1
|
Giordano G, Tucciarello C, Merlini A, Cutrupi S, Pignochino Y. Targeting the EphA2 pathway: could it be the way for bone sarcomas? Cell Commun Signal 2024; 22:433. [PMID: 39252029 PMCID: PMC11382444 DOI: 10.1186/s12964-024-01811-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/30/2024] [Indexed: 09/11/2024] Open
Abstract
Bone sarcomas are malignant tumors of mesenchymal origin. Complete surgical resection is the cornerstone of multidisciplinary treatment. However, advanced, unresectable forms remain incurable. A crucial step towards addressing this challenge involves comprehending the molecular mechanisms underpinning tumor progression and metastasis, laying the groundwork for innovative precision medicine-based interventions. We previously showed that tyrosine kinase receptor Ephrin Type-A Receptor 2 (EphA2) is overexpressed in bone sarcomas. EphA2 is a key oncofetal protein implicated in metastasis, self-renewal, and chemoresistance. Molecular, genetic, biochemical, and pharmacological approaches have been developed to target EphA2 and its signaling pathway aiming to interfere with its tumor-promoting effects or as a carrier for drug delivery. This review synthesizes the main functions of EphA2 and their relevance in bone sarcomas, providing strategies devised to leverage this receptor for diagnostic and therapeutic purposes, with a focus on its applicability in the three most common bone sarcoma histotypes: osteosarcoma, chondrosarcoma, and Ewing sarcoma.
Collapse
Affiliation(s)
- Giorgia Giordano
- Sarcoma Unit, Candiolo Cancer Institute, FPO-IRCCS, 10060, Candiolo, TO, Italy
- Department of Oncology, University of Turin, 10043, Orbassano, TO, Italy
| | - Cristina Tucciarello
- Sarcoma Unit, Candiolo Cancer Institute, FPO-IRCCS, 10060, Candiolo, TO, Italy
- Department of Clinical and Biological Sciences, University of Turin, 10043, Orbassano, TO, Italy
| | - Alessandra Merlini
- Department of Oncology, University of Turin, 10043, Orbassano, TO, Italy
| | - Santina Cutrupi
- Department of Clinical and Biological Sciences, University of Turin, 10043, Orbassano, TO, Italy
| | - Ymera Pignochino
- Sarcoma Unit, Candiolo Cancer Institute, FPO-IRCCS, 10060, Candiolo, TO, Italy.
- Department of Clinical and Biological Sciences, University of Turin, 10043, Orbassano, TO, Italy.
| |
Collapse
|
2
|
Chikina AS, Zholudeva AO, Lomakina ME, Kireev II, Dayal AA, Minin AA, Maurin M, Svitkina TM, Alexandrova AY. Plasma Membrane Blebbing Is Controlled by Subcellular Distribution of Vimentin Intermediate Filaments. Cells 2024; 13:105. [PMID: 38201309 PMCID: PMC10778383 DOI: 10.3390/cells13010105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/18/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
The formation of specific cellular protrusions, plasma membrane blebs, underlies the amoeboid mode of cell motility, which is characteristic for free-living amoebae and leukocytes, and can also be adopted by stem and tumor cells to bypass unfavorable migration conditions and thus facilitate their long-distance migration. Not all cells are equally prone to bleb formation. We have previously shown that membrane blebbing can be experimentally induced in a subset of HT1080 fibrosarcoma cells, whereas other cells in the same culture under the same conditions retain non-blebbing mesenchymal morphology. Here we show that this heterogeneity is associated with the distribution of vimentin intermediate filaments (VIFs). Using different approaches to alter the VIF organization, we show that blebbing activity is biased toward cell edges lacking abundant VIFs, whereas the VIF-rich regions of the cell periphery exhibit low blebbing activity. This pattern is observed both in interphase fibroblasts, with and without experimentally induced blebbing, and during mitosis-associated blebbing. Moreover, the downregulation of vimentin expression or displacement of VIFs away from the cell periphery promotes blebbing even in cells resistant to bleb-inducing treatments. Thus, we reveal a new important function of VIFs in cell physiology that involves the regulation of non-apoptotic blebbing essential for amoeboid cell migration and mitosis.
Collapse
Affiliation(s)
- Aleksandra S. Chikina
- N.N. Blokhin National Medical Research Center of Oncology, 24 Kashirskoe Shosse, Moscow 115478, Russia; (A.S.C.); (A.O.Z.); (M.E.L.)
- Dynamics of Immune Responses Team, INSERM-U1223 Institut Pasteur, 25-28 Rue du Dr Roux, 75015 Paris, France
| | - Anna O. Zholudeva
- N.N. Blokhin National Medical Research Center of Oncology, 24 Kashirskoe Shosse, Moscow 115478, Russia; (A.S.C.); (A.O.Z.); (M.E.L.)
| | - Maria E. Lomakina
- N.N. Blokhin National Medical Research Center of Oncology, 24 Kashirskoe Shosse, Moscow 115478, Russia; (A.S.C.); (A.O.Z.); (M.E.L.)
| | - Igor I. Kireev
- Department of Biology and A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, 1 Leninskie Gory, Moscow 119992, Russia;
| | - Alexander A. Dayal
- Institute of Protein Research, Department of Cell Biology, Russian Academy of Sciences, Moscow 119988, Russia; (A.A.D.); (A.A.M.)
| | - Alexander A. Minin
- Institute of Protein Research, Department of Cell Biology, Russian Academy of Sciences, Moscow 119988, Russia; (A.A.D.); (A.A.M.)
| | - Mathieu Maurin
- Institut Curie, PSL Research University, INSERM U932, 26 rue d’Ulm, 75248 Paris, France;
| | - Tatyana M. Svitkina
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Antonina Y. Alexandrova
- N.N. Blokhin National Medical Research Center of Oncology, 24 Kashirskoe Shosse, Moscow 115478, Russia; (A.S.C.); (A.O.Z.); (M.E.L.)
| |
Collapse
|
3
|
Matsuoka T, Yashiro M. Molecular Insight into Gastric Cancer Invasion-Current Status and Future Directions. Cancers (Basel) 2023; 16:54. [PMID: 38201481 PMCID: PMC10778111 DOI: 10.3390/cancers16010054] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Gastric cancer (GC) is one of the most common malignancies worldwide. There has been no efficient therapy for stage IV GC patients due to this disease's heterogeneity and dissemination ability. Despite the rapid advancement of molecular targeted therapies, such as HER2 and immune checkpoint inhibitors, survival of GC patients is still unsatisfactory because the understanding of the mechanism of GC progression is still incomplete. Invasion is the most important feature of GC metastasis, which causes poor mortality in patients. Recently, genomic research has critically deepened our knowledge of which gene products are dysregulated in invasive GC. Furthermore, the study of the interaction of GC cells with the tumor microenvironment has emerged as a principal subject in driving invasion and metastasis. These results are expected to provide a profound knowledge of how biological molecules are implicated in GC development. This review summarizes the advances in our current understanding of the molecular mechanism of GC invasion. We also highlight the future directions of the invasion therapeutics of GC. Compared to conventional therapy using protease or molecular inhibitors alone, multi-therapy targeting invasion plasticity may seem to be an assuring direction for the progression of novel strategies.
Collapse
Affiliation(s)
| | - Masakazu Yashiro
- Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, Osaka 5458585, Japan;
| |
Collapse
|
4
|
Alexandrova A, Lomakina M. How does plasticity of migration help tumor cells to avoid treatment: Cytoskeletal regulators and potential markers. Front Pharmacol 2022; 13:962652. [PMID: 36278174 PMCID: PMC9582651 DOI: 10.3389/fphar.2022.962652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022] Open
Abstract
Tumor shrinkage as a result of antitumor therapy is not the only and sufficient indicator of treatment success. Cancer progression leads to dissemination of tumor cells and formation of metastases - secondary tumor lesions in distant organs. Metastasis is associated with acquisition of mobile phenotype by tumor cells as a result of epithelial-to-mesenchymal transition and further cell migration based on cytoskeleton reorganization. The main mechanisms of individual cell migration are either mesenchymal, which depends on the activity of small GTPase Rac, actin polymerization, formation of adhesions with extracellular matrix and activity of proteolytic enzymes or amoeboid, which is based on the increase in intracellular pressure caused by the enhancement of actin cortex contractility regulated by Rho-ROCK-MLCKII pathway, and does not depend on the formation of adhesive structures with the matrix, nor on the activity of proteases. The ability of tumor cells to switch from one motility mode to another depending on cell context and environmental conditions, termed migratory plasticity, contributes to the efficiency of dissemination and often allows the cells to avoid the applied treatment. The search for new therapeutic targets among cytoskeletal proteins offers an opportunity to directly influence cell migration. For successful treatment it is important to assess the likelihood of migratory plasticity in a particular tumor. Therefore, the search for specific markers that can indicate a high probability of migratory plasticity is very important.
Collapse
|
5
|
Te Boekhorst V, Jiang L, Mählen M, Meerlo M, Dunkel G, Durst FC, Yang Y, Levine H, Burgering BMT, Friedl P. Calpain-2 regulates hypoxia/HIF-induced plasticity toward amoeboid cancer cell migration and metastasis. Curr Biol 2022; 32:412-427.e8. [PMID: 34883047 PMCID: PMC10439789 DOI: 10.1016/j.cub.2021.11.040] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 07/05/2021] [Accepted: 11/16/2021] [Indexed: 12/29/2022]
Abstract
Hypoxia, through hypoxia inducible factor (HIF), drives cancer cell invasion and metastatic progression in various cancer types. In epithelial cancer, hypoxia induces the transition to amoeboid cancer cell dissemination, yet the molecular mechanisms, relevance for metastasis, and effective intervention to combat hypoxia-induced amoeboid reprogramming remain unclear. Here, we identify calpain-2 as a key regulator and anti-metastasis target of hypoxia-induced transition from collective to amoeboid dissemination of breast and head and neck (HN) carcinoma cells. Hypoxia-induced amoeboid dissemination occurred through low extracellular matrix (ECM)-adhesive, predominantly bleb-based amoeboid movement, which was maintained by a low-oxidative and -glycolytic energy metabolism ("eco-mode"). Hypoxia induced calpain-2-mediated amoeboid conversion by deactivating β1 integrins through enzymatic cleavage of the focal adhesion adaptor protein talin-1. Consequently, targeted downregulation or pharmacological inhibition of calpain-2 restored talin-1 integrity and β1 integrin engagement and reverted amoeboid to elongated phenotypes under hypoxia. Calpain-2 activity was required for hypoxia-induced amoeboid conversion in the orthotopic mouse dermis and upregulated in invasive HN tumor xenografts in vivo, and attenuation of calpain activity prevented hypoxia-induced metastasis to the lungs. This identifies the calpain-2/talin-1/β1 integrin axis as a druggable mechanosignaling program that conserves energy yet enables metastatic dissemination that can be reverted by interfering with calpain activity.
Collapse
Affiliation(s)
- Veronika Te Boekhorst
- David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Cell Biology, Radboud University Medical Centre, 6525 GA Nijmegen, the Netherlands
| | - Liying Jiang
- David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Marius Mählen
- Department of Cell Biology, Radboud University Medical Centre, 6525 GA Nijmegen, the Netherlands
| | - Maaike Meerlo
- Department of Molecular Cancer Research, Center for Molecular Medicine, UMC Utrecht, the Netherlands; Oncode Institute, 3521 AL Utrecht, the Netherlands
| | - Gina Dunkel
- Department of Cell Biology, Radboud University Medical Centre, 6525 GA Nijmegen, the Netherlands
| | - Franziska C Durst
- David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yanjun Yang
- Center for Theoretical Biological Physics, Department of Applied Physics, Rice University, Houston, TX 77005, USA; Department of Physics, Northeastern University, Boston, MA 02115, USA
| | - Herbert Levine
- Center for Theoretical Biological Physics, Department of Applied Physics, Rice University, Houston, TX 77005, USA; Department of Physics, Northeastern University, Boston, MA 02115, USA
| | - Boudewijn M T Burgering
- Department of Molecular Cancer Research, Center for Molecular Medicine, UMC Utrecht, the Netherlands; Oncode Institute, 3521 AL Utrecht, the Netherlands; Cancer Genomics Center, 3584 CG Utrecht, the Netherlands
| | - Peter Friedl
- David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Cell Biology, Radboud University Medical Centre, 6525 GA Nijmegen, the Netherlands; Cancer Genomics Center, 3584 CG Utrecht, the Netherlands.
| |
Collapse
|
6
|
Cecchini A, Cornelison DDW. Eph/Ephrin-Based Protein Complexes: The Importance of cis Interactions in Guiding Cellular Processes. Front Mol Biosci 2022; 8:809364. [PMID: 35096972 PMCID: PMC8793696 DOI: 10.3389/fmolb.2021.809364] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/21/2021] [Indexed: 12/13/2022] Open
Abstract
Although intracellular signal transduction is generally represented as a linear process that transmits stimuli from the exterior of a cell to the interior via a transmembrane receptor, interactions with additional membrane-associated proteins are often critical to its success. These molecules play a pivotal role in mediating signaling via the formation of complexes in cis (within the same membrane) with primary effectors, particularly in the context of tumorigenesis. Such secondary effectors may act to promote successful signaling by mediating receptor-ligand binding, recruitment of molecular partners for the formation of multiprotein complexes, or differential signaling outcomes. One signaling family whose contact-mediated activity is frequently modulated by lateral interactions at the cell surface is Eph/ephrin (EphA and EphB receptor tyrosine kinases and their ligands ephrin-As and ephrin-Bs). Through heterotypic interactions in cis, these molecules can promote a diverse range of cellular activities, including some that are mutually exclusive (cell proliferation and cell differentiation, or adhesion and migration). Due to their broad expression in most tissues and their promiscuous binding within and across classes, the cellular response to Eph:ephrin interaction is highly variable between cell types and is dependent on the cellular context in which binding occurs. In this review, we will discuss interactions between molecules in cis at the cell membrane, with emphasis on their role in modulating Eph/ephrin signaling.
