1
|
Papantonis A, Antebi A, Partridge L, Beyer A. Age-associated changes in transcriptional elongation and their effects on homeostasis. Trends Cell Biol 2024:S0962-8924(24)00247-2. [PMID: 39706758 DOI: 10.1016/j.tcb.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/31/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 12/23/2024]
Abstract
Cellular homeostasis declines with age due to the declining fidelity of biosynthetic processes and the accumulation of molecular damage. Yet, it remains largely elusive how individual processes are affected during aging and what their specific contribution to age-related functional decline is. This review discusses a series of recent publications that has shown that transcription elongation is compromised during aging due to increasing DNA damage, stalling of RNA polymerase II (RNAPII), erroneous transcription initiation in gene bodies, and accelerated RNAPII elongation. Importantly, several of these perturbations likely arise from changes in chromatin organization with age. Thus, taken together, this work establishes a network of interlinked processes contributing to age-related decline in the quantity and quality of RNA production.
Collapse
Affiliation(s)
- Argyris Papantonis
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Adam Antebi
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Linda Partridge
- Institute of Healthy Ageing and Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Andreas Beyer
- Cologne Excellence Cluster for Aging and Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Institute for Genetics, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
| |
Collapse
|
2
|
Sarni D, Barroso S, Shtrikman A, Irony-Tur Sinai M, Oren YS, Aguilera A, Kerem B. Topoisomerase 1-dependent R-loop deficiency drives accelerated replication and genomic instability. Cell Rep 2022; 40:111397. [PMID: 36170822 PMCID: PMC9532845 DOI: 10.1016/j.celrep.2022.111397] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/05/2022] [Revised: 06/26/2022] [Accepted: 08/31/2022] [Indexed: 11/29/2022] Open
Abstract
DNA replication is a complex process tightly regulated to ensure faithful genome duplication, and its perturbation leads to DNA damage and genomic instability. Replication stress is commonly associated with slow and stalled replication forks. Recently, accelerated replication has emerged as a non-canonical form of replication stress. However, the molecular basis underlying fork acceleration is largely unknown. Here, we show that mutated HRAS activation leads to increased topoisomerase 1 (TOP1) expression, causing aberrant replication fork acceleration and DNA damage by decreasing RNA-DNA hybrids or R-loops. In these cells, restoration of TOP1 expression or mild replication inhibition rescues the perturbed replication and reduces DNA damage. Furthermore, TOP1 or RNaseH1 overexpression induces accelerated replication and DNA damage, highlighting the importance of TOP1 equilibrium in regulating R-loop homeostasis to ensure faithful DNA replication and genome integrity. Altogether, our results dissect a mechanism of oncogene-induced DNA damage by aberrant replication fork acceleration. Increased TOP1 expression by mutated RAS reduces R loops Low R-loop levels promote accelerated replication and DNA damage TOP1 restoration or mild replication inhibition rescue DNA acceleration and damage High TOP1 expression is associated with replication mutagenesis in cancer
Collapse
Affiliation(s)
- Dan Sarni
- Department of Genetics, The Life Sciences Institute, The Hebrew University, Jerusalem 91904, Israel
| | - Sonia Barroso
- Department of Genome Biology, Andalusian Center of Molecular Biology and Regenerative Medicine CABIMER, Seville Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain
| | - Alon Shtrikman
- Department of Genetics, The Life Sciences Institute, The Hebrew University, Jerusalem 91904, Israel
| | - Michal Irony-Tur Sinai
- Department of Genetics, The Life Sciences Institute, The Hebrew University, Jerusalem 91904, Israel
| | - Yifat S Oren
- Department of Genetics, The Life Sciences Institute, The Hebrew University, Jerusalem 91904, Israel
| | - Andrés Aguilera
- Department of Genome Biology, Andalusian Center of Molecular Biology and Regenerative Medicine CABIMER, Seville Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain
| | - Batsheva Kerem
- Department of Genetics, The Life Sciences Institute, The Hebrew University, Jerusalem 91904, Israel.
