1
|
Sharma S, Ghimeray K, Rahman MM, Upadrasta A, Akundi RS. P2Y12 receptor-mediated cyclooxygenase 2 (COX-2) expression enhances tumor cell progression in a mouse model of lymphoma. Purinergic Signal 2024:10.1007/s11302-024-10057-4. [PMID: 39467946 DOI: 10.1007/s11302-024-10057-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/09/2024] [Indexed: 10/30/2024] Open
Abstract
The pro-inflammatory enzyme cyclooxygenase 2 (COX-2) has been known to impart metastatic property to cancer cells. However, blocking of COX-2 with nonsteroidal anti-inflammatory drugs or COX-2-specific inhibitors has failed in clinical trials due to adverse effects associated with their prolonged use. We have previously shown that extracellular ATP (eATP), a major component of the tumor microenvironment, enhances COX-2 expression several-fold, both in macrophages and in various cancer cells, by acting on purinergic (P2) receptors. In this study, we show that blocking of P2 receptors significantly reduced tumor growth in a mouse model of lymphoma. Tumors were induced in mice through subcutaneous injection of syngeneic EL4 lymphoma cells. Various P2 receptor antagonists were injected within the tumors after they were palpable. The broad-spectrum P2 receptor antagonist, suramin, P2X7 receptor-specific antagonist, oATP, P2Y6 receptor-specific antagonist, MRS 2578, and P2Y12 receptor-specific antagonist, AR-C 69931, all showed significant arrest in tumor growth. Both suramin and AR-C 69931-treated tumors showed strong reduction in COX-2 expression and modulation of various metastatic markers. Disaggregated cells from AR-C 69931-treated tumors, when injected intravenously in naïve mice, did not exhibit metastasis in various tissues which was observed in mice injected with cells from saline-treated tumors. Our results show that blocking of P2 receptors is a therapeutic alternative to inhibit COX-2 expression, and thereby, arrest tumor progression and metastasis.
Collapse
Affiliation(s)
- Shilpa Sharma
- Neuroinflammation Research Lab, Faculty of Life Sciences and Biotechnology, South Asian University, Rajpur Road, Maidan Garhi, New Delhi, 110068, India
| | - Khagendra Ghimeray
- Neuroinflammation Research Lab, Faculty of Life Sciences and Biotechnology, South Asian University, Rajpur Road, Maidan Garhi, New Delhi, 110068, India
| | - Md Mostafizur Rahman
- Neuroinflammation Research Lab, Faculty of Life Sciences and Biotechnology, South Asian University, Rajpur Road, Maidan Garhi, New Delhi, 110068, India
| | - Aparna Upadrasta
- Neuroinflammation Research Lab, Faculty of Life Sciences and Biotechnology, South Asian University, Rajpur Road, Maidan Garhi, New Delhi, 110068, India
| | - Ravi Shankar Akundi
- Neuroinflammation Research Lab, Faculty of Life Sciences and Biotechnology, South Asian University, Rajpur Road, Maidan Garhi, New Delhi, 110068, India.
| |
Collapse
|
2
|
Afzalipour R, Abbasi-Dokht T, Sheikh M, Mohammadlou M, Nili F, Baharlou R. The Prediction of DLL4 as a Prognostic Biomarker in Patients with Gastric Cancer Using Anti-DLL4 Nanobody. J Gastrointest Cancer 2024; 55:1380-1387. [PMID: 39046662 DOI: 10.1007/s12029-024-01093-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2024] [Indexed: 07/25/2024]
Abstract
BACKGROUND Angiogenesis and cancer metastasis depend on the DLL4/Notch signaling pathway. A new approach to treating angiogenesis could inhibit or block this pathway. In the present study, we investigated DLL4 expression as a biomarker capable of predicting survival outcomes in gastric cancer patients using a novel anti-DLL4 Nanobody. PATIENTS AND METHODS By using a recently developed anti-DLL4 Nanobody, the expression of DLL4 was evaluated in tissue samples from 135 gastric cancer patients. It was evaluated whether DLL4 expression is related to clinicopathological factors, overall survival (OS), and recurrence-free survival (RFS). RESULTS Sixty-five (48%) gastric cancer patients had a positive expression of DLL4 within the tumor tissue. Based on both the univariate and multivariate regression analyses, the expression of DLL4 was strongly associated with RFS (HR, 1.94; p = 0.008) and OS (HR, 2.06; p = 0.004). Moreover, the survival analysis demonstrated that DLL4 expression was a significant independent factor of unfavorable OS (HR, 2.7; p = 0.01) and RFS (HR, 2.3; p = 0.02) in gastric cancer patients. CONCLUSION DLL4 expression in gastric cancer patients may predict poor prognosis and survival. Furthermore, the current data demonstrate the potential of Nanobody for detecting DLL4, and it may lead to develop novel therapies and diagnostics for tumors.
Collapse
Affiliation(s)
- Reza Afzalipour
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Department of Radiology, Faculty of Para-Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Tannaz Abbasi-Dokht
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Maryam Sheikh
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Maryam Mohammadlou
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Fatemeh Nili
- Department of Pathology, Cancer Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Rasoul Baharlou
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran.
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
3
|
Zhou L, Yang Y, Ye Y, Qiao Q, Mi Y, Liu H, Zheng Y, Wang Y, Liu M, Zhou Y. Notch1 signaling pathway promotes growth and metastasis of gastric cancer via modulating CDH5. Aging (Albany NY) 2024; 16:11893-11903. [PMID: 39172098 PMCID: PMC11386911 DOI: 10.18632/aging.206061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 07/03/2024] [Indexed: 08/23/2024]
Abstract
OBJECTIVE To explore the underlying molecular mechanism of Notch1/cadherin 5 (CDH5) pathway in modulating in cell malignant behaviors of gastric cancer (GC). METHODS We performed bioinformatic analyses to screen the potential target genes of Notch1 from cadherins in GC. Western blot and RT-PCR were conducted to detect CDH5 expression in GC tissues and cells. We utilized chromatin immunoprecipitation (CHIP) assays to assess the interaction of Notch1 with CDH5 gene. The effects of Notch1/CDH5 axis on the proliferation, invasion, migration and vasculogenic mimicry in GC cells were evaluated by EdU, wound healing, transwell, and tubule formation assays. RESULTS Significantly increased CDH5 expression was found in GC tissues compared with paracancerous tissues and associated to clinical stage and poor overall survival (OS) in patients with GC. Notch1 positively regulate the expression of CDH5 in GC cells. CHIP assays validated that CDH5 was a direct target of Notch1. In addition, Notch1 upregulation enhanced the proliferation, migration, invasion and vasculogenic mimicry capacity of GC cells, which could be attenuated by CDH5 silencing. CONCLUSIONS These results indicated Notch1 upregulation enhanced GC malignant behaviors by triggering CDH5, suggesting that targeting Notch1/CDH5 axis could be a potential therapeutic strategy for GC progression.
Collapse
Affiliation(s)
- Lingshan Zhou
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Department of Geriatrics Ward 2, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Yuan Yang
- Department of Gastroenterology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Yuwei Ye
- Department of Gastroenterology Ward 2, Shanxi Provincial People’s Hospital, Xian 710000, China
| | - Qian Qiao
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou 730000, China
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
| | - Yingying Mi
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou 730000, China
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
| | - Hongfang Liu
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
| | - Ya Zheng
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Yuping Wang
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Min Liu
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Yongning Zhou
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
4
|
Shi Q, Xue C, Zeng Y, Yuan X, Chu Q, Jiang S, Wang J, Zhang Y, Zhu D, Li L. Notch signaling pathway in cancer: from mechanistic insights to targeted therapies. Signal Transduct Target Ther 2024; 9:128. [PMID: 38797752 PMCID: PMC11128457 DOI: 10.1038/s41392-024-01828-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/31/2024] [Accepted: 04/15/2024] [Indexed: 05/29/2024] Open
Abstract
Notch signaling, renowned for its role in regulating cell fate, organ development, and tissue homeostasis across metazoans, is highly conserved throughout evolution. The Notch receptor and its ligands are transmembrane proteins containing epidermal growth factor-like repeat sequences, typically necessitating receptor-ligand interaction to initiate classical Notch signaling transduction. Accumulating evidence indicates that the Notch signaling pathway serves as both an oncogenic factor and a tumor suppressor in various cancer types. Dysregulation of this pathway promotes epithelial-mesenchymal transition and angiogenesis in malignancies, closely linked to cancer proliferation, invasion, and metastasis. Furthermore, the Notch signaling pathway contributes to maintaining stem-like properties in cancer cells, thereby enhancing cancer invasiveness. The regulatory role of the Notch signaling pathway in cancer metabolic reprogramming and the tumor microenvironment suggests its pivotal involvement in balancing oncogenic and tumor suppressive effects. Moreover, the Notch signaling pathway is implicated in conferring chemoresistance to tumor cells. Therefore, a comprehensive understanding of these biological processes is crucial for developing innovative therapeutic strategies targeting Notch signaling. This review focuses on the research progress of the Notch signaling pathway in cancers, providing in-depth insights into the potential mechanisms of Notch signaling regulation in the occurrence and progression of cancer. Additionally, the review summarizes pharmaceutical clinical trials targeting Notch signaling for cancer therapy, aiming to offer new insights into therapeutic strategies for human malignancies.
Collapse
Affiliation(s)
- Qingmiao Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Chen Xue
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yifan Zeng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Xin Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Qingfei Chu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Shuwen Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Jinzhi Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yaqi Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Danhua Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| |
Collapse
|
5
|
Tran-Guzman A, Khan A, Culty M. Differential roles of cyclooxygenase enzymes in the regulation of murine juvenile undifferentiated spermatogonia. Andrology 2024; 12:899-917. [PMID: 37772683 DOI: 10.1111/andr.13537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 08/15/2023] [Accepted: 09/10/2023] [Indexed: 09/30/2023]
Abstract
BACKGROUND Acetaminophen and ibuprofen are widely administered to babies due to their presumed safety as over-the-counter drugs. However, no reports exist on the effects of cyclooxygenase inhibitors on undifferentiated spermatogonia and spermatogonial stem cells. Infancy represents a critical period for spermatogonial stem cell formation and disrupting spermatogonial stem cells or their precursors may be associated with infertility and testicular cancer formation. OBJECTIVES The goal of this study was to examine the molecular and functional impact of cyclooxygenase inhibition and silencing on early steps of undifferentiated spermatogonia (u spg) and spermatogonial stem cell development, to assess the potential reproductive risk of pharmaceutical cyclooxygenase inhibitors. METHODS The effects of cyclooxygenase inhibition were assessed using the mouse C18-4 undifferentiated juvenile spermatogonial cell line model, previously shown to include cells with spermatogonial stem cell features, by measuring prostaglandins, cell proliferation, and differentiation, using cyclooxygenase 1- and cyclooxygenase 2-selective inhibitors NS398, celecoxib, and FR122047, acetaminophen, and ibuprofen. Cyclooxygenase 1 gene silencing was achieved using a stable short-hairpin RNA approach and clone selection, then assessing gene and protein expression in RNA sequencing, quantitative real-time polymerase chain reaction, and immunofluorescence studies. RESULTS Cyclooxygenase 2 inhibitors NS398 and celecoxib, as well as acetaminophen, but not ibuprofen, dose-dependently decreased retinoic acid-induced expression of the spg differentiation gene Stra8, while NS398 decreased the spg differentiation marker Kit, suggesting that cyclooxygenase 2 is positively associated with spg differentiation. In contrast, short-hairpin RNA-based cyclooxygenase 1 silencing in C18-4 cells altered cellular morphology and upregulated Stra8 and Kit, implying that cyclooxygenase 1 prevented spg differentiation. Furthermore, RNA sequencing analysis of cyclooxygenase 1 knockdown cells indicated the activation of several signaling pathways including the TGFb, Wnt, and Notch pathways, compared to control C18-4 cells. Notch pathway genes were upregulated by selective cyclooxygenase inhibitors, acetaminophen and ibuprofen. CONCLUSION We report that cyclooxygenase 1 and 2 differentially regulate undifferentiated spermatogonia/spermatogonial stem cell differentiation. Cyclooxygenases regulate Notch3 expression, with the Notch pathway targeted by PGD2. These data suggest an interaction between the eicosanoid and Notch signaling pathways that may be critical for the development of spermatogonial stem cells and subsequent spermatogenesis, cautioning about using cyclooxygenase inhibitors in infants.
