1
|
Altintas DM, Comoglio PM. An Observatory for the MET Oncogene: A Guide for Targeted Therapies. Cancers (Basel) 2023; 15:4672. [PMID: 37760640 PMCID: PMC10526818 DOI: 10.3390/cancers15184672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/13/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
The MET proto-oncogene encodes a pivotal tyrosine kinase receptor, binding the hepatocyte growth factor (HGF, also known as scatter factor, SF) and governing essential biological processes such as organogenesis, tissue repair, and angiogenesis. The pleiotropic physiological functions of MET explain its diverse role in cancer progression in a broad range of tumors; genetic/epigenetic alterations of MET drive tumor cell dissemination, metastasis, and acquired resistance to conventional and targeted therapies. Therefore, targeting MET emerged as a promising strategy, and many efforts were devoted to identifying the optimal way of hampering MET signaling. Despite encouraging results, however, the complexity of MET's functions in oncogenesis yields intriguing observations, fostering a humbler stance on our comprehension. This review explores recent discoveries concerning MET alterations in cancer, elucidating their biological repercussions, discussing therapeutic avenues, and outlining future directions. By contextualizing the research question and articulating the study's purpose, this work navigates MET biology's intricacies in cancer, offering a comprehensive perspective.
Collapse
Affiliation(s)
| | - Paolo M. Comoglio
- IFOM ETS—The AIRC Institute of Molecular Oncology, 20139 Milano, Italy;
| |
Collapse
|
2
|
Modica C, Cortese M, Bersani F, Lombardi AM, Napoli F, Righi L, Taulli R, Basilico C, Vigna E. Genetic Ablation of the MET Oncogene Defines a Crucial Role of the HGF/MET Axis in Cell-Autonomous Functions Driving Tumor Dissemination. Cancers (Basel) 2023; 15:2742. [PMID: 37345079 DOI: 10.3390/cancers15102742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 05/03/2023] [Accepted: 05/08/2023] [Indexed: 06/23/2023] Open
Abstract
Cancer cell dissemination is sustained by cell-autonomous and non-cell-autonomous functions. To disentangle the role of HGF (Hepatocyte Growth Factor) and MET ligand/receptor axis in this complex process, we genetically knocked out the MET gene in cancer cells in which MET is not the oncogenic driver. In this way, we evaluated the contribution of the HGF/MET axis to cancer cell dissemination independently of its direct activities in cells of the tumor microenvironment. The lack of MET expression in MET-/- cells has been proved by molecular characterization. From a functional point of view, HGF stimulation of MET-/- cancer cells was ineffective in eliciting intracellular signaling and in sustaining biological functions predictive of malignancy in vitro (i.e., anchorage-independent growth, invasion, and survival in the absence of matrix adhesion). Cancer cell dissemination was assessed in vivo, evaluating: (i) the ability of MET-/- lung carcinoma cells to colonize the lungs following intravenous injection and (ii) the spontaneous dissemination to distant organs of MET-/- pancreatic carcinoma cells upon orthotopic injection. In both experimental models, MET ablation affects the time of onset, the number, and the size of metastatic lesions. These results define a crucial contribution of the HGF/MET axis to cell-autonomous functions driving the metastatic process.
Collapse
Affiliation(s)
- Chiara Modica
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, TO, Italy
| | - Marco Cortese
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, TO, Italy
- Department of Oncology, University of Torino, 10043 Orbassano, TO, Italy
| | - Francesca Bersani
- Department of Oncology, University of Torino, 10043 Orbassano, TO, Italy
| | | | - Francesca Napoli
- Department of Oncology, University of Torino, 10043 Orbassano, TO, Italy
| | - Luisella Righi
- Department of Oncology, University of Torino, 10043 Orbassano, TO, Italy
| | - Riccardo Taulli
- Department of Oncology, University of Torino, 10043 Orbassano, TO, Italy
| | | | - Elisa Vigna
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, TO, Italy
- Department of Oncology, University of Torino, 10043 Orbassano, TO, Italy
| |
Collapse
|
3
|
Martinelli I, Modica C, Chiriaco C, Basilico C, Hughes JM, Corso S, Giordano S, Comoglio PM, Vigna E. hOA-DN30: a highly effective humanized single-arm MET antibody inducing remission of ‘MET-addicted’ cancers. J Exp Clin Cancer Res 2022; 41:112. [PMID: 35351166 PMCID: PMC8962049 DOI: 10.1186/s13046-022-02320-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/09/2022] [Indexed: 12/21/2022] Open
Abstract
Background The tyrosine kinase receptor encoded by the MET oncogene is a major player in cancer. When MET is responsible for the onset and progression of the transformed phenotype (MET-addicted cancers), an efficient block of its oncogenic activation results in potent tumor growth inhibition. Methods Here we describe a molecular engineered MET antibody (hOA-DN30) and validate its pharmacological activity in MET-addicted cancer models in vitro and in vivo. Pharmacokinetics and safety profile in non-human primates have also been assessed. Results hOA-DN30 efficiently impaired MET activation and the intracellular signalling cascade by dose and time dependent removal of the receptor from the cell surface (shedding). In vitro, the antibody suppressed cell growth by blocking cell proliferation and by concomitantly inducing cell death in multiple MET-addicted human tumor cell lines. In mice xenografts, hOA-DN30 induced an impressive reduction of tumor masses, with a wide therapeutic window. Moreover, the antibody showed high therapeutic efficacy against patient-derived xenografts generated from MET-addicted gastric tumors, leading to complete tumor regression and long-lasting effects after treatment discontinuation. Finally, hOA-DN30 showed a highly favorable pharmacokinetic profile and substantial tolerability in Cynomolgus monkeys. Conclusions hOA-DN30 unique ability to simultaneously erase cell surface MET and release the ‘decoy’ receptor extracellular region results in a paramount MET blocking action. Its remarkable efficacy in a large number of pre-clinical models, as well as its pharmacological features and safety profile in non-human primates, strongly envisage a successful clinical application of this novel single-arm MET therapeutic antibody for the therapy of MET-addicted cancers. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02320-6.