| |
Collapse
|
3
|
Roupakia E, Markopoulos GS, Kolettas E. Genes and pathways involved in senescence bypass identified by functional genetic screens. Mech Ageing Dev 2021; 194:111432. [PMID: 33422562 DOI: 10.1016/j.mad.2021.111432] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/30/2020] [Revised: 12/30/2020] [Accepted: 01/01/2021] [Indexed: 10/22/2022]
Abstract
Cellular senescence is a state of stable and irreversible cell cycle arrest with active metabolism, that normal cells undergo after a finite number of divisions (Hayflick limit). Senescence can be triggered by intrinsic and/or extrinsic stimuli including telomere shortening at the end of a cell's lifespan (telomere-initiated senescence) and in response to oxidative, genotoxic or oncogenic stresses (stress-induced premature senescence). Several effector mechanisms have been proposed to explain senescence programmes in diploid cells, including the induction of DNA damage responses, a senescence-associated secretory phenotype and epigenetic changes. Senescent cells display senescence-associated-β-galactosidase activity and undergo chromatin remodeling resulting in heterochromatinisation. Senescence is established by the pRb and p53 tumour suppressor networks. Senescence has been detected in in vitro cellular settings and in premalignant, but not malignant lesions in mice and humans expressing mutant oncogenes. Despite oncogene-induced senescence, which is believed to be a cancer initiating barrier and other tumour suppressive mechanisms, benign cancers may still develop into malignancies by bypassing senescence. Here, we summarise the functional genetic screens that have identified genes, uncovered pathways and characterised mechanisms involved in senescence evasion. These include cell cycle regulators and tumour suppressor pathways, DNA damage response pathways, epigenetic regulators, SASP components and noncoding RNAs.
Collapse
Affiliation(s)
- Eugenia Roupakia
- Laboratory of Biology, School of Medicine, Faculty of Health Sciences, University of Ioannina, Ioannina, 45100, Greece; Biomedical Research Division, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Ioannina, 45110, Greece
| | - Georgios S Markopoulos
- Laboratory of Biology, School of Medicine, Faculty of Health Sciences, University of Ioannina, Ioannina, 45100, Greece; Biomedical Research Division, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Ioannina, 45110, Greece
| | - Evangelos Kolettas
- Laboratory of Biology, School of Medicine, Faculty of Health Sciences, University of Ioannina, Ioannina, 45100, Greece; Biomedical Research Division, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Ioannina, 45110, Greece.
| |
Collapse
|
4
|
Linking replication stress with heterochromatin formation. Chromosoma 2015; 125:523-33. [PMID: 26511280 PMCID: PMC4901112 DOI: 10.1007/s00412-015-0545-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/11/2015] [Revised: 09/27/2015] [Accepted: 09/30/2015] [Indexed: 11/23/2022]
Abstract
The eukaryotic genome can be roughly divided into euchromatin and heterochromatin domains that are structurally and functionally distinct. Heterochromatin is characterized by its high compaction that impedes DNA transactions such as gene transcription, replication, or recombination. Beyond its role in regulating DNA accessibility, heterochromatin plays essential roles in nuclear architecture, chromosome segregation, and genome stability. The formation of heterochromatin involves special histone modifications and the recruitment and spreading of silencing complexes that impact the higher-order structures of chromatin; however, its molecular nature varies between different chromosomal regions and between species. Although heterochromatin has been extensively characterized, its formation and maintenance throughout the cell cycle are not yet fully understood. The biggest challenge for the faithful transmission of chromatin domains is the destabilization of chromatin structures followed by their reassembly on a novel DNA template during genomic replication. This destabilizing event also provides a window of opportunity for the de novo establishment of heterochromatin. In recent years, it has become clear that different types of obstacles such as tight protein-DNA complexes, highly transcribed genes, and secondary DNA structures could impede the normal progression of the replisome and thus have the potential to endanger the integrity of the genome. Multiple studies carried out in different model organisms have demonstrated the capacity of such replisome impediments to favor the formation of heterochromatin. Our review summarizes these reports and discusses the potential role of replication stress in the formation and maintenance of heterochromatin and the role that silencing proteins could play at sites where the integrity of the genome is compromised.
