1
|
Petrescu DI, Yustein JT, Dasgupta A. Preclinical models for the study of pediatric solid tumors: focus on bone sarcomas. Front Oncol 2024; 14:1388484. [PMID: 39091911 PMCID: PMC11291195 DOI: 10.3389/fonc.2024.1388484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/01/2024] [Indexed: 08/04/2024] Open
Abstract
Sarcomas comprise between 10-15% of all pediatric malignancies. Osteosarcoma and Ewing sarcoma are the two most common pediatric bone tumors diagnosed in children and young adults. These tumors are commonly treated with surgery and/or radiation therapy and combination chemotherapy. However, there is a strong need for the development and utilization of targeted therapeutic methods to improve patient outcomes. Towards accomplishing this goal, pre-clinical models for these unique malignancies are of particular importance to design and test experimental therapeutic strategies prior to being introduced to patients due to their origination site and propensity to metastasize. Pre-clinical models offer several advantages for the study of pediatric sarcomas with unique benefits and shortcomings dependent on the type of model. This review addresses the types of pre-clinical models available for the study of pediatric solid tumors, with special attention to the bone sarcomas osteosarcoma and Ewing sarcoma.
Collapse
Affiliation(s)
- D. Isabel Petrescu
- Aflac Cancer and Blood Disorders Center, Emory University, Atlanta, GA, United States
| | - Jason T. Yustein
- Aflac Cancer and Blood Disorders Center, Emory University, Atlanta, GA, United States
| | - Atreyi Dasgupta
- The Faris D. Virani Ewing Sarcoma Center, Baylor College of Medicine, Texas Children’s Cancer and Hematology Centers, Houston, TX, United States
| |
Collapse
|
2
|
Ebegboni VJ, Jones TL, Brownmiller T, Zhao PX, Pehrsson EC, Rajan SS, Caplen NJ. ETS1, a Target Gene of the EWSR1::FLI1 Fusion Oncoprotein, Regulates the Expression of the Focal Adhesion Protein TENSIN3. Mol Cancer Res 2024; 22:625-641. [PMID: 38588446 PMCID: PMC11219265 DOI: 10.1158/1541-7786.mcr-23-1090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/25/2024] [Accepted: 04/08/2024] [Indexed: 04/10/2024]
Abstract
The mechanistic basis for the metastasis of Ewing sarcomas remains poorly understood, as these tumors harbor few mutations beyond the chromosomal translocation that initiates the disease. Instead, the epigenome of Ewing sarcoma cells reflects the regulatory state of genes associated with the DNA-binding activity of the fusion oncoproteins EWSR1::FLI1 or EWSR1::ERG. In this study, we examined the EWSR1::FLI1/ERG's repression of transcription factor genes, concentrating on those that exhibit a broader range of expression in tumors than in Ewing sarcoma cell lines. Focusing on one of these target genes, ETS1, we detected EWSR1::FLI1 binding and an H3K27me3-repressive mark at this locus. Depletion of EWSR1::FLI1 results in ETS1's binding of promoter regions, substantially altering the transcriptome of Ewing sarcoma cells, including the upregulation of the gene encoding TENSIN3 (TNS3), a focal adhesion protein. Ewing sarcoma cell lines expressing ETS1 (CRISPRa) exhibited increased TNS3 expression and enhanced movement compared with control cells. Visualization of control Ewing sarcoma cells showed a distributed vinculin signal and a network-like organization of F-actin; in contrast, ETS1-activated Ewing sarcoma cells showed an accumulation of vinculin and F-actin toward the plasma membrane. Interestingly, the phenotype of ETS1-activated Ewing sarcoma cell lines depleted of TNS3 resembled the phenotype of the control cells. Critically, these findings have clinical relevance as TNS3 expression in Ewing sarcoma tumors positively correlates with that of ETS1. Implications: ETS1's transcriptional regulation of the gene encoding the focal adhesion protein TENSIN3 in Ewing sarcoma cells promotes cell movement, a critical step in the evolution of metastasis.