Collapse
|
4
|
HGF/MET Axis Induces Tumor Secretion of Tenascin-C and Promotes Stromal Rewiring in Pancreatic Cancer. Cancers (Basel) 2021; 13:cancers13143519. [PMID: 34298732 PMCID: PMC8305254 DOI: 10.3390/cancers13143519] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/30/2021] [Accepted: 07/10/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary It has been previously shown that activation of the MET receptor by its ligand, the hepatocyte growth factor (HGF), modulates the tumor-stroma cross-talk in models of pancreatic cancer. We now wish to cast light on the molecular mechanisms by which this ligand/receptor pair sustains the interaction between cancer cells and the tumor microenviroment. To this end, we compared data obtained by large-scale analysis of gene expression in pancreatic cancer cells grown in the presence of HGF versus cells grown in the presence of HGF and treated with specific inhibitors of HGF/MET signaling. By clustering differentially expressed genes according to functional groups, we identified candidate genes involved in the process. Among these, tenascin C was selected due to its activity in sustaining the malignant phenotype. Our results highlight a new role for tenascin C, which could represent the operative arm through which MET promotes activation of the stromal compartment in pancreatic cancer. Abstract Pancreatic ductal adenocarcinoma is an aggressive tumor characterized by the presence of an abundant stromal compartment contributing significantly to the malignant phenotype. Pancreatic stellate cells are peculiar fibroblasts present in the stroma and represent the predominant source of extracellular matrix proteins, pro-inflammatory cytokines, and growth factors, including hepatocyte growth factor (HGF). Exploiting a co-culture system of human pancreatic stellate cells and cancer cells, we demonstrated that fibroblast activation was reduced upon HGF/MET axis inhibition. To unveil the signaling pathways sustaining stroma modulation orchestrated by MET activation in the tumor, we analyzed the gene expression profile in pancreatic cancer cells stimulated with HGF and treated with HGF/MET inhibitors. Transcriptome analysis showed that, among all the genes modulated by HGF, a subset of 125 genes was restored to the basal level following treatment with the inhibitors. By examining these genes via ingenuity pathway analysis, tenascin C emerged as a promising candidate linking MET signaling and tumor microenvironment. MET-dependent tenascin C modulation in pancreatic cancer cells was validated at RNA and protein levels both in vitro and in vivo. In conclusion, this work identifies tenascin C as a gene modulated by MET activation, suggesting a role in MET-mediated tumor-stroma interplay occurring during pancreatic tumor progression.
Collapse
|
5
|
Modica C, Basilico C, Chiriaco C, Borrelli N, Comoglio PM, Vigna E. A receptor-antibody hybrid hampering MET-driven metastatic spread. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:32. [PMID: 33446252 PMCID: PMC7807714 DOI: 10.1186/s13046-020-01822-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 12/22/2020] [Indexed: 12/17/2022]
Abstract
Background The receptor encoded by the MET oncogene and its ligand Hepatocyte Growth Factor (HGF) are at the core of the invasive-metastatic behavior. In a number of instances genetic alterations result in ligand-independent onset of malignancy (MET addiction). More frequently, ligand stimulation of wild-type MET contributes to progression toward metastasis (MET expedience). Thus, while MET inhibitors alone are effective in the first case, combination therapy with ligand inhibitors is required in the second condition. Methods In this paper, we generated hybrid molecules gathering HGF and MET inhibitory properties. This has been achieved by ‘head-to-tail’ or ‘tail-to-head’ fusion of a single chain Fab derived from the DN30 MET antibody with a recombinant ‘ad-hoc’ engineered MET extracellular domain (decoyMET), encompassing the HGF binding site but lacking the DN30 epitope. Results The hybrid molecules correctly bind MET and HGF, inhibit HGF-induced MET downstream signaling, and quench HGF-driven biological responses, such as growth, motility and invasion, in cancer cells of different origin. Two metastatic models were generated in mice knocked-in by the human HGF gene: (i) orthotopic transplantation of pancreatic cancer cells; (ii) subcutaneous injection of primary cells derived from a cancer of unknown primary. Treatment with hybrid molecules strongly affects time of onset, number, and size of metastatic lesions. Conclusion These results provide a strategy to treat metastatic dissemination driven by the HGF/MET axis. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-020-01822-5.
Collapse
Affiliation(s)
- Chiara Modica
- Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142, 10060, Candiolo, TO, Italy
| | - Cristina Basilico
- Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142, 10060, Candiolo, TO, Italy.
| | - Cristina Chiriaco
- Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142, 10060, Candiolo, TO, Italy
| | - Nicla Borrelli
- Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142, 10060, Candiolo, TO, Italy
| | - Paolo M Comoglio
- Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142, 10060, Candiolo, TO, Italy
| | - Elisa Vigna
- Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142, 10060, Candiolo, TO, Italy.,Department of Oncology, University of Turin, Turin, Italy
| |
Collapse
|
6
|
Page A, Fusil F, Cosset FL. Towards Physiologically and Tightly Regulated Vectored Antibody Therapies. Cancers (Basel) 2020; 12:E962. [PMID: 32295072 PMCID: PMC7226531 DOI: 10.3390/cancers12040962] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 12/20/2022] Open
Abstract
Cancers represent highly significant health issues and the options for their treatment are often not efficient to cure the disease. Immunotherapy strategies have been developed to modulate the patient's immune system in order to eradicate cancerous cells. For instance, passive immunization consists in the administration at high doses of exogenously produced monoclonal antibodies directed either against tumor antigen or against immune checkpoint inhibitors. Its main advantage is that it provides immediate immunity, though during a relatively short period, which consequently requires frequent injections. To circumvent this limitation, several approaches, reviewed here, have emerged to induce in vivo antibody secretion at physiological doses. Gene delivery vectors, such as adenoviral vectors or adeno-associated vectors, have been designed to induce antibody secretion in vivo after in situ cell modification, and have driven significant improvements in several cancer models. However, anti-idiotypic antibodies and escape mutants have been detected, probably because of both the continuous expression of antibodies and their expression by unspecialized cell types. To overcome these hurdles, adoptive transfer of genetically modified B cells that secrete antibodies either constitutively or in a regulated manner have been developed by ex vivo transgene insertion with viral vectors. Recently, with the emergence of gene editing technologies, the endogenous B cell receptor loci of B cells have been modified with the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated endonuclease (Cas-9) system to change their specificity in order to target a given antigen. The expression of the modified BCR gene hence follows the endogenous regulation mechanisms, which may prevent or at least reduce side effects. Although these approaches seem promising for cancer treatments, major questions, such as the persistence and the re-activation potential of these engineered cells, remain to be addressed in clinically relevant animal models before translation to humans.
