A.D.); (L.C.)
| | - Lucio Crinò
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy; (G.B.); (A.D.); (L.C.)
| | - Massimiliano Mazza
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy; (F.N.); (M.B.)
| |
Collapse
|
12
|
Zhang G, Yang DL, Zheng G, Liang Y. Survivin expression as an independent predictor of overall survival in malignant peritoneal mesothelioma. Oncol Lett 2020; 19:3871-3880. [PMID: 32382335 PMCID: PMC7202285 DOI: 10.3892/ol.2020.11505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 02/14/2020] [Indexed: 02/07/2023] Open
Abstract
Malignant peritoneal mesothelioma (MPeM) is an incurable cancer strongly associated with asbestos exposure and characterised by poor prognosis. The aim of the present study was to elucidate the prognostic and predictive value of CD146 and survivin expression in MPeM. Diagnostic biopsies from 60 patients with MPeM were collected and analysed for CD146, survivin and Ki-67 expression using immunohistochemistry. Complete clinical and follow-up information was obtained from patients' records. CD146 was expressed in 31/60 MPeM specimens and survivin in 34/60 specimens, with both expression levels being significantly associated with the Ki-67 labelling index (Ki-67LI). Kaplan-Meier and univariate Cox regression analyses revealed that a lower peritoneal cancer index (PCI), tumour-directed treatment, stage I, lower Ki-67LI and lower CD146 and survivin expression had a statistically positive effect on overall survival (OS). Cox regression analysis revealed that PCI [hazard ratio (HR)=1.99; 95% CI, 1.04–3.83; P=0.038], survivin (HR=1.47; 95% CI, 1.03–2.10; P=0.034) and treatment protocol including intraperitoneal chemotherapy (HR=0.28; 95% CI, 0.14–0.57; P=0.013) and systemic chemotherapy (HR=0.13; 95% CI, 0.04–0.42; P=0.013) retained independent prognostic significance for OS. All of these were included in the nomogram. Calibration curves showed good agreement between nomogram-predicted and observed survival. The C-index of the nomogram for predicting OS was 0.77. A lower PCI, intraperitoneal chemotherapy, systemic chemotherapy and a lower level of survivin were powerful prognostic markers in patients with MPeM. The proposed nomogram provides individual survival prediction for patients with MPeM.
Collapse
Affiliation(s)
- Guozun Zhang
- Department of Gastroenterology, Cangzhou Central Hospital, Cangzhou, Hebei 061001, P.R. China
| | - Dong-Liang Yang
- Department of Medical Statistics, Cangzhou Medical College, Cangzhou, Hebei 061001, P.R. China
| | - Guoqi Zheng
- Department of Gastroenterology, Cangzhou Central Hospital, Cangzhou, Hebei 061001, P.R. China
| | - Yufei Liang
- Department of Gastroenterology, Cangzhou Central Hospital, Cangzhou, Hebei 061001, P.R. China
| |
Collapse
|
13
|
Intratumoral Gene Electrotransfer of Plasmid DNA Encoding shRNA against Melanoma Cell Adhesion Molecule Radiosensitizes Tumors by Antivascular Effects and Activation of an Immune Response. Vaccines (Basel) 2020; 8:vaccines8010135. [PMID: 32204304 PMCID: PMC7157247 DOI: 10.3390/vaccines8010135] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/17/2020] [Accepted: 03/17/2020] [Indexed: 12/12/2022] Open
Abstract
In this study, radiotherapy was combined with the gene electrotransfer (GET) of plasmid encoding shRNA against melanoma cell adhesion molecule (pMCAM) with dual action, which was a vascular-targeted effect mediated by the silencing of MCAM and an immunological effect mediated by the presence of plasmid DNA in the cytosol-activating DNA sensors. The effects and underlying mechanisms of therapy were evaluated in more immunogenic B16F10 melanoma and less immunogenic TS/A carcinoma. The silencing of MCAM potentiated the effect of irradiation (IR) in both tumor models. Combined therapy resulted in 81% complete responses (CR) in melanoma and 27% CR in carcinoma. Moreover, after the secondary challenge of cured mice, 59% of mice were resistant to challenge with melanoma cells, and none were resistant to carcinoma. Combined therapy reduced the number of blood vessels; induced hypoxia, apoptosis, and necrosis; and reduced cell proliferation in both tumor models. In addition, the significant increase of infiltrating immune cells was observed in both tumor models but more so in melanoma, where the expression of IL-12 and TNF-α was determined as well. Our results indicate that the combined therapy exerts both antiangiogenic and immune responses that contribute to the antitumor effect. However, tumor immunological status is crucial for a sufficient immune system contribution to the overall antitumor effect.
Collapse
|
14
|
Xu H, Cao B, Li Y, Mao C. Phage nanofibers in nanomedicine: Biopanning for early diagnosis, targeted therapy, and proteomics analysis. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1623. [PMID: 32147974 DOI: 10.1002/wnan.1623] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 01/02/2020] [Accepted: 02/04/2020] [Indexed: 12/16/2022]
Abstract
Display of a peptide or protein of interest on the filamentous phage (also known as bacteriophage), a biological nanofiber, has opened a new route for disease diagnosis and therapy as well as proteomics. Earlier phage display was widely used in protein-protein or antigen-antibody studies. In recent years, its application in nanomedicine is becoming increasingly popular and encouraging. We aim to review the current status in this research direction. For better understanding, we start with a brief introduction of basic biology and structure of the filamentous phage. We present the principle of phage display and library construction method on the basis of the filamentous phage. We summarize the use of the phage displayed peptide library for selecting peptides with high affinity against cells or tissues. We then review the recent applications of the selected cell or tissue targeting peptides in developing new targeting probes and therapeutics to advance the early diagnosis and targeted therapy of different diseases in nanomedicine. We also discuss the integration of antibody phage display and modern proteomics in discovering new biomarkers or target proteins for disease diagnosis and therapy. Finally, we propose an outlook for further advancing the potential impact of phage display on future nanomedicine. This article is categorized under: Biology-Inspired Nanomaterials > Protein and Virus-Based Structures.
Collapse
Affiliation(s)
- Hong Xu
- Department of Chemistry & Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA
| | - Binrui Cao
- Department of Chemistry & Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA
| | - Yan Li
- Department of Chemistry & Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA
| | - Chuanbin Mao
- Department of Chemistry & Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA
| |
Collapse
|
15
|
Yoshimura M, Kinoshita Y, Hamasaki M, Matsumoto S, Hida T, Oda Y, Iwasaki A, Nabeshima K. Highly expressed EZH2 in combination with BAP1 and MTAP loss, as detected by immunohistochemistry, is useful for differentiating malignant pleural mesothelioma from reactive mesothelial hyperplasia. Lung Cancer 2019; 130:187-193. [PMID: 30885343 DOI: 10.1016/j.lungcan.2019.02.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/28/2019] [Accepted: 02/03/2019] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Malignant pleural mesothelioma (MPM) is an aggressive neoplasm with poor prognosis. Loss of BRCA-associated protein 1 (BAP1) protein expression as detected by immunohistochemistry (IHC) and homozygous deletion (HD) of the 9p21 locus as detected by fluorescence in situ hybridization (FISH) permits differentiation of MPM from reactive mesothelial hyperplasia (RMH). We have previously reported that detecting the loss of methylthioadenosine phosphorylase (MTAP) using IHC is a surrogate assay for 9p21 FISH. Furthermore, enhancer of zeste homolog 2 (EZH2), which encodes a component of polycomb repressor complex 2 (PRC-2), has been overexpressed in various tumors as well as MPM. In the current study, we investigated whether EZH2 IHC assay, alone or in combination with BAP1 and MTAP IHC, is useful for distinguishing MPM from RMH. MATERIALS AND METHODS We examined IHC expression of EZH2, BAP1, and MTAP, and 9p21 FISH in MPM (n = 38) and RMH (n = 29) and analyzed the sensitivity and specificity of each detection assay for distinguishing MPM from RMH. RESULTS AND CONCLUSION EZH2, BAP1, and MTAP IHC, and 9p21 FISH were characterized by a 100% specificity each and 44.7%, 52.6%, 47.4%, and 65.8% sensitivities, respectively. A combination of EZH2 and BAP1 IHC, and 9p21 FISH showed the greatest sensitivity (89.5%). Using IHC alone (EZH2, BAP1, and MTAP IHC) also yielded a good sensitivity of 86.9%; this level is high enough for routine diagnostics. There were no statistically significant associations between expression of EZH2 and that of other markers (BAP1 and MTAP IHC) or 9p21 HD. However, a high expression level of EZH2 was significantly associated with short survival (P = 0.025). In conclusion, adding a high expression level of EZH2 to a combination of BAP1 and MTAP loss, all detected by IHC, demonstrated useful for discriminating MPM from RMH.