Collapse
Affiliation(s)
- Amy Tran-Guzman
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, California, USA
| | - Amina Khan
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, California, USA
| | - Martine Culty
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
6
|
He D, Tang H, Yang X, Liu X, Zhang Y, Shi J. Elaboration and validation of a prognostic signature associated with disulfidoptosis in lung adenocarcinoma, consolidated with integration of single-cell RNA sequencing and bulk RNA sequencing techniques. Front Immunol 2023; 14:1278496. [PMID: 37965333 PMCID: PMC10641741 DOI: 10.3389/fimmu.2023.1278496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/13/2023] [Indexed: 11/16/2023] Open
Abstract
Background Lung adenocarcinoma (LUAD), the predominant subtype of non-small cell lung cancer (NSCLC), remains a pervasive global public health concern. Disulfidoptosis, a nascent form of regulated cell death (RCD), presents an emerging field of inquiry. Currently, investigations into disulfidoptosis are in their initial stages. Our undertaking sought to integrate single-cell RNA sequencing (scRNA-seq) in conjunction with traditional bulk RNA sequencing (bulk RNA-seq) methodologies, with the objective of delineating genes associated with disulfidoptosis and subsequently prognosticating the clinical outcomes of LUAD patients. Methods Initially, we conducted an in-depth examination of the cellular composition disparities existing between LUAD and normal samples using scRNA-seq data sourced from GSE149655. Simultaneously, we scrutinized the expression patterns of disulfidoptosis-associated gene sets across diverse cell types. Subsequently, leveraging the bulk RNA-seq data, we formulated disulfidoptosis-related prognostic risk signatures (DRPS) employing LASSO-Cox regression. This was accomplished by focusing on genes implicated in disulfidoptosis that exhibited differential expression within endothelial cells (ECs). Sequentially, the robustness and precision of the DRPS model were rigorously verified through both internal and external validation datasets. In parallel, we executed single-cell trajectory analysis to delve into the differentiation dynamics of ECs. Concluding our study, we undertook a comprehensive investigation encompassing various facets. These included comparative assessments of enrichment pathways, clinicopathological parameters, immune cell abundance, immune response-associated genes, impacts of immunotherapy, and drug predictions among distinct risk cohorts. Results The scrutiny of scRNA-seq data underscored discernible disparities in cellular composition between LUAD and normal samples. Furthermore, disulfidoptosis-associated genes exhibited marked discrepancies within endothelial cells (ECs). Consequently, we formulated the Disulfidoptosis-Related Prognostic Signature (DRPS) to facilitate prognostic prediction. The prognostic nomogram based on the risk score effectively demonstrated DRPS's robust capacity to prognosticate survival outcomes. This assertion was corroborated by rigorous assessments utilizing both internal and external validation sets, thus affirming the commendable predictive accuracy and enduring stability of DRPS. Functional enrichment analysis shed light on the significant correlation of DRPS with pathways intrinsic to the cell cycle. Subsequent analysis unveiled correlations between DRPS and gene mutations characteristic of LUAD, as well as indications of an immunosuppressive status. Through drug prediction, we explored potential therapeutic agents for low-risk patients. Concluding our investigation, qRT-PCR experiments confirmed the heightened expression levels of EPHX1, LDHA, SHC1, MYO6, and TLE1 in lung cancer cell lines.
Collapse
Affiliation(s)
- Dabao He
- Department of Laboratory Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Hengfeng Tang
- Department of Laboratory Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Xiaoling Yang
- Department of Laboratory Medicine, Shenzhen Baoan District Songgang People’s Hospital, Shenzhen, China
| | - Xiaohong Liu
- Department of Oncology, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Yipeng Zhang
- Department of Laboratory Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Junzhu Shi
- Department of Laboratory Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, China
| |
Collapse
|
7
|
He Y, He P, Lu S, Dong W. KIFC3 Regulates the progression and metastasis of gastric cancer via Notch1 pathway. Dig Liver Dis 2023; 55:1270-1279. [PMID: 36890049 DOI: 10.1016/j.dld.2023.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/19/2023] [Accepted: 02/14/2023] [Indexed: 03/10/2023]
Abstract
INTRODUCTION KIFC3 is a member of the kinesin family which has shown great promise in cancer therapy recently. In this study, we sought to elucidate the role of KIFC3 in the development of GC and its possible mechanisms. METHODS Two databases and a tissue microarray were used to explore the expression of KIFC3 and its correlation with patients' clinicopathological characteristics. Cell proliferation was examined by cell counting kit-8 assay and colony formation assay. Wound healing assay and transwell assay were performed to examine cell metastasis ability. EMT and Notch signaling related proteins were detected by western blot. Additionally, a xenograft tumor model was established to investigate the function of KIFC3 in vivo. RESULTS The expression of KIFC3 was upregulated in GC, and was associated with higher T stage and poor prognosis in GC patients. The proliferation and metastasis ability of GC cells were promoted by KIFC3 overexpression while inhibited by KIFC3 knockdown in vitro and in vivo. Furthermore, KIFC3 might activate the Notch1 pathway to facilitate the progression of GC, and DAPT, an inhibitor of Notch signaling, could reverse this effect. CONCLUSION Together, our data revealed that KIFC3 could enhance the progression and metastasis of GC by activating the Notch1 pathway.
Collapse
Affiliation(s)
- Yang He
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China; Central Laboratory of Renmin Hospital, Wuhan, Hubei Province, China
| | - Pengzhan He
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China; Central Laboratory of Renmin Hospital, Wuhan, Hubei Province, China
| | - Shimin Lu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China; Central Laboratory of Renmin Hospital, Wuhan, Hubei Province, China
| | - Weiguo Dong
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China; Central Laboratory of Renmin Hospital, Wuhan, Hubei Province, China.
| |
Collapse
|
8
|
To HTN, Park JH, Kim JW, Kang D. Delta/Notch-like Epidermal Growth Factor-Related Receptor (DNER), a Potential Prognostic Marker of Gastric Cancer Regulates Cell Survival and Cell Cycle Progression. Int J Mol Sci 2023; 24:10077. [PMID: 37373228 DOI: 10.3390/ijms241210077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Upregulation of the expression of Delta/notch-like epidermal growth factor-related receptor (DNER) and its oncogenic role have been reported in several cancers, including gastric, breast, and prostate cancers. This study aimed to investigate the oncogenic role of DNER and the mechanisms behind its oncogenic role in gastric cancer. Analysis of the RNASeq data of gastric cancer tissues obtained from the TCGA database revealed that the expression of DNER was associated with the pathology of advanced gastric cancer and the prognosis of patients. DNER expression was increased upon stem cell-enriching cancer spheroid culture. Knockdown of DNER expression inhibited cell proliferation and invasion, induced apoptosis, enhanced chemosensitivity, and decreased spheroid formation of SNU-638 gastric cancer cells. DNER silencing elevated the expression of p53, p21cip/waf, and p27, and increased G1 phase cells at the expense of S phase cells. Knockdown of p21cip/waf expression in the DNER-silenced cells partially restored cell viability and S phase progression. DNER silencing also induced the apoptosis of SNU-638 cells. While both cleaved caspases-8 and 9 were detected in adherent cells, only cleaved caspase-8 was found to have increased in spheroid-cultured cells, suggesting a distinct activation pattern of caspase activation depending on the growth condition. Knockdown of p53 expression rescued the DNER-silenced cells from apoptosis and partially restored cell viability. In contrast, overexpression of the Notch intracellular domain (NICD) decreased the expression of p53, p21cip/waf, and cleaved caspase-3 in DNER-silenced cells. Moreover, NICD expression fully reverted the cell viability reduction, arrest in the G1 phase, and elevated apoptosis caused by DNER silencing, thereby suggesting activation of Notch signaling by DNER. Expression of a membrane-unbound mutant of mDNER also decreased cell viability and induced apoptosis. On the other hand, TGF-β signals were found to be involved in DNER expression in both adherent and spheroid-cultured cells. DNER could therefore be a link connecting TGF-β signaling to Notch signaling. Taken together, DNER regulates cell proliferation, survival, and invasive capacity of the gastric cancer cells through the activation of Notch signaling, which may facilitate tumor progression into an advanced stage. This study provides evidences suggesting that DNER could be a potential prognostic marker, a therapeutic target, and a drug candidate in the form of a cell-free mutant.
Collapse
Affiliation(s)
- Han Thi Ngoc To
- Ilsong Institute of Life Science, Hallym University, Beodeunaru-ro 55, Yeongdeungpo-gu, Seoul 07247, Republic of Korea
- Department of Biomedical Gerontology, Hallym University Graduate School, Chuncheon 24252, Republic of Korea
| | - Ji-Hong Park
- Ilsong Institute of Life Science, Hallym University, Beodeunaru-ro 55, Yeongdeungpo-gu, Seoul 07247, Republic of Korea
- Department of Biomedical Gerontology, Hallym University Graduate School, Chuncheon 24252, Republic of Korea
| | - Jeong Won Kim
- Department of Pathology, Kangnam Sacred Heart Hospital, College of Medicine, Hallym University, Seoul 07441, Republic of Korea
| | - Dongchul Kang
- Ilsong Institute of Life Science, Hallym University, Beodeunaru-ro 55, Yeongdeungpo-gu, Seoul 07247, Republic of Korea
- Department of Biomedical Gerontology, Hallym University Graduate School, Chuncheon 24252, Republic of Korea
| |
Collapse
|
9
|
He J, Li L, Lv L, Chen X, Ge M, Ren Y, Tang X, Liu P, Gao W. JAG1 is correlated to suppressive immune microenvironment and predicts immunotherapy resistance in lung adenocarcinoma. Front Oncol 2023; 13:1091488. [PMID: 36923423 PMCID: PMC10009168 DOI: 10.3389/fonc.2023.1091488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/09/2023] [Indexed: 03/02/2023] Open
Abstract
Background The current exploration of the tumor immune microenvironment is enthusiastic, but few studies explored the impact of angiogenesis on the immune microenvironment. Immunotherapy combined with anti-angiogenesis therapy has become one of the first-line treatment for lung adenocarcinoma. Our study aimed to explore the reasons for resistance of immunotherapy, and explore markers for immunotherapy combined with anti-angiogenesis therapy. Methods First, by unsupervised clustering of 36 angiogenesis-related genes in lung adenocarcinoma patients from TCGA database, AGS1 and AGS2 groups were distinguished with significantly different clinical outcomes. Secondly, the immune microenvironment and metabolic characteristics were analyzed. Next, we used the GDSC and GEO database to analyze therapeutic responses. Then, through multivariate Cox regression, the hub gene: JAG1, significantly related to prognosis was selected, and further verified by multi-omics data. Finally, we validated that patient with high JAG1 expression had a low immune-infiltrating tumor microenvironment through single-cell transcriptomic data. Results Compared with the AGS1 group, AGS2 showed an immune "cold" phenotype with lower lymphocyte infiltration, and was associated with worse prognoses. At the same time, the immunosuppressive TGF-β response was significantly higher in AGS2. Furthermore, the glycolysis ability of the AGS2 was stronger than AGS1. The expression of JAG1 was significantly higher in the AGS2, and was significantly negatively correlated with the degree of immune infiltration, accompanying with higher glycolytic capacity. The above results indicate that patients with high expression of JAG1 may lead to immunosuppressive phenotype due to its strong glycolytic capacity, thus making immunotherapy resistance. Conclusion Patients with high expression of JAG1 enhanced glycolytic capacity was likely to cause suppressed immune microenvironment. JAG1 may be a marker for resistance of immunotherapy. Combining anti-angiogenesis therapy could be considered to improve the prognosis of those patients.
Collapse
Affiliation(s)
- Jing He
- Department of Oncology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, China
| | - Lu Li
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Sincere Diagnostics Co., Ltd., Nanjing, China.,Nanjing Sincere Medical Laboratory Science Co., Ltd., Nanjing, China
| | - Lulu Lv
- Department of Oncology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, China
| | - Xiaoyan Chen
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Sincere Diagnostics Co., Ltd., Nanjing, China.,Nanjing Sincere Medical Laboratory Science Co., Ltd., Nanjing, China
| | - Minghui Ge
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Sincere Diagnostics Co., Ltd., Nanjing, China.,Nanjing Sincere Medical Laboratory Science Co., Ltd., Nanjing, China
| | - Yong Ren
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Sincere Diagnostics Co., Ltd., Nanjing, China.,Nanjing Sincere Medical Laboratory Science Co., Ltd., Nanjing, China
| | - Xinyu Tang
- Department of Radiation Oncology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, China
| | - Ping Liu
- Department of Oncology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, China
| | - Wen Gao
- Department of Oncology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, China
| |
Collapse
|
10
|
Chen J, Han G, Xu A, Akutsu T, Cai H. Identifying miRNA-Gene Common and Specific Regulatory Modules for Cancer Subtyping by a High-Order Graph Matching Model. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:421-431. [PMID: 35320104 DOI: 10.1109/tcbb.2022.3161635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Identifying regulatory modules between miRNAs and genes is crucial in cancer research. It promotes a comprehensive understanding of the molecular mechanisms of cancer. The genomic data collected from subjects usually relate to different cancer statuses, such as different TNM Classifications of Malignant Tumors (TNM) or histological subtypes. Simple integrated analyses generally identify the core of the tumorigenesis (common modules) but miss the subtype-specific regulatory mechanisms (specific modules). In contrast, separate analyses can only report the differences and ignore important common modules. Therefore, there is an urgent need to develop a novel method to jointly analyze miRNA and gene data of different cancer statuses to identify common and specific modules. To that end, we developed a High-Order Graph Matching model to identify Common and Specific modules (HOGMCS) between miRNA and gene data of different cancer statuses. We first demonstrate the superiority of HOGMCS through a comparison with four state-of-the-art techniques using a set of simulated data. Then, we apply HOGMCS on stomach adenocarcinoma data with four TNM stages and two histological types, and breast invasive carcinoma data with four PAM50 subtypes. The experimental results demonstrate that HOGMCS can accurately extract common and subtype-specific miRNA-gene regulatory modules, where many identified miRNA-gene interactions have been confirmed in several public databases.