Collapse
Affiliation(s)
- Alessandra Cecchini
- Division of Biological Sciences, University of Missouri, Columbia, MO, United States
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - D. D. W. Cornelison
- Division of Biological Sciences, University of Missouri, Columbia, MO, United States
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
- *Correspondence: D. D. W. Cornelison,
| |
Collapse
|
7
|
Graziani V, Rodriguez-Hernandez I, Maiques O, Sanz-Moreno V. The amoeboid state as part of the epithelial-to-mesenchymal transition programme. Trends Cell Biol 2021; 32:228-242. [PMID: 34836782 DOI: 10.1016/j.tcb.2021.10.004] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 01/04/2023]
Abstract
Cell migration is essential for many biological processes, while abnormal cell migration is characteristic of cancer cells. Epithelial cells become motile by undergoing epithelial-to-mesenchymal transition (EMT), and mesenchymal cells increase migration speed by adopting amoeboid features. This review highlights how amoeboid behaviour is not merely a migration mode but rather a cellular state - within the EMT spectra - by which cancer cells survive, invade and colonise challenging microenvironments. Molecular biomarkers and physicochemical triggers associated with amoeboid behaviour are discussed, including an amoeboid associated tumour microenvironment. We reflect on how amoeboid characteristics support metastasis and how their liabilities could turn into therapeutic opportunities.
Collapse
Affiliation(s)
- Vittoria Graziani
- Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | | | - Oscar Maiques
- Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | | |
Collapse
|
8
|
Giordano G, Merlini A, Ferrero G, Mesiano G, Fiorino E, Brusco S, Centomo ML, Leuci V, D’Ambrosio L, Aglietta M, Sangiolo D, Grignani G, Pignochino Y. EphA2 Expression in Bone Sarcomas: Bioinformatic Analyses and Preclinical Characterization in Patient-Derived Models of Osteosarcoma, Ewing's Sarcoma and Chondrosarcoma. Cells 2021; 10:cells10112893. [PMID: 34831119 PMCID: PMC8616526 DOI: 10.3390/cells10112893] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/20/2021] [Accepted: 10/25/2021] [Indexed: 12/18/2022] Open
Abstract
Bone sarcomas are a group of heterogeneous malignant mesenchymal tumors. Complete surgical resection is still the cornerstone of treatment, but, in the advanced/unresectable setting, their management remains challenging and not significantly improved by target- and immuno-therapies. We focused on the tyrosine kinase Eph type-A receptor-2 (EphA2), a key oncoprotein implicated in self-renewal, angiogenesis, and metastasis, in several solid tumors and thus representing a novel potential therapeutic target. Aiming at better characterizing its expression throughout the main bone sarcoma histotypes, we investigated EPHA2 expression in the Cancer Cell Lines Encyclopedia and in public datasets with clinical annotations. looking for correlations with molecular, histopathological and patients’ features and clinical outcomes in a total of 232 osteosarcomas, 197 Ewing’s sarcomas, and 102 chondrosarcomas. We observed EPHA2 expression in bone sarcoma cell lines. We demonstrated higher EPHA2 expression in tumor tissues when compared to normal counterparts. A significant correlation was found between EPHA2 expression and Huvos grade (osteosarcoma) and with worse overall survival (dedifferentiated chondrosarcoma). Next, we characterized EPHA2 expression and activation in bone sarcoma primary tissues and in patient-derived xenografts generated in our laboratory to verify their reliability as in vivo models of osteosarcoma, Ewing’s sarcoma and chondrosarcoma. Furthermore, for the first time, we demonstrated EPHA2 expression in chondrosarcoma, suggesting its potential key role in this histotype. Indeed, we observed a significant dose-dependent antitumor effect of the EphA2-inhibitor ALW-II-41-27 in patient-derived in vitro models. In conclusion, EphA2 targeting represents a promising novel therapeutic strategy against bone sarcomas.
Collapse
Affiliation(s)
- Giorgia Giordano
- Candiolo Cancer Institute, FPO–IRCCS Str. Prov.le 142, Km 3.95, 10060 Candiolo, Italy; (G.G.); (G.M.); (E.F.); (S.B.); (M.L.C.); (V.L.); (L.D.); (M.A.); (D.S.); (G.G.); (Y.P.)
- Department of Oncology, University of Torino, 10124 Torino, Italy
| | - Alessandra Merlini
- Candiolo Cancer Institute, FPO–IRCCS Str. Prov.le 142, Km 3.95, 10060 Candiolo, Italy; (G.G.); (G.M.); (E.F.); (S.B.); (M.L.C.); (V.L.); (L.D.); (M.A.); (D.S.); (G.G.); (Y.P.)
- Department of Oncology, University of Torino, 10124 Torino, Italy
- Correspondence: ; Tel.: +39-0119933503
| | - Giulio Ferrero
- Department of Clinical and Biological Sciences, University of Torino, 10124 Torino, Italy;
- Department of Computer Science, University of Torino, 10124 Torino, Italy
| | - Giulia Mesiano
- Candiolo Cancer Institute, FPO–IRCCS Str. Prov.le 142, Km 3.95, 10060 Candiolo, Italy; (G.G.); (G.M.); (E.F.); (S.B.); (M.L.C.); (V.L.); (L.D.); (M.A.); (D.S.); (G.G.); (Y.P.)
| | - Erika Fiorino
- Candiolo Cancer Institute, FPO–IRCCS Str. Prov.le 142, Km 3.95, 10060 Candiolo, Italy; (G.G.); (G.M.); (E.F.); (S.B.); (M.L.C.); (V.L.); (L.D.); (M.A.); (D.S.); (G.G.); (Y.P.)
| | - Silvia Brusco
- Candiolo Cancer Institute, FPO–IRCCS Str. Prov.le 142, Km 3.95, 10060 Candiolo, Italy; (G.G.); (G.M.); (E.F.); (S.B.); (M.L.C.); (V.L.); (L.D.); (M.A.); (D.S.); (G.G.); (Y.P.)
| | - Maria Laura Centomo
- Candiolo Cancer Institute, FPO–IRCCS Str. Prov.le 142, Km 3.95, 10060 Candiolo, Italy; (G.G.); (G.M.); (E.F.); (S.B.); (M.L.C.); (V.L.); (L.D.); (M.A.); (D.S.); (G.G.); (Y.P.)
- Department of Oncology, University of Torino, 10124 Torino, Italy
| | - Valeria Leuci
- Candiolo Cancer Institute, FPO–IRCCS Str. Prov.le 142, Km 3.95, 10060 Candiolo, Italy; (G.G.); (G.M.); (E.F.); (S.B.); (M.L.C.); (V.L.); (L.D.); (M.A.); (D.S.); (G.G.); (Y.P.)
| | - Lorenzo D’Ambrosio
- Candiolo Cancer Institute, FPO–IRCCS Str. Prov.le 142, Km 3.95, 10060 Candiolo, Italy; (G.G.); (G.M.); (E.F.); (S.B.); (M.L.C.); (V.L.); (L.D.); (M.A.); (D.S.); (G.G.); (Y.P.)
- Cardinal Massaia Hospital, 14100 Asti, Italy
| | - Massimo Aglietta
- Candiolo Cancer Institute, FPO–IRCCS Str. Prov.le 142, Km 3.95, 10060 Candiolo, Italy; (G.G.); (G.M.); (E.F.); (S.B.); (M.L.C.); (V.L.); (L.D.); (M.A.); (D.S.); (G.G.); (Y.P.)
- Department of Oncology, University of Torino, 10124 Torino, Italy
| | - Dario Sangiolo
- Candiolo Cancer Institute, FPO–IRCCS Str. Prov.le 142, Km 3.95, 10060 Candiolo, Italy; (G.G.); (G.M.); (E.F.); (S.B.); (M.L.C.); (V.L.); (L.D.); (M.A.); (D.S.); (G.G.); (Y.P.)
- Department of Oncology, University of Torino, 10124 Torino, Italy
| | - Giovanni Grignani
- Candiolo Cancer Institute, FPO–IRCCS Str. Prov.le 142, Km 3.95, 10060 Candiolo, Italy; (G.G.); (G.M.); (E.F.); (S.B.); (M.L.C.); (V.L.); (L.D.); (M.A.); (D.S.); (G.G.); (Y.P.)
| | - Ymera Pignochino
- Candiolo Cancer Institute, FPO–IRCCS Str. Prov.le 142, Km 3.95, 10060 Candiolo, Italy; (G.G.); (G.M.); (E.F.); (S.B.); (M.L.C.); (V.L.); (L.D.); (M.A.); (D.S.); (G.G.); (Y.P.)
- Department of Clinical and Biological Sciences, University of Torino, 10124 Torino, Italy;
| |
Collapse
|
9
|
Mosier JA, Schwager SC, Boyajian DA, Reinhart-King CA. Cancer cell metabolic plasticity in migration and metastasis. Clin Exp Metastasis 2021; 38:343-359. [PMID: 34076787 DOI: 10.1007/s10585-021-10102-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 05/08/2021] [Indexed: 12/13/2022]
Abstract
Metabolic reprogramming is a hallmark of cancer metastasis in which cancer cells manipulate their metabolic profile to meet the dynamic energetic requirements of the tumor microenvironment. Though cancer cell proliferation and migration through the extracellular matrix are key steps of cancer progression, they are not necessarily fueled by the same metabolites and energy production pathways. The two main metabolic pathways cancer cells use to derive energy from glucose, glycolysis and oxidative phosphorylation, are preferentially and plastically utilized by cancer cells depending on both their intrinsic metabolic properties and their surrounding environment. Mechanical factors in the microenvironment, such as collagen density, pore size, and alignment, and biochemical factors, such as oxygen and glucose availability, have been shown to influence both cell migration and glucose metabolism. As cancer cells have been identified as preferentially utilizing glycolysis or oxidative phosphorylation based on heterogeneous intrinsic or extrinsic factors, the relationship between cancer cell metabolism and metastatic potential is of recent interest. Here, we review current in vitro and in vivo findings in the context of cancer cell metabolism during migration and metastasis and extrapolate potential clinical applications of this work that could aid in diagnosing and tracking cancer progression in vivo by monitoring metabolism. We also review current progress in the development of a variety of metabolically targeted anti-metastatic drugs, both in clinical trials and approved for distribution, and highlight potential routes for incorporating our recent understanding of metabolic plasticity into therapeutic directions. By further understanding cancer cell energy production pathways and metabolic plasticity, more effective and successful clinical imaging and therapeutics can be developed to diagnose, target, and inhibit metastasis.
Collapse
Affiliation(s)
- Jenna A Mosier
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Samantha C Schwager
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - David A Boyajian
- Department of Radiology, Weill Cornell Medical College, New York, NY, USA
| | | |
Collapse
|
10
|
Claisened Hexafluoro Inhibits Metastatic Spreading of Amoeboid Melanoma Cells. Cancers (Basel) 2021; 13:cancers13143551. [PMID: 34298765 PMCID: PMC8305480 DOI: 10.3390/cancers13143551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 06/30/2021] [Accepted: 07/13/2021] [Indexed: 11/17/2022] Open
Abstract
Metastatic melanoma is characterized by poor prognosis and a low free-survival rate. Thanks to their high plasticity, melanoma cells are able to migrate exploiting different cell motility strategies, such as the rounded/amoeboid-type motility and the elongated/mesenchymal-type motility. In particular, the amoeboid motility strongly contributes to the dissemination of highly invasive melanoma cells and no treatment targeting this process is currently available for clinical application. Here, we tested Claisened Hexafluoro as a novel inhibitor of the amoeboid motility. Reported data demonstrate that Claisened Hexafluoro specifically inhibits melanoma cells moving through amoeboid motility by deregulating mitochondrial activity and activating the AMPK signaling. Moreover, Claisened Hexafluoro is able to interfere with the adhesion abilities and the stemness features of melanoma cells, thus decreasing the in vivo metastatic process. This evidence may contribute to pave the way for future possible therapeutic applications of Claisened Hexafluoro to counteract metastatic melanoma dissemination.
Collapse
|
11
|
Treps L, Faure S, Clere N. Vasculogenic mimicry, a complex and devious process favoring tumorigenesis – Interest in making it a therapeutic target. Pharmacol Ther 2021; 223:107805. [DOI: 10.1016/j.pharmthera.2021.107805] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
12
|
Wilson K, Shiuan E, Brantley-Sieders DM. Oncogenic functions and therapeutic targeting of EphA2 in cancer. Oncogene 2021; 40:2483-2495. [PMID: 33686241 PMCID: PMC8035212 DOI: 10.1038/s41388-021-01714-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 02/04/2021] [Accepted: 02/10/2021] [Indexed: 01/31/2023]
Abstract
More than 25 years of research and preclinical validation have defined EphA2 receptor tyrosine kinase as a promising molecular target for clinical translation in cancer treatment. Molecular, genetic, biochemical, and pharmacological targeting strategies have been extensively tested in vitro and in vivo, and drugs like dasatinib, initially designed to target SRC family kinases, have been found to also target EphA2 activity. Other small molecules, therapeutic targeting antibodies, and peptide-drug conjugates are being tested, and more recently, approaches harnessing antitumor immunity against EphA2-expressing cancer cells have emerged as a promising strategy. This review will summarize preclinical studies supporting the oncogenic role of EphA2 in breast cancer, lung cancer, glioblastoma, and melanoma, while delineating the differing roles of canonical and noncanonical EphA2 signaling in each setting. This review also summarizes completed and ongoing clinical trials, highlighting the promise and challenges of targeting EphA2 in cancer.
Collapse
Affiliation(s)
- Kalin Wilson
- Vanderbilt University School of Medicine, Vanderbilt University, Nashville, TN, 37232, USA
| | - Eileen Shiuan
- Vanderbilt University School of Medicine, Vanderbilt University, Nashville, TN, 37232, USA
| | - Dana M Brantley-Sieders
- Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
| |
Collapse
|
13
|
Hsu K, Middlemiss S, Saletta F, Gottschalk S, McCowage GB, Kramer B. Chimeric Antigen Receptor-modified T cells targeting EphA2 for the immunotherapy of paediatric bone tumours. Cancer Gene Ther 2021; 28:321-334. [PMID: 32873870 PMCID: PMC8057949 DOI: 10.1038/s41417-020-00221-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/14/2020] [Accepted: 08/21/2020] [Indexed: 02/06/2023]
Abstract
Chimeric Antigen Receptor (CAR) T-cell therapy, as an approved treatment option for patients with B cell malignancies, demonstrates that genetic modification of autologous immune cells is an effective anti-cancer regimen. Erythropoietin-producing Hepatocellular receptor tyrosine kinase class A2 (EphA2) is a tumour associated antigen expressed on a range of sarcomas, including paediatric osteosarcoma (OS) and Ewing sarcoma (ES). We tested human EphA2 directed CAR T cells for their capacity to target and kill human OS and ES tumour cells using in vitro and in vivo assays, demonstrating that EphA2 CAR T cells have potent anti-tumour efficacy in vitro and can eliminate established OS and ES tumours in vivo in a dose and delivery route dependent manner. Next, in an aggressive metastatic OS model we demonstrated that systemically infused EphA2 CAR T cells can traffic to and eradicate tumour deposits in murine livers and lungs. These results support further pre-clinical evaluation of EphA2 CAR T cells to inform the design of early phase clinical trial protocols to test the feasibility and safety of this immune cell therapy in paediatric bone sarcoma patients.