Collapse
Affiliation(s)
- Masayo Yoshimura
- Department of Pathology, Fukuoka University School of Medicine and Hospital, Fukuoka, Japan
| | - Yoshiaki Kinoshita
- Department of Pathology, Fukuoka University School of Medicine and Hospital, Fukuoka, Japan
| | - Makoto Hamasaki
- Department of Pathology, Fukuoka University School of Medicine and Hospital, Fukuoka, Japan
| | - Shinji Matsumoto
- Department of Pathology, Fukuoka University School of Medicine and Hospital, Fukuoka, Japan
| | - Tomoyuki Hida
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Akinori Iwasaki
- Department of Thoracic Surgery, Fukuoka University School of Medicine and Hospital, Fukuoka, Japan
| | - Kazuki Nabeshima
- Department of Pathology, Fukuoka University School of Medicine and Hospital, Fukuoka, Japan.
| |
Collapse
|
16
|
Combine Phage Antibody Display Library Selection on Patient Tissue Specimens with Laser Capture Microdissection to Identify Novel Human Antibodies Targeting Clinically Relevant Tumor Antigens. Methods Mol Biol 2018; 1701:331-347. [PMID: 29116514 DOI: 10.1007/978-1-4939-7447-4_18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A functional approach to generate tumor-targeting human monoclonal antibodies is through selection of phage antibody display libraries directly on tumor cells. Although technically convenient, the use of cancer cell lines for the selection has limitations as those cell lines often undergo genetic and epigenetic changes during prolonged in vitro culture and alter their cell surface antigen expression profile. The key is to develop a technology that allows selection of phage antibody display libraries on tumor cells in situ residing in their natural tissue microenvironment. Laser capture microdissection (LCM) permits the precise procurement of tumor cells from human cancer patient tissue sections. Here, we describe a LCM-based method for selecting phage antibodies against tumor cells in situ using both fresh frozen and paraffin-embedded tissues. To restrict the selection to antibodies that bind internalizing epitopes, the method utilizes a polyclonal phage population pre-enriched for internalizing phage antibodies. The ability to recognize tumor cells in situ residing in their natural tissue microenvironment and to deliver payload intracellularly makes these LCM-selected antibodies attractive candidates for the development of targeted cancer therapeutics.
Collapse
|
17
|
Kinoshita Y, Hida T, Hamasaki M, Matsumoto S, Sato A, Tsujimura T, Kawahara K, Hiroshima K, Oda Y, Nabeshima K. A combination of MTAP and BAP1 immunohistochemistry in pleural effusion cytology for the diagnosis of mesothelioma. Cancer Cytopathol 2017; 126:54-63. [DOI: 10.1002/cncy.21928] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/07/2017] [Accepted: 09/08/2017] [Indexed: 01/19/2023]
Affiliation(s)
- Yoshiaki Kinoshita
- Department of Pathology; Fukuoka University Hospital and School of Medicine; Fukuoka Japan
- Department of Respiratory Medicine; Fukuoka University Hospital and School of Medicine; Fukuoka Japan
| | - Tomoyuki Hida
- Department of Anatomic Pathology, Graduate School of Medical Sciences; Kyushu University; Fukuoka Japan
| | - Makoto Hamasaki
- Department of Pathology; Fukuoka University Hospital and School of Medicine; Fukuoka Japan
| | - Shinji Matsumoto
- Department of Pathology; Fukuoka University Hospital and School of Medicine; Fukuoka Japan
| | - Ayuko Sato
- Department of Pathology; Hyogo College of Medicine; Nishinomiya Japan
| | - Tohru Tsujimura
- Department of Pathology; Hyogo College of Medicine; Nishinomiya Japan
| | - Kunimitsu Kawahara
- Department of Pathology; Osaka Prefectural Medical Center for Respiratory and Allergic Disease; Habikino Japan
| | - Kenzo Hiroshima
- Department of Pathology; Tokyo Women's Medical University Yachiyo Medical Center; Yachiyo Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences; Kyushu University; Fukuoka Japan
| | - Kazuki Nabeshima
- Department of Pathology; Fukuoka University Hospital and School of Medicine; Fukuoka Japan
| |
Collapse
|
18
|
Beije N, Kraan J, den Bakker MA, Maat APWM, van der Leest C, Cornelissen R, Van NM, Martens JWM, Aerts JGJV, Sleijfer S. Improved diagnosis and prognostication of patients with pleural malignant mesothelioma using biomarkers in pleural effusions and peripheral blood samples - a short report. Cell Oncol (Dordr) 2017; 40:511-519. [PMID: 28577209 PMCID: PMC5608799 DOI: 10.1007/s13402-017-0327-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2017] [Indexed: 11/27/2022] Open
Abstract
Purpose There is a lack of robust and clinically utilizable markers for the diagnosis and prognostication of malignant pleural mesothelioma (MPM). This research was aimed at optimizing and exploring novel approaches to improve the diagnosis and prognostication of MPM in pleural effusions and peripheral blood samples. Methods CellSearch-based and flow cytometry-based assays using melanoma cell adhesion molecule (MCAM) to identify circulating tumor cells (CTCs) in pleural effusions and peripheral blood samples of MPM patients were optimized, validated, explored clinically and, in case of pleural effusions, compared with cytological analyses. Additionally, tumor-associated circulating endothelial cells (CECs) were measured in peripheral blood samples. The assays were performed on a MPM cohort encompassing patients with histology-confirmed MPM (n=27) and in a control cohort of patients with alternative diagnoses (n=22). Exploratory analyses on the prognostic value of all assays were also performed. Results The malignancy of MCAM-positive cells in pleural effusions from MPM patients was confirmed. The detection of MPM CTCs in pleural effusions by CellSearch showed a poor specificity. The detection of MPM CTCs in pleural effusions by flow cytometry showed a superior sensitivity (48%) to standard cytological analysis (15%) (p = 0.03). In peripheral blood, CTCs were detected in 26% of the MPN patients, whereas in 42% of the MPM patients tumor-associated CECs were detected above the upper limit of normal (ULN). In exploratory analyses the absence of CTCs in pleural effusions, and tumor-associated CECs in peripheral blood samples above the ULN, appeared to be associated with a worse overall survival. Conclusion MCAM-based flow cytometric analysis of pleural effusions is more sensitive than routine cytological analysis. Flow cytometric analysis of pleural effusions and tumor-associated CECs in peripheral blood may serve as a promising approach for the prognostication of MPM patients and, therefore, warrants further study. Electronic supplementary material The online version of this article (doi:10.1007/s13402-017-0327-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nick Beije
- Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC Cancer Institute, Erasmus University Medical Center, Wytemaweg 80, 3015, CN, Rotterdam, The Netherlands.
| | - Jaco Kraan
- Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC Cancer Institute, Erasmus University Medical Center, Wytemaweg 80, 3015, CN, Rotterdam, The Netherlands
| | - Michael A den Bakker
- Department of Pathology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Pathology, Maasstad Hospital, Rotterdam, The Netherlands
| | - Alexander P W M Maat
- Department of Cardiothoracic Surgery, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Cor van der Leest
- Department of Pulmonary Medicine, Amphia Hospital, Breda, The Netherlands
- Department of Pulmonary Medicine, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Robin Cornelissen
- Department of Pulmonary Medicine, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Ngoc M Van
- Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC Cancer Institute, Erasmus University Medical Center, Wytemaweg 80, 3015, CN, Rotterdam, The Netherlands
| | - John W M Martens
- Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC Cancer Institute, Erasmus University Medical Center, Wytemaweg 80, 3015, CN, Rotterdam, The Netherlands
| | - Joachim G J V Aerts
- Department of Pulmonary Medicine, Amphia Hospital, Breda, The Netherlands
- Department of Pulmonary Medicine, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Stefan Sleijfer
- Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC Cancer Institute, Erasmus University Medical Center, Wytemaweg 80, 3015, CN, Rotterdam, The Netherlands
| |
Collapse
|
19
|
Surface modification of lipid-based nanocarriers for cancer cell-specific drug targeting. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2017. [DOI: 10.1007/s40005-017-0329-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
20
|
Ha KD, Bidlingmaier SM, Su Y, Lee NK, Liu B. Identification of Novel Macropinocytosing Human Antibodies by Phage Display and High-Content Analysis. Methods Enzymol 2017; 585:91-110. [PMID: 28109445 PMCID: PMC8671048 DOI: 10.1016/bs.mie.2016.10.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Internalizing antibodies have great potential for the development of targeted therapeutics. Antibodies that internalize via the macropinocytosis pathway are particularly promising since macropinocytosis is capable of mediating rapid, bulk uptake and is selectively upregulated in many cancers. We hereby describe a method for identifying antibodies that internalize via macropinocytosis by screening phage-displayed single-chain antibody selection outputs with an automated fluorescent microscopy-based high-content analysis platform. Furthermore, this method can be similarly applied to other endocytic pathways if other fluorescent, pathway-specific, soluble markers are available.