Collapse
Affiliation(s)
| | | | - François-Loïc Cosset
- CIRICentre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, 46 allée d’Italie, F-69007 Lyon, France; (A.P.); (F.F.)
| |
Collapse
|
7
|
Hollevoet K, Declerck PJ. State of play and clinical prospects of antibody gene transfer. J Transl Med 2017; 15:131. [PMID: 28592330 PMCID: PMC5463339 DOI: 10.1186/s12967-017-1234-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 05/31/2017] [Indexed: 12/31/2022] Open
Abstract
Recombinant monoclonal antibodies (mAbs) are one of today's most successful therapeutic classes in inflammatory diseases and oncology. A wider accessibility and implementation, however, is hampered by the high product cost and prolonged need for frequent administration. The surge in more effective mAb combination therapies further adds to the costs and risk of toxicity. To address these issues, antibody gene transfer seeks to administer to patients the mAb-encoding nucleotide sequence, rather than the mAb protein. This allows the body to produce its own medicine in a cost- and labor-effective manner, for a prolonged period of time. Expressed mAbs can be secreted systemically or locally, depending on the production site. The current review outlines the state of play and clinical prospects of antibody gene transfer, thereby highlighting recent innovations, opportunities and remaining hurdles. Different expression platforms and a multitude of administration sites have been pursued. Viral vector-mediated mAb expression thereby made the most significant strides. Therapeutic proof of concept has been demonstrated in mice and non-human primates, and intramuscular vectored mAb therapy is under clinical evaluation. However, viral vectors face limitations, particularly in terms of immunogenicity. In recent years, naked DNA has gained ground as an alternative. Attained serum mAb titers in mice, however, remain far below those obtained with viral vectors, and robust pharmacokinetic data in larger animals is limited. The broad translatability of DNA-based antibody therapy remains uncertain, despite ongoing evaluation in patients. RNA presents another emerging platform for antibody gene transfer. Early reports in mice show that mRNA may be able to rival with viral vectors in terms of generated serum mAb titers, although expression appears more short-lived. Overall, substantial progress has been made in the clinical translation of antibody gene transfer. While challenges persist, clinical prospects are amplified by ongoing innovations and the versatility of antibody gene transfer. Clinical introduction can be expedited by selecting the platform approach currently best suited for the mAb or disease of interest. Innovations in expression platform, administration and antibody technology are expected to further improve overall safety and efficacy, and unlock the vast clinical potential of antibody gene transfer.
Collapse
Affiliation(s)
- Kevin Hollevoet
- Laboratory for Therapeutic and Diagnostic Antibodies, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven - University of Leuven, Campus Gasthuisberg O&N 2, P.B. 820, Herestraat 49, 3000 Leuven, Belgium
| | - Paul J. Declerck
- Laboratory for Therapeutic and Diagnostic Antibodies, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven - University of Leuven, Campus Gasthuisberg O&N 2, P.B. 820, Herestraat 49, 3000 Leuven, Belgium
| |
Collapse
|
8
|
Cignetto S, Modica C, Chiriaco C, Fontani L, Milla P, Michieli P, Comoglio PM, Vigna E. Dual Constant Domain-Fab: A novel strategy to improve half-life and potency of a Met therapeutic antibody. Mol Oncol 2016; 10:938-48. [PMID: 27103110 DOI: 10.1016/j.molonc.2016.03.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 03/01/2016] [Accepted: 03/20/2016] [Indexed: 12/12/2022] Open
Abstract
The kinase receptor encoded by the Met oncogene is a sensible target for cancer therapy. The chimeric monovalent Fab fragment of the DN30 monoclonal antibody (MvDN30) has an odd mechanism of action, based on cell surface removal of Met via activation of specific plasma membrane proteases. However, the short half-life of the Fab, due to its low molecular weight, is a severe limitation for the deployment in therapy. This issue was addressed by increasing the Fab molecular weight above the glomerular filtration threshold through the duplication of the constant domains, in tandem (DCD-1) or reciprocally swapped (DCD-2). The two newly engineered molecules showed biochemical properties comparable to the original MvDN30 in vitro, acting as full Met antagonists, impairing Met phosphorylation and activation of downstream signaling pathways. As a consequence, Met-mediated biological responses were inhibited, including anchorage-dependent and -independent cell growth. In vivo DCD-1 and DCD-2 showed a pharmacokinetic profile significantly improved over the original MvDN30, doubling the circulating half-life and reducing the clearance. In pre-clinical models of cancer, generated by injection of tumor cells or implant of patient-derived samples, systemic administration of the engineered molecules inhibited the growth of Met-addicted tumors.
Collapse
Affiliation(s)
- Simona Cignetto
- Candiolo Cancer Institute, FPO-IRCCS, Str Prov 142, 10060 Candiolo, Italy; University of Turin, Department of Oncology, Str Prov 142, 10060 Candiolo, Italy
| | - Chiara Modica
- Candiolo Cancer Institute, FPO-IRCCS, Str Prov 142, 10060 Candiolo, Italy; University of Turin, Department of Oncology, Str Prov 142, 10060 Candiolo, Italy
| | - Cristina Chiriaco
- Candiolo Cancer Institute, FPO-IRCCS, Str Prov 142, 10060 Candiolo, Italy
| | - Lara Fontani
- Candiolo Cancer Institute, FPO-IRCCS, Str Prov 142, 10060 Candiolo, Italy
| | - Paola Milla
- University of Turin, Department of Science and Drug Technology, Via P. Giuria 9, 10125 Turin, Italy
| | - Paolo Michieli
- Candiolo Cancer Institute, FPO-IRCCS, Str Prov 142, 10060 Candiolo, Italy; University of Turin, Department of Oncology, Str Prov 142, 10060 Candiolo, Italy
| | - Paolo M Comoglio
- Candiolo Cancer Institute, FPO-IRCCS, Str Prov 142, 10060 Candiolo, Italy; University of Turin, Department of Oncology, Str Prov 142, 10060 Candiolo, Italy.
| | - Elisa Vigna
- Candiolo Cancer Institute, FPO-IRCCS, Str Prov 142, 10060 Candiolo, Italy; University of Turin, Department of Oncology, Str Prov 142, 10060 Candiolo, Italy.
| |
Collapse
|
9
|
Abstract
The use of antibodies as a treatment for disease has it origins in experiments performed in the 1890s, and since these initial experiments, monoclonal antibodies (mAbs) have become one of the fastest growing therapeutic classes for the treatment of cancer, autoimmune disease, and infectious diseases. However, treatment with therapeutic mAbs often requires high doses given via long infusions or multiple injections, which, coupled with the prohibitively high cost associated with the production of clinical-grade proteins and the transient serum half-lives that necessitate multiple administrations to gain therapeutic benefits, makes large-scale treatment of patients, especially patients in the developing world, difficult. Due to their low-cost and rapid scalability, nucleic acid-based approaches to deliver antibody gene sequences for in situ mAb production have gained substantial traction. In this review, we discuss new approaches to produce therapeutic mAbs in situ to overcome the need for the passive infusion of purified protein.