Collapse
Affiliation(s)
- Vernon Justice Ebegboni
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tamara L. Jones
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tayvia Brownmiller
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Patrick X. Zhao
- Omics Bioinformatics Facility, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Erica C. Pehrsson
- Omics Bioinformatics Facility, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Soumya Sundara Rajan
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Natasha J. Caplen
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
3
|
Goodspeed A, Bodlak A, Duffy AB, Nelson-Taylor S, Oike N, Porfilio T, Shirai R, Walker D, Treece A, Black J, Donaldson N, Cost C, Garrington T, Greffe B, Luna-Fineman S, Demedis J, Lake J, Danis E, Verneris M, Adams DL, Hayashi M. Characterization of transcriptional heterogeneity and novel therapeutic targets using single cell RNA-sequencing of primary and circulating Ewing sarcoma cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.18.576251. [PMID: 38293103 PMCID: PMC10827204 DOI: 10.1101/2024.01.18.576251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Ewing sarcoma is the second most common bone cancer in children, accounting for 2% of pediatric cancer diagnoses. Patients who present with metastatic disease at the time of diagnosis have a dismal prognosis, compared to the >70% 5-year survival of those with localized disease. Here, we utilized single cell RNA-sequencing to characterize the transcriptional landscape of primary Ewing sarcoma tumors and surrounding tumor microenvironment (TME). Copy-number analysis identified subclonal evolution within patients prior to treatment. Primary tumor samples demonstrate a heterogenous transcriptional landscape with several conserved gene expression programs, including those composed of genes related to proliferation and EWS targets. Single cell RNA-sequencing and immunofluorescence of circulating tumor cells at the time of diagnosis identified TSPAN8 as a novel therapeutic target.
Collapse
|
4
|
Ebegboni VJ, Jones TL, Brownmiller T, Zhao PX, Pehrsson EC, Rajan SS, Caplen NJ. ETS1, a target gene of the EWSR1::FLI1 fusion oncoprotein, regulates the expression of the focal adhesion protein TENSIN3. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.21.572864. [PMID: 38187702 PMCID: PMC10769395 DOI: 10.1101/2023.12.21.572864] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
The mechanistic basis for the metastasis of Ewing sarcomas remains poorly understood, as these tumors harbor few mutations beyond the chromosomal translocation that initiates the disease. Instead, the epigenome of Ewing sarcoma (EWS) cells reflects the regulatory state of genes associated with the DNA binding activity of the fusion oncoproteins EWSR1::FLI1 or EWSR1::ERG. In this study, we examined the EWSR1::FLI1/ERG's repression of transcription factor genes, concentrating on those that exhibit a broader range of expression in tumors than in EWS cell lines. Focusing on one of these target genes, ETS1, we detected EWSR1::FLI1 binding and an H3K27me3 repressive mark at this locus. Depletion of EWSR1::FLI1 results in ETS1's binding of promoter regions, substantially altering the transcriptome of EWS cells, including the upregulation of the gene encoding TENSIN3 (TNS3), a focal adhesion protein. EWS cell lines expressing ETS1 (CRISPRa) exhibited increased TNS3 expression and enhanced movement compared to control cells. The cytoskeleton of control cells and ETS1-activated EWS cell lines also differed. Specifically, control cells exhibited a distributed vinculin signal and a network-like organization of F-actin. In contrast, ETS1-activated EWS cells showed an accumulation of vinculin and F-actin towards the plasma membrane. Interestingly, the phenotype of ETS1-activated EWS cell lines depleted of TNS3 resembled the phenotype of the control cells. Critically, these findings have clinical relevance as TNS3 expression in EWS tumors positively correlates with that of ETS1.