Collapse
Affiliation(s)
| | | | | | | | - Bin Liu
- Corresponding author Department of Anesthesia, University of California at San Francisco, 1001 Potrero Ave., Box 1305, San Francisco, CA 94110-1305,
| |
Collapse
|
21
|
Westrøm S, Bønsdorff TB, Abbas N, Bruland ØS, Jonasdottir TJ, Mælandsmo GM, Larsen RH. Evaluation of CD146 as Target for Radioimmunotherapy against Osteosarcoma. PLoS One 2016; 11:e0165382. [PMID: 27776176 PMCID: PMC5077112 DOI: 10.1371/journal.pone.0165382] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 10/11/2016] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Osteosarcoma is a rare form of cancer but with a substantial need for new active drugs. There is a particular need for targeted therapies to combat metastatic disease. One possible approach is to use an antibody drug conjugate or an antibody radionuclide conjugate to target the osteosarcoma metastases and circulating tumor cells. Herein we have evaluated a radiolabeled monoclonal antibody targeting CD146 both in vitro and in vivo. METHODS AND RESULTS A murine monoclonal anti-CD146 IgG1 isotype antibody, named OI-3, was developed along with recombinant chimeric versions with human IgG1 or human IgG3 Fc sequences. Using flow cytometry, selective binding of OI-3 to human osteosarcoma cell lines OHS, KPDX and Saos-2 was confirmed. The results confirm a higher expression level of CD146 on human osteosarcoma cells than HER2 and EGFR; antigens targeted by commercially available therapeutic antibodies. The biodistribution of 125I-labeled OI-3 antibody variants was compared with 125I-labeled chimeric anti-EGFR antibody cetuximab in nude mice with subcutaneous OHS osteosarcoma xenografts. OI-3 was able to target CD146 expressing tumors in vivo and showed improved tumor to tissue targeting ratios compared with cetuximab. Subsequently, the three OI-3 variants were conjugated with p-SCN-Bn-DOTA and labeled with a more therapeutically relevant radionuclide, 177Lu, and their biodistributions were studied in the nude mouse model. The 177Lu-labeled OI-3 variants were stable and had therapeutically relevant biodistribution profiles. Dosimetry estimates showed higher absorbed radiation dose to tumor than all other tissues after administration of the chimeric IgG1 OI-3 variant. CONCLUSION Our results indicate that CD146 can be targeted in vivo by the radiolabeled OI-3 antibodies.
Collapse
Affiliation(s)
- Sara Westrøm
- Oncoinvent AS, Oslo, Norway
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | | | - Øyvind S. Bruland
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Oncology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | | | - Gunhild M. Mælandsmo
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | | |
Collapse
|
22
|
Hida T, Hamasaki M, Matsumoto S, Sato A, Tsujimura T, Kawahara K, Iwasaki A, Okamoto T, Oda Y, Honda H, Nabeshima K. BAP1 immunohistochemistry and p16 FISH results in combination provide higher confidence in malignant pleural mesothelioma diagnosis: ROC analysis of the two tests. Pathol Int 2016; 66:563-570. [PMID: 27614970 DOI: 10.1111/pin.12453] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 07/20/2016] [Accepted: 08/04/2016] [Indexed: 01/07/2023]
Abstract
Differentiation of malignant pleural mesothelioma (MPM) from benign mesothelial proliferation remains problematic. Loss of nuclear staining of BRCA1-associated protein 1 (BAP1; detected using immunohistochemistry (IHC)) and homozygous deletion (HD) of p16 (detected using fluorescence in situ hybridization (FISH)) are useful for differentiation of MPM from reactive mesothelial hyperplasia (RMH), but the correlation between BAP1 expression loss and p16 HD has not been fully described. We performed BAP1 IHC and p16-specific FISH for 40 MPM and 20 RMH cases, and measured proportions of cells showing BAP1 expression and p16 HD for each case. The diagnostic accuracy for MPM and the cut-off values of the two methods were assessed using receiver operating characteristic (ROC) analysis. BAP1 expression loss, p16 HD and coexistence of both were present in 27 (67.5 %), 27 (67.5 %) and 17 (42.5 %) MPM cases, respectively. Three MPM cases (7.5 %) and all 20 RMH cases had neither BAP1 loss nor p16 HD. There was no correlation between the results of the two methods. Their combination showed higher sensitivity (92.5 %, 37/40) and estimated probability than BAP1 IHC and p16-specific FISH used alone. BAP1 IHC and p16-specific FISH have independent diagnostic value, and have increased reliability when used in combination, for MPM diagnosis.
Collapse
Affiliation(s)
- Tomoyuki Hida
- Department of Pathology, Fukuoka University Hospital and School of Medicine, Fukuoka, Japan.,Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Makoto Hamasaki
- Department of Pathology, Fukuoka University Hospital and School of Medicine, Fukuoka, Japan
| | - Shinji Matsumoto
- Department of Pathology, Fukuoka University Hospital and School of Medicine, Fukuoka, Japan
| | - Ayuko Sato
- Department of Pathology, Hyogo College of Medicine, Hyogo, Japan
| | - Tohru Tsujimura
- Department of Pathology, Hyogo College of Medicine, Hyogo, Japan
| | - Kunimitsu Kawahara
- Department of Pathology, Osaka Prefectural Medical Center for Respiratory and Allergic Disease, Osaka, Japan
| | - Akinori Iwasaki
- Department of Thoracic Surgery, Fukuoka University Hospital and School of Medicine, Fukuoka, Japan
| | - Tatsuro Okamoto
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroshi Honda
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazuki Nabeshima
- Department of Pathology, Fukuoka University Hospital and School of Medicine, Fukuoka, Japan.
| |
Collapse
|
23
|
Follo C, Barbone D, Richards WG, Bueno R, Broaddus VC. Autophagy initiation correlates with the autophagic flux in 3D models of mesothelioma and with patient outcome. Autophagy 2016; 12:1180-94. [PMID: 27097020 PMCID: PMC4990992 DOI: 10.1080/15548627.2016.1173799] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Understanding the role of autophagy in cancer has been limited by the inability to measure this dynamic process in formalin-fixed tissue. We considered that 3-dimensional models including ex vivo tumor, such as we have developed for studying mesothelioma, would provide valuable insights. Using these models, in which we could use lysosomal inhibitors to measure the autophagic flux, we sought a marker of autophagy that would be valid in formalin-fixed tumor and be used to assess the role of autophagy in patient outcome. Autophagy was studied in mesothelioma cell lines, as 2-dimensional (2D) monolayers and 3-dimensional (3D) multicellular spheroids (MCS), and in tumor from 25 chemonaive patients, both as ex vivo 3D tumor fragment spheroids (TFS) and as formalin-fixed tissue. Autophagy was evaluated as autophagic flux by detection of the accumulation of LC3 after lysosomal inhibition and as autophagy initiation by detection of ATG13 puncta. We found that autophagic flux in 3D, but not in 2D, correlated with ATG13 positivity. In each TFS, ATG13 positivity was similar to that of the original tumor. When tested in tissue microarrays of 109 chemonaive patients, higher ATG13 positivity correlated with better prognosis and provided information independent of known prognostic factors. Our results show that ATG13 is a static marker of the autophagic flux in 3D models of mesothelioma and may also reflect autophagy levels in formalin-fixed tumor. If confirmed, this marker would represent a novel prognostic factor for mesothelioma, supporting the notion that autophagy plays an important role in this cancer.