Collapse
Affiliation(s)
- Kenneth Hsu
- Children's Cancer Research Unit, Kid's Research, The Children's Hospital at Westmead, Westmead, NSW, 2145, Australia
| | - Shiloh Middlemiss
- Children's Cancer Research Unit, Kid's Research, The Children's Hospital at Westmead, Westmead, NSW, 2145, Australia
| | - Federica Saletta
- Children's Cancer Research Unit, Kid's Research, The Children's Hospital at Westmead, Westmead, NSW, 2145, Australia
| | - Stephen Gottschalk
- Department of Bone Marrow Transplant and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Geoffrey B McCowage
- Children's Cancer Centre, The Children's Hospital at Westmead, Westmead, NSW, 2145, Australia
| | - Belinda Kramer
- Children's Cancer Research Unit, Kid's Research, The Children's Hospital at Westmead, Westmead, NSW, 2145, Australia.
| |
Collapse
|
14
|
Naffa R, Padányi R, Ignácz A, Hegyi Z, Jezsó B, Tóth S, Varga K, Homolya L, Hegedűs L, Schlett K, Enyedi A. The Plasma Membrane Ca 2+ Pump PMCA4b Regulates Melanoma Cell Migration through Remodeling of the Actin Cytoskeleton. Cancers (Basel) 2021; 13:cancers13061354. [PMID: 33802790 PMCID: PMC8002435 DOI: 10.3390/cancers13061354] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/08/2021] [Accepted: 03/14/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Earlier we demonstrated that the plasma membrane Ca2+ pump PMCA4b inhibits migration and metastatic activity of BRAF mutant melanoma cells, however, the exact mechanism has not been fully understood. Here we demonstrate that PMCA4b acted through actin cytoskeleton remodeling in generating a low migratory melanoma cell phenotype resulting in increased cell–cell connections, lamellipodia and stress fiber formation. Both proper trafficking and calcium transporting activity of the pump were essential to complete these tasks indicating that controlling Ca2+ concentration levels at specific plasma membrane locations such as the cell front played a role. Our findings suggest that PMCA4b downregulation is likely one of the mechanisms that leads to the perturbed cancer cell cytoskeleton organization resulting in enhanced melanoma cell migration and metastasis. Abstract We demonstrated that the plasma membrane Ca2+ ATPase PMCA4b inhibits migration and metastatic activity of BRAF mutant melanoma cells. Actin dynamics are essential for cells to move, invade and metastasize, therefore, we hypothesized that PMCA4b affected cell migration through remodeling of the actin cytoskeleton. We found that expression of PMCA4b in A375 BRAF mutant melanoma cells induced a profound change in cell shape, cell culture morphology, and displayed a polarized migratory character. Along with these changes the cells became more rounded with increased cell–cell connections, lamellipodia and stress fiber formation. Silencing PMCA4b in MCF-7 breast cancer cells had a similar effect, resulting in a dramatic loss of stress fibers. In addition, the PMCA4b expressing A375 cells maintained front-to-rear Ca2+ concentration gradient with the actin severing protein cofilin localizing to the lamellipodia, and preserved the integrity of the actin cytoskeleton from a destructive Ca2+ overload. We showed that both PMCA4b activity and trafficking were essential for the observed morphology and motility changes. In conclusion, our data suggest that PMCA4b plays a critical role in adopting front-to-rear polarity in a normally spindle-shaped cell type through F-actin rearrangement resulting in a less aggressive melanoma cell phenotype.
Collapse
Affiliation(s)
- Randa Naffa
- Department of Transfusiology, Semmelweis University, H-1089 Budapest, Hungary; (R.N.); (S.T.)
| | - Rita Padányi
- Department of Biophysics and Radiation Biology, Semmelweis University, H-1094 Budapest, Hungary;
| | - Attila Ignácz
- Department of Physiology and Neurobiology, Eötvös Loránd University, H-1117 Budapest, Hungary; (A.I.); (K.S.)
| | - Zoltán Hegyi
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudosok krt.2, H-1117 Budapest, Hungary; (Z.H.); (B.J.); (L.H.)
| | - Bálint Jezsó
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudosok krt.2, H-1117 Budapest, Hungary; (Z.H.); (B.J.); (L.H.)
| | - Sarolta Tóth
- Department of Transfusiology, Semmelweis University, H-1089 Budapest, Hungary; (R.N.); (S.T.)
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, H-1117 Budapest, Hungary
| | | | - László Homolya
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudosok krt.2, H-1117 Budapest, Hungary; (Z.H.); (B.J.); (L.H.)
| | - Luca Hegedűs
- Department of Thoracic Surgery, Ruhrlandklinik, University Clinic Essen, 45239 Essen, Germany;
| | - Katalin Schlett
- Department of Physiology and Neurobiology, Eötvös Loránd University, H-1117 Budapest, Hungary; (A.I.); (K.S.)
| | - Agnes Enyedi
- Department of Transfusiology, Semmelweis University, H-1089 Budapest, Hungary; (R.N.); (S.T.)
- Correspondence:
| |
Collapse
|
15
|
Čermák V, Škarková A, Merta L, Kolomazníková V, Palušová V, Uldrijan S, Rösel D, Brábek J. RNA-seq Characterization of Melanoma Phenotype Switch in 3D Collagen after p38 MAPK Inhibitor Treatment. Biomolecules 2021; 11:biom11030449. [PMID: 33802847 PMCID: PMC8002814 DOI: 10.3390/biom11030449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/08/2021] [Accepted: 03/15/2021] [Indexed: 12/30/2022] Open
Abstract
Melanoma phenotype plasticity underlies tumour dissemination and resistance to therapy, yet its regulation is incompletely understood. In vivo switching between a more differentiated, proliferative phenotype and a dedifferentiated, invasive phenotype is directed by the tumour microenvironment. We found that treatment of partially dedifferentiated, invasive A375M2 cells with two structurally unrelated p38 MAPK inhibitors, SB2021920 and BIRB796, induces a phenotype switch in 3D collagen, as documented by increased expression of melanocyte differentiation markers and a loss of invasive phenotype markers. The phenotype is accompanied by morphological change corresponding to amoeboid–mesenchymal transition. We performed RNA sequencing with an Illumina HiSeq platform to fully characterise transcriptome changes underlying the switch. Gene expression results obtained with RNA-seq were validated by comparing them with RT-qPCR. Transcriptomic data generated in the study will extend the present understanding of phenotype plasticity in melanoma and its contribution to invasion and metastasis.
Collapse
Affiliation(s)
- Vladimír Čermák
- Department of Cell Biology, Charles University, Viničná 7, 128 44 Prague, Czech Republic; (V.Č.); (A.Š.); (L.M.); (V.K.); (D.R.)
- Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), Průmyslová 595, 252 42 Vestec u Prahy, Czech Republic
| | - Aneta Škarková
- Department of Cell Biology, Charles University, Viničná 7, 128 44 Prague, Czech Republic; (V.Č.); (A.Š.); (L.M.); (V.K.); (D.R.)
- Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), Průmyslová 595, 252 42 Vestec u Prahy, Czech Republic
| | - Ladislav Merta
- Department of Cell Biology, Charles University, Viničná 7, 128 44 Prague, Czech Republic; (V.Č.); (A.Š.); (L.M.); (V.K.); (D.R.)
- Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), Průmyslová 595, 252 42 Vestec u Prahy, Czech Republic
| | - Veronika Kolomazníková
- Department of Cell Biology, Charles University, Viničná 7, 128 44 Prague, Czech Republic; (V.Č.); (A.Š.); (L.M.); (V.K.); (D.R.)
- Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), Průmyslová 595, 252 42 Vestec u Prahy, Czech Republic
| | - Veronika Palušová
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; (V.P.); (S.U.)
- International Clinical Research Center, St. Anne’s University Hospital, Pekařská 53, 656 91 Brno, Czech Republic
| | - Stjepan Uldrijan
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; (V.P.); (S.U.)
- International Clinical Research Center, St. Anne’s University Hospital, Pekařská 53, 656 91 Brno, Czech Republic
| | - Daniel Rösel
- Department of Cell Biology, Charles University, Viničná 7, 128 44 Prague, Czech Republic; (V.Č.); (A.Š.); (L.M.); (V.K.); (D.R.)
- Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), Průmyslová 595, 252 42 Vestec u Prahy, Czech Republic
| | - Jan Brábek
- Department of Cell Biology, Charles University, Viničná 7, 128 44 Prague, Czech Republic; (V.Č.); (A.Š.); (L.M.); (V.K.); (D.R.)
- Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), Průmyslová 595, 252 42 Vestec u Prahy, Czech Republic
- Correspondence: ; Tel./Fax: +420-3258-73900
| |
Collapse
|
16
|
Cioce M, Fazio VM. EphA2 and EGFR: Friends in Life, Partners in Crime. Can EphA2 Be a Predictive Biomarker of Response to Anti-EGFR Agents? Cancers (Basel) 2021; 13:cancers13040700. [PMID: 33572284 PMCID: PMC7915460 DOI: 10.3390/cancers13040700] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 12/14/2022] Open
Abstract
The Eph receptors represent the largest group among Receptor Tyrosine kinase (RTK) families. The Eph/ephrin signaling axis plays center stage during development, and the deep perturbation of signaling consequent to its dysregulation in cancer reveals the multiplicity and complexity underlying its function. In the last decades, they have emerged as key players in solid tumors, including colorectal cancer (CRC); however, what causes EphA2 to switch between tumor-suppressive and tumor-promoting function is still an active theater of investigation. This review summarizes the recent advances in understanding EphA2 function in cancer, with detail on the molecular determinants of the oncogene-tumor suppressor switch function of EphA2. We describe tumor context-specific examples of EphA2 signaling and the emerging role EphA2 plays in supporting cancer-stem-cell-like populations and overcoming therapy-induced stress. In such a frame, we detail the interaction of the EphA2 and EGFR pathway in solid tumors, including colorectal cancer. We discuss the contribution of the EphA2 oncogenic signaling to the resistance to EGFR blocking agents, including cetuximab and TKIs.
Collapse
Affiliation(s)
- Mario Cioce
- Laboratory of Molecular Medicine and Biotechnology, Department of Medicine, University Campus Bio-Medico of Rome, 00128 Rome, Italy
- Correspondence: (M.C.); (V.M.F.)
| | - Vito Michele Fazio
- Laboratory of Molecular Medicine and Biotechnology, Department of Medicine, University Campus Bio-Medico of Rome, 00128 Rome, Italy
- Laboratory of Oncology, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
- Institute of Translational Pharmacology, National Research Council of Italy (CNR), 00133 Rome, Italy
- Correspondence: (M.C.); (V.M.F.)
| |
Collapse
|
17
|
Rabie EM, Zhang SX, Kourouklis AP, Kilinc AN, Simi AK, Radisky DC, Tien J, Nelson CM. Matrix degradation and cell proliferation are coupled to promote invasion and escape from an engineered human breast microtumor. Integr Biol (Camb) 2021; 13:17-29. [PMID: 33497442 PMCID: PMC7856634 DOI: 10.1093/intbio/zyaa026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/22/2020] [Accepted: 12/26/2020] [Indexed: 01/05/2023]
Abstract
Metastasis, the leading cause of mortality in cancer patients, depends upon the ability of cancer cells to invade into the extracellular matrix that surrounds the primary tumor and to escape into the vasculature. To investigate the features of the microenvironment that regulate invasion and escape, we generated solid microtumors of MDA-MB-231 human breast carcinoma cells within gels of type I collagen. The microtumors were formed at defined distances adjacent to an empty cavity, which served as an artificial vessel into which the constituent tumor cells could escape. To define the relative contributions of matrix degradation and cell proliferation on invasion and escape, we used pharmacological approaches to block the activity of matrix metalloproteinases (MMPs) or to arrest the cell cycle. We found that blocking MMP activity prevents both invasion and escape of the breast cancer cells. Surprisingly, blocking proliferation increases the rate of invasion but has no effect on that of escape. We found that arresting the cell cycle increases the expression of MMPs, consistent with the increased rate of invasion. To gain additional insight into the role of cell proliferation in the invasion process, we generated microtumors from cells that express the fluorescent ubiquitination-based cell cycle indicator. We found that the cells that initiate invasions are preferentially quiescent, whereas cell proliferation is associated with the extension of invasions. These data suggest that matrix degradation and cell proliferation are coupled during the invasion and escape of human breast cancer cells and highlight the critical role of matrix proteolysis in governing tumor phenotype.
Collapse
Affiliation(s)
- Emann M Rabie
- Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Sherry X Zhang
- Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Andreas P Kourouklis
- Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ, USA
| | - A Nihan Kilinc
- Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Allison K Simi
- Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Derek C Radisky
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Joe Tien
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Division of Materials Science and Engineering, Boston University, Boston, MA, USA
| | - Celeste M Nelson
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ, USA
| |
Collapse
|
18
|
Wu JS, Jiang J, Chen BJ, Wang K, Tang YL, Liang XH. Plasticity of cancer cell invasion: Patterns and mechanisms. Transl Oncol 2020; 14:100899. [PMID: 33080522 PMCID: PMC7573380 DOI: 10.1016/j.tranon.2020.100899] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/12/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer cell migration and invasion are integral components of metastatic disease, which is the major cause of death in cancer patients. Cancer cells can disseminate and migrate via several alternative mechanisms including amoeboid cell migration, mesenchymal cell migration, and collective cell migration. These diverse movement strategies display certain specific and distinct hallmarks in cell-cell junctions, actin cytoskeleton, matrix adhesion, and protease activity. During tumor progression, cells pass through complex microenvironments and adapt their migration strategies by reversible mesenchymal-amoeboid and individual-collective transitions. This plasticity in motility patterns enables cancer cells disseminate further and thus limit the efficiency of anti-metastasis therapies. In this review, we discuss the modes and mechanisms of cancer cell migration and focus on the plasticity of tumor cell movement as well as potential emerging therapeutic options for reducing cancer cell invasion.