Collapse
|
5
|
Venkatesh R, Ramaiah MJ, Gaikwad HK, Janardhan S, Bantu R, Nagarapu L, Sastry GN, Ganesh AR, Bhadra M. Luotonin-A based quinazolinones cause apoptosis and senescence via HDAC inhibition and activation of tumor suppressor proteins in HeLa cells. Eur J Med Chem 2015; 94:87-101. [PMID: 25757092 DOI: 10.1016/j.ejmech.2015.02.057] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/04/2014] [Revised: 01/06/2015] [Accepted: 02/28/2015] [Indexed: 12/19/2022]
Abstract
A series of novel quinazolinone hybrids were synthesized by employing click chemistry and evaluated for anti-proliferative activities against MCF-7, HeLa and K562 cell lines. Among these cell lines, HeLa cells were found to respond effectively to these quinazolinone hybrids with IC50 values ranging from 5.94 to 16.45 μM. Some of the hybrids (4q, 4r, 4e, 4k, 4t, 4w) with promising anti-cancer activity were further investigated for their effects on the cell cycle distribution. FACS analysis revealed the G1 cell cycle arrest nature of these hybrids. Further to assess the senescence inducing ability of these compounds, a senescence associated β-gal assay was performed. The senescence inducing nature of these compounds was supported by the effect of hybrid (4q) on p16 promoter activity, the marker for senescence. Moreover, cells treated with most effective compound (4q) show up-regulation of p53, p21 and down-regulation of HDAC-1, HDAC-2, HDAC-5 and EZH2 mRNA levels. Docking results suggest that, the triazole nitrogen showed Zn(+2) mediated interactions with the histidine residue of HDACs.
Collapse
Affiliation(s)
- Ramineni Venkatesh
- Organic Chemistry Division II, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, India
| | - M Janaki Ramaiah
- Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500607, India
| | - Hanmant K Gaikwad
- Organic Chemistry Division II, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, India
| | - Sridhara Janardhan
- Centre for Molecular Modeling, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500607, India
| | - Rajashaker Bantu
- Organic Chemistry Division II, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, India
| | - Lingaiah Nagarapu
- Organic Chemistry Division II, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, India.
| | - G Narahari Sastry
- Centre for Molecular Modeling, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500607, India
| | - A Raksha Ganesh
- Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500607, India
| | - Manikapal Bhadra
- Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500607, India
| |
Collapse
|
6
|
Weiner-Gorzel K, Dempsey E, Milewska M, McGoldrick A, Toh V, Walsh A, Lindsay S, Gubbins L, Cannon A, Sharpe D, O'Sullivan J, Murphy M, Madden SF, Kell M, McCann A, Furlong F. Overexpression of the microRNA miR-433 promotes resistance to paclitaxel through the induction of cellular senescence in ovarian cancer cells. Cancer Med 2015; 4:745-58. [PMID: 25684390 PMCID: PMC4430267 DOI: 10.1002/cam4.409] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/17/2014] [Revised: 12/07/2014] [Accepted: 12/12/2014] [Indexed: 12/18/2022] Open
Abstract
Annually, ovarian cancer (OC) affects 240,000 women worldwide and is the most lethal gynecological malignancy. High-grade serous OC (HGSOC) is the most common and aggressive OC subtype, characterized by widespread genome changes and chromosomal instability and is consequently poorly responsive to chemotherapy treatment. The objective of this study was to investigate the role of the microRNA miR-433 in the cellular response of OC cells to paclitaxel treatment. We show that stable miR-433 expression in A2780 OC cells results in the induction of cellular senescence demonstrated by morphological changes, downregulation of phosphorylated retinoblastoma (p-Rb), and an increase in β-galactosidase activity. Furthermore, in silico analysis identified four possible miR-433 target genes associated with cellular senescence: cyclin-dependent kinase 6 (CDK6), MAPK14, E2F3, and CDKN2A. Mechanistically, we demonstrate that downregulation of p-Rb is attributable to a miR-433-dependent downregulation of CDK6, establishing it as a novel miR-433 associated gene. Interestingly, we show that high miR-433 expressing cells release miR-433 into the growth media via exosomes which in turn can induce a senescence bystander effect. Furthermore, in relation to a chemotherapeutic response, quantitative real-time polymerase chain reaction (qRT-PCR) analysis revealed that only PEO1 and PEO4 OC cells with the highest miR-433 expression survive paclitaxel treatment. Our data highlight how the aberrant expression of miR-433 can adversely affect intracellular signaling to mediate chemoresistance in OC cells by driving cellular senescence.