Collapse
Affiliation(s)
- Carlo Follo
- a San Francisco General Hospital, University of California San Francisco , San Francisco , CA , USA
| | - Dario Barbone
- a San Francisco General Hospital, University of California San Francisco , San Francisco , CA , USA
| | - William G Richards
- b Division of Thoracic Surgery, Brigham and Women's Hospital , Boston , MA , USA
| | - Raphael Bueno
- b Division of Thoracic Surgery, Brigham and Women's Hospital , Boston , MA , USA
| | - V Courtney Broaddus
- a San Francisco General Hospital, University of California San Francisco , San Francisco , CA , USA
| |
Collapse
|
24
|
Keller T, Kalt R, Raab I, Schachner H, Mayrhofer C, Kerjaschki D, Hantusch B. Selection of scFv Antibody Fragments Binding to Human Blood versus Lymphatic Endothelial Surface Antigens by Direct Cell Phage Display. PLoS One 2015; 10:e0127169. [PMID: 25993332 PMCID: PMC4439027 DOI: 10.1371/journal.pone.0127169] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 04/13/2015] [Indexed: 12/04/2022] Open
Abstract
The identification of marker molecules specific for blood and lymphatic endothelium may provide new diagnostic tools and identify new targets for therapy of immune, microvascular and cancerous diseases. Here, we used a phage display library expressing human randomized single-chain Fv (scFv) antibodies for direct panning against live cultures of blood (BECs) and lymphatic (LECs) endothelial cells in solution. After six panning rounds, out of 944 sequenced antibody clones, we retrieved 166 unique/diverse scFv fragments, as indicated by the V-region sequences. Specificities of these phage clone antibodies for respective compartments were individually tested by direct cell ELISA, indicating that mainly pan-endothelial cell (EC) binders had been selected, but also revealing a subset of BEC-specific scFv antibodies. The specific staining pattern was recapitulated by twelve phage-independently expressed scFv antibodies. Binding capacity to BECs and LECs and differential staining of BEC versus LEC by a subset of eight scFv antibodies was confirmed by immunofluorescence staining. As one antigen, CD146 was identified by immunoprecipitation with phage-independent scFv fragment. This antibody, B6-11, specifically bound to recombinant CD146, and to native CD146 expressed by BECs, melanoma cells and blood vessels. Further, binding capacity of B6-11 to CD146 was fully retained after fusion to a mouse Fc portion, which enabled eukaryotic cell expression. Beyond visualization and diagnosis, this antibody might be used as a functional tool. Overall, our approach provided a method to select antibodies specific for endothelial surface determinants in their native configuration. We successfully selected antibodies that bind to antigens expressed on the human endothelial cell surfaces in situ, showing that BECs and LECs share a majority of surface antigens, which is complemented by cell-type specific, unique markers.
Collapse
Affiliation(s)
- Thomas Keller
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
| | - Romana Kalt
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
| | - Ingrid Raab
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
| | - Helga Schachner
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
| | - Corina Mayrhofer
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine, Vienna, Austria
| | - Dontscho Kerjaschki
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
| | - Brigitte Hantusch
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
- * E-mail:
| |
Collapse
|
25
|
P. FR. ASPECTOS DIAGNÓSTICOS Y TERAPÉUTICOS EN EL MESOTELIOMA PLEURAL MALIGNO. REVISTA MÉDICA CLÍNICA LAS CONDES 2015. [DOI: 10.1016/j.rmclc.2015.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
26
|
|
27
|
Bidlingmaier S, Liu B. Identification of Novel Protein-Ligand Interactions by Exon Microarray Analysis of Yeast Surface Displayed cDNA Library Selection Outputs. Methods Mol Biol 2015; 1319:179-192. [PMID: 26060075 PMCID: PMC4842228 DOI: 10.1007/978-1-4939-2748-7_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Yeast surface display is widely utilized to screen large libraries for proteins or protein fragments with specific binding properties. We have previously constructed and utilized yeast surface displayed human cDNA libraries to identify protein fragments that bind to various target ligands. Conventional approaches employ monoclonal screening and sequencing of polyclonal outputs that have been enriched for binding to a target molecule by several rounds of affinity-based selection. Frequently, a small number of clones will dominate the selection output, making it difficult to comprehensively identify potentially important interactions due to low representation in the selection output. We have developed a novel method to address this problem. By analyzing selection outputs using high-density human exon microarrays, the full potential of selection output diversity can be revealed in one experiment. FACS-based selection using yeast surface displayed human cDNA libraries combined with exon microarray analysis of the selection outputs is a powerful way of rapidly identifying protein fragments with affinity for any soluble ligand that can be fluorescently detected, including small biological molecules and drugs. In this report we present protocols for exon microarray-based analysis of yeast surface display human cDNA library selection outputs.
Collapse
Affiliation(s)
- Scott Bidlingmaier
- Department of Anesthesia, UCSF Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, 1001 Potrero Avenue, 1305, San Francisco, CA, 94110, USA
| | | |
Collapse
|
28
|
Bidlingmaier S, Su Y, Liu B. Combining Phage and Yeast Cell Surface Antibody Display to Identify Novel Cell Type-Selective Internalizing Human Monoclonal Antibodies. Methods Mol Biol 2015; 1319:51-63. [PMID: 26060069 DOI: 10.1007/978-1-4939-2748-7_3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Using phage antibody display, large libraries can be generated and screened to identify monoclonal antibodies with affinity for target antigens. However, while library size and diversity is an advantage of the phage display method, there is limited ability to quantitatively enrich for specific binding properties such as affinity. One way of overcoming this limitation is to combine the scale of phage display selections with the flexibility and quantitativeness of FACS-based yeast surface display selections. In this chapter we describe protocols for generating yeast surface antibody display libraries using phage antibody display selection outputs as starting material and FACS-based enrichment of target antigen-binding clones from these libraries. These methods should be widely applicable for the identification of monoclonal antibodies with specific binding properties.
Collapse
Affiliation(s)
- Scott Bidlingmaier
- Department of Anesthesia, UCSF Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, 1001 Potrero Avenue, 1305, San Francisco, CA, 94110, USA
| | | | | |
Collapse
|
29
|
Bidlingmaier S, Liu B. Utilizing Yeast Surface Human Proteome Display Libraries to Identify Small Molecule-Protein Interactions. Methods Mol Biol 2015; 1319:203-14. [PMID: 26060077 PMCID: PMC4838597 DOI: 10.1007/978-1-4939-2748-7_11] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The identification of proteins that interact with small bioactive molecules is a critical but often difficult and time-consuming step in understanding cellular signaling pathways or molecular mechanisms of drug action. Numerous methods for identifying small molecule-interacting proteins have been developed and utilized, including affinity-based purification followed by mass spectrometry analysis, protein microarrays, phage display, and three-hybrid approaches. Although all these methods have been used successfully, there remains a need for additional techniques for analyzing small molecule-protein interactions. A promising method for identifying small molecule-protein interactions is affinity-based selection of yeast surface-displayed human proteome libraries. Large and diverse libraries displaying human protein fragments on the surface of yeast cells have been constructed and subjected to FACS-based enrichment followed by comprehensive exon microarray-based output analysis to identify protein fragments with affinity for small molecule ligands. In a recent example, a proteome-wide search has been successfully carried out to identify cellular proteins binding to the signaling lipids PtdIns(4,5)P2 and PtdIns(3,4,5)P3. Known phosphatidylinositide-binding proteins such as pleckstrin homology domains were identified, as well as many novel interactions. Intriguingly, many novel nuclear phosphatidylinositide-binding proteins were discovered. Although the existence of an independent pool of nuclear phosphatidylinositides has been known about for some time, their functions and mechanism of action remain obscure. Thus, the identification and subsequent study of nuclear phosphatidylinositide-binding proteins is expected to bring new insights to this important biological question. Based on the success with phosphatidylinositides, it is expected that the screening of yeast surface-displayed human proteome libraries will be of general use for the discovery of novel small molecule-protein interactions, thus facilitating the study of cellular signaling pathways and mechanisms of drug action or toxicity.
Collapse
Affiliation(s)
- Scott Bidlingmaier
- Department of Anesthesia, UCSF Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, 1001 Potrero Avenue, Box 1305, San Francisco, CA, 94110, USA
| | | |
Collapse
|
30
|
Abstract
The method of displaying recombinant proteins on the surface of Saccharomyces cerevisiae via genetic fusion to an abundant cell wall protein, a technology known as yeast surface display, or simply, yeast display, has become a valuable protein engineering tool for a broad spectrum of biotechnology and biomedical applications. This review focuses on the use of yeast display for engineering protein affinity, stability, and enzymatic activity. Strategies and examples for each protein engineering goal are discussed. Additional applications of yeast display are also briefly presented, including protein epitope mapping, identification of protein-protein interactions, and uses of displayed proteins in industry and medicine.
Collapse
|
31
|
Bidlingmaier S, Liu B. Identification of Posttranslational Modification-Dependent Protein Interactions Using Yeast Surface Displayed Human Proteome Libraries. Methods Mol Biol 2015; 1319:193-202. [PMID: 26060076 DOI: 10.1007/978-1-4939-2748-7_10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The identification of proteins that interact specifically with posttranslational modifications such as phosphorylation is often necessary to understand cellular signaling pathways. Numerous methods for identifying proteins that interact with posttranslational modifications have been utilized, including affinity-based purification and analysis, protein microarrays, phage display, and tethered catalysis. Although these techniques have been used successfully, each has limitations. Recently, yeast surface-displayed human proteome libraries have been utilized to identify protein fragments with affinity for various target molecules, including phosphorylated peptides. When coupled with fluorescently activated cell sorting and high throughput methods for the analysis of selection outputs, yeast surface-displayed human proteome libraries can rapidly and efficiently identify protein fragments with affinity for any soluble ligand that can be fluorescently detected, including posttranslational modifications. In this review we compare the use of yeast surface display libraries to other methods for the identification of interactions between proteins and posttranslational modifications and discuss future applications of the technology.