Collapse
Affiliation(s)
- Jia-Shun Wu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jian Jiang
- Department of Head and Neck Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Bing-Jun Chen
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ke Wang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ya-Ling Tang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Xin-Hua Liang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
19
|
London M, Gallo E. The EphA2 and cancer connection: potential for immune-based interventions. Mol Biol Rep 2020; 47:8037-8048. [PMID: 32990903 DOI: 10.1007/s11033-020-05767-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 08/28/2020] [Indexed: 12/18/2022]
Abstract
The Eph (erythropoietin-producing human hepatocellular) receptors form the largest known subfamily of receptor tyrosine kinases. These receptors interact with membrane-bound ephrin ligands via direct cell-cell interactions resulting in bi-directional activation of signal pathways. Importantly, the Eph receptors play critical roles in embryonic tissue organization and homeostasis, and in the maintenance of adult processes such as long-term potentiation, angiogenesis, and stem cell differentiation. The Eph receptors also display properties of both tumor promoters and suppressors depending on the cellular context. Characterization of EphA2 receptor in regard to EphA2 dysregulation has revealed associations with various pathological processes, especially cancer. The analysis of various tumor types generally identify EphA2 receptor as overexpressed and/or mutated, and for certain types of cancers EphA2 is linked with poor prognosis and decreased patient survival. Thus, here we highlight the role of EphA2 in malignant tissues that are specific to cancer; these include glioblastoma multiforme, prostate cancer, ovarian and uterine cancers, gastric carcinoma, melanoma, and breast cancer. Due to its large extracellular domain, therapeutic targeting of EphA2 with monoclonal antibodies (mAbs), which may function as inhibitors of ligand activation or as molecular agonists, has been an oft-attempted strategy. Therefore, we review the most current mAb-based therapies against EphA2 expressing cancers currently in pre-clinical and/or clinical stages. Finally, we discuss the latest peptides and cyclical-peptides that function as selective agonists for EphA2 receptor.
Collapse
Affiliation(s)
- Max London
- Department of Molecular Genetics, University of Toronto, Donnelly Centre, 160 College Street, Toronto, ON, M5S 3E1, Canada
| | - Eugenio Gallo
- Department of Molecular Genetics, University of Toronto, Donnelly Centre, 160 College Street, Toronto, ON, M5S 3E1, Canada.
| |
Collapse
|
20
|
Alexandrova AY, Chikina AS, Svitkina TM. Actin cytoskeleton in mesenchymal-to-amoeboid transition of cancer cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 356:197-256. [PMID: 33066874 DOI: 10.1016/bs.ircmb.2020.06.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
During development of metastasis, tumor cells migrate through different tissues and encounter different extracellular matrices. An ability of cells to adapt mechanisms of their migration to these diverse environmental conditions, called migration plasticity, gives tumor cells an advantage over normal cells for long distant dissemination. Different modes of individual cell motility-mesenchymal and amoeboid-are driven by different molecular mechanisms, which largely depend on functions of the actin cytoskeleton that can be modulated in a wide range by cellular signaling mechanisms in response to environmental conditions. Various triggers can switch one motility mode to another, but regulations of these transitions are incompletely understood. However, understanding of the mechanisms driving migration plasticity is instrumental for finding anti-cancer treatment capable to stop cancer metastasis. In this review, we discuss cytoskeletal features, which allow the individually migrating cells to switch between mesenchymal and amoeboid migrating modes, called mesenchymal-to-amoeboid transition (MAT). We briefly describe main characteristics of different cell migration modes, and then discuss the triggering factors that initiate MAT with special attention to cytoskeletal features essential for migration plasticity.
Collapse
Affiliation(s)
- Antonina Y Alexandrova
- Laboratory of Mechanisms of Carcinogenesis, N.N. Blokhin Russian Cancer Research Center, Moscow, Russia.
| | - Aleksandra S Chikina
- Cell Migration and Invasion and Spatio-Temporal Regulation of Antigen Presentation teams, UMR144/U932 Institut Curie, Paris, France
| | - Tatyana M Svitkina
- Department of Biology, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
21
|
Pyo A, You SH, Sik Kim H, Young Kim J, Min JJ, Kim DY, Hong Y. Production of 64Cu-labeled monobody for imaging of human EphA2-expressing tumors. Bioorg Med Chem Lett 2020; 30:127262. [PMID: 32527560 DOI: 10.1016/j.bmcl.2020.127262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/20/2020] [Accepted: 05/11/2020] [Indexed: 10/24/2022]
Abstract
We previously reported on the monobody E1, which specifically targets the tumor marker hEphA2. In this study, we labeled NOTA-conjugated E1 with 64Cu (64Cu-NOTA-E1) and evaluated biologic characteristics. The uptake of 64Cu-NOTA-E1 in PC3 cells (a human prostate cancer cell line) with high expression of hEphA2 increased in a time-dependent manner. In PC3 xenograft mice, 64Cu-NOTA-E1 injected via the tail vein allowed visualization of tumors on positron emission tomography after 1 h and the highest uptake measured at 24 h post-injection. By contrast, the radioactivity of other tissues either did not increase or decreased over 24 h. This indicates that 64Cu-NOTA-E1 has high tumor uptake and retention, with rapid clearance, and low background values in other tissues. Therefore, 64Cu-NOTA-E1 should be suitable as a novel PET imaging agent for hEphA2-expressing tumors.
Collapse
Affiliation(s)
- Ayoung Pyo
- Department of Nuclear Medicine, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea
| | - Sung-Hwan You
- Department of Nuclear Medicine, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea
| | - Hyeon Sik Kim
- Medical Photonics Research Center, Korea Photonics Technology Institute, Gwangju, Republic of Korea
| | - Jung Young Kim
- Division of RI-Convergence Research, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Jung-Joon Min
- Department of Nuclear Medicine, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea
| | - Dong-Yeon Kim
- Department of Nuclear Medicine, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea.
| | - Yeongjin Hong
- Department of Microbiology, Chonnam National University Medical School, Hwasun, Republic of Korea.
| |
Collapse
|
22
|
Thejer BM, Adhikary PP, Kaur A, Teakel SL, Van Oosterum A, Seth I, Pajic M, Hannan KM, Pavy M, Poh P, Jazayeri JA, Zaw T, Pascovici D, Ludescher M, Pawlak M, Cassano JC, Turnbull L, Jazayeri M, James AC, Coorey CP, Roberts TL, Kinder SJ, Hannan RD, Patrick E, Molloy MP, New EJ, Fehm TN, Neubauer H, Goldys EM, Weston LA, Cahill MA. PGRMC1 phosphorylation affects cell shape, motility, glycolysis, mitochondrial form and function, and tumor growth. BMC Mol Cell Biol 2020; 21:24. [PMID: 32245408 PMCID: PMC7119165 DOI: 10.1186/s12860-020-00256-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/04/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Progesterone Receptor Membrane Component 1 (PGRMC1) is expressed in many cancer cells, where it is associated with detrimental patient outcomes. It contains phosphorylated tyrosines which evolutionarily preceded deuterostome gastrulation and tissue differentiation mechanisms. RESULTS We demonstrate that manipulating PGRMC1 phosphorylation status in MIA PaCa-2 (MP) cells imposes broad pleiotropic effects. Relative to parental cells over-expressing hemagglutinin-tagged wild-type (WT) PGRMC1-HA, cells expressing a PGRMC1-HA-S57A/S181A double mutant (DM) exhibited reduced levels of proteins involved in energy metabolism and mitochondrial function, and altered glucose metabolism suggesting modulation of the Warburg effect. This was associated with increased PI3K/AKT activity, altered cell shape, actin cytoskeleton, motility, and mitochondrial properties. An S57A/Y180F/S181A triple mutant (TM) indicated the involvement of Y180 in PI3K/AKT activation. Mutation of Y180F strongly attenuated subcutaneous xenograft tumor growth in NOD-SCID gamma mice. Elsewhere we demonstrate altered metabolism, mutation incidence, and epigenetic status in these cells. CONCLUSIONS Altogether, these results indicate that mutational manipulation of PGRMC1 phosphorylation status exerts broad pleiotropic effects relevant to cancer and other cell biology.
Collapse
Affiliation(s)
- Bashar M Thejer
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia
- Department of Biology, College of Science, University of Wasit, Wasit, 00964, Iraq
| | - Partho P Adhikary
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia
- Present address: Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Amandeep Kaur
- School of Chemistry, University of Sydney, Sydney, NSW, 2006, Australia
- Present address: School of Medical Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Sarah L Teakel
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia
| | - Ashleigh Van Oosterum
- Life Sciences and Health, Faculty of Science, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia
| | - Ishith Seth
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia
| | - Marina Pajic
- The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of NSW, Darlinghurst, 2010, NSW, Australia
| | - Katherine M Hannan
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, 3010, Australia
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, ACT, Canberra, 2601, Australia
| | - Megan Pavy
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, ACT, Canberra, 2601, Australia
| | - Perlita Poh
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, ACT, Canberra, 2601, Australia
| | - Jalal A Jazayeri
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia
| | - Thiri Zaw
- Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW, 2109, Australia
| | - Dana Pascovici
- Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW, 2109, Australia
| | - Marina Ludescher
- Department of Gynecology and Obstetrics, University Women's Hospital of Dusseldorf, 40225, Dusseldorf, Germany
| | - Michael Pawlak
- NMI TT Pharmaservices, Protein Profiling, 72770, Reutlingen, Germany
| | - Juan C Cassano
- Particles-Biology Interactions Laboratory, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science & Technology (Empa), Lerchenfeldstrasse 5, CH-9014, St Gallen, Switzerland
| | - Lynne Turnbull
- The ithree institute, University of Technology Sydney, Ultimo, NSW, 2007, Australia
- Present address: GE Healthcare Life Sciences, Issaquah, WA, 98027, USA
| | - Mitra Jazayeri
- Department of Mathematics and Statistics, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Alexander C James
- Ingham Institute for Applied Medical Research, Liverpool, NSW, 2170, Australia
- School of Medicine, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
- South Western Sydney Clinical School, Faculty of Medicine, The University of New South Wales, Liverpool, NSW, 2170, Australia
| | - Craig P Coorey
- Ingham Institute for Applied Medical Research, Liverpool, NSW, 2170, Australia
- School of Medicine and University of Queensland Centre for Clinical Research, Herston, QLD, 4006, Australia
| | - Tara L Roberts
- Ingham Institute for Applied Medical Research, Liverpool, NSW, 2170, Australia
- School of Medicine, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
- South Western Sydney Clinical School, Faculty of Medicine, The University of New South Wales, Liverpool, NSW, 2170, Australia
- School of Medicine and University of Queensland Centre for Clinical Research, Herston, QLD, 4006, Australia
| | | | - Ross D Hannan
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, 3010, Australia
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, ACT, Canberra, 2601, Australia
- Division of Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, 3010, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3168, Australia
| | - Ellis Patrick
- School of Mathematics and Statistics, University of Sydney, Sydney, NSW, 2006, Australia
| | - Mark P Molloy
- Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW, 2109, Australia
- Present address: The Kolling Institute, The University of Sydney, St Leonards (Sydney), NSW, 2064, Australia
| | - Elizabeth J New
- School of Chemistry, University of Sydney, Sydney, NSW, 2006, Australia
| | - Tanja N Fehm
- Department of Gynecology and Obstetrics, University Women's Hospital of Dusseldorf, 40225, Dusseldorf, Germany
| | - Hans Neubauer
- Department of Gynecology and Obstetrics, University Women's Hospital of Dusseldorf, 40225, Dusseldorf, Germany
| | - Ewa M Goldys
- ARC Centre of Excellence for Nanoscale BioPhotonics, Macquarie University, Sydney, NSW, 2109, Australia
- Present address: The Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Kensington, NSW, 2052, Australia
| | - Leslie A Weston
- Graham Centre for Agricultural Innovation, Charles Sturt University, Boorooma Street, Wagga Wagga, NSW, 2678, Australia
- School of Agricultural and Wine Sciences, Charles Sturt University, Boorooma Street, Wagga Wagga, NSW, 2678, Australia
| | - Michael A Cahill
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia.
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, ACT, Canberra, 2601, Australia.
| |
Collapse
|
23
|
Chikina AS, Rubtsova SN, Lomakina ME, Potashnikova DM, Vorobjev IA, Alexandrova AY. Transition from mesenchymal to bleb-based motility is predominantly exhibited by CD133-positive subpopulation of fibrosarcoma cells. Biol Cell 2019; 111:245-261. [PMID: 31403697 DOI: 10.1111/boc.201800078] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 07/22/2019] [Accepted: 08/06/2019] [Indexed: 01/11/2023]
Abstract
BACKGROUND INFORMATION Metastatic disease is caused by the ability of cancer cells to reach distant organs and form secondary lesions at new locations. Dissemination of cancer cells depends on their migration plasticity - an ability to switch between motility modes driven by distinct molecular machineries. One of such switches is mesenchymal-to-amoeboid transition. Although mesenchymal migration of individual cells requires Arp2/3-dependent actin polymerisation, amoeboid migration is characterised by a high level of actomyosin contractility and often involves the formation of membrane blebs. The acquisition of amoeboid motility by mesenchymal cells is often associated with enhanced metastasis. RESULTS We studied the ability of mesenchymal HT1080 fibrosarcoma cells to switch to amoeboid motility. We induced the transition from lamellipodium-rich to blebbing phenotype either by down-regulating the Arp2/3 complex, pharmacologically or by RNAi, or by decreasing substrate adhesiveness. Each of these treatments induced blebbing in a subset of fibrosarcoma cells, but not in normal subcutaneous fibroblasts. A significant fraction of HT1080 cells that switched to blebbing behaviour exhibited stem cell-like features, such as expression of the stem cell marker CD133, an increased efflux of Hoechst-33342 and positive staining for Oct4, Sox2 and Nanog. Furthermore, the isolated CD133+ cells demonstrated an increased ability to switch to bleb-rich amoeboid phenotype both under inhibitor's treatment and in 3D collagen gels. CONCLUSIONS Together, our data show a significant correlation between the increased ability of cells to switch between migration modes and their stem-like features, suggesting that migration plasticity is an additional property of stem-like population of fibrosarcoma cells. This combination of features could facilitate both dissemination of these cells to distant locations, and their establishment self-renewal in a new microenvironment, as required for metastasis formation. SIGNIFICANCE These data suggest that migration plasticity is a new feature of cancer stem-like cells that can significantly facilitate their dissemination to a secondary location by allowing them to adapt quickly to challenging microenvironments. Moreover, it complements their resistance to apoptosis and self-renewal potential, thus enabling them not only to disseminate efficiently, but also to survive and colonise new niches.