Collapse
Affiliation(s)
- Vernon Justice Ebegboni
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tamara L Jones
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tayvia Brownmiller
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Patrick X Zhao
- Omics Bioinformatics Facility, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Erica C Pehrsson
- Omics Bioinformatics Facility, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Soumya Sundara Rajan
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Natasha J Caplen
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
5
|
Yasir M, Park J, Chun W. EWS/FLI1 Characterization, Activation, Repression, Target Genes and Therapeutic Opportunities in Ewing Sarcoma. Int J Mol Sci 2023; 24:15173. [PMID: 37894854 PMCID: PMC10607184 DOI: 10.3390/ijms242015173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Despite their clonal origins, tumors eventually develop into complex communities made up of phenotypically different cell subpopulations, according to mounting evidence. Tumor cell-intrinsic programming and signals from geographically and temporally changing microenvironments both contribute to this variability. Furthermore, the mutational load is typically lacking in childhood malignancies of adult cancers, and they still exhibit high cellular heterogeneity levels largely mediated by epigenetic mechanisms. Ewing sarcomas represent highly aggressive malignancies affecting both bone and soft tissue, primarily afflicting adolescents. Unfortunately, the outlook for patients facing relapsed or metastatic disease is grim. These tumors are primarily fueled by a distinctive fusion event involving an FET protein and an ETS family transcription factor, with the most prevalent fusion being EWS/FLI1. Despite originating from a common driver mutation, Ewing sarcoma cells display significant variations in transcriptional activity, both within and among tumors. Recent research has pinpointed distinct fusion protein activities as a principal source of this heterogeneity, resulting in markedly diverse cellular phenotypes. In this review, we aim to characterize the role of the EWS/FLI fusion protein in Ewing sarcoma by exploring its general mechanism of activation and elucidating its implications for tumor heterogeneity. Additionally, we delve into potential therapeutic opportunities to target this aberrant fusion protein in the context of Ewing sarcoma treatment.
Collapse
Affiliation(s)
| | | | - Wanjoo Chun
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea; (M.Y.); (J.P.)
| |
Collapse
|
6
|
Gong H, Xue B, Ru J, Pei G, Li Y. Targeted Therapy for EWS-FLI1 in Ewing Sarcoma. Cancers (Basel) 2023; 15:4035. [PMID: 37627063 PMCID: PMC10452796 DOI: 10.3390/cancers15164035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/05/2023] [Accepted: 08/06/2023] [Indexed: 08/27/2023] Open
Abstract
Ewing sarcoma (EwS) is a rare and predominantly pediatric malignancy of bone and soft tissue in children and adolescents. Although international collaborations have greatly improved the prognosis of most EwS, the occurrence of macrometastases or relapse remains challenging. The prototypic oncogene EWS-FLI1 acts as an aberrant transcription factor that drives the cellular transformation of EwS. In addition to its involvement in RNA splicing and the DNA damage response, this chimeric protein directly binds to GGAA repeats, thereby modifying the transcriptional profile of EwS. Direct pharmacological targeting of EWS-FLI1 is difficult because of its intrinsically disordered structure. However, targeting the EWS-FLI1 protein complex or downstream pathways provides additional therapeutic options. This review describes the EWS-FLI1 protein partners and downstream pathways, as well as the related target therapies for the treatment of EwS.
Collapse
Affiliation(s)
- Helong Gong
- Department of Orthopaedic Surgery, Shengjing Hospital, China Medical University, No. 36 Sanhao Street, Heping District, Shenyang 110004, China;
| | - Busheng Xue
- Department of Hematology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China;
| | - Jinlong Ru
- Institute of Virology, Helmholtz Centre Munich, German Research Centre for Environmental Health, 85764 Neuherberg, Germany;
| | - Guoqing Pei
- Department of Orthopedics, Xijing Hospital, Air Force Medical University, Xi’an 710032, China;
| | - Yan Li
- Department of Orthopaedic Surgery, Shengjing Hospital, China Medical University, No. 36 Sanhao Street, Heping District, Shenyang 110004, China;
| |
Collapse
|
7
|
Watanabe M, Kosaka H, Sugawara M, Maemoto M, Ono Y, Uemori T, Shizu R, Yoshinari K. Screening for DAX1/EWS-FLI1 functional inhibitors identified dihydroorotate dehydrogenase as a therapeutic target for Ewing's sarcoma. Cancer Med 2023; 12:9802-9814. [PMID: 36825574 PMCID: PMC10166890 DOI: 10.1002/cam4.5741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/27/2022] [Accepted: 02/14/2023] [Indexed: 02/25/2023] Open
Abstract
OBJECTIVE EWS-FLI1 is the most common oncogenic fusion protein in Ewing's sarcoma family tumors (ESFTs). DAX1, an orphan member of the nuclear receptor superfamily, is up-regulated by EWS-FLI1 and plays a key role in the transformed phenotype of ESFTs. METHODS To discover a functional inhibitor of DAX1 and EWS-FLI1, we screened small-molecular inhibitors using a DAX1 reporter assay system. RESULTS K-234 and its derivatives, which were dihydroorotate dehydrogenase (DHODH) inhibitors, showed inhibitory effects in the reporter assay. K-234 inhibited the growth of Ewing's sarcoma with various fusion types, and K-234 derivatives altered the expression of EWS-FLI1-regulated genes. The DAX1 expression had no effect on the growth inhibitory effect of the K-234 derivatives, while DHODH overexpression or uridine treatment attenuated their inhibitory effects, suggesting that inhibition by K-234 derivatives occurs through DHODH inhibition. An in vivo study showed that a K-234 derivative clearly inhibited tumor growth in an Ewing's sarcoma xenograft mouse model. CONCLUSION Taken together, the present results suggest that DHODH inhibitors can inhibit the function of DAX1/EWS-FLI1 in ESFTs and might be a therapeutic agent with potent anti-tumor activity for Ewing's sarcoma patients.