Collapse
Affiliation(s)
- Scott Bidlingmaier
- Department of Anesthesia, UCSF Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, 1001 Potrero Avenue, 1305, San Francisco, CA, 94110, USA
| | | |
Collapse
|
32
|
Zhang K, Deng H, Cagle PT. Utility of Immunohistochemistry in the Diagnosis of Pleuropulmonary and Mediastinal Cancers: A Review and Update. Arch Pathol Lab Med 2014; 138:1611-28. [DOI: 10.5858/arpa.2014-0092-ra] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Context
Immunohistochemistry has become an indispensable ancillary tool for the accurate classification of pleuropulmonary and mediastinal neoplasms necessary for therapeutic decisions and predicting prognostic outcome in the era of personalized medicine. Diagnostic accuracy has significantly improved because of the continuous discoveries of tumor-associated biomarkers and the development of effective immunohistochemical panels.
Objective
To increase the accuracy of diagnosis and classify pleuropulmonary neoplasms through immunohistochemistry.
Data Sources
Literature review, authors' research data, and personal practice experience.
Conclusions
This review article has shown that appropriately selecting immunohistochemical panels enables pathologists to effectively diagnose most primary pleuropulmonary neoplasms and differentiate primary lung tumors from a variety of metastatic tumors to the lung. The discovery of new mutation-specific antibodies identifying a subset of specific gene-arranged lung tumors provides a promising alternative and cost-effective approach to molecular testing. Knowing the utilities and pitfalls of each tumor-associated biomarker is essential to avoiding potential diagnostic errors.
Collapse
Affiliation(s)
- Kai Zhang
- From the Department of Laboratory Medicine, Geisinger Medical Center, Danville, Pennsylvania (Drs Zhang and Deng)
| | - Hongbin Deng
- From the Department of Laboratory Medicine, Geisinger Medical Center, Danville, Pennsylvania (Drs Zhang and Deng)
| | - Philip T. Cagle
- and the Department of Pathology and Genomic Medicine, The Methodist Hospital, Houston, Texas (Dr Cagle)
| |
Collapse
|
33
|
Expression status of candidate genes in mesothelioma tissues and cell lines. Mutat Res 2014; 771:6-12. [PMID: 25771974 DOI: 10.1016/j.mrfmmm.2014.11.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 10/14/2014] [Accepted: 11/04/2014] [Indexed: 01/08/2023]
Abstract
In order to broaden knowledge on the pathogenesis of malignant pleural mesothelioma (MPM), we reviewed studies on the MPM-transcriptome and identified 119 deregulated genes. However, there was poor consistency among the studies. Thus, the expression of these genes was further investigated in the present work using reverse transcriptase-quantitative PCR (RT-qPCR) in 15 MPM and 20 non-MPM tissue samples. Fifty-nine genes showed a statistically significant deregulation and were further evaluated in two epithelioid MPM cell lines (compared to MET-5A, a non-MPM cell line). Nine genes (ACSL1, CCNO, CFB, PDGFRB, SULF1, TACC1, THBS2, TIMP3, XPOT) were deregulated with statistical significance in both cell lines, 12 (ASS1, CCNB1, CDH11, COL1A1, CXADR, EIF4G1, GALNT7, ITGA4, KRT5, PTGIS, RAN, SOD1) in at least one cell line, whereas 7 (DSP, HEG1, MCM4, MSLN, NME2, NMU, TNPO2) were close but did not reach the statistical significance in any of the cell line. Patients whose MPM tissues expressed elevated mRNA levels of BIRC5, DSP, NME2, and THBS2 showed a statistically significant shorter overall survival. Although MPM is a poorly studied cancer, some features are starting to emerge. Novel cancer genes are suggested here, in particular those involved in cell-cell and cell-matrix interactions.
Collapse
|
34
|
Verardo R, Piazza S, Klaric E, Ciani Y, Bussadori G, Marzinotto S, Mariuzzi L, Cesselli D, Beltrami AP, Mano M, Itoh M, Kawaji H, Lassmann T, Carninci P, Hayashizaki Y, Forrest ARR, Beltrami CA, Schneider C. Specific Mesothelial Signature Marks the Heterogeneity of Mesenchymal Stem Cells From High-Grade Serous Ovarian Cancer. Stem Cells 2014; 32:2998-3011. [DOI: 10.1002/stem.1791] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 04/17/2014] [Accepted: 05/10/2014] [Indexed: 12/31/2022]
Affiliation(s)
- Roberto Verardo
- Laboratorio Nazionale-Consorzio Interuniversitario Biotecnologie (LNCIB); Area Science Park Trieste Italy
| | - Silvano Piazza
- Laboratorio Nazionale-Consorzio Interuniversitario Biotecnologie (LNCIB); Area Science Park Trieste Italy
| | - Enio Klaric
- Laboratorio Nazionale-Consorzio Interuniversitario Biotecnologie (LNCIB); Area Science Park Trieste Italy
| | - Yari Ciani
- Laboratorio Nazionale-Consorzio Interuniversitario Biotecnologie (LNCIB); Area Science Park Trieste Italy
| | - Giulio Bussadori
- Laboratorio Nazionale-Consorzio Interuniversitario Biotecnologie (LNCIB); Area Science Park Trieste Italy
| | - Stefania Marzinotto
- Department of Medical and Biological Sciences; University of Udine; Udine Italy
| | - Laura Mariuzzi
- Department of Medical and Biological Sciences; University of Udine; Udine Italy
| | - Daniela Cesselli
- Department of Medical and Biological Sciences; University of Udine; Udine Italy
| | - Antonio P. Beltrami
- Department of Medical and Biological Sciences; University of Udine; Udine Italy
| | - Miguel Mano
- International Centre for Genetic Engineering and Biotechnology (ICGEB); Area Science Park Trieste Italy
| | - Masayoshi Itoh
- RIKEN Omics Science Center (OSC); Tsurumi-ku Yokohama Japan
| | - Hideya Kawaji
- RIKEN Omics Science Center (OSC); Tsurumi-ku Yokohama Japan
| | - Timo Lassmann
- RIKEN Omics Science Center (OSC); Tsurumi-ku Yokohama Japan
| | - Piero Carninci
- RIKEN Omics Science Center (OSC); Tsurumi-ku Yokohama Japan
| | | | | | - Carlo A. Beltrami
- International Centre for Genetic Engineering and Biotechnology (ICGEB); Area Science Park Trieste Italy
| | - Claudio Schneider
- Laboratorio Nazionale-Consorzio Interuniversitario Biotecnologie (LNCIB); Area Science Park Trieste Italy
- International Centre for Genetic Engineering and Biotechnology (ICGEB); Area Science Park Trieste Italy
| | | |
Collapse
|
35
|
Rodríguez Panadero F. Diagnosis and treatment of malignant pleural mesothelioma. Arch Bronconeumol 2014; 51:177-84. [PMID: 25059587 DOI: 10.1016/j.arbres.2014.06.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Revised: 06/10/2014] [Accepted: 06/10/2014] [Indexed: 12/26/2022]
Abstract
There are three major challenges in the diagnosis of malignant pleural mesothelioma: mesothelioma must be distinguished from benign mesothelial hyperplasia; malignant mesothelioma (and its subtypes) must be distinguished from metastatic carcinoma; and invasion of structures adjacent to the pleura must be demonstrated. The basis for clarifying the first two aspects is determination of a panel of monoclonal antibodies with appropriate immunohistochemical evaluation performed by highly qualified experts. Clarification of the third aspect requires sufficiently abundant, deep biopsy material, for which thoracoscopy is the technique of choice. Video-assisted needle biopsy with real-time imaging can be of great assistance when there is diffuse nodal thickening and scant or absent effusion. Given the difficulties of reaching an early diagnosis, cure is not generally achieved with radical surgery (pleuropneumonectomy), so liberation of the tumor mass with pleurectomy/decortication combined with chemo- or radiation therapy (multimodal treatment) has been gaining followers in recent years. In cases in which surgery is not feasible, chemotherapy (a combination of pemetrexed and platinum-derived compounds, in most cases) with pleurodesis or a tunneled pleural drainage catheter, if control of pleural effusion is required, can be considered. Radiation therapy is reserved for treatment of pain associated with infiltration of the chest wall or any other neighboring structure. In any case, comprehensive support treatment for pain control in specialist units is essential: this acquires particular significance in this type of malignancy.