Collapse
|
11
|
Fei L, Hou G, Lu Z, Yang X, Ji Z. High expression of pituitary tumor gene family is a predictor for poor prognosis of gastric cancer. ALL LIFE 2022. [DOI: 10.1080/26895293.2022.2101548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Affiliation(s)
- Lihong Fei
- Department of Gastroenterology, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, People’s Republic of China
| | - Guoxin Hou
- Department of Oncology, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, People’s Republic of China
| | - Zhimin Lu
- Department of outpatient, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, People’s Republic of China
| | - Xinmei Yang
- Department of Oncology, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, People’s Republic of China
| | - Zizhong Ji
- Department of Gastroenterology, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, People’s Republic of China
| |
Collapse
|
12
|
JAG1 is associated with the prognosis and metastasis in breast cancer. Sci Rep 2022; 12:21986. [PMID: 36539520 PMCID: PMC9768120 DOI: 10.1038/s41598-022-26241-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Jagged canonical Notch ligand 1 (JAG1) regulates the progression of many cancers by the Notch signaling pathway, but its role in breast cancer (BC) remains unclear. In this research, JAG1 protein expression in BC tissues was detected by immunohistochemistry. The association between JAG1 and clinical significance was analyzed. The effect of JAG1 on malignant behaviors of BC cells was demonstrated by in vitro experiments. JAG1 expression in BC tissues was higher than that in para-carcinoma tissues. High JAG1 expression was significantly linked to advanced lymph node metastasis, distant metastasis, and the TNM stage. JAG1 was an independent prognostic factor for BC patients. JAG1 knockdown inhibited the proliferation, motility, migration, and invasion of BC cells, and weakened adhesion and penetration abilities to the blood-brain barrier, whereas JAG1 overexpression had the opposite effects. JAG1 has the potential to be a prognostic marker and therapeutic target for BC patients.
Collapse
|
13
|
Hashemi M, Hasani S, Hajimazdarany S, Mirmazloomi SR, Makvandy S, Zabihi A, Goldoost Y, Gholinia N, Kakavand A, Tavakolpournegari A, Salimimoghadam S, Nabavi N, Zarrabi A, Taheriazam A, Entezari M, Hushmandi K. Non-coding RNAs targeting notch signaling pathway in cancer: From proliferation to cancer therapy resistance. Int J Biol Macromol 2022; 222:1151-1167. [DOI: 10.1016/j.ijbiomac.2022.09.203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 09/22/2022] [Indexed: 11/26/2022]
|
14
|
Anti-Jagged-1 immunotherapy in cancer. Adv Med Sci 2022; 67:196-202. [PMID: 35421813 DOI: 10.1016/j.advms.2022.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 01/25/2022] [Accepted: 04/02/2022] [Indexed: 02/06/2023]
Abstract
Notch signaling is a highly conserved pathway and it plays an essential role in regulating cellular proliferation, differentiation, and apoptosis. The human Notch family includes four receptors, Notch 1-4, and five ligands, delta-like ligand 1 (DLL1), delta-like ligand 3 (DLL3), delta-like ligand 4 (DLL4), Jagged-1 (JAG1), and Jagged-2 (JAG2). It is widely known, that Notch signaling components are often mutated and have deregulated expression in many types of cancer and other diseases. Thus, various therapeutic approaches targeting receptors and ligands of the Notch pathway are being investigated. Human JAG1 is closely related to tumor biology among the Notch ligands, and recent studies have shown potential for monoclonal antibodies targeting JAG1 in cancer therapy. Therefore, this review focuses on current reports on the significance of JAG1 directed cancer treatment, emphasizing immunotherapy.
Collapse
|
15
|
Li X, Cao X, Zhao H, Guo M, Fang X, Li K, Qin L, He Y, Liu X. Hypoxia Activates Notch4 via ERK/JNK/P38 MAPK Signaling Pathways to Promote Lung Adenocarcinoma Progression and Metastasis. Front Cell Dev Biol 2022; 9:780121. [PMID: 34988077 PMCID: PMC8721100 DOI: 10.3389/fcell.2021.780121] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022] Open
Abstract
Hypoxia contributes to the progression and metastasis of lung adenocarcinoma (LUAD). However, the specific underlying molecular mechanisms have not been fully elucidated. Here we report that Notch4 is upregulated in lung tissue from lung cancer patients. Functionally, Hypoxia activates the expressions of Delta-like 4 and Notch4, resulting in the excessive proliferation and migration of LUAD cells as well as apoptotic resistance. Notch4 silencing reduced ERK, JNK, and P38 activation. Meanwhile, Notch4 overexpression enhanced ERK, JNK, and P38 activation in LUAD cells. Furthermore, Notch4 exerted pro-proliferation, anti-apoptosis and pro-migration effects on LUAD cells that were partly reversed by the inhibitors of ERK, JNK, and p38. The binding interaction between Notch4 and ERK/JNK/P38 were confirmed by the co-immunoprecipitation assay. In vivo study revealed that Notch4 played a key role in the growth and metastasis of LUAD using two xenograft models. This study demonstrates that hypoxia activates Notch4-ERK/JNK/P38 MAPK signaling pathways to promote LUAD cell progression and metastasis.
Collapse
Affiliation(s)
- Xiaochen Li
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Respiratory Diseases, National Ministry of Health of the People's Republic of China and National Clinical Research Center for Respiratory Disease, Wuhan, China
| | - Xiaopei Cao
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hanqiu Zhao
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Respiratory Diseases, National Ministry of Health of the People's Republic of China and National Clinical Research Center for Respiratory Disease, Wuhan, China
| | - Mingzhou Guo
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Respiratory Diseases, National Ministry of Health of the People's Republic of China and National Clinical Research Center for Respiratory Disease, Wuhan, China
| | - Xiaoyu Fang
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Respiratory Diseases, National Ministry of Health of the People's Republic of China and National Clinical Research Center for Respiratory Disease, Wuhan, China
| | - Ke Li
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Respiratory Diseases, National Ministry of Health of the People's Republic of China and National Clinical Research Center for Respiratory Disease, Wuhan, China
| | - Lu Qin
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Respiratory Diseases, National Ministry of Health of the People's Republic of China and National Clinical Research Center for Respiratory Disease, Wuhan, China
| | - Yuanzhou He
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Respiratory Diseases, National Ministry of Health of the People's Republic of China and National Clinical Research Center for Respiratory Disease, Wuhan, China
| | - Xiansheng Liu
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Respiratory Diseases, National Ministry of Health of the People's Republic of China and National Clinical Research Center for Respiratory Disease, Wuhan, China
| |
Collapse
|
16
|
Guo L, Li S, Yan X, Shen L, Xia D, Xiong Y, Dou Y, Mi L, Ren Y, Xiang Y, Ren D, Wang J, Liang T. A comprehensive multi-omics analysis reveals molecular features associated with cancer via RNA cross-talks in the Notch signaling pathway. Comput Struct Biotechnol J 2022; 20:3972-3985. [PMID: 35950189 PMCID: PMC9340535 DOI: 10.1016/j.csbj.2022.07.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 07/22/2022] [Accepted: 07/22/2022] [Indexed: 11/05/2022] Open
Abstract
Many Notch genes are identified as cancer-associated genes with an important role in tumorigenesis. Dynamic expression patterns are associated with the Notch activity that are largely regulated by multiple ncRNAs. Cross-talks among diverse RNAs are crucial in cancers via ceRNA network. The Notch pathway shows a robust prognostic ability via integrating multi-omics features as well as their targets. The Notch pathway is also correlated with immune infiltration and maybe available cancer treatment drug targets.
The Notch signaling has an important role in multiple cellular processes and is related to carcinogenic process. To understand the potential molecular features of the crucial Notch pathway, a comprehensive multi-omics analysis is performed to explore its contributions in cancer, mainly including analysis of somatic mutation landscape, pan-cancer expression, ncRNA regulation and potential prognostic power. The screened 22 Notch core genes are relative stable in DNA variation. Dynamic expression patterns are associated with the Notch activity, which are mainly regulated by multiple ncRNAs via interactions of ncRNA:mRNA and ceRNA networks. The Notch pathway shows a potential prognostic ability through integrating multi-omics features as well as their targets, and it is correlated with immune infiltration and maybe available drug targets, implying the potential role in individualized treatment. Collectively, all of these findings contribute to exploring crucial role of the key pathway in cancer pathophysiology and gaining mechanistic insights into cross-talks among RNAs and biological pathways, which indicates the possible application of the well-conserved Notch signaling pathway in precision medicine.
Collapse
|
17
|
A Comprehensive Bioinformatic Analysis of NOTCH Pathway Involvement in Stomach Adenocarcinoma. DISEASE MARKERS 2021; 2021:4739868. [PMID: 34925644 PMCID: PMC8674080 DOI: 10.1155/2021/4739868] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 11/12/2021] [Indexed: 01/02/2023]
Abstract
Background Activation of NOTCH signaling pathways, which are key regulators of multiple cellular functions, has been frequently implicated in cancer pathogenesis, and NOTCH inhibitors have received much recent focus in the context of cancer therapeutics. However, the role and possible involvement of NOTCH pathways in stomach adenocarcinoma (STAD) are unclear. Here, putative regulatory mechanisms and functions of NOTCH pathways in STAD were investigated. Methods Publicly available data from the TCGA-STAD database were utilized to explore the involvement of canonical NOTCH pathways in STAD by analyzing RNA expression levels of NOTCH receptors, ligands, and downstream genes. Statistical analysis of the data pertaining to cancer and noncancerous samples was performed using R software packages and public databases/webservers. Results Significant differential gene expression between control and STAD samples was noted for all NOTCH receptors (NOTCH1, 2, 3, and 4), the delta-like NOTCH ligands (DLL-3 and 4), and typical downstream genes (HES1 and HEY1). Four genes (NOTCH1, NOTCH2, NOTCH3, and HEY1) presented prognostic values for the STAD outcome in terms of overall survival. Functional enrichment analysis indicated that NOTCH family genes-strongly correlated genes were mainly enriched in several KEGG signaling pathways such as the PI3K-Akt signaling pathway, human papillomavirus infection, focal adhesion, Rap1 signaling pathway, and ECM-receptor interaction. Gene set enrichment analysis (GSEA) results showed that NOTCH family genes-significantly correlated genes were mainly enriched in four signaling pathways, ECM (extracellular matrix), tumor angiogenesis, inflammatory response, and immune regulation. Conclusions NOTCH family genes may play an essential role in the progression of STAD by modulating immune cells and mediating ECM synthesis, angiogenesis, focal adhesion, and PI3K-Akt signaling. Multiple NOTCH family genes are valuable candidate biomarkers or therapeutic targets for the management of STAD.
Collapse
|
18
|
Zhao H, Hu H, Chen B, Xu W, Zhao J, Huang C, Xing Y, Lv H, Nie C, Wang J, He Y, Wang SQ, Chen XB. Overview on the Role of E-Cadherin in Gastric Cancer: Dysregulation and Clinical Implications. Front Mol Biosci 2021; 8:689139. [PMID: 34422902 PMCID: PMC8371966 DOI: 10.3389/fmolb.2021.689139] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/19/2021] [Indexed: 01/04/2023] Open
Abstract
Gastric cancer is the fifth most common cancer and the third most common cause of cancer death all over the world. E-cadherin encoded by human CDH1 gene plays important roles in tumorigenesis as well as in tumor progression, invasion and metastasis. Full-length E-cadhrin tethered on the cell membrane mainly mediates adherens junctions between cells and is involved in maintaining the normal structure of epithelial tissues. After proteolysis, the extracellular fragment of the full-length E-cadhein is released into the extracellular environment and the blood, which is called soluble E-cadherin (sE-cadherin). sE-cadherin promots invasion and metastasis as a paracrine/autocrine signaling molecule in the progression of various types of cancer including gastric cancer. This review mainly summarizes the dysregulation of E-cadherin and the regulatory roles in the progression, invasion, metastasis, and drug-resistance, as well as its clinical applications in diagnosis, prognosis, and therapeutics of gastric cancer.