Collapse
Affiliation(s)
- Karolina Weiner-Gorzel
- UCD School of Medicine and Medical Science (SMMS), UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Eugene Dempsey
- UCD School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin 4, Ireland
| | | | - Aloysius McGoldrick
- UCD School of Medicine and Medical Science (SMMS), UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Valerie Toh
- UCD School of Medicine and Medical Science (SMMS), UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Aoibheann Walsh
- UCD School of Medicine and Medical Science (SMMS), UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Sinead Lindsay
- UCD School of Medicine and Medical Science (SMMS), UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Luke Gubbins
- UCD School of Medicine and Medical Science (SMMS), UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Aoife Cannon
- Molecular Department of Surgery, Institute of Molecular Medicine, Trinity Centre for Health Sciences, St James's Hospital, Dublin 8, Ireland
| | - Daniel Sharpe
- School of Pharmacy, Queen's University of Belfast, Belfast, Northern Ireland, United Kingdom
| | - Jacintha O'Sullivan
- Molecular Department of Surgery, Institute of Molecular Medicine, Trinity Centre for Health Sciences, St James's Hospital, Dublin 8, Ireland
| | - Madeline Murphy
- UCD School of Medicine and Medical Science (SMMS), UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Stephen F Madden
- Molecular Therapeutics for Cancer Ireland, National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Malcolm Kell
- Department of Surgery, Mater Misericordiae University Hospital, Dublin 7, Ireland
| | - Amanda McCann
- UCD School of Medicine and Medical Science (SMMS), UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Fiona Furlong
- School of Pharmacy, Queen's University of Belfast, Belfast, Northern Ireland, United Kingdom
| |
Collapse
|
7
|
The genomic landscape of Waldenström macroglobulinemia is characterized by highly recurring MYD88 and WHIM-like CXCR4 mutations, and small somatic deletions associated with B-cell lymphomagenesis. Blood 2014; 123:1637-46. [DOI: 10.1182/blood-2013-09-525808] [Citation(s) in RCA: 322] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/11/2022] Open
Abstract
Key Points
Highly recurring mutations are present in WM, including MYD88 L265P, warts, hypogammaglobulinemia, infection, and myelokathexis-syndrome–like mutations in CXCR4, and ARID1A. Small, previously undetected CNAs affecting B-cell regulatory genes are highly prevalent in WM.