Collapse
Affiliation(s)
- Miwa Watanabe
- Research and Development Division, Kyowa Kirin Co., Ltd., Shizuoka, Japan.,Department of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Hiromichi Kosaka
- Research and Development Division, Kyowa Kirin Co., Ltd., Shizuoka, Japan
| | - Masamori Sugawara
- Research and Development Division, Kyowa Kirin Co., Ltd., Shizuoka, Japan
| | - Michihiro Maemoto
- Research and Development Division, Kyowa Kirin Co., Ltd., Shizuoka, Japan
| | - Yoko Ono
- Research and Development Division, Kyowa Kirin Co., Ltd., Shizuoka, Japan
| | - Takeshi Uemori
- Research and Development Division, Kyowa Kirin Co., Ltd., Shizuoka, Japan
| | - Ryota Shizu
- Department of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Kouichi Yoshinari
- Department of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| |
Collapse
|
8
|
Lu DY, Ellegast JM, Ross KN, Malone CF, Lin S, Mabe NW, Dharia NV, Meyer A, Conway A, Su AH, Selich-Anderson J, Taslim C, Byrum AK, Seong BKA, Adane B, Gray NS, Rivera MN, Lessnick SL, Stegmaier K. The ETS transcription factor ETV6 constrains the transcriptional activity of EWS-FLI to promote Ewing sarcoma. Nat Cell Biol 2023; 25:285-297. [PMID: 36658220 PMCID: PMC9928584 DOI: 10.1038/s41556-022-01059-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 11/24/2022] [Indexed: 01/21/2023]
Abstract
Transcription factors (TFs) are frequently mutated in cancer. Paediatric cancers exhibit few mutations genome-wide but frequently harbour sentinel mutations that affect TFs, which provides a context to precisely study the transcriptional circuits that support mutant TF-driven oncogenesis. A broadly relevant mechanism that has garnered intense focus involves the ability of mutant TFs to hijack wild-type lineage-specific TFs in self-reinforcing transcriptional circuits. However, it is not known whether this specific type of circuitry is equally crucial in all mutant TF-driven cancers. Here we describe an alternative yet central transcriptional mechanism that promotes Ewing sarcoma, wherein constraint, rather than reinforcement, of the activity of the fusion TF EWS-FLI supports cancer growth. We discover that ETV6 is a crucial TF dependency that is specific to this disease because it, counter-intuitively, represses the transcriptional output of EWS-FLI. This work discovers a previously undescribed transcriptional mechanism that promotes cancer.
Collapse
Affiliation(s)
- Diana Y Lu
- Harvard/MIT MD-PhD Program, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jana M Ellegast
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kenneth N Ross
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Clare F Malone
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Shan Lin
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nathaniel W Mabe
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Neekesh V Dharia
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ashleigh Meyer
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Amy Conway
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Angela H Su
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Julia Selich-Anderson
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Cenny Taslim
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Andrea K Byrum
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Bo Kyung A Seong
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Biniam Adane
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nathanael S Gray
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Miguel N Rivera
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Stephen L Lessnick
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Division of Pediatric Hematology, Oncology and BMT, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Kimberly Stegmaier
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA.