Collapse
Affiliation(s)
- Huichen Zhao
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Huihui Hu
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Beibei Chen
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China.,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, China
| | - Weifeng Xu
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Jing Zhao
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Chen Huang
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Yishu Xing
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Huifang Lv
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Caiyun Nie
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Jianzheng Wang
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Yunduan He
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Sai-Qi Wang
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China.,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, China
| | - Xiao-Bing Chen
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China.,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
19
|
Horita N, Keeley TM, Hibdon ES, Delgado E, Lafkas D, Siebel CW, Samuelson LC. Delta-like 1-Expressing Cells at the Gland Base Promote Proliferation of Gastric Antral Stem Cells in Mouse. Cell Mol Gastroenterol Hepatol 2021; 13:275-287. [PMID: 34438113 PMCID: PMC8599166 DOI: 10.1016/j.jcmgh.2021.08.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 08/14/2021] [Accepted: 08/16/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Notch pathway signaling maintains gastric epithelial cell homeostasis by regulating stem cell proliferation and differentiation. We previously identified NOTCH1 and NOTCH2 as the key Notch receptors controlling gastric stem cell function. Here, we identify the niche cells and critical Notch ligand responsible for regulating stem cell proliferation in the distal mouse stomach. METHODS Expression of Notch ligands in the gastric antrum was determined by quantitative reverse-transcriptase polymerase chain reaction and cellular localization was determined by in situ hybridization and immunostaining. The contribution of specific Notch ligands to regulate epithelial cell proliferation in adult mice was determined by inducible gene deletion, or by pharmacologic inhibition using antibodies directed against specific Notch ligands. Mouse gastric organoid cultures were used to confirm that Notch ligand signaling was epithelial specific. RESULTS Delta-like 1 (DLL1) and Jagged 1 (JAG1) were the most abundantly expressed Notch ligands in the adult mouse stomach, with DLL1 restricted to the antral gland base and JAG1 localized to the upper gland region. Inhibition of DLL1 alone or in combination with other Notch ligands significantly reduced epithelial cell proliferation and the growth of gastric antral organoids, while inhibition of the other Notch ligands, DLL4, JAG1, and JAG2, did not affect proliferation or organoid growth. Similarly, DLL1, and not DLL4, regulated proliferation of LGR5+ antral stem cells, which express the NOTCH1 receptor. CONCLUSIONS DLL1 is the key Notch ligand regulating epithelial cell proliferation in the gastric antrum. We propose that DLL1-expressing cells at the gland base are Notch niche cells that signal to adjacent LGR5+ antral stem cells to regulate stem cell proliferation and epithelial homeostasis.
Collapse
Affiliation(s)
- Nobukatsu Horita
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Theresa M Keeley
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Elise S Hibdon
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Elizabeth Delgado
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Daniel Lafkas
- Department of Discovery Oncology, Genentech, San Francisco, California
| | | | - Linda C Samuelson
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan; Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
20
|
Li HL, Li QY, Jin MJ, Lu CF, Mu ZY, Xu WY, Song J, Zhang Y, Zhang SY. A review: hippo signaling pathway promotes tumor invasion and metastasis by regulating target gene expression. J Cancer Res Clin Oncol 2021; 147:1569-1585. [PMID: 33864521 DOI: 10.1007/s00432-021-03604-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/16/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND The Hippo pathway is widely considered to inhibit cell growth and play an important role in regulating the size of organs. However, recent studies have shown that abnormal regulation of the Hippo pathway can also affect tumor invasion and metastasis. Therefore, finding out how the Hippo pathway promotes tumor development by regulating the expression of target genes provides new ideas for future research on targeted drugs that inhibit tumor progression. METHODS PubMed, Embase, Web of Science, and the Cochrane Library were systematically searched. RESULTS The search strategy identified 1892 hits and 196 publications were finally included in this review. As the core molecule of the Hippo pathway, YAP/TAZ are usually highly expressed in tumors that undergo invasion and migration and are accompanied by abnormally strong nuclear metastasis. Through its interaction with nuclear transcription factors TEADs, it directly or indirectly regulates and the expressions of target genes related to tumor metastasis and invasion. These target genes can induce the formation of invasive pseudopodia in tumor cells, reduce intercellular adhesion, degrade extracellular matrix (ECM), and cause epithelial-mesenchymal transition (EMT), or indirectly promote through other signaling pathways, such as mitogen-activated protein kinases (MAPK), TGF/Smad, etc, which facilitate the invasion and metastasis of tumors. CONCLUSION This article mainly introduces the research progress of YAP/TAZ which are the core molecules of the Hippo pathway regulating related target genes to promote tumor invasion and metastasis. Focus on the target genes that affect tumor invasion and metastasis, providing the possibility for the selection of clinical drug treatment targets, to provide some help for a more in-depth study of tumor invasion and migration mechanism and the development of clinical drugs.
Collapse
Affiliation(s)
- Hong-Li Li
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Qian-Yu Li
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Min-Jie Jin
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Chao-Fan Lu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhao-Yang Mu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Wei-Yi Xu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Jian Song
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China. .,School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Institute of Drug Discovery and Development, Zhengzhou, 450001, China.
| | - Yan Zhang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Sai-Yang Zhang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China. .,School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Institute of Drug Discovery and Development, Zhengzhou, 450001, China. .,Zhengzhou University, Henan Institute of Advanced Technology, Zhengzhou, 450001, China.
| |
Collapse
|
21
|
NOTCH3, a crucial target of miR-491-5p/miR-875-5p, promotes gastric carcinogenesis by upregulating PHLDB2 expression and activating Akt pathway. Oncogene 2021; 40:1578-1594. [PMID: 33452458 PMCID: PMC7932926 DOI: 10.1038/s41388-020-01579-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 01/29/2023]
Abstract
Aberrant Notch activation has been implicated in multiple malignancies and the identification of NOTCH receptors and related pathways is critical for targeted therapy. In this study, we aim to delineate the most prominent dysregulated NOTCH receptor and comprehensively reveal its deregulation in gastric cancer (GC). In the four Notch members, NOTCH3 was found uniformly upregulated and associated with poor clinical outcomes in multiple GC datasets. siRNA-mediated NOTCH3 knockdown demonstrated antitumor effects by suppressing cell proliferation, inhibiting monolayer formation, and impairing cell invasion abilities. Its depletion also induced early and late apoptosis. NOTCH3 was confirmed to be a direct target of two tumor suppressor microRNAs (miRNAs), namely miR-491-5p and miR-875-5p. The activation of NOTCH3 is partly due to the silence of these two miRNAs. Through RNA-seq profiling and functional validation, PHLDB2 was identified as a potent functional downstream modulator for NOTCH3 in gastric carcinogenesis. PHLDB2 expression demonstrated a positive correlation with NOTCH3, but was negatively correlated with miR-491-5p. Akt-mTOR was revealed as the downstream signaling of PHLDB2. The NOTCH3-PHLDB2-Akt co-activation was found in 33.7% GC patients and the activation of this axis predicted poor clinical outcome. GC cells treated with siNOTCH3, siPHLDB2, miR-491-5p, miR-875-5p, were more sensitive to Cisplatin and 5-FU. Taken together, the NOTCH3-PHLDB2-Akt cascade plays oncogenic role in gastric carcinogenesis and serves as a therapeutic target. Our study provided insights into Notch-mediated underlying molecular mechanisms and implied translational potential.
Collapse
|
22
|
The clinical significance of Notch1 immunoexpression in Caucasian patients with colorectal adenocarcinoma. GASTROENTEROLOGY REVIEW 2020; 15:314-322. [PMID: 33777271 PMCID: PMC7988833 DOI: 10.5114/pg.2020.101560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 11/22/2019] [Indexed: 12/19/2022]
Abstract
Introduction Colorectal cancer (CRC) is traditionally regarded as the most commonly diagnosed gastrointestinal malignant disease. Nevertheless, despite advances in diagnosis and novel therapeutic options, the clinical outcomes of patients are still not satisfactory. Aim To investigate the clinicopathological and prognostic roles of Notch1 expression, the immunohistochemical investigation was performed in samples of CRC tumour tissues, adjacent non-pathological mucosa, and metastatic foci in regional lymph nodes in Caucasian patients. Material and methods Paraffin-embedded adenocarcinoma samples were assessed immunohistochemically for Notch1 protein and scored according to the percentage of cells with a positive reaction combined with staining intensity. Connections between Notch1 immunoexpression and clinicopathological factors including the 5-year overall survival (OS) were evaluated. Results The level of the Notch1 immunohistochemical reactivity was correlated with the grade of the histological differentiation, size of the primary tumour, regional lymph node involvement, and perineural invasion (all p < 0.001). Kaplan-Meier survival analysis showed that the survival time for patients with a low expression of Notch1 was significantly longer than that for patients with moderate or strong level of Notch1 immunoreactivity (p < 0.001). Conclusions The enhanced level of Notch1 immunoexpression was significantly associated with malignancy-related clinicopathological factors and reduced the 5-year overall survival in CRC patients.
Collapse
|
23
|
MAC30 Knockdown Inhibits Proliferation and Enhance Apoptosis of Gastric Cancer by Suppressing Wnt/ β-Cateninsignaling Pathway. Gastroenterol Res Pract 2020; 2020:6358685. [PMID: 32904598 PMCID: PMC7456481 DOI: 10.1155/2020/6358685] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/15/2020] [Indexed: 01/17/2023] Open
Abstract
Gastric cancer is one of the most frequently diagnosed cancer and poses a serious threat to health system in the world. Upregulation of meningioma-associated protein (MAC30) has been found in many solid tumors and can regulate the proliferation, differentiation, and apoptosis of different tumor cells. Quantitative polymerase chain reaction (qPCR) was used to detect the expression of MAC30 in 68 patients with gastric cancer and their adjacent tissues. Lentiviral vector pGCSIL-shMAC30-GFP of the RNA interference (RNAi) of the MAC30 gene was transfected into gastric cancer BGC-823 cell line and the expression of lentivirus label protein GFP was observed via fluorescence microscope, while cell proliferation and apoptosis were determined with flow cytometry and MTT assay, respectively. Also, related protein expressions on Wnt/β-catenin signaling pathway were analyzed by Western blot method. The expression of MAC30 was abnormally elevated in gastric cancer tissues, while interfering of its expression could significantly inhibit the proliferation of gastric cancer BGC-823 cell line. However, the promotion of apoptosis by mitochondrial pathway was mediated by Bax/Bcl-2 upregulation. Present work showed the effect of downregulated MAC30 expression on proliferation and apoptosis of gastric cancer cell through Wnt/β-catenin signaling pathway. Thus, this investigation provides an experimental basis for future development of chemotherapeutic agent on gastric cancer.
Collapse
|
24
|
Molecular Bases of Mechanisms Accounting for Drug Resistance in Gastric Adenocarcinoma. Cancers (Basel) 2020; 12:cancers12082116. [PMID: 32751679 PMCID: PMC7463778 DOI: 10.3390/cancers12082116] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 12/24/2022] Open
Abstract
Gastric adenocarcinoma (GAC) is the most common histological type of gastric cancer, the fifth according to the frequency and the third among the deadliest cancers. GAC high mortality is due to a combination of factors, such as silent evolution, late clinical presentation, underlying genetic heterogeneity, and effective mechanisms of chemoresistance (MOCs) that make the available antitumor drugs scarcely useful. MOCs include reduced drug uptake (MOC-1a), enhanced drug efflux (MOC-1b), low proportion of active agents in tumor cells due to impaired pro-drug activation or active drug inactivation (MOC-2), changes in molecular targets sensitive to anticancer drugs (MOC-3), enhanced ability of cancer cells to repair drug-induced DNA damage (MOC-4), decreased function of pro-apoptotic factors versus up-regulation of anti-apoptotic genes (MOC-5), changes in tumor cell microenvironment altering the response to anticancer agents (MOC-6), and phenotypic transformations, including epithelial-mesenchymal transition (EMT) and the appearance of stemness characteristics (MOC-7). This review summarizes updated information regarding the molecular bases accounting for these mechanisms and their impact on the lack of clinical response to the pharmacological treatment currently used in GAC. This knowledge is required to identify novel biomarkers to predict treatment failure and druggable targets, and to develop sensitizing strategies to overcome drug refractoriness in GAC.
Collapse
|
25
|
Expression patterns of seven key genes, including β-catenin, Notch1, GATA6, CDX2, miR-34a, miR-181a and miR-93 in gastric cancer. Sci Rep 2020; 10:12342. [PMID: 32704077 PMCID: PMC7378835 DOI: 10.1038/s41598-020-69308-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 06/01/2020] [Indexed: 02/08/2023] Open
Abstract
Gastric cancer (GC) is one of the most prevalent cancers and a major cause of cancer related mortality worldwide. Incidence of GC is affected by various factors, including genetic and environmental factors. Despite extensive research has been done for molecular characterization of GC, it remains largely unknown. Therefore, further studies specially conducted among various ethnicities in different geographic locations, are required to know the precise molecular mechanisms leading to tumorigenesis and progression of GC. The expression patterns of seven candidate genes, including β-catenin, Notch1, GATA6, CDX2, miR-34a, miR-181a, and miR-93 were determined in 24 paired GC tissues and corresponding non-cancerous tissues by quantitative Real-Time PCR. The association between the expression of these genes and clinicopathologic factors were also investigated. Our results demonstrated that overall mRNA levels of GATA6 were significantly decreased in the tumor samples in comparison with the non-cancerous tissues (median fold change (FC) = 0.3143; P = 0.0003). Overall miR-93 levels were significantly increased in the tumor samples relative to the non-cancerous gastric tissues (FC = 2.441; P = 0.0002). β-catenin mRNA expression showed a strong positive correlation with miR-34a (r = 0.5784; P = 0.0031), and miR-181a (r = 0.5652; P = 0.004) expression. miR-34a and miR-181a expression showed a significant positive correlation (r = 0.4862; P = 0.016). Moreover, lower expression of Notch1 was related to distant metastasis in GC patients with a borderline statistical significance (p = 0.0549). These data may advance our understanding of the molecular biology that drives GC as well as provide potential targets for defining novel therapeutic strategies for GC treatment.