Collapse
Affiliation(s)
- Todd J Suscovich
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | | |
Collapse
|
10
|
Vigna E, Comoglio PM. Targeting the oncogenic Met receptor by antibodies and gene therapy. Oncogene 2014; 34:1883-9. [PMID: 24882574 DOI: 10.1038/onc.2014.142] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 04/22/2014] [Accepted: 04/22/2014] [Indexed: 12/31/2022]
Abstract
The receptor for hepatocyte growth factor (HGF), a tyrosine kinase encoded by the Met oncogene, has a crucial role in cancer growth, invasion and metastasis. It is a validated therapeutic target for 'personalized' treatment of a number of malignancies. Therapeutic tools prompting selective, robust and highly effective Met inhibition potentially represent a major step in the battle against cancer. Antibodies targeting either Met or its ligand HGF, although challenging, demonstrate to be endowed with promising features. Here we briefly review and discuss the state of the art in the field.
Collapse
Affiliation(s)
- E Vigna
- University of Torino, Department of Oncology, and Candiolo Cancer Institute, FPO-IRCCS, Candiolo (TO), Italy
| | - P M Comoglio
- University of Torino, Department of Oncology, and Candiolo Cancer Institute, FPO-IRCCS, Candiolo (TO), Italy
| |
Collapse
|
11
|
USP8 modulates ubiquitination of LRIG1 for Met degradation. Sci Rep 2014; 4:4980. [PMID: 24828152 PMCID: PMC4021411 DOI: 10.1038/srep04980] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 04/28/2014] [Indexed: 11/09/2022] Open
Abstract
The Met receptor tyrosine kinase is an attractive target for cancer therapy as it promotes invasive tumor growth. SAIT301 is a novel anti-Met antibody, which induces LRIG1-mediated Met degradation and inhibits tumor growth. However, detailed downstream mechanism by which LRIG1 mediates target protein down-regulation is unknown. In the present study, we discovered that SAIT301 induces ubiquitination of LRIG1, which in turn promotes recruitment of Met and LRIG1 complex to the lysosome through its interaction with Hrs, resulting in concomitant degradation of both LRIG1 and Met. We also identified USP8 as a LRIG1-specific deubiquitinating enzyme, reporting the interaction between USP8 and LRIG1 for the first time. SAIT301 triggers degradation of LRIG1 by inhibiting the interaction of LRIG1 and USP8, which regulates ubiquitin modification and stability of LRIG1. In summary, SAIT301 employs ubiquitination of LRIG1 for its highly effective Met degradation. This unique feature of SAIT301 enables it to function as a fully antagonistic antibody without Met activation. We found that USP8 is involved in deubiquitination of LRIG1, influencing the efficiency of Met degradation. The relation of Met, LRIG1 and USP8 strongly supports the potential clinical benefit of a combination treatment of a USP8 inhibitor and a Met inhibitor, such as SAIT301.
Collapse
|
12
|
Iafisco M, Delgado-Lopez JM, Varoni EM, Tampieri A, Rimondini L, Gomez-Morales J, Prat M. Cell surface receptor targeted biomimetic apatite nanocrystals for cancer therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:3834-44. [PMID: 23606568 DOI: 10.1002/smll.201202843] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 01/28/2013] [Indexed: 05/24/2023]
Abstract
Nanosized drug carriers functionalized with moieties specifically targeting tumor cells are promising tools in cancer therapy, due to their ability to circulate in the bloodstream for longer periods and their selectivity for tumor cells, enabling the sparing of healthy tissues. Because of its biocompatibility, high bioresorbability, and responsiveness to pH changes, synthetic biomimetic nanocrystalline apatites are used as nanocarriers to produce multifunctional nanoparticles, by coupling them with the chemotherapeutic drug doxorubicin (DOXO) and the DO-24 monoclonal antibody (mAb) directed against the Met/Hepatocyte Growth Factor receptor (Met/HGFR), which is over-expressed on different types of carcinomas and thus represents a useful tumor target. The chemical-physical features of the nanoparticles are fully investigated and their interaction with cells expressing (GTL-16 gastric carcinoma line) or not expressing (NIH-3T3 fibroblasts) the Met/HGFR is analyzed. Functionalized nanoparticles specifically bind to and are internalized in cells expressing the receptor (GTL-16) but not in the ones that do not express it (NIH-3T3). Moreover they discharge DOXO in the targeted GTL-16 cells that reach the nucleus and display cytotoxicity as assessed in an MTT assay. Two different types of ternary nanoparticles are prepared, differing for the sequence of the functionalization steps (adsorption of DOXO first and then mAb or vice versa), and it is found that the ones in which mAb is adsorbed first are more efficient under all the examined aspects (binding, internalization, cytotoxicity), possibly because of a better mAb orientation on the nanoparticle surface. These multifunctional nanoparticles could thus be useful instruments for targeted local or systemic drug delivery, allowing a reduction in the therapeutic dose of the drug and thus adverse side effects. Moreover, this work opens new perspectives in the use of nanocrystalline apatites as a new platform for theranostic applications in nanomedicine.
Collapse
Affiliation(s)
- Michele Iafisco
- Università del Piemonte Orientale, Dipartimento di Scienze della Salute, Via Solaroli 17, 28100 Novara, Italy
| | | | | | | | | | | | | |
Collapse
|
13
|
Vigna E, Pacchiana G, Chiriaco C, Cignetto S, Fontani L, Michieli P, Comoglio PM. Targeted therapy by gene transfer of a monovalent antibody fragment against the Met oncogenic receptor. J Mol Med (Berl) 2013; 92:65-76. [PMID: 24013625 DOI: 10.1007/s00109-013-1079-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 08/02/2013] [Accepted: 08/20/2013] [Indexed: 02/04/2023]
Abstract
UNLABELLED Due to the key role played in critical sub-populations, Met is considered a relevant therapeutic target for glioblastoma multiforme and lung cancers. The anti-Met DN30 antibody, engineered to a monovalent Fab (Mv-DN30), proved to be a potent antagonist, inducing physical removal of Met receptor from the cell surface. In this study, we designed a gene therapy approach, challenging Mv-DN30 in preclinical models of Met-driven human glioblastoma and lung carcinoma. Mv-DN30 was delivered by a Tet-inducible-bidirectional lentiviral vector. Gene therapy solved the limitations dictated by the short half-life of the low molecular weight form of the antibody. In vitro, upon doxycycline induction, the transgene: (1) drove synthesis and secretion of the correctly assembled Mv-DN30; (2) triggered the displacement of Met receptor from the surface of target cancer cells; (3) suppressed the Met-mediated invasive growth phenotype. Induction of transgene expression in cancer cells-transplanted either subcutaneously or orthotopically in nude mice-resulted in inhibition of tumor growth. Direct Mv-DN30 gene transfer in nude mice, intra-tumor or systemic, was followed by a therapeutic response. These results provide proof of concept for a gene transfer immunotherapy strategy by a Fab fragment and encourage clinical studies targeting Met-driven cancers with Mv-DN30. KEY MESSAGE Gene transfer allows the continuous in vivo production of therapeutic Fab fragments. Mv-DN30 is an excellent tool for the treatment of Met-driven cancers. Mv-DN30 gene therapy represents an innovative route for Met targeting.