Collapse
Affiliation(s)
- Francisco Rodríguez Panadero
- Instituto de Biomedicina de Sevilla (IBiS), Unidad Médico-Quirúrgica de Enfermedades Respiratorias (UMQER), Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, Sevilla, España CIBER de Enfermedades Respiratorias (CIBERES), I.S. Carlos III, Madrid, España.
| |
Collapse
|
36
|
Abstract
Malignant mesothelioma (MM) is a rare disease which can develop in pleura, pericardium or peritoneum and in which the therapies available have limited efficacy and are associated with various side effects. Therefore, there is a need for more targeted and more effective therapies which are able to halt the disease progression. Among them immune therapies actively or passively directed against various structures of the MM cells seem to be particularly promising given their inhibitory potential demonstrated in both experimental and early clinical studies. Mesothelin in particular seem to be not only a biomarker of disease activity but also a therapeutic target. This review discusses the immune therapies currently investigated for MM.
Collapse
Affiliation(s)
- Sabina Antonela Antoniu
- Palliative Care-Interdisciplinary Department, Faculty of Medicine, University of Medicine and Pharmacy "Grigore T Popa", 16 Universitaţii Str, 700115, Iaşi, Romania
| | | | | |
Collapse
|
37
|
Zeng Q, Zhang P, Wu Z, Xue P, Lu D, Ye Z, Zhang X, Huang Z, Feng J, Song L, Yang D, Jiang T, Yan X. Quantitative proteomics reveals ER-α involvement in CD146-induced epithelial-mesenchymal transition in breast cancer cells. J Proteomics 2014; 103:153-69. [PMID: 24704855 DOI: 10.1016/j.jprot.2014.03.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 03/18/2014] [Accepted: 03/24/2014] [Indexed: 02/09/2023]
Abstract
UNLABELLED The cell adhesion molecule CD146 is a novel inducer of epithelial-mesenchymal transition (EMT), which was associated with triple-negative breast cancer (TNBC). To gain insights into the complex networks that mediate CD146-induced EMT in breast cancers, we conducted a triple Stable Isotope Labeling with Amino Acids in Cell Culture (SILAC), to analyze whole cell protein profiles of MCF-7 cells that had undergone gradual EMT upon CD146 expression from moderate to high levels. In this study, we identified 2293 proteins in total, of which 103 exhibited changes in protein abundance that correlated with CD146 expression levels, revealing extensive morphological and biochemical changes associated with EMT. Ingenuity Pathway Analysis (IPA) showed that estrogen receptor (ER) was the most significantly inhibited transcription regulator during CD146-induced EMT. Functional assays further revealed that ER-α expression was repressed in cells undergoing CD146-induced EMT, whereas re-expression of ER-α abolished their migratory and invasive behavior. Lastly, we found that ER-α mediated its effects on CD146-induced EMT via repression of the key EMT transcriptional factor Slug. Our study revealed the molecular details of the complex signaling networks during CD146-induced EMT, and provided important clues for future exploration of the mechanisms underlying the association between CD146 and TNBC as observed in the clinic. BIOLOGICAL SIGNIFICANCE This study used a proteomics screen to reveal molecular changes mediated by CD146-induced epithelial-mesenchymal transition (EMT) in breast cancer cells. Estrogen receptor (ER) was found to be the most significantly inhibited transcription regulator, which mediated its effects on CD146-induced EMT via repression of the transcriptional factor Slug. Elucidation of protein interaction networks and signal networks generated from 103 significantly changed proteins would facilitate future investigation into the mechanisms underlying CD146 induced-EMT in breast cancers.
Collapse
Affiliation(s)
- Qiqun Zeng
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS-University of Tokyo Joint Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
| | - Peng Zhang
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS-University of Tokyo Joint Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Zhenzhen Wu
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS-University of Tokyo Joint Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Peng Xue
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS-University of Tokyo Joint Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
| | - Di Lu
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS-University of Tokyo Joint Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
| | - Zhongde Ye
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS-University of Tokyo Joint Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
| | - Xinlei Zhang
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS-University of Tokyo Joint Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Zechi Huang
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS-University of Tokyo Joint Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Jing Feng
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS-University of Tokyo Joint Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
| | - Lina Song
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS-University of Tokyo Joint Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
| | - Dongling Yang
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS-University of Tokyo Joint Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
| | - Taijiao Jiang
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS-University of Tokyo Joint Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China.
| | - Xiyun Yan
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS-University of Tokyo Joint Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China.
| |
Collapse
|
38
|
Badar A, Williams J, de Rosales RTM, Tavaré R, Kampmeier F, Blower PJ, Mullen GED. Optimising the radiolabelling properties of technetium tricarbonyl and His-tagged proteins. EJNMMI Res 2014; 4:14. [PMID: 24606843 PMCID: PMC4015829 DOI: 10.1186/2191-219x-4-14] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 02/21/2014] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND To date, the majority of protein-based radiopharmaceuticals have been radiolabelled using non-site-specific conjugation methods, with little or no control to ensure retained protein function post-labelling. The incorporation of a hexahistidine sequence (His-tag) in a recombinant protein can be used to site-specifically radiolabel with 99mTc-tricarbonyl ([99mTc(CO)3]+). This chemistry has been made accessible via a technetium tricarbonyl kit; however, reports of radiolabelling efficiencies and specific activities have varied greatly from one protein to another. Here, we aim to optimise the technetium tricarbonyl radiolabelling method to produce consistently >95% radiolabelling efficiencies with high specific activities suitable for in vivo imaging. METHODS Four different recombinant His-tagged proteins (recombinant complement receptor 2 (rCR2) and three single chain antibodies, α-CD33 scFv, α-VCAM-1 scFv and α-PSMA scFv), were used to study the effect of kit volume, ionic strength, pH and temperature on radiolabelling of four proteins. RESULTS We used 260 and 350 μL [99mTc(CO)3]+ kits enabling us to radiolabel at higher [99mTc(CO)3]+ and protein concentrations in a smaller volume and thus increase the rate at which maximum labelling efficiency and specific activity were reached. We also demonstrated that increasing the ionic strength of the reaction medium by increasing [Na+] from 0.25 to 0.63 M significantly increases the rate at which all four proteins reach a >95% labelling efficiency by at least fourfold, as compared to the conventional IsoLink® kit (Covidien, Petten, The Netherlands) and 0.25 M [Na+]. CONCLUSION We have found optimised kit and protein radiolabelling conditions suitable for the reproducible, fast, efficient radiolabelling of proteins without the need for post-labelling purification.
Collapse
Affiliation(s)
- Adam Badar
- Division of Imaging Sciences and Biomedical Engineering, King's College London, 4th Floor, Lambeth Wing, St Thomas’ Hospital, London SE1 7EH, UK
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London WC1E 6BT, UK
| | - Jennifer Williams
- Division of Imaging Sciences and Biomedical Engineering, King's College London, 4th Floor, Lambeth Wing, St Thomas’ Hospital, London SE1 7EH, UK
| | - Rafael TM de Rosales
- Division of Imaging Sciences and Biomedical Engineering, King's College London, 4th Floor, Lambeth Wing, St Thomas’ Hospital, London SE1 7EH, UK
| | - Richard Tavaré
- Division of Imaging Sciences and Biomedical Engineering, King's College London, 4th Floor, Lambeth Wing, St Thomas’ Hospital, London SE1 7EH, UK
- Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at the University of California–Los Angeles, Los Angeles, CA 90095-1735, USA
| | - Florian Kampmeier
- Division of Imaging Sciences and Biomedical Engineering, King's College London, 4th Floor, Lambeth Wing, St Thomas’ Hospital, London SE1 7EH, UK
| | - Philip J Blower
- Division of Imaging Sciences and Biomedical Engineering, King's College London, 4th Floor, Lambeth Wing, St Thomas’ Hospital, London SE1 7EH, UK
| | - Gregory ED Mullen
- Division of Imaging Sciences and Biomedical Engineering, King's College London, 4th Floor, Lambeth Wing, St Thomas’ Hospital, London SE1 7EH, UK
| |
Collapse
|
39
|
Minato H, Kurose N, Fukushima M, Nojima T, Usuda K, Sagawa M, Sakuma T, Ooi A, Matsumoto I, Oda M, Arano Y, Shimizu J. Comparative immunohistochemical analysis of IMP3, GLUT1, EMA, CD146, and desmin for distinguishing malignant mesothelioma from reactive mesothelial cells. Am J Clin Pathol 2014; 141:85-93. [PMID: 24343741 DOI: 10.1309/ajcp5knl7qtellyi] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
OBJECTIVES To identify useful biomarkers for differentiating between malignant mesothelioma (MM) and reactive mesothelial cells (RMCs). METHODS Formalin-fixed, paraffin-embedded (FFPE) tissues from 34 MM and 40 RMC samples were analyzed using immunohistochemistry, and the findings were compared. RESULTS Positive markers for MM included insulin-like growth factor 2 messenger RNA binding protein 3 (IMP3), glucose transporter 1 (GLUT1), epithelial membrane antigen (EMA), and CD146, which showed sensitivities of 94%, 85%, 79%, and 71% and specificities of 78%, 100%, 88%, and 98%, respectively. In sarcomatoid MM, EMA had significantly lower expression than did IMP3, GLUT1, and CD146 (P < .001). The areas under receiver operating characteristic curves were the highest for IMP3 (0.95), followed by GLUT1 (0.93). When the optimal cutoff points for IMP3 (30%) and GLUT1 (10%) were used, the sensitivity of IMP3 and GLUT1 for MM was 100%, and the specificity of both for MM was 95%. CONCLUSIONS The combination of IMP3 and GLUT1 is most appropriate for distinguishing MM from RMC using FFPE sections.