Collapse
|
26
|
The oncogenic role of Jagged1/Notch signaling in cancer. Biomed Pharmacother 2020; 129:110416. [PMID: 32593969 DOI: 10.1016/j.biopha.2020.110416] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/12/2020] [Accepted: 06/13/2020] [Indexed: 12/14/2022] Open
Abstract
Aberrant activation of Notch signaling plays an oncogenic role in cancer development. Jagged1 (JAG1) is an important Notch ligand that triggers Notch signaling through cell-cell interactions. JAG1 overexpression has been reported in many different types of cancer and correlates with a poor clinical prognosis. JAG1/Notch signaling controls oncogenic processes in different cell types and cellular contexts. Furthermore, JAG1/Notch signaling cascades activate a number of oncogenic factors that regulate cellular functions such as proliferation, metastasis, drug-resistance, and angiogenesis. To suppress the severe toxicity of pan-Notch inhibitors, JAG1 is attracting increasing attention as a source of therapeutic targets for cancers. In this review, the oncogenic role of JAG1/Notch signaling in cancer is discussed, as well as implications of strategies to inhibit JAG1/Notch signaling activity.
Collapse
|
27
|
Pádua D, Figueira P, Ribeiro I, Almeida R, Mesquita P. The Relevance of Transcription Factors in Gastric and Colorectal Cancer Stem Cells Identification and Eradication. Front Cell Dev Biol 2020; 8:442. [PMID: 32626705 PMCID: PMC7314965 DOI: 10.3389/fcell.2020.00442] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/11/2020] [Indexed: 12/12/2022] Open
Abstract
Gastric and colorectal cancers have a high incidence and mortality worldwide. The presence of cancer stem cells (CSCs) within the tumor mass has been indicated as the main reason for tumor relapse, metastasis and therapy resistance, leading to poor overall survival. Thus, the elimination of CSCs became a crucial goal for cancer treatment. The identification of these cells has been performed by using cell-surface markers, a reliable approach, however it lacks specificity and usually differs among tumor type and in some cases even within the same type. In theory, the ideal CSC markers are those that are required to maintain their stemness features. The knowledge that CSCs exhibit characteristics comparable to normal stem cells that could be associated with the expression of similar transcription factors (TFs) including SOX2, OCT4, NANOG, KLF4 and c-Myc, and signaling pathways such as the Wnt/β-catenin, Hedgehog (Hh), Notch and PI3K/AKT/mTOR directed the attention to the use of these similarities to identify and target CSCs in different tumor types. Several studies have demonstrated that the abnormal expression of some TFs and the dysregulation of signaling pathways are associated with tumorigenesis and CSC phenotype. The disclosure of common and appropriate biomarkers for CSCs will provide an incredible tool for cancer prognosis and treatment. Therefore, this review aims to gather the new insights in gastric and colorectal CSC identification specially by using TFs as biomarkers and divulge promising drugs that have been found and tested for targeting these cells.
Collapse
Affiliation(s)
- Diana Pádua
- i3S – Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Paula Figueira
- i3S – Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Inês Ribeiro
- i3S – Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Raquel Almeida
- i3S – Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
- Faculty of Medicine, University of Porto, Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Patrícia Mesquita
- i3S – Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| |
Collapse
|
28
|
Liao TT, Lin CC, Jiang JK, Yang SH, Teng HW, Yang MH. Harnessing stemness and PD-L1 expression by AT-rich interaction domain-containing protein 3B in colorectal cancer. Am J Cancer Res 2020; 10:6095-6112. [PMID: 32483441 PMCID: PMC7255042 DOI: 10.7150/thno.44147] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 05/06/2020] [Indexed: 12/20/2022] Open
Abstract
Background and Aims: Cancer stem cells (CSCs) have been shown to be responsible for the tumor initiation, metastasis, and therapeutic resistance of colorectal cancer (CRC). Recent studies have also indicated the importance of CSCs in escaping immune surveillance. However, the coordinated epigenetic control of the stem cell signature and the key molecule(s) involved in immunosurveillance of colorectal CSCs (CRCSCs) are unclear. Here, we investigated the role of a histone modifier, AT-rich interaction domain-containing protein 3B (ARID3B), in CRC. Methods: CRC patient-derived xenografts (PDXs) with knockout of ARID3B induced by CRISPR/Cas9 in vivo were used. Molecular/cellular biology assays were performed. Clinical data obtained from The Cancer Genome Atlas, as well as from our cohort (Taipei Veterans General Hospital), were analyzed. Results: ARID3B was crucial for the growth of CRC, and ARID3B promoted the stem-like features of CRC. Mechanistically, ARID3B activated Notch target genes, intestinal stem cell (ISC) genes, and programmed death-ligand 1 (PD-L1) through the recruitment of lysine-specific demethylase 4C (KDM4C) to modulate the chromatin configuration for transcriptional activation. Clinical sample analyses showed that the coexpression of ARID3B and the Notch target HES1 correlated with a worse outcome and that ARID3B and PD-L1 were highly expressed in the consensus molecular subtype 4 of CRC. Pharmacological inhibition of KDM4 activity reversed the ARID3B-induced signature. Conclusion: We reveal a noncanonical Notch pathway for activating Notch target genes, ISC genes, and PD-L1 in CRC. This finding explains the immune escape of CRCSCs and indicates a potential group that may benefit from immune checkpoint inhibitors. Epigenetic drugs for reversing stem-like features of CRC should also be investigated.
Collapse
|
29
|
Wang IH, Huang TT, Chen JL, Chu LW, Ping YH, Hsu KW, Huang KH, Fang WL, Lee HC, Chen CF, Liao CC, Hsieh RH, Yeh TS. Mevalonate Pathway Enzyme HMGCS1 Contributes to Gastric Cancer Progression. Cancers (Basel) 2020; 12:cancers12051088. [PMID: 32349352 PMCID: PMC7281414 DOI: 10.3390/cancers12051088] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/24/2020] [Accepted: 04/25/2020] [Indexed: 01/26/2023] Open
Abstract
The 3-hydroxy-3-methylglutaryl-CoA synthase 1 (HMGCS1) is a potential regulatory node in the mevalonate pathway that is frequently dysregulated in tumors. This study found that HMGCS1 expression is upregulated in stomach adenocarcinoma samples of patients and tumorspheres of gastric cancer cells. HMGCS1 elevates the expression levels of the pluripotency genes Oct4 and SOX-2 and contributes to tumorsphere formation ability in gastric cancer cells. HMGCS1 also promotes in vitro cell growth and progression and the in vivo tumor growth and lung metastasis of gastric cancer cells. After blocking the mevalonate pathway by statin and dipyridamole, HMGCS1 exerts nonmetabolic functions in enhancing gastric cancer progression. Furthermore, the level and nuclear translocation of HMGCS1 in gastric cancer cells are induced by serum deprivation. HMGCS1 binds to and activates Oct4 and SOX-2 promoters. HMGCS1 also enhances the integrated stress response (ISR) and interacts with the endoplasmic reticulum (ER) stress transducer protein kinase RNA-like endoplasmic reticulum kinase (PERK). Our results reveal that HMGCS1 contributes to gastric cancer progression in both metabolic and nonmetabolic manners.
Collapse
Affiliation(s)
- I-Han Wang
- Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei 112, Taiwan;
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan; (T.-T.H.); (J.-L.C.)
| | - Tzu-Ting Huang
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan; (T.-T.H.); (J.-L.C.)
| | - Ji-Lin Chen
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan; (T.-T.H.); (J.-L.C.)
| | - Li-Wei Chu
- Department and Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan; (L.-W.C.); (Y.-H.P.); (H.-C.L.)
| | - Yueh-Hsin Ping
- Department and Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan; (L.-W.C.); (Y.-H.P.); (H.-C.L.)
| | - Kai-Wen Hsu
- Research Center for Tumor Medical Science, China Medical University, Taichung 404, Taiwan;
- Graduate Institutes of New Drug Development, China Medical University, Taichung 404, Taiwan
| | - Kuo-Hung Huang
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan; (K.-H.H.); (W.-L.F.)
- Department of Surgery, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Wen-Liang Fang
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan; (K.-H.H.); (W.-L.F.)
- Department of Surgery, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Hsin-Chen Lee
- Department and Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan; (L.-W.C.); (Y.-H.P.); (H.-C.L.)
| | - Chian-Feng Chen
- Cancer Progression Research Center, National Yang-Ming University, Taipei 112, Taiwan;
| | - Chen-Chung Liao
- Proteomics Research Center, National Yang-Ming University, Taipei 112, Taiwan;
| | - Rong-Hong Hsieh
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 110, Taiwan;
| | - Tien-Shun Yeh
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan; (T.-T.H.); (J.-L.C.)
- Cancer Progression Research Center, National Yang-Ming University, Taipei 112, Taiwan;
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 112, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Correspondence: ; Tel.: +886-2-2826-7070; Fax: +886-2-2821-2884
| |
Collapse
|
30
|
Interaction of Cyclooxygenase-2 with Helicobacter pylori Induces Gastric Chronic Nonresolving Inflammation and the Formation of Syndrome of Internal Block of Static Blood in Helicobacter pylori-Related Gastric Diseases. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:7340814. [PMID: 32328138 PMCID: PMC7165359 DOI: 10.1155/2020/7340814] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 03/01/2020] [Accepted: 03/16/2020] [Indexed: 12/30/2022]
Abstract
Cyclooxygenase-2 (COX-2) is an inducible enzyme stimulated by various inflammatory factors (IFs). Chronic gastritis is a classic model of “inflammation-cancer transformation” and Helicobacter pylori-related gastric diseases (HPGD) are specific ones of this model. Traditional Chinese Medicine (TCM) syndromes could play a predictive role in gastric histopathological evolution. To search for early warning evidence about “inflammation-cancer transformation,” this study is about to explore interaction of COX-2 with Helicobacter pylori (Hp) in HPGD with different TCM syndromes. All included subjects underwent endoscopy and biopsy. Hp infection was detected by rapid urease test and methylene blue staining. Histopathological characteristics and COX-2 expression in gastric mucosa (GM) were, respectively, observed by hematoxylin-eosin and Elivision™ plus. SPSS 18.0 and Stata 11.0 statistical software packages were used for statistical analysis. Results of immunohistochemical staining in this study showed COX-2 expression in Hp-positive patients was stronger than that in Hp-negative ones. Spearman' analysis indicated that degrees of both Hp infection and COX-2 expression were positively correlated with those of gastric inflammation and inflammatory activity. Compared with the relative normal group, both severe dysplasia group and gastric carcinoma group had more severe Hp infection and COX-2 expression. Compared with the nonsyndrome, syndrome of internal block of static blood (IBSB) had higher scores in semiquantitative analysis of COX-2 protein expression among TCM groups. Moreover, multivariate logistics regression analysis suggested that patients with Hp infection could increase the risk of IBSB. These results indicated that COX-2 interacting with Hp could play an important role in transforming gastric chronic nonresolving inflammation into carcinoma in subjects with HPGD, as well as inducing the formation of IBSB. HPGD together with IBSB could be an early warning evidence for GM with histopathological evolution from benign to malignant.