Collapse
Affiliation(s)
- Elisa Vigna
- IRCC, Institute for Cancer Research and Treatment at Candiolo, Strada Provinciale 142-Km 3.95, 10060, Candiolo, Turin, Italy,
| | | | | | | | | | | | | |
Collapse
|
14
|
KRC-408, a novel c-Met inhibitor, suppresses cell proliferation and angiogenesis of gastric cancer. Cancer Lett 2013; 332:74-82. [PMID: 23348694 DOI: 10.1016/j.canlet.2013.01.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 01/09/2013] [Accepted: 01/09/2013] [Indexed: 12/30/2022]
Abstract
Among many cancer therapeutic targets, c-Met receptor tyrosine kinase has recently given particular attention. This kinase and its ligand, hepatocyte growth factor (HGF), play a central role in cell proliferation and the survival of several human cancers. Thus, we developed KRC-408 as a novel c-Met inhibitor and investigated its anti-cancer effects on human gastric cancer. KRC-408 inhibited the phosphorylation of c-Met and its constitutive downstream effectors such as phosphatidylinositol 3-kinase (PI3K), Akt, Mek, and Erk. This compound was found to exert anti-cancer effects stronger than those of 5-fluorouracil (5-FU) on gastric cancer cells, especially cell lines that overexpressed c-Met. Interestingly, cytotoxicity of KRC-408 was lower than that of 5-FU in normal gastric cells. Apoptosis induced by KRC-408 was accompanied by increased levels of cleaved caspase-3 and PARP as well as DNA condensation and fragmentation. Flow cytometry analysis showed an accumulation of gastric cancer cells in the G2/M phase with concomitant loss of cells in the S phase following treatment with this drug. In the angiogenesis studies, KRC-408 inhibited tube formation and migration of human umbilical vein endothelial cells (HUVECs), and suppressed microvessel sprouting from rat aortic rings ex vivo along with blood vessel formation in a Matrigel plug assay in mice. Results of an in vivo mouse xenograft experiment showed that the administration of KRC-408 significantly delayed tumor growth in a dose-dependent manner, and suppressed Akt and Erk phosphorylation as well CD34 expression in tumor tissues. These findings indicate that KCR-408 may exert anti-tumor effects by directly affecting tumor cell growth or survival via the c-Met receptor tyrosine kinase pathway. We therefore suggest that KRC-408 is a novel therapeutic candidate effective against gastric cancers that overexpress c-Met.
Collapse
|
15
|
Compte M, Nuñez-Prado N, Sanz L, Alvarez-Vallina L. Immunotherapeutic organoids: a new approach to cancer treatment. BIOMATTER 2013; 3:23897. [PMID: 23507921 PMCID: PMC3732323 DOI: 10.4161/biom.23897] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Therapeutic monoclonal antibodies have revolutionized the treatment of cancer and other diseases. However, several limitations of antibody-based treatments, such as the cost of therapy and the achievement of sustained plasma levels, should be still addressed for their widespread use as therapeutics. The use of cell and gene transfer methods offers additional benefits by producing a continuous release of the antibody with syngenic glycosylation patterns, which makes the antibody potentially less immunogenic. In vivo secretion of therapeutic antibodies by viral vector delivery or ex vivo gene modified long-lived autologous or allogeneic human mesenchymal stem cells may advantageously replace repeated injection of clinical-grade antibodies. Gene-modified autologous mesenchymal stem cells can be delivered subcutaneously embedded in a non-immunogenic synthetic extracellular matrix-based scaffold that guarantees the survival of the cell inoculum. The scaffold would keep cells at the implantation site, with the therapeutic protein acting at distance (immunotherapeutic organoid), and could be retrieved once the therapeutic effect is fulfilled. In the present review we highlight the practical importance of living cell factories for in vivo secretion of recombinant antibodies.
Collapse
Affiliation(s)
- Marta Compte
- Molecular Immunology Unit; Hospital Universitario Puerta de Hierro Majadahonda; Madrid, Spain
| | - Natalia Nuñez-Prado
- Molecular Immunology Unit; Hospital Universitario Puerta de Hierro Majadahonda; Madrid, Spain
| | - Laura Sanz
- Molecular Immunology Unit; Hospital Universitario Puerta de Hierro Majadahonda; Madrid, Spain
| | - Luís Alvarez-Vallina
- Molecular Immunology Unit; Hospital Universitario Puerta de Hierro Majadahonda; Madrid, Spain
| |
Collapse
|
16
|
Lee JM, Kim B, Lee SB, Jeong Y, Oh YM, Song YJ, Jung S, Choi J, Lee S, Cheong KH, Kim DU, Park HW, Han YK, Kim GW, Choi H, Song PH, Kim KA. Cbl-independent degradation of Met: ways to avoid agonism of bivalent Met-targeting antibody. Oncogene 2012. [DOI: 10.1038/onc.2012.551] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
17
|
Mishra J, Drummond J, Quazi SH, Karanki SS, Shaw JJ, Chen B, Kumar N. Prospective of colon cancer treatments and scope for combinatorial approach to enhanced cancer cell apoptosis. Crit Rev Oncol Hematol 2012; 86:232-50. [PMID: 23098684 DOI: 10.1016/j.critrevonc.2012.09.014] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 09/03/2012] [Accepted: 09/26/2012] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer is the leading cause of cancer-related mortality in the western world. It is also the third most common cancer diagnosed in both men and women in the United States with a recent estimate for new cases of colorectal cancer in the year 2012 being around 103,170. Various risk factors for colorectal cancer include life-style, diet, age, personal and family history, and racial and ethnic background. While a few cancers are certainly preventable but this does not hold true for colon cancer as it is often detected in its advanced stage and generally not diagnosed until symptoms become apparent. Despite the fact that several options are available for treating this cancer through surgery, chemotherapy, radiation therapy, immunotherapy, and nutritional-supplement therapy, but the success rates are not very encouraging when used alone where secondary complications appear in almost all these therapies. To maximize the therapeutic-effects in patients, combinatorial approaches are essential. In this review we have discussed the therapies previously and currently available to patients diagnosed with colorectal-cancer, focus on some recent developments in basic research that has shaded lights on new therapeutic-concepts utilizing macrophages/dendritic cells, natural killer cells, gene delivery, siRNA-, and microRNA-technology, and specific-targeting of tyrosine kinases that are either mutated or over-expressed in the cancerous cell to treat these cancer. Potential strategies are discussed where these concepts could be applied to the existing therapies under a comprehensive approach to enhance the therapeutic effects.