Collapse
Affiliation(s)
- Aleksandra S Chikina
- N.N. Blokhin National Medical Research Center of Oncology, Moscow, 115478, Russia
| | - Svetlana N Rubtsova
- N.N. Blokhin National Medical Research Center of Oncology, Moscow, 115478, Russia
| | - Maria E Lomakina
- N.N. Blokhin National Medical Research Center of Oncology, Moscow, 115478, Russia
| | - Daria M Potashnikova
- Department of Biology and A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Ivan A Vorobjev
- Department of Biology, School of Science and Technology, Nazarbayev University, Astana, 010000, Kazakhstan
| | | |
Collapse
|
24
|
Mierke CT. The matrix environmental and cell mechanical properties regulate cell migration and contribute to the invasive phenotype of cancer cells. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2019; 82:064602. [PMID: 30947151 DOI: 10.1088/1361-6633/ab1628] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The minimal structural unit of a solid tumor is a single cell or a cellular compartment such as the nucleus. A closer look inside the cells reveals that there are functional compartments or even structural domains determining the overall properties of a cell such as the mechanical phenotype. The mechanical interaction of these living cells leads to the complex organization such as compartments, tissues and organs of organisms including mammals. In contrast to passive non-living materials, living cells actively respond to the mechanical perturbations occurring in their microenvironment during diseases such as fibrosis and cancer. The transformation of single cancer cells in highly aggressive and hence malignant cancer cells during malignant cancer progression encompasses the basement membrane crossing, the invasion of connective tissue, the stroma microenvironments and transbarrier migration, which all require the immediate interaction of the aggressive and invasive cancer cells with the surrounding extracellular matrix environment including normal embedded neighboring cells. All these steps of the metastatic pathway seem to involve mechanical interactions between cancer cells and their microenvironment. The pathology of cancer due to a broad heterogeneity of cancer types is still not fully understood. Hence it is necessary to reveal the signaling pathways such as mechanotransduction pathways that seem to be commonly involved in the development and establishment of the metastatic and mechanical phenotype in several carcinoma cells. We still do not know whether there exist distinct metastatic genes regulating the progression of tumors. These metastatic genes may then be activated either during the progression of cancer by themselves on their migration path or in earlier stages of oncogenesis through activated oncogenes or inactivated tumor suppressor genes, both of which promote the metastatic phenotype. In more detail, the adhesion of cancer cells to their surrounding stroma induces the generation of intracellular contraction forces that deform their microenvironments by alignment of fibers. The amplitude of these forces can adapt to the mechanical properties of the microenvironment. Moreover, the adhesion strength of cancer cells seems to determine whether a cancer cell is able to migrate through connective tissue or across barriers such as the basement membrane or endothelial cell linings of blood or lymph vessels in order to metastasize. In turn, exposure of adherent cancer cells to physical forces, such as shear flow in vessels or compression forces around tumors, reinforces cell adhesion, regulates cell contractility and restructures the ordering of the local stroma matrix that leads subsequently to secretion of crosslinking proteins or matrix degrading enzymes. Hence invasive cancer cells alter the mechanical properties of their microenvironment. From a mechanobiological point-of-view, the recognized physical signals are transduced into biochemical signaling events that guide cellular responses such as cancer progression after the malignant transition of cancer cells from an epithelial and non-motile phenotype to a mesenchymal and motile (invasive) phenotype providing cellular motility. This transition can also be described as the physical attempt to relate this cancer cell transitional behavior to a T1 phase transition such as the jamming to unjamming transition. During the invasion of cancer cells, cell adaptation occurs to mechanical alterations of the local stroma, such as enhanced stroma upon fibrosis, and therefore we need to uncover underlying mechano-coupling and mechano-regulating functional processes that reinforce the invasion of cancer cells. Moreover, these mechanisms may also be responsible for the awakening of dormant residual cancer cells within the microenvironment. Physicists were initially tempted to consider the steps of the cancer metastasis cascade as single events caused by a single mechanical alteration of the overall properties of the cancer cell. However, this general and simple view has been challenged by the finding that several mechanical properties of cancer cells and their microenvironment influence each other and continuously contribute to tumor growth and cancer progression. In addition, basement membrane crossing, cell invasion and transbarrier migration during cancer progression is explained in physical terms by applying physical principles on living cells regardless of their complexity and individual differences of cancer types. As a novel approach, the impact of the individual microenvironment surrounding cancer cells is also included. Moreover, new theories and models are still needed to understand why certain cancers are malignant and aggressive, while others stay still benign. However, due to the broad variety of cancer types, there may be various pathways solely suitable for specific cancer types and distinct steps in the process of cancer progression. In this review, physical concepts and hypotheses of cancer initiation and progression including cancer cell basement membrane crossing, invasion and transbarrier migration are presented and discussed from a biophysical point-of-view. In addition, the crosstalk between cancer cells and a chronically altered microenvironment, such as fibrosis, is discussed including the basic physical concepts of fibrosis and the cellular responses to mechanical stress caused by the mechanically altered microenvironment. Here, is highlighted how biophysical approaches, both experimentally and theoretically, have an impact on classical hallmarks of cancer and fibrosis and how they contribute to the understanding of the regulation of cancer and its progression by sensing and responding to the physical environmental properties through mechanotransduction processes. Finally, this review discusses various physical models of cell migration such as blebbing, nuclear piston, protrusive force and unjamming transition migration modes and how they contribute to cancer progression. Moreover, these cellular migration modes are influenced by microenvironmental perturbances such as fibrosis that can induce mechanical alterations in cancer cells, which in turn may impact the environment. Hence, the classical hallmarks of cancer need to be refined by including biomechanical properties of cells, cell clusters and tissues and their microenvironment to understand mechano-regulatory processes within cancer cells and the entire organism.
Collapse
|
25
|
SIRT2 Contributes to the Resistance of Melanoma Cells to the Multikinase Inhibitor Dasatinib. Cancers (Basel) 2019; 11:cancers11050673. [PMID: 31091806 PMCID: PMC6562913 DOI: 10.3390/cancers11050673] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/08/2019] [Accepted: 05/12/2019] [Indexed: 12/11/2022] Open
Abstract
Malignant melanoma is the most aggressive skin cancer and can only be cured if detected early. Unfortunately, later stages of the disease do not guarantee success due to the rapid rate of melanoma cell metastasis and their high resistance to applied therapies. The search for new molecular targets and targeted therapy may represent the future in the development of effective methods for combating this cancer. SIRT2 is a promising target; thus, we downregulated SIRT2 expression in melanoma cells in vertical growth and metastatic phases and demonstrated that sirtuin acts as regulator of the basic functions of melanoma cells. A detailed transcriptomic analysis showed that SIRT2 regulates the expression of multiple genes encoding the tyrosine kinase pathways that are molecular targets of dasatinib. Indeed, cells with low SIRT2 expression were more susceptible to dasatinib, as demonstrated by multiple techniques, e.g., neutral red uptake, 3/7 caspase activity, colony formation assay, and in vitro scratch assay. Furthermore, these cells showed an altered phosphorylation profile for proteins playing roles in the response to dasatinib. Thus, our research indicates new, previously unknown SIRT2 functions in the regulation of gene expression, which is of key clinical significance.
Collapse
|
26
|
Mediating the invasion of smooth muscle cells into a cell-responsive hydrogel under the existence of immune cells. Biomaterials 2018; 180:193-205. [DOI: 10.1016/j.biomaterials.2018.07.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 05/27/2018] [Accepted: 07/11/2018] [Indexed: 01/12/2023]
|
27
|
Zhou Y, Sakurai H. Emerging and Diverse Functions of the EphA2 Noncanonical Pathway in Cancer Progression. Biol Pharm Bull 2018; 40:1616-1624. [PMID: 28966234 DOI: 10.1248/bpb.b17-00446] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Erythropoietin-producing hepatocellular receptor A2 (EphA2) receptor tyrosine kinase controls multiple physiological processes to maintain homeostasis in normal cells. In many types of solid tumors, it has been reported that EphA2 is overexpressed and plays a critical role in oncogenic signaling. However, in recent years, the opposing functions of EphA2 have been explained by the canonical and noncanonical signaling pathways. Ligand- and tyrosine kinase-dependent EphA2 activation (the canonical pathway) inhibits cancer cell proliferation and motility. In contrast, ligand- and tyrosine kinase-independent EphA2 signaling (the noncanonical pathway) promotes tumor survival and metastasis and controls acquired drug resistance and maintenance of cancer stem cell-like properties. Evidence has accumulated showing that the EphA2 noncanonical pathway is mainly regulated by inflammatory cytokines and growth factors via phosphorylation at Ser-897 in the intracellular C-tail region via some serine/threonine kinases, including p90 ribosomal S6 kinase. In this review, we focus on the regulation of Ser-897 phosphorylation and its functional importance in tumor malignancy and discuss future therapeutic targeting.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Cancer Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama.,The MOE Key Laboratory for Standardization of Chinese Medicines and the Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine
| | - Hiroaki Sakurai
- Department of Cancer Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| |
Collapse
|
28
|
Chillà A, Margheri F, Biagioni A, Del Rosso M, Fibbi G, Laurenzana A. Mature and progenitor endothelial cells perform angiogenesis also under protease inhibition: the amoeboid angiogenesis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:74. [PMID: 29615071 PMCID: PMC5883600 DOI: 10.1186/s13046-018-0742-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 03/19/2018] [Indexed: 01/05/2023]
Abstract
Background Controlling vascular growth is a challenging aim for the inhibition of tumor growth and metastasis. The amoeboid and mesenchymal types of invasiveness are two modes of migration interchangeable in cancer cells: the Rac-dependent mesenchymal migration requires the activity of proteases; the Rho-ROCK-dependent amoeboid motility is protease-independent and has never been described in endothelial cells. Methods A cocktail of physiologic inhibitors (Ph-C) of serine-proteases, metallo-proteases and cysteine-proteases, mimicking the physiological environment that cells encounter during their migration within the angiogenesis sites was used to induce amoeboid style migration of Endothelial colony forming cells (ECFCs) and mature endothelial cells (ECs). To evaluate the mesenchymal-ameboid transition RhoA and Rac1 activation assays were performed along with immunofluorescence analysis of proteins involved in cytoskeleton organization. Cell invasion was studied in Boyden chambers and Matrigel plug assay for the in vivo angiogenesis. Results In the present study we showed in both ECFCs and ECs, a decrease of activated Rac1 and an increase of activated RhoA upon shifting of cells to the amoeboid conditions. In presence of Ph-C inhibitors both cell lines acquired a round morphology and Matrigel invasion was greatly enhanced with respect to that observed in the absence of protease inhibition. We also observed that the urokinase-plasminogen-activator (uPAR) receptor silencing and uPAR-integrin uncoupling with the M25 peptide abolished both mesenchymal and amoeboid angiogenesis of ECFCs and ECs in vitro and in vivo, indicating a role of the uPAR-integrin-actin axis in the regulation of amoeboid angiogenesis. Furthermore, under amoeboid conditions endothelial cells seem to be indifferent to VEGF stimulation, which induces an amoeboid signaling pattern also in mesenchymal conditions. Conclusion Here we first provide a data set disclosing that endothelial cells can move and differentiate into vascular structures in vitro and in vivo also in the absence of proteases activity, performing a new type of neovascularization: the “amoeboid angiogenesis”. uPAR is indispensable for ECs and ECFCs to perform an efficient amoeboid angiogenesis. Therefore, uPAR silencing or the block of its integrin-interaction, together with standard treatment against VEGF, could be a possible solution for angiogenesis inhibition. Electronic supplementary material The online version of this article (10.1186/s13046-018-0742-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anastasia Chillà
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Section of Experimental Pathology and Oncology, Viale G.B. Morgagni, 50-50134, Florence, Italy.
| | - Francesca Margheri
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Section of Experimental Pathology and Oncology, Viale G.B. Morgagni, 50-50134, Florence, Italy
| | - Alessio Biagioni
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Section of Experimental Pathology and Oncology, Viale G.B. Morgagni, 50-50134, Florence, Italy
| | - Mario Del Rosso
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Section of Experimental Pathology and Oncology, Viale G.B. Morgagni, 50-50134, Florence, Italy.
| | - Gabriella Fibbi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Section of Experimental Pathology and Oncology, Viale G.B. Morgagni, 50-50134, Florence, Italy
| | - Anna Laurenzana
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Section of Experimental Pathology and Oncology, Viale G.B. Morgagni, 50-50134, Florence, Italy
| |
Collapse
|
29
|
Chikina AS, Alexandrova AY. An In Vitro System to Study the Mesenchymal-to-Amoeboid Transition. Methods Mol Biol 2018; 1749:21-27. [PMID: 29525987 DOI: 10.1007/978-1-4939-7701-7_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
During the last few years, significant attention has been given to the plasticity of cell migration, i.e., the ability of individual cell to switch between different motility modes, in particular between mesenchymal and amoeboid motilities. This phenomenon is called the mesenchymal-to-amoeboid transition (MAT). Such a plasticity of cell migration is a mechanism, by which cancer cells can adapt their migration mode to different microenvironments and thus it may promote tumor dissemination. It was shown that interventions at certain regulatory points of mesenchymal motility as well as alterations of environmental conditions can trigger MAT. One of the approaches to induce MAT is to mechanically confine cells and one of the simplest ways to achieve this is to cultivate cells under agarose. This method does not require any special tool, is easily reproducible and allows cell tracking by videomicroscopy. We describe here a protocol, where MAT is associated with chemotaxis.
Collapse
Affiliation(s)
- Aleksandra S Chikina
- Laboratory of Mechanisms of Carcinogenesis, N.N. Blokhin Russian Cancer Research Center, Moscow, Russian Federation.,CNRS UMR144/Institut Curie, Paris, France
| | - Antonina Y Alexandrova
- Laboratory of Mechanisms of Carcinogenesis, N.N. Blokhin Russian Cancer Research Center, Moscow, Russian Federation
| |
Collapse
|
30
|
Daoud A, Gopal U, Kaur J, Isaacs JS. Molecular and functional crosstalk between extracellular Hsp90 and ephrin A1 signaling. Oncotarget 2017; 8:106807-106819. [PMID: 29290990 PMCID: PMC5739775 DOI: 10.18632/oncotarget.22370] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 09/30/2017] [Indexed: 12/28/2022] Open
Abstract
The Eph receptor tyrosine kinase family member EphA2 plays a pivotal role in modulating cytoskeletal dynamics to control cancer cell motility and invasion. EphA2 is frequently upregulated in diverse solid tumors and has emerged as a viable druggable target. We previously reported that extracellular Hsp90 (eHsp90), a known pro-motility and invasive factor, collaborates with EphA2 to regulate tumor invasion in the absence of its cognate ephrin ligand. Here, we aimed to further define the molecular and functional relationship between EphA2 and eHsp90. Ligand dependent ephrin A1 signaling promotes RhoA activation and altered cell morphology to favor transient cell rounding, retraction, and diminished adhesion. Exposure of EphA2-expressing cancer cells to ligand herein revealed a unique role for eHsp90 as an effector of cytoskeletal remodeling. Notably, blockade of eHsp90 via either neutralizing antibodies or administration of cell-impermeable Hsp90-targeted small molecules significantly attenuated ligand dependent cell rounding in diverse tumor types. Although eHsp90 blockade did not appear to influence receptor internalization, downstream signaling events were augmented. In particular, eHsp90 activated a Src-RhoA axis to enhance ligand dependent cell rounding, retraction, and ECM detachment. Moreover, eHsp90 signaling via this axis stimulated activation of the myosin pathway, culminating in formation of an EphA2-myosin complex. Inhibition of either eHsp90 or Src was sufficient to impair ephrin A1 mediated Rho activation, activation of myosin intermediates, and EphA2-myosin complex formation. Collectively, our data support a paradigm whereby eHsp90 and EphA2 exhibit molecular crosstalk and functional cooperation within a ligand dependent context to orchestrate cytoskeletal events controlling cell morphology and attachment.