Collapse
Affiliation(s)
- Hiroshi Minato
- Department of Pathology and Laboratory Medicine, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Nozomu Kurose
- Department of Pathology and Laboratory Medicine, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Mana Fukushima
- Department of Pathology and Laboratory Medicine, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Takayuki Nojima
- Department of Pathology and Laboratory Medicine, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Katsuo Usuda
- Department of Thoracic Surgery, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Motoyasu Sagawa
- Department of Thoracic Surgery, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Tsutomu Sakuma
- Department of Thoracic Surgery, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Akishi Ooi
- Department of Molecular Pathology, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Isao Matsumoto
- Department of General and Cardiothoracic Surgery, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Makoto Oda
- Department of General and Cardiothoracic Surgery, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Yoshihiko Arano
- Department of Surgery, KKR Hokuriku Hospital, Kanazawa, Ishikawa, Japan
| | - Junzo Shimizu
- Department of Surgery, KKR Hokuriku Hospital, Kanazawa, Ishikawa, Japan
| |
Collapse
|
40
|
Even-Desrumeaux K, Nevoltris D, Lavaut MN, Alim K, Borg JP, Audebert S, Kerfelec B, Baty D, Chames P. Masked selection: a straightforward and flexible approach for the selection of binders against specific epitopes and differentially expressed proteins by phage display. Mol Cell Proteomics 2013; 13:653-65. [PMID: 24361863 DOI: 10.1074/mcp.o112.025486] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Phage display is a well-established procedure to isolate binders against a wide variety of antigens that can be performed on purified antigens, but also on intact cells. As selection steps are performed in vitro, it is possible to focus the outcome of the selection on relevant epitopes by performing some additional steps, such as depletion or competitive elutions. However in practice, the efficiency of these steps is often limited and can lead to inconsistent results. We have designed a new selection method named masked selection, based on the blockade of unwanted epitopes to favor the targeting of relevant ones. We demonstrate the efficiency and flexibility of this method by selecting single-domain antibodies against a specific portion of a fusion protein, by selecting binders against several members of the seven transmembrane receptor family using transfected HEK cells, or by selecting binders against unknown breast cancer markers not expressed on normal samples. The relevance of this approach for antibody-based therapies was further validated by the identification of four of these markers, Epithelial cell adhesion molecule, Transferrin receptor 1, Metastasis cell adhesion molecule, and Sushi containing domain 2, using immunoprecipitation and mass spectrometry. This new phage display strategy can be applied to any type of antibody fragments or alternative scaffolds, and is especially suited for the rapid discovery and identification of cell surface markers.
Collapse
|
41
|
MCAM expression is associated with poor prognosis in non-small cell lung cancer. Clin Transl Oncol 2013; 16:178-83. [PMID: 23749325 DOI: 10.1007/s12094-013-1057-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 05/21/2013] [Indexed: 02/05/2023]
Abstract
BACKGROUND MCAM has been recently identified as a biomarker for epithelial-mesenchymal transition (EMT) and is potentially involved in metastasis of cancer. The current study aimed at investigating the expression of MCAM in non-small-cell lung cancer (NSCLC) and its clinico-pathological significance. METHODS A follow-up analysis was performed on 118 patients with NSCLC resected by lobectomy or pneumectomy with systematic lymph node dissection. All patients were followed for 6-60 months. Immunostaining of tissue sections from primary tumors and their lymph node metastasis was performed and evaluated using monoclonal antibody against MCAM, E-cadherin, and vimentin. Correlations were investigated between MCAM immunostaining in primary tumors and E-cadherin, vimentin immunostaining, lymph node metastasis, and survival. RESULTS MCAM protein expression was found in 46.61 % of squamous cell carcinomas and 37.47 % of adenocarcinomas; MCAM expression positively correlated with vimentin, but inversely with E-cadherin (both P values <0.05). There were significant correlations between the MCAM immunostaining score in primary tumors and in their lymph node metastasis (P = 0.03). According to the Kaplan-Meier survival estimate, the level of MCAM expression in primary tumors was a statistically significant prognostic factor (P < 0.05). CONCLUSIONS MCAM expression in surgically treated NSCLC is clearly associated with lymph node metastasis and poor prognosis.
Collapse
|
42
|
Okazaki Y, Nagai H, Chew SH, Li J, Funahashi S, Tsujimura T, Toyokuni S. CD146 and insulin-like growth factor 2 mRNA-binding protein 3 predict prognosis of asbestos-induced rat mesothelioma. Cancer Sci 2013; 104:989-95. [PMID: 23621518 DOI: 10.1111/cas.12185] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 04/21/2013] [Accepted: 04/25/2013] [Indexed: 11/27/2022] Open
Abstract
Malignant mesothelioma (MM), which is associated with asbestos exposure, is one of the most deadly tumors in humans. Early MM is concealed in the serosal cavities and lacks specific clinical symptoms. For better treatment, early detection and prognostic markers are necessary. Recently, CD146 and insulin-like growth factor 2 mRNA-binding protein 3 (IMP3) were reported as possible positive markers of MM to distinguish from reactive mesothelia in humans. However, their application on MM of different species and its impact on survival remain to be elucidated. To disclose the utility of these molecules as early detection and prognostic markers of MM, we injected chrysotile or crocidolite intraperitoneally to rats, thus obtaining 26 peritoneal MM and establishing 11 cell lines. We immunostained CD146 and IMP3 using paraffin-embedded tissues and cell blocks and found CD146 and IMP3 expression in 58% (15/26) and 65% (17/26) of MM, respectively, but not in reactive mesothelia. There was no significant difference in both immunostainings for overexpression among the three histological subtypes of MM and the expression of CD146 and IMP3 was proportionally associated. Furthermore, the overexpression of CD146 and/or IMP3 was proportionally correlated with shortened survival. These results suggest that CD146 and IMP3 are useful diagnostic and prognostic markers of MM.
Collapse
Affiliation(s)
- Yasumasa Okazaki
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Aichi, Japan
| | | | | | | | | | | | | |
Collapse
|
43
|
CD146, a multi-functional molecule beyond adhesion. Cancer Lett 2012; 330:150-62. [PMID: 23266426 DOI: 10.1016/j.canlet.2012.11.049] [Citation(s) in RCA: 207] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 11/13/2012] [Accepted: 11/28/2012] [Indexed: 02/08/2023]
Abstract
CD146 is a cell adhesion molecule (CAM) that is primarily expressed at the intercellular junction of endothelial cells. CD146 was originally identified as a tumor marker for melanoma (MCAM) due to its existence only in melanoma but not in the corresponding normal counterpart. However CD146 is not just a CAM for the inter-cellular and cell-matrix adhesion. Recent evidence indicates that CD146 is actively involved in miscellaneous processes, such as development, signaling transduction, cell migration, mesenchymal stem cells differentiation, angiogenesis and immune response. CD146 has increasingly become an important molecule, especially identified as a novel bio-marker for angiogenesis and for cancer. Here we have reviewed the dynamic research of CD146, particularly newly identified functions and the underlying mechanisms of CD146.