Collapse
Affiliation(s)
- Jayshree Mishra
- Department of Pharmaceutical Sciences, College of Pharmacy, Texas A&M Health Science Center, Kingsville, TX 78363, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
The receptor tyrosine kinase c-MET and its ligand, hepatocyte growth factor (HGF), regulate multiple cellular processes that stimulate cell proliferation, invasion and angiogenesis. This review provides an overview of the evidence to support c-MET or the HGF/c-MET signaling pathway as relevant targets for personalized cancer treatment based on high frequencies of c-MET and/or HGF overexpression, activation, amplification in non-small cell lung carcinoma (NSCLC), gastric, ovarian, pancreatic, thyroid, breast, head and neck, colon and kidney carcinomas. Additionally, the current knowledge of small molecule inhibitors (tivantinib [ARQ 197]), c-MET/HGF antibodies (rilotumumab and MetMAb) and mechanisms of resistance to c-MET-targeted therapies are discussed.
Collapse
Affiliation(s)
- J Rafael Sierra
- Princess Margaret Hospital/Ontario Cancer Institute and University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
19
|
Grzelakowska-Sztabert B, Dudkowska M. Paradoxical action of growth factors: antiproliferative and proapoptotic signaling by HGF/c-MET. Growth Factors 2011; 29:105-18. [PMID: 21631393 DOI: 10.3109/08977194.2011.585609] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Hepatocyte growth factor (HGF)/mesenchymal-epithelial transition factor (c-MET) signaling is usually associated with the promotion of cellular growth and often with progression of tumors. Nevertheless, under certain conditions HGF can also act as an antiproliferative and proapoptotic factor and can sensitize various cancer cells, treated with anticancer drugs, to apoptosis. Not only HGF but also its various truncated forms as well as intracellular fragments of its membrane receptor, c-MET, may act as antiproliferative and proapoptotic factors toward various cells. This review focuses on different mechanisms responsible for such paradoxical action of the known typical growth factor. It also points toward the possibilities of usage of this information in anticancer therapy.
Collapse
|
20
|
De Bacco F, Luraghi P, Medico E, Reato G, Girolami F, Perera T, Gabriele P, Comoglio PM, Boccaccio C. Induction of MET by ionizing radiation and its role in radioresistance and invasive growth of cancer. J Natl Cancer Inst 2011; 103:645-61. [PMID: 21464397 DOI: 10.1093/jnci/djr093] [Citation(s) in RCA: 268] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Ionizing radiation (IR) is effectively used in cancer therapy. However, in subsets of patients, a few radioresistant cancer cells survive and cause disease relapse with metastatic progression. The MET oncogene encodes the hepatocyte growth factor (HGF) receptor and is known to drive "invasive growth", a regenerative and prosurvival program unduly activated in metastasis. METHODS Human tumor cell lines (MDA-MB-231, MDA-MB-435S, U251) were subjected to therapeutic doses of IR. MET mRNA, and protein expression and signal transduction were compared in treated and untreated cells, and the involvement of the DNA-damage sensor ataxia telangiectasia mutated (ATM) and the transcription factor nuclear factor kappa B (NF-κB) in activating MET transcription were analyzed by immunoblotting, chromatin immunoprecipitation, and use of NF-κB silencing RNA (siRNA). Cell invasiveness was measured in wound healing and transwell assays, and cell survival was measured in viability and clonogenic assays. MET was inhibited by siRNA or small-molecule kinase inhibitors (PHA665752 or JNJ-38877605). Combinations of MET-targeted therapy and radiotherapy were assessed in MDA-MB-231 and U251 xenografts (n = 5-6 mice per group). All P values were from two-sided tests. RESULTS After irradiation, MET expression in cell lines was increased up to fivefold via activation of ATM and NF-κB. MET overexpression increased ligand-independent MET phosphorylation and signal transduction, and rendered cells more sensitive to HGF. Irradiated cells became more invasive via a MET-dependent mechanism that was further enhanced in the presence of HGF. MET silencing by siRNA or inhibition of its kinase activity by treatment with PHA665752 or JNJ-38877605 counteracted radiation-induced invasiveness, promoted apoptosis, and prevented cells from resuming proliferation after irradiation in vitro. Treatment with MET inhibitors enhanced the efficacy of IR to stop the growth of or to induce the regression of xenografts (eg, at day 13, U251 xenografts, mean volume increase relative to mean tumor volume at day 0: vehicle = 438%, 5 Gy IR = 151%, 5 Gy IR + JNJ-38877605 = 76%; difference, IR vs JNJ-38877604 + IR = 75%, 95% CI = 59% to 91%, P = .01). CONCLUSION IR induces overexpression and activity of the MET oncogene through the ATM-NF-κB signaling pathway; MET, in turn, promotes cell invasion and protects cells from apoptosis, thus supporting radioresistance. Drugs targeting MET increase tumor cell radiosensitivity and prevent radiation-induced invasiveness.
Collapse
Affiliation(s)
- Francesca De Bacco
- IRCC-Institute for Cancer Research at Candiolo, University of Turin Medical School, Candiolo, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Guryanova OA, Bao S. How Scatter Factor Receptor c-MET Contributes to Tumor Radioresistance: Ready, Set, Scatter! J Natl Cancer Inst 2011; 103:617-9. [DOI: 10.1093/jnci/djr103] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
22
|
Sánchez-Martín D, Sanz L, Álvarez-Vallina L. Engineering human cells for in vivo secretion of antibody and non-antibody therapeutic proteins. Curr Opin Biotechnol 2011; 22:924-30. [PMID: 21435857 DOI: 10.1016/j.copbio.2011.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 02/22/2011] [Accepted: 03/01/2011] [Indexed: 01/14/2023]
Abstract
Purified proteins such as antibodies are widely used as therapeutic agents in clinical medicine. However, clinical-grade proteins for therapeutic use require sophisticated technologies and are extremely expensive to produce. In vivo secretion of therapeutic proteins by genetically engineered human cells may advantageously replace injection of highly purified proteins. The use of gene transfer methods circumvents problems related to large-scale production and purification and offers additional benefits by achieving sustained concentrations of therapeutic protein with a syngenic glycosylation pattern that make the protein potentially less immunogenic. The feasibility of the in vivo production of therapeutic proteins by diverse cells/tissues has now been demonstrated using different techniques, such as ex vivo genetically modified cells and in vivo gene transfer mediated by viral vectors.