Collapse
Affiliation(s)
- Abdelkader Daoud
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, SC, 29412, Charleston, USA
| | - Udhayakumar Gopal
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, SC, 29412, Charleston, USA.,Current address: Department of Pathology, Duke University School of Medicine, NC, 27708, Durham, USA
| | - Jasmine Kaur
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, SC, 29412, Charleston, USA
| | - Jennifer S Isaacs
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, SC, 29412, Charleston, USA
| |
Collapse
|
31
|
Edwards DN, Ngwa VM, Wang S, Shiuan E, Brantley-Sieders DM, Kim LC, Reynolds AB, Chen J. The receptor tyrosine kinase EphA2 promotes glutamine metabolism in tumors by activating the transcriptional coactivators YAP and TAZ. Sci Signal 2017; 10:eaan4667. [PMID: 29208682 PMCID: PMC5819349 DOI: 10.1126/scisignal.aan4667] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Malignant tumors reprogram cellular metabolism to support cancer cell proliferation and survival. Although most cancers depend on a high rate of aerobic glycolysis, many cancer cells also display addiction to glutamine. Glutamine transporters and glutaminase activity are critical for glutamine metabolism in tumor cells. We found that the receptor tyrosine kinase EphA2 activated the TEAD family transcriptional coactivators YAP and TAZ (YAP/TAZ), likely in a ligand-independent manner, to promote glutamine metabolism in cells and mouse models of HER2-positive breast cancer. Overexpression of EphA2 induced the nuclear accumulation of YAP and TAZ and increased the expression of YAP/TAZ target genes. Inhibition of the GTPase Rho or the kinase ROCK abolished EphA2-dependent YAP/TAZ nuclear localization. Silencing YAP or TAZ substantially reduced the amount of intracellular glutamate through decreased expression of SLC1A5 and GLS, respectively, genes that encode proteins that promote glutamine uptake and metabolism. The regulatory DNA elements of both SLC1A5 and GLS contain TEAD binding sites and were bound by TEAD4 in an EphA2-dependent manner. In patient breast cancer tissues, EphA2 expression positively correlated with that of YAP and TAZ, as well as that of GLS and SLC1A5 Although high expression of EphA2 predicted enhanced metastatic potential and poor patient survival, it also rendered HER2-positive breast cancer cells more sensitive to glutaminase inhibition. The findings define a previously unknown mechanism of EphA2-mediated glutaminolysis through YAP/TAZ activation in HER2-positive breast cancer and identify potential therapeutic targets in patients.
Collapse
Affiliation(s)
- Deanna N Edwards
- Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Verra M Ngwa
- Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Shan Wang
- Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Eileen Shiuan
- Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
- Medical Scientist Training Program, Vanderbilt University, Nashville, TN 37232, USA
| | - Dana M Brantley-Sieders
- Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Laura C Kim
- Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Albert B Reynolds
- Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Jin Chen
- Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
- Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Veterans Affairs Medical Center, Tennessee Valley Healthcare System, Nashville, TN 37212, USA
| |
Collapse
|
32
|
Cho HJ, Hwang YS, Yoon J, Lee M, Lee HG, Daar IO. EphrinB1 promotes cancer cell migration and invasion through the interaction with RhoGDI1. Oncogene 2017; 37:861-872. [PMID: 29059157 PMCID: PMC5814325 DOI: 10.1038/onc.2017.386] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 09/12/2017] [Accepted: 09/13/2017] [Indexed: 12/20/2022]
Abstract
Eph receptors and their corresponding ephrin ligands have been associated with regulating cell–cell adhesion and motility, and thus have a critical role in various biological processes including tissue morphogenesis and homeostasis, as well as pathogenesis of several diseases. Aberrant regulation of Eph/ephrin signaling pathways is implicated in tumor progression of various human cancers. Here, we show that a Rho family GTPase regulator, Rho guanine nucleotide dissociation inhibitor 1 (RhoGDI1), can interact with ephrinB1, and this interaction is enhanced upon binding the extracellular domain of the cognate EphB2 receptor. Deletion mutagenesis revealed that amino acids 327–334 of the ephrinB1 intracellular domain are critical for the interaction with RhoGDI1. Stimulation with an EphB2 extracellular domain-Fc fusion protein (EphB2-Fc) induces RhoA activation and enhances the motility as well as invasiveness of wild-type ephrinB1-expressing cells. These Eph-Fc-induced effects were markedly diminished in cells expressing the mutant ephrinB1 construct (Δ327–334) that is ineffective at interacting with RhoGDI1. Furthermore, ephrinB1 depletion by siRNA suppresses EphB2-Fc-induced RhoA activation, and reduces motility and invasiveness of the SW480 and Hs578T human cancer cell lines. Our study connects the interaction between RhoGDI1 and ephrinB1 to the promotion of cancer cell behavior associated with tumor progression. This interaction may represent a therapeutic target in cancers that express ephrinB1.
Collapse
Affiliation(s)
- H J Cho
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Korea.,Cancer & Developmental Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Y-S Hwang
- Cancer & Developmental Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - J Yoon
- Cancer & Developmental Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - M Lee
- Cancer & Developmental Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - H G Lee
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Korea
| | - I O Daar
- Cancer & Developmental Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| |
Collapse
|
33
|
Azimi A, Tuominen R, Costa Svedman F, Caramuta S, Pernemalm M, Frostvik Stolt M, Kanter L, Kharaziha P, Lehtiö J, Hertzman Johansson C, Höiom V, Hansson J, Egyhazi Brage S. Silencing FLI or targeting CD13/ANPEP lead to dephosphorylation of EPHA2, a mediator of BRAF inhibitor resistance, and induce growth arrest or apoptosis in melanoma cells. Cell Death Dis 2017; 8:e3029. [PMID: 29048432 PMCID: PMC5596587 DOI: 10.1038/cddis.2017.406] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 06/07/2017] [Accepted: 06/19/2017] [Indexed: 12/20/2022]
Abstract
A majority of patients with BRAF-mutated metastatic melanoma respond to therapy with BRAF inhibitors (BRAFi), but relapses are common owing to acquired resistance. To unravel BRAFi resistance mechanisms we have performed gene expression and mass spectrometry based proteome profiling of the sensitive parental A375 BRAF V600E-mutated human melanoma cell line and of daughter cell lines with induced BRAFi resistance. Increased expression of two novel resistance candidates, aminopeptidase-N (CD13/ANPEP) and ETS transcription factor FLI1 was observed in the BRAFi-resistant daughter cell lines. In addition, increased levels of the previously reported resistance mediators, receptor tyrosine kinase ephrine receptor A2 (EPHA2) and the hepatocyte growth factor receptor MET were also identified. The expression of these proteins was assessed in matched tumor samples from melanoma patients obtained before BRAFi and after disease progression. MET was overexpressed in all progression samples while the expression of the other candidates varied between the individual patients. Targeting CD13/ANPEP by a blocking antibody induced apoptosis in both parental A375- and BRAFi-resistant daughter cells as well as in melanoma cells with intrinsic BRAFi resistance and led to dephosphorylation of EPHA2 on S897, previously demonstrated to cause inhibition of the migratory capacity. AKT and RSK, both reported to induce EPHA2 S897 phosphorylation, were also dephosphorylated after inhibition of CD13/ANPEP. FLI1 silencing also caused decreases in EPHA2 S897 phosphorylation and in total MET protein expression. In addition, silencing of FLI1 sensitized the resistant cells to BRAFi. Furthermore, we show that BRAFi in combination with the multi kinase inhibitor dasatinib can abrogate BRAFi resistance and decrease both EPHA2 S897 phosphorylation and total FLI1 protein expression. This is the first report presenting CD13/ANPEP and FLI1 as important mediators of resistance to BRAF inhibition with potential as drug targets in BRAFi refractory melanoma.
Collapse
Affiliation(s)
- Alireza Azimi
- Cancer Center Karolinska, Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Rainer Tuominen
- Cancer Center Karolinska, Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Fernanda Costa Svedman
- Cancer Center Karolinska, Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Stefano Caramuta
- Cancer Center Karolinska, Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Maria Pernemalm
- Science for Life Laboratory, Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Marianne Frostvik Stolt
- Cancer Center Karolinska, Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Lena Kanter
- Cancer Center Karolinska, Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Pedram Kharaziha
- Cancer Center Karolinska, Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Janne Lehtiö
- Science for Life Laboratory, Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | | | - Veronica Höiom
- Cancer Center Karolinska, Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Johan Hansson
- Cancer Center Karolinska, Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Suzanne Egyhazi Brage
- Cancer Center Karolinska, Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
34
|
Kim MA, Yoon HS, Park SH, Kim DY, Pyo A, Kim HS, Min JJ, Hong Y. Engineering of monobody conjugates for human EphA2-specific optical imaging. PLoS One 2017; 12:e0180786. [PMID: 28686661 PMCID: PMC5501600 DOI: 10.1371/journal.pone.0180786] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 06/21/2017] [Indexed: 02/06/2023] Open
Abstract
In a previous study, we developed an E1 monobody specific for the tumor biomarker hEphA2 [PLoS ONE (2015) 10(7): e0132976]. E1 showed potential as a molecular probe for in vitro and in vivo targeting of cancers overexpressing hEphA2. In the present study, we constructed expression vectors for E1 conjugated to optical reporters such as Renilla luciferase variant 8 (Rluc8) or enhanced green fluorescent protein (EGFP) and purified such recombinant proteins by affinity chromatography in E. coli. E1-Rluc8 and E1-EGFP specifically bound to hEphA2 in human prostate cancer PC3 cells but not in human cervical cancer HeLa cells, which express hEphA2 at high and low levels, respectively. These recombinant proteins maintained >40% activity in mouse serum at 24 h. In vivo optical imaging for 24 h did not detect E1-EGFP signals, whereas E1-Rluc8 showed tumor-specific luminescence signals in PC3 but not in HeLa xenograft mice. E1-Rluc8 signals were detected at 4 h, peaked at 12 h, and were undetectable at 24 h. These results suggest the potential of E1-Rluc8 as an EphA2-specific optical imaging agent.
Collapse
MESH Headings
- Animals
- Antibodies, Neoplasm/biosynthesis
- Antibodies, Neoplasm/chemistry
- Biomarkers, Tumor/analysis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Cell Line, Tumor
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Female
- Genes, Reporter
- Genetic Vectors/chemistry
- Genetic Vectors/metabolism
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- HeLa Cells
- Heterografts
- Humans
- Immunoconjugates/chemistry
- Immunoconjugates/metabolism
- Luciferases/genetics
- Luciferases/metabolism
- Male
- Mice, Inbred BALB C
- Mice, Nude
- Optical Imaging
- Organ Specificity
- Protein Engineering
- Receptor, EphA2/analysis
- Receptor, EphA2/genetics
- Receptor, EphA2/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
Collapse
Affiliation(s)
- Min-A Kim
- Department of Microbiology, Chonnam National University Medical School, Gwangju, Republic of Korea
- Department of Molecular Medicine (BK21Plus), Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Hee Seung Yoon
- Department of Molecular Medicine (BK21Plus), Chonnam National University Medical School, Gwangju, Republic of Korea
- Department of Nuclear Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Seung-Hwan Park
- Biological Resource Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Jeongeup, Republic of Korea
| | - Dong-Yeon Kim
- Department of Nuclear Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Ayoung Pyo
- Department of Nuclear Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Hyeon Sik Kim
- Department of Nuclear Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Jung-Joon Min
- Department of Nuclear Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Yeongjin Hong
- Department of Microbiology, Chonnam National University Medical School, Gwangju, Republic of Korea
- * E-mail:
| |
Collapse
|
35
|
Abstract
Cancer is the second leading cause of death in the United States, and is an increasing cause of death in the developing world. While there is great heterogeneity in the anatomic site and mutations involved in human cancer, there are common features, including immortal growth, angiogenesis, apoptosis evasion, and other features, that are common to most if not all cancers. However, new features of human cancers have been found as a result of clinical use of novel “targeted therapies,” angiogenesis inhibitors, and immunotherapies, including checkpoint inhibitors. These findings indicate that cancer is a moving target, which can change signaling and metabolic features based upon the therapies offered. It is well-known that there is significant heterogeneity within a tumor and it is possible that treatment might reduce the heterogeneity as a tumor adapts to therapy and, thus, a tumor might be synchronized, even if there is no major clinical response. Understanding this concept is important, as concurrent and sequential therapies might lead to improved tumor responses and cures. We posit that the repertoire of tumor responses is both predictable and limited, thus giving hope that eventually we can be more effective against solid tumors. Currently, among solid tumors, we observe a response of 1/3 of tumors to immunotherapy, perhaps less to angiogenesis inhibition, a varied response to targeted therapies, with relapse and resistance being the rule, and a large fraction being insensitive to all of these therapies, thus requiring the older therapies of chemotherapy, surgery, and radiation. Tumor phenotypes can be seen as a continuum between binary extremes, which will be discussed further. The biology of cancer is undoubtedly more complex than duality, but thinking of cancer as a duality may help scientists and oncologists discover optimal treatments that can be given either simultaneously or sequentially.