Collapse
|
8
|
Interplay between oncogene-induced DNA damage response and heterochromatin in senescence and cancer. Nat Cell Biol 2011; 13:292-302. [PMID: 21336312 DOI: 10.1038/ncb2170] [Citation(s) in RCA: 267] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/08/2010] [Accepted: 12/21/2010] [Indexed: 12/11/2022]
Abstract
Two major mechanisms have been causally implicated in the establishment of cellular senescence: the activation of the DNA damage response (DDR) pathway and the formation of senescence-associated heterochromatic foci (SAHF). Here we show that in human fibroblasts resistant to premature p16(INK4a) induction, SAHF are preferentially formed following oncogene activation but are not detected during replicative cellular senescence or on exposure to a variety of senescence-inducing stimuli. Oncogene-induced SAHF formation depends on DNA replication and ATR (ataxia telangiectasia and Rad3-related). Inactivation of ATM (ataxia telangiectasia mutated) or p53 allows the proliferation of oncogene-expressing cells that retain increased heterochromatin induction. In human cancers, levels of heterochromatin markers are higher than in normal tissues, and are independent of the proliferative index or stage of the tumours. Pharmacological and genetic perturbation of heterochromatin in oncogene-expressing cells increase DDR signalling and lead to apoptosis. In vivo, a histone deacetylase inhibitor (HDACi) causes heterochromatin relaxation, increased DDR, apoptosis and tumour regression. These results indicate that heterochromatin induced by oncogenic stress restrains DDR and suggest that the use of chromatin-modifying drugs in cancer therapies may benefit from the study of chromatin and DDR status of tumours.
Collapse
|
9
|
Boyden SE, Kunkel LM. High-density genomewide linkage analysis of exceptional human longevity identifies multiple novel loci. PLoS One 2010; 5:e12432. [PMID: 20824210 PMCID: PMC2930849 DOI: 10.1371/journal.pone.0012432] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/19/2010] [Accepted: 08/04/2010] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Human lifespan is approximately 25% heritable, and genetic factors may be particularly important for achieving exceptional longevity. Accordingly, siblings of centenarians have a dramatically higher probability of reaching extreme old age than the general population. METHODOLOGY/PRINCIPAL FINDINGS To map the loci conferring a survival advantage, we performed the second genomewide linkage scan on human longevity and the first using a high-density marker panel of single nucleotide polymorphisms. By systematically testing a range of minimum age cutoffs in 279 families with multiple long-lived siblings, we identified a locus on chromosome 3p24-22 with a genomewide significant allele-sharing LOD score of 4.02 (empirical P = 0.037) and a locus on chromosome 9q31-34 with a highly suggestive LOD score of 3.89 (empirical P = 0.054). The empirical P value for the combined result was 0.002. A third novel locus with a LOD score of 4.05 on chromosome 12q24 was detected in a subset of the data, and we also obtained modest evidence for a previously reported interval on chromosome 4q22-25. CONCLUSIONS/SIGNIFICANCE Our linkage data should facilitate the discovery of both common and rare variants that determine genetic variability in lifespan.
Collapse
Affiliation(s)
- Steven E. Boyden
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- Program in Genomics, Division of Genetics, and The Manton Center for Orphan Disease Research, Children's Hospital Boston, Boston, Massachusetts, United States of America
| | - Louis M. Kunkel
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- Program in Genomics, Division of Genetics, and The Manton Center for Orphan Disease Research, Children's Hospital Boston, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Children's Hospital Boston, Boston, Massachusetts, United States of America
| |
Collapse
|
10
|
Ryan D, Rafferty M, Hegarty S, O'Leary P, Faller W, Gremel G, Bergqvist M, Agnarsdottir M, Strömberg S, Kampf C, Pontén F, Millikan RC, Dervan PA, Gallagher WM. Topoisomerase I amplification in melanoma is associated with more advanced tumours and poor prognosis. Pigment Cell Melanoma Res 2010; 23:542-53. [PMID: 20465595 DOI: 10.1111/j.1755-148x.2010.00720.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/26/2022]
Abstract
In this study, we used array-comparative genomic hybridization (aCGH) and fluorescent in situ hybridization (FISH) to examine genetic aberrations in melanoma cell lines and tissues. Array-comparative genomic hybridization revealed that the most frequent genetic changes found in melanoma cell lines were amplifications on chromosomes 7p and 20q, along with disruptions on Chr 9, 10, 11, 12, 22 and Y. Validation of the results using FISH on tissue microarrays (TMAs) identified TOP1 as being amplified in melanoma tissues. TOP1 amplification was detected in a high percentage (33%) of tumours and was associated with thicker, aggressive tumours. These results show that TOP1 amplification is associated with advanced tumours and poor prognosis in melanoma. These observations open the possibility that TOP1-targeted therapeutics may be of benefit in a particular subgroup of advanced stage melanoma patients.