Collapse
|
31
|
The curcumin analogue WZ35 affects glycolysis inhibition of gastric cancer cells through ROS-YAP-JNK pathway. Food Chem Toxicol 2020; 137:111131. [DOI: 10.1016/j.fct.2020.111131] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/09/2020] [Accepted: 01/13/2020] [Indexed: 12/11/2022]
|
32
|
Zhong Z, Ye Z, He G, Zhang W, Wang J, Huang S. Low expression of A-kinase anchor protein 5 predicts poor prognosis in non-mucin producing stomach adenocarcinoma based on TCGA data. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:115. [PMID: 32175408 PMCID: PMC7049022 DOI: 10.21037/atm.2019.12.98] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 11/22/2019] [Indexed: 12/25/2022]
Abstract
BACKGROUND In the past, there were not a lot of studies on how A-kinase anchor protein 5 (AKAP5) involving in the pathogenesis and prognosis of non-mucin producing stomach adenocarcinoma (NMSA). Therefore, we studied the relationship between AKAP5 and the prognosis of NMSA and its possible mechanisms using publicly available data from The Cancer Genome Atlas (TCGA). METHODS RNA high-throughput sequencing and clinicopathologic data of NMSA were downloaded from the TCGA. Clinical pathologic features associated with AKAP5 expression were analyzed using the chi-square and Fisher exact tests. The relationship between the overall survival (OS) and AKAP5 expression was analyzed by the Kaplan-Meier method and the Cox regression analysis. GSEA analysis was performed using the TCGA dataset. RESULTS Our results indicated that the AKAP5 expression was increased in NMSA (all tumor vs. adjacent mucosa). Also, histologic grade, clinical stage, N classification, and survival status were significantly correlated with AKAP5 expression. Kaplan-Meier curves showed that low AKAP5 expression was associated with a poor OS among the NMSA patients (P=5.003e-05), and in the clinical stage III and IV (P=4.646e-05), TNM stage T3 (P=0.016), T4 (P=0.001), N2 (P=0.012), N3 (P=0.003), M0 (P=3.911e-05), and histological grade G3 (P=1.658e-04) subgroups. Cox regression analysis showed that reduced AKAP5 expression in NMSA is associated with age (HR =1.03, P=0.007), stage (HR =1.84 for stage I, II vs. stage III, IV, P=0.002) and M classification (HR =1.8 for M0 vs. M1, P=0.010). Gene sets related to cholesterol homeostasis, glycolysis, estrogen response late, adipogenesis, estrogen response early, notch signaling, and peroxisome were differentially enriched with the low AKAP5 expression phenotype. CONCLUSIONS Low expression of AKAP5 may be a potential molecular marker for predicting poor prognosis of NMSA. Besides, cholesterol homeostasis, glycolysis, estrogen response, adipogenesis, notch signaling, and peroxisome may be the key pathways regulated by AKAP5 in NMSA. It also suggested that AKAP5 might potentially have biological functions in the development of stomach adenocarcinoma.
Collapse
Affiliation(s)
- Zishao Zhong
- Gastroenterology Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
- Gastroenterology Department, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
| | - Zhenhao Ye
- Gastroenterology Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
- Gastroenterology Department, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
| | - Guihua He
- Gastroenterology Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
- Gastroenterology Department, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
| | - Wang Zhang
- Gastroenterology Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
- Gastroenterology Department, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
| | - Jing Wang
- Gastroenterology Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
- Gastroenterology Department, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
| | - Suiping Huang
- Gastroenterology Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
- Gastroenterology Department, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
| |
Collapse
|
33
|
Ilhan M, Kucukkose C, Efe E, Gunyuz ZE, Firatligil B, Dogan H, Ozuysal M, Yalcin-Ozuysal O. Pro-metastatic functions of Notch signaling is mediated by CYR61 in breast cells. Eur J Cell Biol 2020; 99:151070. [PMID: 32005345 DOI: 10.1016/j.ejcb.2020.151070] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 10/25/2019] [Accepted: 01/16/2020] [Indexed: 12/14/2022] Open
Abstract
Metastasis is the main cause of cancer related deaths, and unfolding the molecular mechanisms underlying metastatic progression is critical for the development of novel therapeutic approaches. Notch is one of the key signaling pathways involved in breast tumorigenesis and metastasis. Notch activation induces pro-metastatic processes such as migration, invasion and epithelial to mesenchymal transition (EMT). However, molecular mediators working downstream of Notch in these processes are not fully elucidated. CYR61 is a secreted protein implicated in metastasis, and its inhibition by a monoclonal antibody suppresses metastasis in xenograft breast tumors, indicating the clinical importance of CYR61 targeting. Here, we aimed to investigate whether CYR61 works downstream of Notch in inducing pro-metastatic phenotypes in breast cells. We showed that CYR61 expression is positively regulated by Notch activity in breast cells. Notch1-induced migration, invasion and anchorage independent growth of a normal breast cell line, MCF10A, were abrogated by CYR61 silencing. Furthermore, upregulation of core EMT markers upon Notch1-activation was impaired in the absence of CYR61. However, reduced migration and invasion of highly metastatic cell line, MDA MB 231, cells upon Notch inhibition was not dependent on CYR61 downregulation. In conclusion, we showed that in normal breast cell line MCF10A, CYR61 is a mediator of Notch1-induced pro-metastatic phenotypes partly via induction of EMT. Our results imply CYR61 as a prominent therapeutic candidate for a subpopulation of breast tumors with high Notch activity.
Collapse
Affiliation(s)
- Mustafa Ilhan
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, 35430, Izmir, Turkey
| | - Cansu Kucukkose
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, 35430, Izmir, Turkey
| | - Eda Efe
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, 35430, Izmir, Turkey
| | - Zehra Elif Gunyuz
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, 35430, Izmir, Turkey
| | - Burcu Firatligil
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, 35430, Izmir, Turkey
| | - Hulya Dogan
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, 35430, Izmir, Turkey
| | - Mustafa Ozuysal
- Department of Computer Engineering, Izmir Institute of Technology, 35430, Izmir, Turkey
| | - Ozden Yalcin-Ozuysal
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, 35430, Izmir, Turkey.
| |
Collapse
|
34
|
Rojas A, Araya P, Gonzalez I, Morales E. Gastric Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1226:23-35. [PMID: 32030673 DOI: 10.1007/978-3-030-36214-0_2] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A compelling body of evidence has demonstrated that gastric cancer has a very particular tumor microenvironment, a signature very suitable to promote tumor progression and metastasis. Recent investigations have provided new insights into the multiple molecular mechanisms, defined by genetic and epigenetic mechanisms, supporting a very active cross talk between the components of the tumor microenvironment and thus defining the fate of tumor progression. In this review, we intend to highlight the role of very active contributors at gastric cancer TME, particularly cancer-associated fibroblasts, bone marrow-derived cells, tumor-associated macrophages, and tumor-infiltrating neutrophils, all of them surrounded by an overtime changing extracellular matrix. In addition, the very active cross talk between the components of the tumor microenvironment, defined by genetic and epigenetic mechanisms, thus defining the fate of tumor progression, is also reviewed.
Collapse
Affiliation(s)
- Armando Rojas
- Biomedical Research Laboratories, Medicine Faculty, Catholic University of Maule, Talca, Chile.
| | - Paulina Araya
- Biomedical Research Laboratories, Medicine Faculty, Catholic University of Maule, Talca, Chile
| | - Ileana Gonzalez
- Biomedical Research Laboratories, Medicine Faculty, Catholic University of Maule, Talca, Chile
| | - Erik Morales
- Biomedical Research Laboratories, Medicine Faculty, Catholic University of Maule, Talca, Chile
| |
Collapse
|
35
|
Chang WH, Lai AG. Aberrations in Notch-Hedgehog signalling reveal cancer stem cells harbouring conserved oncogenic properties associated with hypoxia and immunoevasion. Br J Cancer 2019; 121:666-678. [PMID: 31523055 PMCID: PMC6889439 DOI: 10.1038/s41416-019-0572-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 08/13/2019] [Accepted: 08/20/2019] [Indexed: 12/30/2022] Open
Abstract
Background Cancer stem cells (CSCs) have innate abilities to resist even the harshest of therapies. To eradicate CSCs, parallels can be drawn from signalling modules that orchestrate pluripotency. Notch-Hedgehog hyperactivation are seen in CSCs, yet, not much is known about their conserved roles in tumour progression across cancers. Methods Employing a comparative approach involving 21 cancers, we uncovered clinically-relevant, pan-cancer drivers of Notch and Hedgehog. GISTIC datasets were used to evaluate copy number alterations. Receiver operating characteristic and Cox regression were employed for survival analyses. Results We identified a Notch-Hedgehog signature of 13 genes exhibiting high frequencies of somatic amplifications leading to transcript overexpression. The signature successfully predicted patients at risk of death in five cancers (n = 2278): glioma (P < 0.0001), clear cell renal cell (P = 0.0022), papillary renal cell (P = 0.00099), liver (P = 0.014) and stomach (P = 0.011). The signature was independent of other clinicopathological parameters and offered an additional resolution to stratify similarly-staged tumours. High-risk patients exhibited features of stemness and had more hypoxic tumours, suggesting that hypoxia may influence CSC behaviour. Notch-Hedgehog+ CSCs had an immune privileged phenotype associated with increased regulatory T cell function. Conclusion This study will set the stage for exploring adjuvant therapy targeting the Notch-Hedgehog axis to help optimise therapeutic regimes leading to successful CSC elimination.
Collapse
Affiliation(s)
- Wai Hoong Chang
- Institute of Health Informatics, University College London, 222 Euston Road, London, NW1 2DA, UK
| | - Alvina G Lai
- Institute of Health Informatics, University College London, 222 Euston Road, London, NW1 2DA, UK.
| |
Collapse
|
36
|
Notch and mTOR Signaling Pathways Promote Human Gastric Cancer Cell Proliferation. Neoplasia 2019; 21:702-712. [PMID: 31129492 PMCID: PMC6536707 DOI: 10.1016/j.neo.2019.05.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/02/2019] [Accepted: 05/03/2019] [Indexed: 12/11/2022] Open
Abstract
Notch pathway signaling is known to promote gastric stem cell proliferation, and constitutive pathway activation induces gastric tumors via mTORC1 activation in mouse genetic models. The purpose of this study was to determine whether human gastric adenocarcinomas are similarly dependent on Notch and mTORC1 signaling for growth. Gene expression profiling of 415 human gastric adenocarcinomas in The Cancer Genome Atlas, and a small set of locally obtained gastric cancers showed enhanced expression of Notch pathway components, including Notch ligands, receptors and downstream target genes. Human gastric adenocarcinoma tissues and chemically induced mouse gastric tumors both exhibited heightened Notch and mTORC1 pathway signaling activity, as evidenced by increased expression of the NOTCH1 receptor signaling fragment NICD, the Notch target HES1, and the mTORC1 target phosphorylated S6 ribosomal protein. Pharmacologic inhibition of either Notch or mTORC1 signaling reduced growth of human gastric cancer cell lines, with combined pathway inhibition causing a further reduction in growth, suggesting that both pathways are activated to promote gastric cancer cell proliferation. Further, mTORC1 signaling was reduced after Notch inhibition suggesting that mTOR is downstream of Notch in gastric cancer cells. Analysis of human gastric organoids derived from paired control and gastric cancer tissues also exhibited reduced growth in culture after Notch or mTOR inhibition. Thus, our studies demonstrate that Notch and mTOR signaling pathways are commonly activated in human gastric cancer to promote cellular proliferation. Targeting these pathways in combination might be an effective therapeutic strategy for gastric cancer treatment.
Collapse
|
37
|
Fattahi S, Golpour M, Amjadi-Moheb F, Sharifi-Pasandi M, Khodadadi P, Pilehchian-Langroudi M, Ashrafi GH, Akhavan-Niaki H. DNA methyltransferases and gastric cancer: insight into targeted therapy. Epigenomics 2018; 10:1477-1497. [PMID: 30325215 DOI: 10.2217/epi-2018-0096] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Gastric cancer is a major health problem worldwide occupying most frequent causes of cancer-related mortality. In addition to genetic modifications, epigenetic alterations catalyzed by DNA methyltransferases (DNMTs) are a well-characterized epigenetic hallmark in gastric cancer. The reversible nature of epigenetic alterations and central role of DNA methylation in diverse biological processes provides an opportunity for using DNMT inhibitors to enhance the efficacy of chemotherapeutics. In this review, we discussed key factors or mechanisms such as SNPs, infections and genetic modifications that trigger DNMTs level modification in gastric cancer, and their potential roles in cancer progression. Finally, we focused on how inhibitors of the DNMTs can most effectively be used for the treatment of gastric cancer with multidrug resistance.
Collapse
Affiliation(s)
- Sadegh Fattahi
- Cellular & Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, 4717647745, Babol, Iran.,North Research Center, Pasteur Institute, Amol, 4615885399, Iran
| | - Monireh Golpour
- Molecular & Cell Biology Research Center, Student Research Committee, Faculty of Medicine, Mazandaran University of Medical Science, Sari, 4817844718, Iran
| | - Fatemeh Amjadi-Moheb
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, 4717647745, Babol, Iran
| | - Marzieh Sharifi-Pasandi
- Molecular & Cell Biology Research Center, Student Research Committee, Faculty of Medicine, Mazandaran University of Medical Science, Sari, 4817844718, Iran
| | - Parastesh Khodadadi
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, 4717647745, Babol, Iran
| | | | - Gholam Hossein Ashrafi
- School of Life Science, Pharmacy & Chemistry, SEC Faculty, Cancer Theme, Kingston University London, Kingston upon Thames, London KT1 2EE, UK
| | - Haleh Akhavan-Niaki
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, 4717647745, Babol, Iran
| |
Collapse
|
38
|
Molina-Castro S, Ramírez-Mayorga V, Alpízar-Alpízar W. Priming the seed: Helicobacter pylori alters epithelial cell invasiveness in early gastric carcinogenesis. World J Gastrointest Oncol 2018; 10:231-243. [PMID: 30254719 PMCID: PMC6147766 DOI: 10.4251/wjgo.v10.i9.231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/13/2018] [Accepted: 06/27/2018] [Indexed: 02/05/2023] Open
Abstract
Helicobacter pylori (H. pylori) infection is a well-established risk factor for the development of gastric cancer (GC), one of the most common and deadliest neoplasms worldwide. H. pylori infection induces chronic inflammation in the gastric mucosa that, in the absence of treatment, may progress through a series of steps to GC. GC is only one of several clinical outcomes associated with this bacterial infection, which may be at least partially attributed to the high genetic variability of H. pylori. The biological mechanisms underlying how and under what circumstances H. pylori alters normal physiological processes remain enigmatic. A key aspect of carcinogenesis is the acquisition of traits that equip preneoplastic cells with the ability to invade. Accumulating evidence implicates H. pylori in the manipulation of cellular and molecular programs that are crucial for conferring cells with invasive capabilities. We present here an overview of the main findings about the involvement of H. pylori in the acquisition of cell invasive behavior, specifically focusing on the epithelial-to-mesenchymal transition, changes in cell polarity, and deregulation of molecules that control extracellular matrix remodeling.