Collapse
Affiliation(s)
- Jack L Arbiser
- Department of Dermatology, Emory University School of Medicine, Atlanta Veterans Administration Medical Center, Winship Cancer Institute, Atlanta, GA, USA
| | - Michael Y Bonner
- Department of Dermatology, Emory University School of Medicine, Atlanta Veterans Administration Medical Center, Winship Cancer Institute, Atlanta, GA, USA
| | - Linda C Gilbert
- Department of Dermatology, Emory University School of Medicine, Atlanta Veterans Administration Medical Center, Winship Cancer Institute, Atlanta, GA, USA
| |
Collapse
|
36
|
Genomic profiling of invasive melanoma cell lines by array comparative genomic hybridization. Melanoma Res 2017; 26:100-7. [PMID: 26656572 DOI: 10.1097/cmr.0000000000000227] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Malignant melanoma is one of the most aggressive human cancers. Invasion of cells is the first step in metastasis, resulting in cell migration through tissue compartments. We aimed to evaluate genomic alterations specifically associated with the invasive characteristics of melanoma cells. Matrigel invasion assays were used to determine the invasive properties of cell lines that originated from primary melanomas. Array comparative genomic hybridization analyses were carried out to define the chromosome copy number alterations (CNAs). Several recurrent CNAs were identified by array comparative genomic hybridization that affected melanoma-related genes. Invasive primary cell lines showed high frequencies of CNAs, including the loss of 7q and gain of 12q chromosomal regions targeting PTPN12, ADAM22, FZD1, TFPI2, GNG11, COL1A2, SMURF1, VGF, RELN and GLIPR1 genes. Gain of the GDNF (5p13.1), GPAA1, PLEC and SHARPIN (8q24.3) genes was significantly more frequent in invasive cell lines compared with the noninvasive ones. Importantly, copy number gains of these genes were also found in cell lines that originated from metastases, suggesting their role in melanoma metastasis formation. The present study describes genomic differences between invasive and noninvasive melanoma cell lines that may contribute toward the aggressive phenotype of human melanoma cells.
Collapse
|
37
|
Pandya P, Orgaz JL, Sanz-Moreno V. Modes of invasion during tumour dissemination. Mol Oncol 2016; 11:5-27. [PMID: 28085224 PMCID: PMC5423224 DOI: 10.1002/1878-0261.12019] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 10/24/2016] [Accepted: 10/28/2016] [Indexed: 02/06/2023] Open
Abstract
Cancer cell migration and invasion underlie metastatic dissemination, one of the major problems in cancer. Tumour cells exhibit a striking variety of invasion strategies. Importantly, cancer cells can switch between invasion modes in order to cope with challenging environments. This ability to switch migratory modes or plasticity highlights the challenges behind antimetastasis therapy design. In this Review, we present current knowledge on different tumour invasion strategies, the determinants controlling plasticity and arising therapeutic opportunities. We propose that targeting master regulators controlling plasticity is needed to hinder tumour dissemination and metastasis.
Collapse
Affiliation(s)
- Pahini Pandya
- Tumour Plasticity Team, Randall Division of Cell and Molecular Biophysics, King's College London, UK
| | - Jose L Orgaz
- Tumour Plasticity Team, Randall Division of Cell and Molecular Biophysics, King's College London, UK
| | - Victoria Sanz-Moreno
- Tumour Plasticity Team, Randall Division of Cell and Molecular Biophysics, King's College London, UK
| |
Collapse
|
38
|
Neill T, Buraschi S, Goyal A, Sharpe C, Natkanski E, Schaefer L, Morrione A, Iozzo RV. EphA2 is a functional receptor for the growth factor progranulin. J Cell Biol 2016; 215:687-703. [PMID: 27903606 PMCID: PMC5146997 DOI: 10.1083/jcb.201603079] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 08/12/2016] [Accepted: 10/19/2016] [Indexed: 01/03/2023] Open
Abstract
The receptor for the growth factor progranulin has remained unclear. Neill et al. show that the Ephrin receptor tyrosine kinase EphA2 is a functional signaling receptor for progranulin and mediates its effects in capillary morphogenesis and autoregulation. Although the growth factor progranulin was discovered more than two decades ago, the functional receptor remains elusive. Here, we discovered that EphA2, a member of the large family of Ephrin receptor tyrosine kinases, is a functional signaling receptor for progranulin. Recombinant progranulin bound with high affinity to EphA2 in both solid phase and solution. Interaction of progranulin with EphA2 caused prolonged activation of the receptor, downstream stimulation of mitogen-activated protein kinase and Akt, and promotion of capillary morphogenesis. Furthermore, we found an autoregulatory mechanism of progranulin whereby a feed-forward loop occurred in an EphA2-dependent manner that was independent of the endocytic receptor sortilin. The discovery of a functional signaling receptor for progranulin offers a new avenue for understanding the underlying mode of action of progranulin in cancer progression, tumor angiogenesis, and perhaps neurodegenerative diseases.
Collapse
Affiliation(s)
- Thomas Neill
- Department of Pathology, Anatomy, and Cell Biology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107.,Cancer Cell Biology and Signaling Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107
| | - Simone Buraschi
- Department of Pathology, Anatomy, and Cell Biology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107.,Cancer Cell Biology and Signaling Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107
| | - Atul Goyal
- Department of Pathology, Anatomy, and Cell Biology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107.,Cancer Cell Biology and Signaling Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107
| | - Catherine Sharpe
- Department of Pathology, Anatomy, and Cell Biology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107.,Cancer Cell Biology and Signaling Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107
| | - Elizabeth Natkanski
- Department of Pathology, Anatomy, and Cell Biology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107.,Cancer Cell Biology and Signaling Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107
| | - Liliana Schaefer
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt am Main 60323, Germany
| | - Andrea Morrione
- Department of Urology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107.,Biology of Prostate Cancer Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107
| | - Renato V Iozzo
- Department of Pathology, Anatomy, and Cell Biology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107 .,Cancer Cell Biology and Signaling Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107
| |
Collapse
|
39
|
The cancer/testis antigen MAGEC2 promotes amoeboid invasion of tumor cells by enhancing STAT3 signaling. Oncogene 2016; 36:1476-1486. [PMID: 27775077 DOI: 10.1038/onc.2016.314] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/18/2016] [Accepted: 07/22/2016] [Indexed: 12/11/2022]
Abstract
The biological function of MAGEC2, a cancer/testis antigen highly expressed in various cancers, remains largely unknown. Here we demonstrate that expression of MAGEC2 induces rounded morphology and amoeboid-like movement of tumor cells in vitro and promotes tumor metastasis in vivo. The pro-metastasis effect of MAGEC2 was mediated by signal transducer and activator of transcription 3 (STAT3) activation. Mechanistically, MAGEC2 interacts with STAT3 and inhibits the polyubiquitination and proteasomal degradation of STAT3 in the nucleus of tumor cells, resulting in accumulation of phosphorylated STAT3 and enhanced transcriptional activity. Notably, expression levels of MAGEC2 and phosphorylated STAT3 are positively correlated and both are associated with incidence of metastasis in human hepatocellular carcinoma. This study not only reveals a previously unappreciated role of MAGEC2 in promoting tumor metastasis, but also identifies a new molecular mechanism by which MAGEC2 sustains hyperactivation of STAT3 in the nucleus of tumor cells. Thus, MAGEC2 may represent a new antitumor metastasis target for treatment of cancer.
Collapse
|
40
|
Abstract
Cell migration results from stepwise mechanical and chemical interactions between cells and their extracellular environment. Mechanistic principles that determine single-cell and collective migration modes and their interconversions depend upon the polarization, adhesion, deformability, contractility, and proteolytic ability of cells. Cellular determinants of cell migration respond to extracellular cues, including tissue composition, topography, alignment, and tissue-associated growth factors and cytokines. Both cellular determinants and tissue determinants are interdependent; undergo reciprocal adjustment; and jointly impact cell decision making, navigation, and migration outcome in complex environments. We here review the variability, decision making, and adaptation of cell migration approached by live-cell, in vivo, and in silico strategies, with a focus on cell movements in morphogenesis, repair, immune surveillance, and cancer metastasis.
Collapse
Affiliation(s)
- Veronika Te Boekhorst
- David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030;
| | - Luigi Preziosi
- Department of Mathematical Sciences, Politecnico di Torino, 10129 Torino, Italy
| | - Peter Friedl
- David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030; .,Department of Cell Biology, Radboud University Medical Centre, 6525GA Nijmegen, The Netherlands; .,Cancer Genomics Center, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
41
|
Barquilla A, Lamberto I, Noberini R, Heynen-Genel S, Brill LM, Pasquale EB. Protein kinase A can block EphA2 receptor-mediated cell repulsion by increasing EphA2 S897 phosphorylation. Mol Biol Cell 2016; 27:2757-70. [PMID: 27385333 PMCID: PMC5007095 DOI: 10.1091/mbc.e16-01-0048] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 06/24/2016] [Indexed: 12/18/2022] Open
Abstract
The EphA2 receptor plays multiple roles in cancer through two distinct signaling mechanisms. In a novel cross-talk, the β2-adrenoceptor/cAMP/PKA axis can promote EphA2 pro-oncogenic, ligand-independent signaling, blocking cell repulsion induced by ligand-dependent signaling. PKA emerges as a third kinase, besides AKT and RSK, that can regulate EphA2. The EphA2 receptor tyrosine kinase plays key roles in tissue homeostasis and disease processes such as cancer, pathological angiogenesis, and inflammation through two distinct signaling mechanisms. EphA2 “canonical” signaling involves ephrin-A ligand binding, tyrosine autophosphorylation, and kinase activity; EphA2 “noncanonical” signaling involves phosphorylation of serine 897 (S897) by AKT and RSK kinases. To identify small molecules counteracting EphA2 canonical signaling, we developed a high-content screening platform measuring inhibition of ephrin-A1–induced PC3 prostate cancer cell retraction. Surprisingly, most hits from a screened collection of pharmacologically active compounds are agents that elevate intracellular cAMP by activating G protein–coupled receptors such as the β2-adrenoceptor. We found that cAMP promotes phosphorylation of S897 by protein kinase A (PKA) as well as increases the phosphorylation of several nearby serine/threonine residues, which constitute a phosphorylation hotspot. Whereas EphA2 canonical and noncanonical signaling have been viewed as mutually exclusive, we show that S897 phosphorylation by PKA can coexist with EphA2 tyrosine phosphorylation and block cell retraction induced by EphA2 kinase activity. Our findings reveal a novel paradigm in EphA2 function involving the interplay of canonical and noncanonical signaling and highlight the ability of the β2-adrenoceptor/cAMP/PKA axis to rewire EphA2 signaling in a subset of cancer cells.
Collapse
Affiliation(s)
- Antonio Barquilla
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037
| | - Ilaria Lamberto
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037
| | - Roberta Noberini
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037
| | - Susanne Heynen-Genel
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037
| | - Laurence M Brill
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037
| | - Elena B Pasquale
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037 Pathology Department, University of California, San Diego, La Jolla, CA 92093
| |
Collapse
|
42
|
Eriksson O, Thulin Å, Asplund A, Hegde G, Navani S, Siegbahn A. Cross-talk between the Tissue Factor/coagulation factor VIIa complex and the tyrosine kinase receptor EphA2 in cancer. BMC Cancer 2016; 16:341. [PMID: 27246245 PMCID: PMC4888641 DOI: 10.1186/s12885-016-2375-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 05/20/2016] [Indexed: 11/10/2022] Open
Abstract
Background Tissue Factor (TF) forms a proteolytically active complex together with coagulation factor VIIa (FVIIa) and functions as the trigger of blood coagulation or alternatively activates cell signaling. We recently described that EphA2 of the Eph tyrosine kinase receptor family is cleaved directly by the TF/FVIIa complex. The aim of the present study was to further characterize the cross-talk between TF/FVIIa and EphA2 using in vitro model systems and human cancer specimens. Methods Cleavage and phosphorylation of EphA2 was studied by Western blot. Subcellular localization of TF and EphA2 was investigated by a proximity ligation assay and confocal microscopy. Phalloidin staining of the actin cytoskeleton was used to study cell rounding and retraction fiber formation. Expression of TF and EphA2 in human colorectal cancer specimens was examined by immunohistochemistry. Results TF and EphA2 co-localized constitutively in MDA-MB-231 cells, and addition of FVIIa resulted in cleavage of EphA2 by a PAR2-independent mechanism. Overexpression of TF in U251 glioblastoma cells lead to co-localization with EphA2 at the leading edge and FVIIa-dependent cleavage of EphA2. FVIIa potentiated ephrin-A1-induced cell rounding and retraction fiber formation in MDA-MB-231 cells through a RhoA/ROCK-dependent pathway that did not require PAR2-activation. TF and EphA2 were expressed in colorectal cancer specimens, and were significantly correlated. Conclusions These results suggest that TF/FVIIa-EphA2 cross-talk might potentiate ligand-dependent EphA2 signaling in human cancers, and provide initial evidence that it is possible for this interaction to occur in vivo. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2375-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Oskar Eriksson
- Department of Medical Sciences, Clinical Chemistry & Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| | - Åsa Thulin
- Department of Medical Sciences, Clinical Chemistry & Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Anna Asplund
- Department of Immunology, Genetics & Pathology & Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Geeta Hegde
- Lab Surgpath, The Human Protein Atlas Project, Mumbai Site, Mumbai, India
| | - Sanjay Navani
- Lab Surgpath, The Human Protein Atlas Project, Mumbai Site, Mumbai, India
| | - Agneta Siegbahn
- Department of Medical Sciences, Clinical Chemistry & Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
43
|
Belgiovine C, Chiesa G, Chiodi I, Frapolli R, Bonezzi K, Taraboletti G, D'Incalci M, Mondello C. Snail levels control the migration mechanism of mesenchymal tumor cells. Oncol Lett 2016; 12:767-771. [PMID: 27347214 DOI: 10.3892/ol.2016.4642] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 05/23/2016] [Indexed: 01/04/2023] Open
Abstract
Cancer cells use two major types of movement: Mesenchymal, which is typical of cells of mesenchymal origin and depends on matrix metalloproteinase (MMP) activity, and amoeboid, which is characteristic of cells with a rounded shape and relies on the activity of Rho-associated kinase (ROCK). The present authors previously demonstrated that, during neoplastic transformation, telomerase-immortalized human fibroblasts (cen3tel cells) acquired a ROCK-dependent/MMP independent mechanism of invasion, mediated by the downregulation of the ROCK cellular inhibitor Round (Rnd)3/RhoE. In the present study, cen3tel transformation was also demonstrated to be paralleled by downregulation of Snail, a major determinant of the mesenchymal movement. To test whether Snail levels could determine the type of movement adopted by mesenchymal tumor cells, Snail was ectopically expressed in tumorigenic cells. It was observed that ectopic Snail did not increase the levels of typical mesenchymal markers, but induced cells to adopt an MMP-dependent mechanism of invasion. In cells expressing ectopic Snail, invasion became sensitive to the MMP inhibitor Ro 28-2653 and insensitive to the ROCK inhibitor Y27632, suggesting that, once induced by Snail, the mesenchymal movement prevails over the amoeboid one. Snail-expressing cells had a more aggressive behavior in vivo, and exhibited increased tumor growth rate and metastatic ability. These results confirm the high plasticity of cancer cells, which can adopt different types of movement in response to changes in the expression of specific genes. Furthermore, the present findings indicate that Rnd3 and Snail are possible regulators of the type of invasion mechanism adopted by mesenchymal tumor cells.