Collapse
Affiliation(s)
- Denise Ryan
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Odell A, Askham J, Whibley C, Hollstein M. How to become immortal: let MEFs count the ways. Aging (Albany NY) 2010; 2:160-5. [PMID: 20378935 PMCID: PMC2871244 DOI: 10.18632/aging.100129] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/12/2010] [Accepted: 03/17/2010] [Indexed: 02/02/2023]
Abstract
Understanding
the molecular mechanisms and biological consequences of genetic changes
occurring during bypass of cellular senescence spans a broad area of
medical research from the cancer field to regenerative medicine. Senescence
escape and immortalisation have been intensively studied in murine
embryonic fibroblasts as a model system, and are known to occur when the
p53/ARF tumour suppressor pathway is disrupted. We showed recently that murine
fibroblasts with a humanised p53 gene (Hupki cells, from a human p53 knock-in mouse
model) first senesce, and then become immortalised in the same way as their
homologues with normal murine p53. In both cell types, immortalised cultures
frequently sustain either a p53 gene mutation matching a human tumour mutation and
resulting in loss of p53 transcriptional transactivation, or a biallelic deletion
at the p19/ARF locus. Whilst these genetic events were not unexpected, we were
surprised to find that a significant proportion of immortalised cell cultures
apparently had neither a p53 mutation nor loss of p19/ARF. Here we consider
various routes to p53/ARF disruption in senescence bypass, and dysfunction of
other tumour suppressor networks that may contribute to release from tenacious
cell cycle arrest in senescent cultures.
Collapse
Affiliation(s)
- Adam Odell
- Faculty of Medicine and Health, University of Leeds, LIGHT Laboratories, Leeds, UK
| | | | | | | |
Collapse
|
12
|
Humbert N, Navaratnam N, Augert A, Da Costa M, Martien S, Wang J, Martinez D, Abbadie C, Carling D, de Launoit Y, Gil J, Bernard D. Regulation of ploidy and senescence by the AMPK-related kinase NUAK1. EMBO J 2009; 29:376-86. [PMID: 19927127 DOI: 10.1038/emboj.2009.342] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/29/2009] [Accepted: 10/27/2009] [Indexed: 01/29/2023] Open
Abstract
Senescence is an irreversible cell-cycle arrest that is elicited by a wide range of factors, including replicative exhaustion. Emerging evidences suggest that cellular senescence contributes to ageing and acts as a tumour suppressor mechanism. To identify novel genes regulating senescence, we performed a loss-of-function screen on normal human diploid fibroblasts. We show that downregulation of the AMPK-related protein kinase 5 (ARK5 or NUAK1) results in extension of the cellular replicative lifespan. Interestingly, the levels of NUAK1 are upregulated during senescence whereas its ectopic expression triggers a premature senescence. Cells that constitutively express NUAK1 suffer gross aneuploidies and show diminished expression of the genomic stability regulator LATS1, whereas depletion of NUAK1 with shRNA exerts opposite effects. Interestingly, a dominant-negative form of LATS1 phenocopies NUAK1 effects. Moreover, we show that NUAK1 phosphorylates LATS1 at S464 and this has a role in controlling its stability. In summary, our work highlights a novel role for NUAK1 in the control of cellular senescence and cellular ploidy.
Collapse
Affiliation(s)
- Nicolas Humbert
- UMR8161, Institut de Biologie de Lille, CNRS/Universités de Lille 1 et 2/Institut Pasteur de Lille, Lille, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|