Collapse
Affiliation(s)
- Silvia Molina-Castro
- Cancer Epidemiology Research Program, Health Research Institute, University of Costa Rica, San José 2060, Costa Rica
- Clinical Department, School of Medicine, University of Costa Rica, San José 2060, Costa Rica
| | - Vanessa Ramírez-Mayorga
- Cancer Epidemiology Research Program, Health Research Institute, University of Costa Rica, San José 2060, Costa Rica
- Public Nutrition Section, School of Nutrition, University of Costa Rica, San José 2060, Costa Rica
| | - Warner Alpízar-Alpízar
- Center for Research in Microscopic Structures, University of Costa Rica, San José 2060, Costa Rica
- Department of Biochemistry, School of Medicine, University of Costa Rica, San José 2060, Costa Rica
| |
Collapse
|
39
|
Huang KH, Sung IC, Fang WL, Chi CW, Yeh TS, Lee HC, Yin PH, Li AFY, Wu CW, Shyr YM, Yang MH. Correlation between HGF/c-Met and Notch1 signaling pathways in human gastric cancer cells. Oncol Rep 2018; 40:294-302. [PMID: 29781036 PMCID: PMC6059752 DOI: 10.3892/or.2018.6447] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 05/15/2018] [Indexed: 01/25/2023] Open
Abstract
In recent decades, research concerning gastric carcinogenesis has rapidly progressed. It is evident that hepatocyte growth factor (HGF) is clinically related to gastric cancer progression and metastasis. In addition, previous studies have found that expression of Notch ligand Jagged1 is correlated with the poor prognosis of gastric cancer. However, the interaction between the HGF/c-Met and Notch1 signaling pathways remains unknown. In the present study, we found that gastric cancer patients with positive c-Met expression exhibited poorer overall survival than patients without c-Met expression (P=0.043) and that Jagged1 expression was significantly correlated with c-Met expression (r=0.301; P=0.004) in human gastric cancer specimens. In addition, Jagged1 activity increased after HGF stimulation, which in turn increased the downstream expression of cyclooxygenase 2 (COX-2) in a time-dependent manner. After knockdown of Notch1 intracellular domain (N1IC), HGF was found to increase the proliferation and migration ability in human gastric cancer cells. However, overexpression of N1IC still had no effect after HGF stimulation. Our study found a feedback loop between HGF/c-Met and Jagged1/Notch1 signaling. Furthermore, both HGF/c-Met and Notch1 signaling triggered COX-2 activity. These results suggest that gastric cancer progression is not associated with a unique signaling pathway and that a feedback loop may exist between the HGF/c-Met and Notch1 signaling pathways, which may result in therapeutic resistance. Therefore, multi-modality therapies should be considered for treating gastric cancer.
Collapse
Affiliation(s)
- Kuo-Hung Huang
- Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei 112, Taiwan, R.O.C
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan, R.O.C
| | - I-Cheng Sung
- Department and Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan, R.O.C
| | - Wen-Liang Fang
- Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei 112, Taiwan, R.O.C
- School of Medicine, National Yang-Ming University, Taipei 112, Taiwan, R.O.C
| | - Chin-Wen Chi
- Department and Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan, R.O.C
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112, Taiwan, R.O.C
| | - Tien-Shun Yeh
- Department of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan, R.O.C
| | - Hsin-Chen Lee
- Department and Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan, R.O.C
| | - Pen-Hui Yin
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112, Taiwan, R.O.C
| | - Anna Fen-Yau Li
- Department of Pathology, Taipei Veterans General Hospital, Taipei 112, Taiwan, R.O.C
| | - Chew-Wun Wu
- Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei 112, Taiwan, R.O.C
- School of Medicine, National Yang-Ming University, Taipei 112, Taiwan, R.O.C
| | - Yi-Ming Shyr
- Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei 112, Taiwan, R.O.C
- School of Medicine, National Yang-Ming University, Taipei 112, Taiwan, R.O.C
| | - Muh-Hwa Yang
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan, R.O.C
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei 112, Taiwan, R.O.C
| |
Collapse
|
40
|
Zhou W, Tan W, Huang X, Yu HG. Doxorubicin combined with Notch1-targeting siRNA for the treatment of gastric cancer. Oncol Lett 2018; 16:2805-2812. [PMID: 30127866 PMCID: PMC6096196 DOI: 10.3892/ol.2018.9039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 03/01/2018] [Indexed: 12/11/2022] Open
Abstract
Notch1, a transmembrane receptor that has a notable role in gastric cancer (GC) as an oncogene, has been reported to be involved in doxorubicin resistance. Thus, Notch1 is a potential therapeutic target for GC. In the present study, the protein levels of Notch1 intracellular domain (NICD; a marker of Notch1 activation) in human GC cell lines and tumor tissues was measured by western blotting. Next, the effects of Notch1 depletion in SGC7901 cells were evaluated. Finally, the efficacy of Notch1 small interfering RNA (siRNA) combined with doxorubicin therapy for GC was examined in vitro and in vivo. The results revealed that NICD levels were high in GC cells, and that the inhibition of NICD by transfection with Notch1 siRNA induced apoptosis and inhibited proliferation. Ectopic downregulation of Notch1 expression enhanced the sensitivity of GC tumors to doxorubicin, which suppressed the development of GC. These data demonstrated that Notch1 was a significant regulator of cell proliferation and apoptosis in GC. Thus, the combination of doxorubicin with Notch1 siRNA is a potential strategy for the treatment of GC.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China.,Hubei Key Laboratory of Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Wei Tan
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China.,Hubei Key Laboratory of Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xu Huang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China.,Hubei Key Laboratory of Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Hong Gang Yu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China.,Hubei Key Laboratory of Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
41
|
Shin VY, Siu MT, Liu X, Ng EKO, Kwong A, Chu KM. MiR-92 suppresses proliferation and induces apoptosis by targeting EP4/Notch1 axis in gastric cancer. Oncotarget 2018; 9:24209-24220. [PMID: 29849934 PMCID: PMC5966267 DOI: 10.18632/oncotarget.24819] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 02/27/2018] [Indexed: 12/19/2022] Open
Abstract
MiR-92a has been shown to be dysregulated in various cancers and exhibited differential role in carcinogenesis. In this study, we sought to delineate the functional role of miR-92a and its regulatory pathway in gastric cancer. MiR-92a expression were underexpressed in tissues of gastric cancer patients with the area under curve (AUC) of 0.78. Low expression in plasma was due to the increased promoter DNA methylation of miR-92a. Overexpression of miR-92a inhibited cell proliferation and invasion, and induced apoptosis. Furthermore, miR-92a reduced tumor growth in xenograft model. EP4 and Notch 1 were identified to be negatively regulated by miR-92a, and involved in cell growth. Moreover, NF-κB expression was inversely correlated with miR-92a in gastric cancer tissues and suppressed the expression of miR-92. This study unravels the tumor suppressive role of miR-92a involving EP4/Notch 1 signaling regulated by NF-κB in gastric cancer. Further studies on miR-92a and EP4/Notch1 may provide a new treatment strategy for gastric cancer.
Collapse
Affiliation(s)
| | - Man-Ting Siu
- Department of Surgery, The University of Hong Kong, Hong Kong SAR
| | - Xin Liu
- Department of Surgery, The University of Hong Kong, Hong Kong SAR
| | - Enders K O Ng
- Department of Surgery, The University of Hong Kong, Hong Kong SAR
| | - Ava Kwong
- Department of Surgery, The University of Hong Kong, Hong Kong SAR.,Department of Surgery, Hong Kong Sanatorium and Hospital, Hong Kong SAR.,Hong Kong Hereditary Breast Cancer Family Registry, Hong Kong SAR
| | - Kent-Man Chu
- Department of Surgery, The University of Hong Kong, Hong Kong SAR
| |
Collapse
|
42
|
Molaei F, Forghanifard MM, Fahim Y, Abbaszadegan MR. Molecular Signaling in Tumorigenesis of Gastric Cancer. IRANIAN BIOMEDICAL JOURNAL 2018; 22:217-30. [PMID: 29706061 PMCID: PMC5949124 DOI: 10.22034/ibj.22.4.217] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gastric cancer (GC) is regarded as the fifth most common cancer and the third cause of cancer-related deaths worldwide. Mechanism of GC pathogenesis is still unclear and relies on multiple factors, including environmental and genetic characteristics. One of the most important environmental factors of GC occurrence is infection with Helicobacter pylori that is classified as class one carcinogens. Dysregulation of several genes and pathways play an essential role during gastric carcinogenesis. Dysregulation of developmental pathways such as Wnt/β-catenin signaling, Hedgehog signaling, Hippo pathway, Notch signaling, nuclear factor-kB, and epidermal growth factor receptor have been found in GC. Epithelial-mesenchymal transition, as an important process during embryogenesis and tumorigenesis, is supposed to play a role in initiation, invasion, metastasis, and progression of GC. Although surgery is the main therapeutic modality of the disease, the understanding of biological processes of cell signaling pathways may help to develop new therapeutic targets for GC.
Collapse
Affiliation(s)
- Fatemeh Molaei
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Yasaman Fahim
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | |
Collapse
|
43
|
Hu S, Chen Q, Lin T, Hong W, Wu W, Wu M, Du X, Jin R. The function of Notch1 intracellular domain in the differentiation of gastric cancer. Oncol Lett 2018; 15:6171-6178. [PMID: 29616098 PMCID: PMC5876425 DOI: 10.3892/ol.2018.8118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 11/29/2017] [Indexed: 12/12/2022] Open
Abstract
Due to the complex function of the Notch signal pathway in gastric cancer (GC), the association between Notch homolog 1 (Notch1) intracellular domain (NICD) and differentiation of GC remains unknown. The present study aimed to investigate the potential association between NICD and GC differentiation, and demonstrated that poorly differentiated GC expressed increased NICD levels compared with well differentiated GC. A γ-secretase inhibitor inhibited the growth of AGS cells through downregulating NICD level. Additional data suggested that a COX-2 inhibitor caused a marked reduction of NICD level in comparison with a control group treated with dimethyl sulfoxide. Combined administration of γ-secretase and COX-2 inhibitor produced a marked inhibition of growth in AGS cells, which suggests that patients with poorly differentiated GC may benefit from the blockage of NICD, which potentially serves a role in GC differentiation.
Collapse
Affiliation(s)
- Sunkuan Hu
- Department of Digestive Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China.,Department of Epidemiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Qiuxiang Chen
- Department of Ultrasound, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Tiesu Lin
- Department of Digestive Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China.,Department of Epidemiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Wandong Hong
- Department of Digestive Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Wenzhi Wu
- Department of Digestive Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Ming Wu
- Department of Digestive Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Xiaojing Du
- Department of Digestive Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Rong Jin
- Department of Epidemiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
44
|
Li X, Zhong X, Pan X, Ji Y. Tumor-Suppressive MicroRNA-708 Targets Notch1 to Suppress Cell Proliferation and Invasion in Gastric Cancer. Oncol Res 2018; 26:1317-1326. [PMID: 29444743 PMCID: PMC7844794 DOI: 10.3727/096504018x15179680859017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Growing evidence has demonstrated that numerous microRNAs (miRNAs) may participate in the regulation of gastric carcinogenesis and progression. This phenomenon suggests that gastric cancer-related miRNAs can be identified as effective therapeutic targets for this disease. miRNA-708 (miR-708) has recently been reported to be aberrantly expressed in several types of cancer and contribute to carcinogenesis and progression. However, the expression level, biological roles, and underlying mechanisms of miR-708 in gastric cancer are poorly understood. Here we found that miR-708 was downregulated in gastric cancer tissues and cell lines. Downregulated miR-708 expression was significantly associated with lymphatic metastasis, invasive depth, and TNM stage. Further investigation indicated that ectopic expression of miR-708 prohibited cell proliferation and invasion in gastric cancer. Bioinformatics analysis showed that Notch1 was a potential target of miR-708. Notch1 was further confirmed as a direct target gene of miR-708 in gastric cancer by dual-luciferase reporter assay, reverse transcription quantitative polymerase chain reaction, and Western blot analysis. Furthermore, an inverse association was found between miR-708 and Notch1 mRNA levels in gastric cancer tissues. In addition, restored Notch1 expression rescued the inhibitory effects on gastric cancer cell proliferation and invasion induced by miR-708 overexpression. Our findings highlight the tumor-suppressive roles of miR-708 in gastric cancer and suggest that miR-708 may be investigated as a novel target for gastric cancer treatment.