Collapse
Affiliation(s)
- David Sánchez-Martín
- Molecular Immunology Unit, Hospital Universitario Puerta de Hierro, 28222 Majadahonda, Madrid, Spain
| | | | | |
Collapse
|
23
|
MET signalling: principles and functions in development, organ regeneration and cancer. Nat Rev Mol Cell Biol 2010; 11:834-48. [PMID: 21102609 DOI: 10.1038/nrm3012] [Citation(s) in RCA: 917] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The MET tyrosine kinase receptor (also known as the HGF receptor) promotes tissue remodelling, which underlies developmental morphogenesis, wound repair, organ homeostasis and cancer metastasis, by integrating growth, survival and migration cues in response to environmental stimuli or cell-autonomous perturbations. The versatility of MET-mediated biological responses is sustained by qualitative and quantitative signal modulation. Qualitative mechanisms include the engagement of dedicated signal transducers and the subcellular compartmentalization of MET signalling pathways, whereas quantitative regulation involves MET partnering with adaptor amplifiers or being degraded through the shedding of its extracellular domain or through intracellular ubiquitylation. Controlled activation of MET signalling can be exploited in regenerative medicine, whereas MET inhibition might slow down tumour progression.
Collapse
|
24
|
Stella GM, Benvenuti S, Comoglio PM. Targeting the MET oncogene in cancer and metastases. Expert Opin Investig Drugs 2010; 19:1381-94. [PMID: 20868306 DOI: 10.1517/13543784.2010.522988] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
IMPORTANCE OF THE FIELD 'Invasive growth' is a genetic program involved in embryonic development and adult organ regeneration and usurped by cancer cells. Although its control is complex, tumor- and context-specific and regulated by several cytokines and growth factors, the role played by the MET oncogene is well documented. In human cancers the contribution of MET to invasive growth is mainly through overexpression, driven by unfavorable microenvironmental conditions. MET activation confers a selective advantage to neoplastic cells in tumor progression and drug resistance. A subset of tumors feature alterations of the MET gene and a consequent MET-addicted phenotype. AREAS COVERED IN THIS REVIEW The molecular basis and rationale of MET inhibition in cancer and metastases are discussed. A number of molecules designed to block MET signaling are under development and several Phase II trials are ongoing. WHAT THE READER WILL GAIN Knowledge of the state of the art of anti-MET targeted approaches and the molecular basis and strategies to select patients eligible for treatment with MET inhibitors. TAKE HOME MESSAGE Due to its versatile functions MET is a promising candidate for cancer therapy. Understanding molecular mechanisms of sensitization and resistance to MET inhibitors is a priority to guide tailored therapies and select patients that are most likely to achieve a clinical benefit.
Collapse
Affiliation(s)
- Giulia M Stella
- Division of Molecular Oncology, Institute for Cancer Research and Treatment (IRCC), University of Turin Medical School, I-10060 Candiolo, Turin, Italy.
| | | | | |
Collapse
|
25
|
Pacchiana G, Chiriaco C, Stella MC, Petronzelli F, De Santis R, Galluzzo M, Carminati P, Comoglio PM, Michieli P, Vigna E. Monovalency unleashes the full therapeutic potential of the DN-30 anti-Met antibody. J Biol Chem 2010; 285:36149-57. [PMID: 20833723 DOI: 10.1074/jbc.m110.134031] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Met, the high affinity receptor for hepatocyte growth factor, is one of the most frequently activated tyrosine kinases in human cancer and a validated target for cancer therapy. We previously developed a mouse monoclonal antibody directed against the extracellular portion of Met (DN-30) that induces Met proteolytic cleavage (receptor "shedding") followed by proteasome-mediated receptor degradation. This translates into inhibition of hepatocyte growth factor/Met-mediated biological activities. However, DN-30 binding to Met also results in partial activation of the Met kinase due to antibody-mediated receptor homodimerization. To safely harness the therapeutic potential of DN-30, its shedding activity must be disassociated from its agonistic activity. Here we show that the DN-30 Fab fragment maintains high affinity Met binding, elicits efficient receptor shedding and down-regulation, and does not promote kinase activation. In Met-addicted tumor cell lines, DN-30 Fab displays potent cytostatic and cytotoxic activity in a dose-dependent fashion. DN-30 Fab also inhibits anchorage-independent growth of several tumor cell lines. In mouse tumorigenesis assays using Met-addicted carcinoma cells, intratumor administration of DN-30 Fab or systemic delivery of a chemically stabilized form of the same molecule results in reduction of Met phosphorylation and inhibition of tumor growth. These data provide proof of concept that monovalency unleashes the full therapeutic potential of the DN-30 antibody and point at DN-30 Fab as a promising tool for Met-targeted therapy.
Collapse
Affiliation(s)
- Giovanni Pacchiana
- Laboratory of Experimental Therapy and Gene Transfer, Institute for Cancer Research and Treatment, Department of Oncological Sciences, University of Turin Medical School, SP 142, km 3.95, I-10060 Candiolo, Turin, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Kuzmin D, Gogvadze E, Kholodenko R, Grzela DP, Mityaev M, Vinogradova T, Kopantzev E, Malakhova G, Suntsova M, Sokov D, Ivics Z, Buzdin A. Novel strong tissue specific promoter for gene expression in human germ cells. BMC Biotechnol 2010; 10:58. [PMID: 20716342 PMCID: PMC2929213 DOI: 10.1186/1472-6750-10-58] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Accepted: 08/17/2010] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Tissue specific promoters may be utilized for a variety of applications, including programmed gene expression in cell types, tissues and organs of interest, for developing different cell culture models or for use in gene therapy. We report a novel, tissue-specific promoter that was identified and engineered from the native upstream regulatory region of the human gene NDUFV1 containing an endogenous retroviral sequence. RESULTS Among seven established human cell lines and five primary cultures, this modified NDUFV1 upstream sequence (mNUS) was active only in human undifferentiated germ-derived cells (lines Tera-1 and EP2102), where it demonstrated high promoter activity (approximately twice greater than that of the SV40 early promoter, and comparable to the routinely used cytomegaloviral promoter). To investigate the potential applicability of the mNUS promoter for biotechnological needs, a construct carrying a recombinant cytosine deaminase (RCD) suicide gene under the control of mNUS was tested in cell lines of different tissue origin. High cytotoxic effect of RCD with a cell-death rate approximately 60% was observed only in germ-derived cells (Tera-1), whereas no effect was seen in a somatic, kidney-derived control cell line (HEK293). In further experiments, we tested mNUS-driven expression of a hyperactive Sleeping Beauty transposase (SB100X). The mNUS-SB100X construct mediated stable transgene insertions exclusively in germ-derived cells, thereby providing further evidence of tissue-specificity of the mNUS promoter. CONCLUSIONS We conclude that mNUS may be used as an efficient promoter for tissue-specific gene expression in human germ-derived cells in many applications. Our data also suggest that the 91 bp-long sequence located exactly upstream NDUFV1 transcriptional start site plays a crucial role in the activity of this gene promoter in vitro in the majority of tested cell types (10/12), and an important role--in the rest two cell lines.