Collapse
|
44
|
Activated leukocyte cell-adhesion molecule (ALCAM) promotes malignant phenotypes of malignant mesothelioma. J Thorac Oncol 2012; 7:890-9. [PMID: 22722789 DOI: 10.1097/jto.0b013e31824af2db] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Cell-adhesion molecules play important roles involving the malignant phenotypes of human cancer cells. However, detailed characteristics of aberrant expression status of cell-adhesion molecules in malignant mesothelioma (MM) cells and their possible biological roles for MM malignancy remain poorly understood. METHODS DNA microarray analysis was employed to identify aberrantly expressing genes using 20 MM cell lines. Activated leukocyte cell-adhesion molecule (ALCAM) expression in MM cell lines was analyzed with quantitative reverse transcription-polymerase chain reaction and Western blot analyses in 47 primary MM specimens with immunohistochemistry. ALCAM knockdown in MM cell lines was performed with lentivirus-mediated short hairpin RNA (shRNA) transduction. Purified soluble ALCAM (sALCAM) protein was used for in vitro experiments, whereas MM cell lines infected with the sALCAM-expressing lentivirus were tested for tumorigenicity in vivo. RESULTS ALCAM, a member of the immunoglobulin superfamily, was detected as one of the most highly upregulated genes among 103 cell-adhesion molecules with microarray analysis. Elevated expression levels of ALCAM messenger RNA and protein were detected in all 20 cell lines. Positive staining of ALCAM was detected in 26 of 47 MM specimens (55%) with immunohistochemistry. ALCAM knockdown with shRNA suppressed cell migration and invasion of MM cell lines. Purified sALCAM protein impaired the migration and invasion of MM cells in vitro, and the infection of sALCAM-expressing virus into MM cells significantly prolonged survival periods of MM-transplanted nude mice in vivo. CONCLUSION Our study suggests that overexpression of ALCAM contributes to tumor progression in MM and that ALCAM might be a potential therapeutic target of MM.
Collapse
|
45
|
Zhou Y, Zhao L, Marks JD. Selection and characterization of cell binding and internalizing phage antibodies. Arch Biochem Biophys 2012; 526:107-13. [PMID: 22627065 DOI: 10.1016/j.abb.2012.05.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 05/09/2012] [Accepted: 05/13/2012] [Indexed: 12/25/2022]
Abstract
Many therapeutic targets are cell surface receptors, which can be challenging antigens for antibody generation. For many therapeutic applications, one needs antibodies that not only bind the cell surface receptor but also are internalized into the cell. This allows use of the antibody to deliver various payloads into the cell to achieve a therapeutic effect. Phage antibody technology has proven a powerful tool for the generation and optimization of human antibodies to any antigen. While applied to the generation of antibodies to purified proteins, it is possible to directly select cell binding and internalizing antibodies on cells. Potential advantages of this approach include: cell surface receptors are in native conformation on intact cells while this might not be so for recombinant proteins; antibodies can be selected for both cell binding and internalization properties; the antibodies can be used to identify their tumor associated antigens; and such antibodies can be used for human treatment directly since they are human in sequence. This review will discuss the factors that impact the successful selection of cell binding and internalizing antibodies. These factors include the cell types used for selection, the impact of different phage antibody library formats, and the specific selection protocols used.
Collapse
Affiliation(s)
- Yu Zhou
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
| | | | | |
Collapse
|
46
|
Zeng Q, Li W, Lu D, Wu Z, Duan H, Luo Y, Feng J, Yang D, Fu L, Yan X. CD146, an epithelial-mesenchymal transition inducer, is associated with triple-negative breast cancer. Proc Natl Acad Sci U S A 2012; 109:1127-1132. [PMID: 22210108 PMCID: PMC3268312 DOI: 10.1073/pnas.1111053108] [Citation(s) in RCA: 163] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The epithelial-mesenchymal transition (EMT) plays an important role in breast cancer metastasis, especially in the most aggressive and lethal subtype, "triple-negative breast cancer" (TNBC). Here, we report that CD146 is a unique activator of EMTs and significantly correlates with TNBC. In epithelial breast cancer cells, overexpression of CD146 down-regulated epithelial markers and up-regulated mesenchymal markers, significantly promoted cell migration and invasion, and induced cancer stem cell-like properties. We further found that RhoA pathways positively regulated CD146-induced EMTs via the key EMT transcriptional factor Slug. An orthotopic breast tumor model demonstrated that CD146-overexpressing breast tumors showed a poorly differentiated phenotype and displayed increased tumor invasion and metastasis. We confirmed these findings by conducting an immunohistochemical analysis of 505 human primary breast tumor tissues and found that CD146 expression was significantly associated with high tumor stage, poor prognosis, and TNBC. CD146 was expressed at abnormally high levels (68.9%), and was strongly associated with E-cadherin down-regulation in TNBC samples. Taken together, these findings provide unique evidence that CD146 promotes breast cancer progression by induction of EMTs via the activation of RhoA and up-regulation of Slug. Thus, CD146 could be a therapeutic target for breast cancer, especially for TNBC.
Collapse
Affiliation(s)
- Qiqun Zeng
- Protein and Peptide Pharmaceutical Laboratory, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; and
| | - Weidong Li
- Department of Breast Cancer Pathology and Research Laboratory, State Key Laboratory of Breast Cancer Research, Cancer Hospital of Tianjin Medical University, Tianjin 300060, China
| | - Di Lu
- Protein and Peptide Pharmaceutical Laboratory, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; and
| | - Zhenzhen Wu
- Protein and Peptide Pharmaceutical Laboratory, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; and
| | - Hongxia Duan
- Protein and Peptide Pharmaceutical Laboratory, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; and
| | - Yongting Luo
- Protein and Peptide Pharmaceutical Laboratory, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; and
| | - Jing Feng
- Protein and Peptide Pharmaceutical Laboratory, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; and
| | - Dongling Yang
- Protein and Peptide Pharmaceutical Laboratory, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; and
| | - Li Fu
- Department of Breast Cancer Pathology and Research Laboratory, State Key Laboratory of Breast Cancer Research, Cancer Hospital of Tianjin Medical University, Tianjin 300060, China
| | - Xiyun Yan
- Protein and Peptide Pharmaceutical Laboratory, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; and
| |
Collapse
|
47
|
Proteomic study of malignant pleural mesothelioma by laser microdissection and two-dimensional difference gel electrophoresis identified cathepsin D as a novel candidate for a differential diagnosis biomarker. J Proteomics 2012; 75:833-44. [DOI: 10.1016/j.jprot.2011.09.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 08/29/2011] [Accepted: 09/28/2011] [Indexed: 11/17/2022]
|
48
|
Abstract
Pleural malignancies, including primary malignant pleural mesothelioma and secondary pleural metastasis of various tumours resulting in malignant pleural effusion, are frequent and lethal diseases that deserve devoted translational research efforts for improvements to be introduced to the clinic. This paper highlights select clinical advances that have been accomplished recently and that are based on preclinical research on pleural malignancies. Examples are the establishment of folate antimetabolites in mesothelioma treatment, the use of PET in mesothelioma management and the discovery of mesothelin as a marker of mesothelioma. In addition to established translational advances, this text focuses on recent research findings that are anticipated to impact clinical pleural oncology in the near future. Such progress has been substantial, including the development of a genetic mouse model of mesothelioma and of transplantable models of pleural malignancies in immunocompetent hosts, the deployment of stereological and imaging methods for integral assessment of pleural tumour burden, as well as the discovery of the therapeutic potential of aminobiphosphonates, histone deacetylase inhibitors and ribonucleases against malignant pleural disease. Finally, key obstacles to overcome towards a more rapid advancement of translational research in pleural malignancies are outlined. These include the dissection of cell-autonomous and paracrine pathways of pleural tumour progression, the study of mesothelioma and malignant pleural effusion separately from other tumours at both the clinical and preclinical levels, and the expansion of tissue banks and consortia of clinical research of pleural malignancies.
Collapse
|
49
|
Recognition of CD146 as an ERM-binding protein offers novel mechanisms for melanoma cell migration. Oncogene 2011; 31:306-21. [PMID: 21725352 DOI: 10.1038/onc.2011.244] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
50
|
Abstract
AIMS Tissue microarray (TMA) technology has been utilised for assessment of cancers including malignant pleural mesothelioma (MPM). Given the intralesional heterogeneity of MPM, it is questionable if TMAs can adequately represent MPMs. We here investigate the validity of TMAs for MPM. METHODS TMAs were constructed from at least five cores for each of 80 archival tumours processed by two centres between 1994 and 2009. The percentage of cases correctly subtyped on TMAs compared with whole sections, in relation to the number of cores analysed, was calculated. Immunohistochemical labelling for calretinin and D2-40 was performed on TMAs and whole sections. To evaluate the validity of quantitative immunohistochemistry, percentages of positive cells were recorded and two-way analysis of variance (ANOVA) performed. RESULTS Five cores were assessable for 91% of patients. Four cores were sufficient to reach concordance with the whole-section result in 98% of cases for calretinin and 99% for D2-40. The correlation of the quantitative scores between the whole section and TMA cores was statistically significant (D2-40, rho = 0.84, p < 2.2e-16; calretinin, rho = 0.65, p = 7.9e-11). Neither the origin nor age of the blocks affected the results. CONCLUSION If a minimum of four cores is used, TMA is an appropriate method for immunohistochemistry in MPM.
Collapse
|