Collapse
Affiliation(s)
- Xuyan Li
- Clinical Laboratory Central, Huizhou Central People's Hospital, Guangdong, P.R. China
| | - Xuanfang Zhong
- Department of Digestion, Huizhou Central People's Hospital, Guangdong, P.R. China
| | - Xiuhua Pan
- Department of Radiotherapy, Huizhou Central People's Hospital, Guangdong, P.R. China
| | - Yan Ji
- Department of Prenatal Diagnosis, Huizhou Central People's Hospital, Guangdong, P.R. China
| |
Collapse
|
45
|
Notch1 pathway-mediated microRNA-151-5p promotes gastric cancer progression. Oncotarget 2018; 7:38036-38051. [PMID: 27191259 PMCID: PMC5122370 DOI: 10.18632/oncotarget.9342] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 04/29/2016] [Indexed: 12/20/2022] Open
Abstract
Gastric carcinoma is the third leading cause of lethal cancer worldwide. Previous studies showed that Notch1 receptor intracellular domain (N1IC), the activated form of Notch1 receptor, promotes gastric cancer progression. It has been demonstrated that a significant cross-talk interplays between Notch pathways and microRNAs (miRNAs) in controlling tumorigenesis. This study identified an intronic microRNA-151 (miR-151), which consists of two mature miRNAs, miR-151-3p and miR-151-5p, as a Notch1 receptor-induced miRNA in gastric cancer cells. Activation of Notch1 pathway enhanced expressions of miR-151 and its host gene, focal adhesion kinase (FAK), in gastric cancer cells. The levels of miR-151 in gastric cancer samples were higher than those of adjacent non-tumor samples. Activated Notch1 pathway induced CBF1-dependent FAK promoter activity. The ectopic expression of miR-151 promoted growth and progression of SC-M1 gastric cancer cells including cell viability and colony formation, migration, and invasion abilities. Activated Notch1 pathway could augment progression of gastric cancer cells through miR-151-5p and FAK. The mRNA levels of pluripotency genes, Nanog and SOX-2, tumorsphere formation ability, tumor growth, and lung metastasis of SC-M1 cells were elevated by activated Notch1 pathway through miR-151-5p. Furthermore, miR-151-5p could target 3′-untranslated region (3′-UTR) of p53 mRNA and down-regulate p53 level in SC-M1 cells. Mechanistically, Notch1/miR-151-5p axis contributed to progression of SC-M1 cells through down-regulation of p53 which in turn repressed FAK promoter activity. Taken together, these results suggest that Notch1 pathway and miR-151-5p interplay with p53 in a reciprocal regulation loop in controlling gastric carcinogenesis.
Collapse
|
46
|
Anti-cancer effects of curcumin on lung cancer through the inhibition of EZH2 and NOTCH1. Oncotarget 2018; 7:26535-50. [PMID: 27049834 PMCID: PMC5041997 DOI: 10.18632/oncotarget.8532] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 03/08/2016] [Indexed: 12/17/2022] Open
Abstract
Curcumin is potentially therapeutic for malignant diseases. The mechanisms of this effect might involve a combination of antioxidant, immunomodulatory, proapoptotic, and antiangiogenic activities. However, the exact mechanisms are not fully understood. In the present study, we provided evidences that curcumin suppressed the expression of enhancer of zeste homolog 2 (EZH2) in lung cancer cells both transcriptionally and post-transcriptionally. Curcumin inhibited the expression of EZH2 through microRNA (miR)-let 7c and miR-101. Curcumin decreased the expression of NOTCH1 through the inhibition of EZH2. There was a reciprocal regulation between EZH2 and NOTCH1 in lung cancer cells. These observations suggest that curcumin inhibits lung cancer growth and metastasis at least partly through the inhibition of EZH2 and NOTCH1.
Collapse
|
47
|
Brahmi M, Bally O, Eberst L, Cassier P. Ciblage thérapeutique de la voie Notch en oncologie. Bull Cancer 2017; 104:883-891. [DOI: 10.1016/j.bulcan.2017.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 07/05/2017] [Accepted: 07/13/2017] [Indexed: 01/23/2023]
|
48
|
Deng G, Zheng X, Jiang P, Chen K, Wang X, Jiang K, Zhang W, Tu L, Yan D, Ma L, Ma S. Notch1 suppresses prostate cancer cell invasion via the metastasis-associated 1-KiSS-1 metastasis-suppressor pathway. Oncol Lett 2017; 14:4477-4482. [PMID: 29085444 PMCID: PMC5649609 DOI: 10.3892/ol.2017.6761] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 02/14/2017] [Indexed: 01/28/2023] Open
Abstract
Notch1 is a type-1 transmembrane receptor which has been demonstrated to be involved in proliferation in various organisms. A number of studies have proposed that Notch signaling may be aberrantly activated, thus contributing to development, invasion and metastasis in a variety of human cancers. In the present study, the function and mechanism of Notch1 in human prostate cancer (PCa) LNCaP cells in vitro was investigated. Notch1 and cleaved-Notch1 expression were evaluated in human PCa cell lines, including LNCaP, PC-3 and DU 145, and the human prostate epithelial RWPE-1 cell line. LNCaP cells were transfected with Notch1-targeting short hairpin RNAs (shRNAs) and the level of proliferation, the ability to invade and the expression of genes associated with cancer cell invasion were subsequently investigated. Notch1 was highly expressed in LNCaP, PC-3 and DU 145 cells compared with RWPE-1 cells, while cleaved-Notch1 was expressed in LNCaP, PC-3 and DU 145 cells, and only to a minimal extent in RWPE-1 cells. Knockdown of Notch1 by shRNA in LNCaP cells markedly decreased cell invasion through Matrigel and inhibited cell proliferation 48 h following transfection. Reverse transcription-quantitative polymerase chain reaction analysis indicated that Notch1-knockdown resulted in a significant reduction of metastasis-associated 1 (MTA1) and increase of KiSS-1 metastasis-suppressor (KISS-1), mitogen-activated protein kinase 4 (MKK4) and cluster of differentiation 82 (KAI1). The present data demonstrated that expression of Notch1 was significantly associated with the invasion of prostate cancer. Knockdown of Notch1 decreased the invasive ability of LNCaP cells, which may be caused by downregulating MTA1 and upregulating KISS-1, MKK4 and KAI1. These findings indicated that targeting Notch1 may provide a novel method of suppressing or treating metastasis in prostate cancer.
Collapse
Affiliation(s)
- Gang Deng
- Department of Urology, Hangzhou First People's Hospital, Hangzhou, Zhejiang 310006, P.R. China
| | - Xiaoliang Zheng
- Center for Molecular Medicine, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang 310000, P.R. China
| | - Peiwu Jiang
- Zhejiang Chinese Medical University and Hangzhou First People's Hospital, Hangzhou, Zhejiang 310006, P.R. China
| | - Kean Chen
- Zhejiang Chinese Medical University and Hangzhou First People's Hospital, Hangzhou, Zhejiang 310006, P.R. China
| | - Xiaoju Wang
- Center for Molecular Medicine, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang 310000, P.R. China
| | - Kang Jiang
- Department of Urology, Hangzhou First People's Hospital, Hangzhou, Zhejiang 310006, P.R. China
| | - Wenjun Zhang
- Center for Molecular Medicine, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang 310000, P.R. China
| | - Linglan Tu
- Center for Molecular Medicine, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang 310000, P.R. China
| | - Dongmei Yan
- Center for Molecular Medicine, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang 310000, P.R. China
| | - Libin Ma
- Department of Nephrology, Hangzhou First People's Hospital, Hangzhou, Zhejiang 310006, P.R. China
| | - Shenglin Ma
- Department of Oncology, Hangzhou First People's Hospital, Hangzhou, Zhejiang 310006, P.R. China
| |
Collapse
|
49
|
He F, Du T, Jiang Q, Zhang Y. Synergistic Effect of Notch-3-Specific Inhibition and Paclitaxel in Non-Small Cell Lung Cancer (NSCLC) Cells Via Activation of The Intrinsic Apoptosis Pathway. Med Sci Monit 2017; 23:3760-3769. [PMID: 28769027 PMCID: PMC5553439 DOI: 10.12659/msm.902641] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 01/24/2017] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Lung cancers are resistant to conventional chemotherapeutic interventions such as paclitaxel. Notch signaling is crucial in the chemoresistance of lung cancer cells. The Notch inhibitor gamma-secretase inhibitor (GSI) inhibits the Notch signaling pathway. MATERIAL AND METHODS Here, we evaluated how Notch-3 inhibition by GSI can enhance the sensitivity of lung cancer cells to paclitaxel. To study how Notch-3-specific inhibition affects non-small cell lung cancer (NSCLC), we compared the cell viability, apoptosis, and colony formation of A549 and H1299 cells treated with Notch-3 siRNA and GSI. RESULTS The expression levels of Notch-3 or Notch intracellular domain 3 (NICD3) and apoptosis-related proteins were measured and compared between different groups. Notch-3 was significantly overexpressed in both cell lines, and Notch-3 expression was elevated after paclitaxel treatment, indicating activation of the Notch signaling pathway. Inhibition of the Notch signaling pathway by GSI and Notch-3 siRNA reduced cell proliferation and induced apoptosis in A549 and H1299 cells, thereby boosting sensitivity of the cell lines to paclitaxel. Concomitant treatment with paclitaxel and GSI or siRNA downregulated Bcl-2 expression and upregulated Bax expression levels. CONCLUSIONS These results indicate a synergistic effect of Notch-3-specific inhibition and paclitaxel through alteration of the intrinsic apoptosis pathway, which was involved in Notch-3-induced chemoresistance in NSCLC cells, and GSI inhibited Notch-3-induced chemoresistance in a concentration-dependent manner. This approach that combines Notch-3-specific inhibition and paclitaxel would be likely to apply in NSCLC.
Collapse
|
50
|
Song B, Shu ZB, Du J, Ren JC, Feng Y. Anti-cancer effect of low dose of celecoxib may be associated with lnc-SCD-1:13 and lnc-PTMS-1:3 but not COX-2 in NCI-N87 cells. Oncol Lett 2017; 14:1775-1779. [PMID: 28789408 PMCID: PMC5529947 DOI: 10.3892/ol.2017.6316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 02/23/2017] [Indexed: 12/21/2022] Open
Abstract
In order to investigate the mechanism of celecoxib and whether long non-coding RNAs (lncRNAs) were involved in the effects of celecoxib treatment in NCI-N87 cells, NCI-N87 cells were treated with 15, 30 and 60 µM celecoxib and an MTT assay was performed to assess cell viability. Following treatment with 15 µM celecoxib, the cell cycle and apoptosis were analyzed by flow cytometry, and the mRNA levels of lnc-SCD-1:13, lnc-PTMS-1:3, cyclooxygenase-2 (COX-2), integrin α3 (ITGA3) and DSH homolog 1 (DVL1) were detected by reverse transcription quantitative PCR (RT-qPCR) in NCI-N87 cells. MTT analysis demonstrated that celecoxib significantly inhibited cell viability in treated cells compared with untreated cells. Flow cytometry analysis revealed that, compared with untreated cells, the percentage of cells in the G0/G1 phase was significantly increased, and the percentage of cells in the S and G2 phase was decreased. In addition, the percentage of early and late apoptotic cells was increased in cells treated with 15 µM celecoxib compared with the control. RT-qPCR analysis also demonstrated that the mRNA levels of lnc-SCD-1:13, lnc-PTMS-1:3, ITGA3 and DVL1 were increased following treatment with celecoxib (15 µM; P<0.05). However, there were no significant differences in the expression of COX-2 mRNA between cells treated with celecoxib (15 µM) and untreated cells. The present study demonstrated that a low dose of celecoxib may be involved in regulating cell growth independent of COX-2 in NCI-N87 cells. Furthermore, ITGA3 and/or DVL1 co-expressed with lnc-SCD-1:13 and lnc-PTMS-1:3 may be associated with the effects of treatment with a low dose of celecoxib in NCI-N87 cells.
Collapse
Affiliation(s)
- Bin Song
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Zhen-Bo Shu
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Juan Du
- Internal Medicine 2, The Tumor Hospital of Jilin, Changchun, Jilin 130012, P.R. China
| | - Ji-Chen Ren
- Internal Medicine 2, The Tumor Hospital of Jilin, Changchun, Jilin 130012, P.R. China
| | - Ye Feng
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| |
Collapse
|