Collapse
Affiliation(s)
- Denis Kuzmin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Cantelmo AR, Cammarota R, Noonan DM, Focaccetti C, Comoglio PM, Prat M, Albini A. Cell delivery of Met docking site peptides inhibit angiogenesis and vascular tumor growth. Oncogene 2010; 29:5286-98. [PMID: 20603611 PMCID: PMC3007100 DOI: 10.1038/onc.2010.267] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Hepatocyte growth factor (HGF) and its receptor Met are responsible for a wide variety of cellular responses, both physiologically during embryo development and tissue homeostasis, and pathologically, particularly during tumor growth and dissemination. In cancer, Met can act as an oncogene on tumor cells, as well as a pro-angiogenic factor activating endothelial cells and inducing new vessel formation. Molecules interfering with Met activity could be valuable therapeutic agents. Here we have investigated the antiangiogenic properties of a synthetic peptide mimicking the docking site of the Met carboxyl-terminal tail, which was delivered into the cells by fusion with the internalization sequences from Antennapedia or HIV-Tat. We showed that these peptides inhibit ligand-dependent endothelial cell proliferation, motility, invasiveness and morphogenesis in vitro to an even greater extent and with much less toxicity than the Met inhibitor PHA-665752, which correlated with interference of HGF-dependent downstream signaling. In vivo, the peptides inhibited HGF-induced angiogenesis in the matrigel sponge assay and impaired xenograft tumor growth and vascularization in Kaposi's sarcoma. These data show that interference with the Met receptor intracellular sequence impairs HGF-induced angiogenesis, suggesting the use of antidocking site compounds as a therapeutic strategy to counteract angiogenesis in cancer as well as in other diseases.
Collapse
Affiliation(s)
- A R Cantelmo
- Oncology Research, Science and Technology Pole, Casa di Cura MultiMedica-IRCCS, Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
28
|
Schelter F, Kobuch J, Moss ML, Becherer JD, Comoglio PM, Boccaccio C, Krüger A. A disintegrin and metalloproteinase-10 (ADAM-10) mediates DN30 antibody-induced shedding of the met surface receptor. J Biol Chem 2010; 285:26335-40. [PMID: 20554517 DOI: 10.1074/jbc.m110.106435] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Met, the tyrosine kinase receptor for the hepatocyte growth factor is a prominent regulator of cancer cell invasiveness and has emerged as a promising therapeutic target. Binding of the anti-Met monoclonal antibody DN30 to its epitope induces the proteolytic cleavage of Met, thereby impairing the invasive growth of tumors. The molecular mechanism controlling this therapeutic shedding process has so far been unknown. Here, we report that A Disintegrin And Metalloproteinase (ADAM)-10, but not ADAM-17, is required for DN30-induced Met shedding. Knockdown of ADAM-10 in different tumor cell lines or abrogation of its proteolytic activity by natural or synthetic inhibitors abolished Met down-regulation on the cell surface as well as reduction of Met activation. Moreover, hepatocyte growth factor-induced tumor cell migration and invasion were impaired upon ADAM-10 knockdown. Thus, the therapeutic effect of DN30 involves ADAM-10-dependent Met shedding, linking for the first time a specific metalloprotease to target therapy against a receptor tyrosine kinase.
Collapse
Affiliation(s)
- Florian Schelter
- Institut für Experimentelle Onkologie und Therapieforschung des Klinikums rechts der Isar, Technische Universität München, München, Germany
| | | | | | | | | | | | | |
Collapse
|
29
|
Sierra JR, Cepero V, Giordano S. Molecular mechanisms of acquired resistance to tyrosine kinase targeted therapy. Mol Cancer 2010; 9:75. [PMID: 20385023 PMCID: PMC2864216 DOI: 10.1186/1476-4598-9-75] [Citation(s) in RCA: 171] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Accepted: 04/12/2010] [Indexed: 02/07/2023] Open
Abstract
In recent years, tyrosine kinases (TKs) have been recognized as central players and regulators of cancer cell proliferation, apoptosis, and angiogenesis, and are therefore considered suitable potential targets for anti-cancer therapies. Several strategies for targeting TKs have been developed, the most successful being monoclonal antibodies and small molecule tyrosine kinase inhibitors. However, increasing evidence of acquired resistance to these drugs has been documented, and extensive preclinical studies are ongoing to try to understand the molecular mechanisms by which cancer cells are able to bypass their inhibitory activity.This review intends to present the most recently identified molecular mechanisms that mediate acquired resistance to tyrosine kinase inhibitors, identified through the use of in vitro models or the analysis of patient samples. The knowledge obtained from these studies will help to design better therapies that prevent and overcome resistance to treatment in cancer patients.
Collapse
Affiliation(s)
- J Rafael Sierra
- Institute for Cancer Research and Treatment, University of Torino Medical School, 10060 Candiolo (Torino), Italy
| | | | | |
Collapse
|
30
|
Current world literature. Curr Opin Pediatr 2010; 22:117-26. [PMID: 20068414 DOI: 10.1097/mop.0b013e32833539b5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
31
|
Johnson PR, Schnepp BC, Zhang J, Connell MJ, Greene SM, Yuste E, Desrosiers RC, Clark KR. Vector-mediated gene transfer engenders long-lived neutralizing activity and protection against SIV infection in monkeys. Nat Med 2009; 15:901-6. [PMID: 19448633 PMCID: PMC2723177 DOI: 10.1038/nm.1967] [Citation(s) in RCA: 251] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Accepted: 04/11/2009] [Indexed: 12/24/2022]
Abstract
The holy grail for HIV vaccine development is an immunogen that elicits persisting antibodies with broad neutralizing activity against field strains of the virus. Unfortunately, very little progress has been made in finding or designing such immunogens. Using the SIV model, we have taken a markedly different approach: delivery of an adeno-associated virus (AAV) gene transfer vector to muscle for the expression of antibodies or antibody-like immunoadhesins having predetermined anti-SIV specificity. With this approach, anti-SIV molecules are endogenously synthesized in myofibers and passively distributed to the circulatory system. Using such an approach in monkeys, we have now generated long-lasting neutralizing activity in serum and observed complete protection against intravenous challenge with virulent SIV. In essence, this strategy bypasses the adaptive immune system and holds significant promise as a novel approach to an effective HIV vaccine.
Collapse
Affiliation(s)
- Philip R Johnson
- The Children's Hospital of Philadelphia and the University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA.
| | | | | | | | | | | | | | | |
Collapse
|