Collapse
Affiliation(s)
- Cristina Belgiovine
- Institute of Molecular Genetics, National Research Council, I-27100 Pavia, Italy
| | - Giulio Chiesa
- Institute of Molecular Genetics, National Research Council, I-27100 Pavia, Italy
| | - Ilaria Chiodi
- Institute of Molecular Genetics, National Research Council, I-27100 Pavia, Italy
| | - Roberta Frapolli
- Department of Oncology, Mario Negri Institute for Pharmacological Research, I-20156 Milan, Italy
| | - Katiuscia Bonezzi
- Department of Oncology, Mario Negri Institute for Pharmacological Research, I-24126 Bergamo, Italy
| | - Giulia Taraboletti
- Department of Oncology, Mario Negri Institute for Pharmacological Research, I-24126 Bergamo, Italy
| | - Maurizio D'Incalci
- Department of Oncology, Mario Negri Institute for Pharmacological Research, I-20156 Milan, Italy
| | - Chiara Mondello
- Institute of Molecular Genetics, National Research Council, I-27100 Pavia, Italy
| |
Collapse
|
44
|
Rodriguez-Hernandez I, Cantelli G, Bruce F, Sanz-Moreno V. Rho, ROCK and actomyosin contractility in metastasis as drug targets. F1000Res 2016; 5. [PMID: 27158478 PMCID: PMC4856114 DOI: 10.12688/f1000research.7909.1] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/26/2016] [Indexed: 12/17/2022] Open
Abstract
Metastasis is the spread of cancer cells around the body and the cause of the majority of cancer deaths. Metastasis is a very complex process in which cancer cells need to dramatically modify their cytoskeleton and cope with different environments to successfully colonize a secondary organ. In this review, we discuss recent findings pointing at Rho-ROCK or actomyosin force (or both) as major drivers of many of the steps required for metastatic success. We propose that these are important drug targets that need to be considered in the clinic to palliate metastatic disease.
Collapse
Affiliation(s)
- Irene Rodriguez-Hernandez
- Tumour Plasticity Laboratory, Randall Division of Cell and Molecular Biophysics, Guy's Campus, King's College London, London, SE1 1UL, UK
| | - Gaia Cantelli
- Tumour Plasticity Laboratory, Randall Division of Cell and Molecular Biophysics, Guy's Campus, King's College London, London, SE1 1UL, UK
| | - Fanshawe Bruce
- Tumour Plasticity Laboratory, Randall Division of Cell and Molecular Biophysics, Guy's Campus, King's College London, London, SE1 1UL, UK.,Department of Imaging Chemistry and Biology, Division of Imaging Sciences and Biomedical Engineering, St. Thomas Hospital, King's College London, London, SE1 7EH, UK
| | - Victoria Sanz-Moreno
- Tumour Plasticity Laboratory, Randall Division of Cell and Molecular Biophysics, Guy's Campus, King's College London, London, SE1 1UL, UK
| |
Collapse
|
45
|
Youngblood VM, Kim LC, Edwards DN, Hwang Y, Santapuram PR, Stirdivant SM, Lu P, Ye F, Brantley-Sieders DM, Chen J. The Ephrin-A1/EPHA2 Signaling Axis Regulates Glutamine Metabolism in HER2-Positive Breast Cancer. Cancer Res 2016; 76:1825-36. [PMID: 26833123 DOI: 10.1158/0008-5472.can-15-0847] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 12/20/2015] [Indexed: 11/16/2022]
Abstract
Dysregulation of receptor tyrosine kinases (RTK) contributes to cellular transformation and cancer progression by disrupting key metabolic signaling pathways. The EPHA2 RTK is overexpressed in aggressive forms of breast cancer, including the HER2(+) subtype, and correlates with poor prognosis. However, the role of EPHA2 in tumor metabolism remains unexplored. In this study, we used in vivo and in vitro models of HER2-overexpressing breast cancer to investigate the mechanisms by which EPHA2 ligand-independent signaling promotes tumorigenesis in the absence of its prototypic ligand, ephrin-A1. We demonstrate that ephrin-A1 loss leads to upregulated glutamine metabolism and lipid accumulation that enhanced tumor growth. Global metabolic profiling of ephrin-A1-null, HER2-overexpressing mammary tumors revealed a significant increase in glutaminolysis, a critical metabolic pathway that generates intermediates for lipogenesis. Pharmacologic inhibition of glutaminase activity reduced tumor growth in both ephrin-A1-depleted and EPHA2-overexpressing tumor allografts in vivo Mechanistically, we show that the enhanced proliferation and glutaminolysis in the absence of ephrin-A1 were attributed to increased RhoA-dependent glutaminase activity. EPHA2 depletion or pharmacologic inhibition of Rho, glutaminase, or fatty acid synthase abrogated the increased lipid content and proliferative effects of ephrin-A1 knockdown. Together, these findings highlight a novel, unsuspected connection between the EPHA2/ephrin-A1 signaling axis and tumor metabolism, and suggest potential new therapeutic targets in cancer subtypes exhibiting glutamine dependency. Cancer Res; 76(7); 1825-36. ©2016 AACR.
Collapse
Affiliation(s)
| | - Laura C Kim
- Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee
| | - Deanna N Edwards
- Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University, Nashville, Tennessee
| | - Yoonha Hwang
- Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University, Nashville, Tennessee. Veterans Affairs Medical Center, Tennessee Valley Healthcare System, Nashville, Tennessee
| | | | | | - Pengcheng Lu
- Department of Biostatistics, Vanderbilt University, Nashville, Tennessee
| | - Fei Ye
- Department of Biostatistics, Vanderbilt University, Nashville, Tennessee
| | - Dana M Brantley-Sieders
- Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University, Nashville, Tennessee. Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee.
| | - Jin Chen
- Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee. Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University, Nashville, Tennessee. Veterans Affairs Medical Center, Tennessee Valley Healthcare System, Nashville, Tennessee. Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee. Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee.
| |
Collapse
|
46
|
Bergeman J, Caillier A, Houle F, Gagné LM, Huot MÉ. Localized translation regulates cell adhesion and transendothelial migration. J Cell Sci 2016; 129:4105-4117. [DOI: 10.1242/jcs.191320] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 09/08/2016] [Indexed: 12/31/2022] Open
Abstract
By progressing through the epithelial to mesenchymal transition (EMT), cancer cells gain the ability to leave the primary tumor site and invade surrounding tissues. These metastatic cancers cells can further increase their plasticity by adopting an amoeboid-like morphology, by undergoing mesenchymal to amoeboid transition (MAT). We found that adhering cells producing spreading initiation centers (SIC), a transient structure localized above nascent adhesion complexes, share common biological and morphological characteristics associated with amoeboid cells. Meanwhile, spreading cells seem to return to a mesenchymal-like morphology. Thus, our results indicate that SIC-induced adhesion recapitulate events associated with amoeboid to mesenchymal transition (AMT). We found that polyadenylated RNAs were enriched within SIC and blocking their translation decreased adhesion potential of metastatic cells that progressed through EMT. These results point to a novel checkpoint regulating cell adhesion and allowing metastatic cells to alter adhesion strength in order to modulate their dissemination.
Collapse
Affiliation(s)
- Jonathan Bergeman
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, Canada, G1R 3S3
| | - Alexia Caillier
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, Canada, G1R 3S3
| | - François Houle
- CRCHU de Québec: Hôtel-Dieu de Québec; Québec, Canada, G1R 3S3
| | - Laurence M. Gagné
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, Canada, G1R 3S3
| | - Marc-Étienne Huot
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, Canada, G1R 3S3
- CRCHU de Québec: Hôtel-Dieu de Québec; Québec, Canada, G1R 3S3
| |
Collapse
|
47
|
Modeling the Transitions between Collective and Solitary Migration Phenotypes in Cancer Metastasis. Sci Rep 2015; 5:17379. [PMID: 26627083 PMCID: PMC4667179 DOI: 10.1038/srep17379] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 10/06/2015] [Indexed: 12/19/2022] Open
Abstract
Cellular plasticity during cancer metastasis is a major clinical challenge. Two key cellular plasticity mechanisms —Epithelial-to-Mesenchymal Transition (EMT) and Mesenchymal-to-Amoeboid Transition (MAT) – have been carefully investigated individually, yet a comprehensive understanding of their interconnections remains elusive. Previously, we have modeled the dynamics of the core regulatory circuits for both EMT (miR-200/ZEB/miR-34/SNAIL) and MAT (Rac1/RhoA). We now extend our previous work to study the coupling between these two core circuits by considering the two microRNAs (miR-200 and miR-34) as external signals to the core MAT circuit. We show that this coupled circuit enables four different stable steady states (phenotypes) that correspond to hybrid epithelial/mesenchymal (E/M), mesenchymal (M), amoeboid (A) and hybrid amoeboid/mesenchymal (A/M) phenotypes. Our model recapitulates the metastasis-suppressing role of the microRNAs even in the presence of EMT-inducing signals like Hepatocyte Growth Factor (HGF). It also enables mapping the microRNA levels to the transitions among various cell migration phenotypes. Finally, it offers a mechanistic understanding for the observed phenotypic transitions among different cell migration phenotypes, specifically the Collective-to-Amoeboid Transition (CAT).
Collapse
|
48
|
Tumor-associated Endo180 requires stromal-derived LOX to promote metastatic prostate cancer cell migration on human ECM surfaces. Clin Exp Metastasis 2015; 33:151-65. [PMID: 26567111 PMCID: PMC4761374 DOI: 10.1007/s10585-015-9765-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 11/02/2015] [Indexed: 12/27/2022]
Abstract
The diverse composition and structure of extracellular matrix (ECM) interfaces encountered by tumor cells at secondary tissue sites can influence metastatic progression. Extensive in vitro and in vivo data has confirmed that metastasizing tumor cells can adopt different migratory modes in response to their microenvironment. Here we present a model that uses human stromal cell-derived matrices to demonstrate that plasticity in tumor cell movement is controlled by the tumor-associated collagen receptor Endo180 (CD280, CLEC13E, KIAA0709, MRC2, TEM9, uPARAP) and the crosslinking of collagen fibers by stromal-derived lysyl oxidase (LOX). Human osteoblast-derived and fibroblast-derived ECM supported a rounded ‘amoeboid-like’ mode of cell migration and enhanced Endo180 expression in three prostate cancer cell lines (PC3, VCaP, DU145). Genetic silencing of Endo180 reverted PC3 cells from their rounded mode of migration towards a bipolar ‘mesenchymal-like’ mode of migration and blocked their translocation on human fibroblast-derived and osteoblast-derived matrices. The concomitant decrease in PC3 cell migration and increase in Endo180 expression induced by stromal LOX inhibition indicates that the Endo180-dependent rounded mode of prostate cancer cell migration requires ECM crosslinking. In conclusion, this study introduces a realistic in vitro model for the study of metastatic prostate cancer cell plasticity and pinpoints the cooperation between tumor-associated Endo180 and the stiff microenvironment imposed by stromal-derived LOX as a potential target for limiting metastatic progression in prostate cancer.
Collapse
|
49
|
Rassokhin MA, Pakhomov AG. Cellular regulation of extension and retraction of pseudopod-like blebs produced by nanosecond pulsed electric field (nsPEF). Cell Biochem Biophys 2015; 69:555-66. [PMID: 24488232 DOI: 10.1007/s12013-014-9831-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Recently we described a new phenomenon of anodotropic pseudopod-like blebbing in U937 cells exposed to nanosecond pulsed electric field (nsPEF). In Ca(2+)-free buffer such exposure initiates formation of pseudopod-like blebs (PLBs), protrusive cylindrical cell extensions that are distinct from apoptotic and necrotic blebs. PLBs nucleate predominantly on anode-facing cell pole and extend toward anode during nsPEF exposure. Bleb extension depends on actin polymerization and availability of actin monomers. Inhibition of intracellular Ca(2+), cell contractility, and RhoA produced no effect on PLB initiation. Meanwhile, inhibition of WASP by wiskostatin causes dose-dependent suppression of PLB growth. Soon after the end of nsPEF exposure PLBs lose directionality of growth and then retract. Microtubule toxins nocodazole and paclitaxel did not show immediate effect on PLBs; however, nocodazole increased mobility of intracellular components during PLB extension and retraction. Retraction of PLBs is produced by myosin activation and the corresponding increase in PLB cortex contractility. Inhibition of myosin by blebbistatin reduces retraction while inhibition of RhoA-ROCK pathway by Y-27632 completely prevents retraction. Contraction of PLBs can produce cell translocation resembling active cell movement. Overall, the formation, properties, and life cycle of PLBs share common features with protrusions associated with ameboid cell migration. PLB life cycle may be controlled through activation of WASP by its upstream effectors such as Cdc42 and PIP2, and main ROCK activator-RhoA. Parallels between pseudopod-like blebbing and motility blebbing may provide new insights into their underlying mechanisms.
Collapse
Affiliation(s)
- Mikhail A Rassokhin
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, 4211 Monarch Way Ste 300, Norfolk, VA, 23508, USA,
| | | |
Collapse
|
50
|
Morley S, Hager MH, Pollan SG, Knudsen B, Di Vizio D, Freeman MR. Trading in your spindles for blebs: the amoeboid tumor cell phenotype in prostate cancer. Asian J Androl 2015; 16:530-5. [PMID: 24589458 PMCID: PMC4104075 DOI: 10.4103/1008-682x.122877] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
| | | | | | | | - Dolores Di Vizio
- Division of Cancer Biology and Therapeutics, Departments of Surgery, Medicine and Biomedical Sciences, and The Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA; Urological Diseases Research Center, Boston Children's Hospital and Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Michael R Freeman
- Division of Cancer Biology and Therapeutics, Departments of Surgery, Medicine and Biomedical Sciences, and The Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA; Urological Diseases Research Center, Boston Children's Hospital; Department of Surgery, Harvard Medical School, Boston, MA and Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| |
Collapse
|