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
9
|
Apfelbaum AA, Wrenn ED, Lawlor ER. The importance of fusion protein activity in Ewing sarcoma and the cell intrinsic and extrinsic factors that regulate it: A review. Front Oncol 2022; 12:1044707. [PMID: 36505823 PMCID: PMC9727305 DOI: 10.3389/fonc.2022.1044707] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/27/2022] [Indexed: 11/24/2022] Open
Abstract
Accumulating evidence shows that despite clonal origins tumors eventually become complex communities comprised of phenotypically distinct cell subpopulations. This heterogeneity arises from both tumor cell intrinsic programs and signals from spatially and temporally dynamic microenvironments. While pediatric cancers usually lack the mutational burden of adult cancers, they still exhibit high levels of cellular heterogeneity that are largely mediated by epigenetic mechanisms. Ewing sarcomas are aggressive bone and soft tissue malignancies with peak incidence in adolescence and the prognosis for patients with relapsed and metastatic disease is dismal. Ewing sarcomas are driven by a single pathognomonic fusion between a FET protein and an ETS family transcription factor, the most common of which is EWS::FLI1. Despite sharing a single driver mutation, Ewing sarcoma cells demonstrate a high degree of transcriptional heterogeneity both between and within tumors. Recent studies have identified differential fusion protein activity as a key source of this heterogeneity which leads to profoundly different cellular phenotypes. Paradoxically, increased invasive and metastatic potential is associated with lower EWS::FLI1 activity. Here, we review what is currently understood about EWS::FLI1 activity, the cell autonomous and tumor microenvironmental factors that regulate it, and the downstream consequences of these activity states on tumor progression. We specifically highlight how transcription factor regulation, signaling pathway modulation, and the extracellular matrix intersect to create a complex network of tumor cell phenotypes. We propose that elucidation of the mechanisms by which these essential elements interact will enable the development of novel therapeutic approaches that are designed to target this complexity and ultimately improve patient outcomes.
Collapse
Affiliation(s)
| | | | - Elizabeth R. Lawlor
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute and Department of Pediatrics, University of Washington, Seattle, WA, United States
| |
Collapse
|
10
|
Kitagawa T, Kobayashi D, Baron B, Okita H, Miyamoto T, Takai R, Paudel D, Ohta T, Asaoka Y, Tokunaga M, Nakagawa K, Furutani-Seiki M, Araki N, Kuramitsu Y, Kobayashi M. AT-hook DNA-binding motif-containing protein one knockdown downregulates EWS-FLI1 transcriptional activity in Ewing's sarcoma cells. PLoS One 2022; 17:e0269077. [PMID: 36194562 PMCID: PMC9531837 DOI: 10.1371/journal.pone.0269077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 09/06/2022] [Indexed: 11/18/2022] Open
Abstract
Ewing's sarcoma is the second most common bone malignancy in children or young adults and is caused by an oncogenic transcription factor by a chromosomal translocation between the EWSR1 gene and the ETS transcription factor family. However, the transcriptional mechanism of EWS-ETS fusion proteins is still unclear. To identify the transcriptional complexes of EWS-ETS fusion transcription factors, we applied a proximal labeling system called BioID in Ewing's sarcoma cells. We identified AHDC1 as a proximal protein of EWS-ETS fusion proteins. AHDC1 knockdown showed a reduced cell growth and transcriptional activity of EWS-FLI1. AHDC1 knockdown also reduced BRD4 and BRG1 protein levels, both known as interacting proteins of EWS-FLI1. Our results suggest that AHDC1 supports cell growth through EWS-FLI1.
Collapse
Affiliation(s)
- Takao Kitagawa
- Advanced Research Promotion Center, Health Sciences University of Hokkaido, Kanazawa, Ishikari-Tobetsu, Hokkaido, Japan
- * E-mail:
| | - Daiki Kobayashi
- Department of Omics and Systems Biology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
- Department of Tumor Genetics and Biology, Faculty of Life Sciences, Kumamoto University, Kumamoto-Shi, Kumamoto, Japan
| | - Byron Baron
- Center for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Hajime Okita
- Division of Diagnostic Pathology, Keio University School of Medicine, Shinano, Shinjuku-ku, Tokyo, Japan
| | - Tatsuo Miyamoto
- Department of Molecular and Cellular Physiology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Rie Takai
- Advanced Research Promotion Center, Health Sciences University of Hokkaido, Kanazawa, Ishikari-Tobetsu, Hokkaido, Japan
| | - Durga Paudel
- Advanced Research Promotion Center, Health Sciences University of Hokkaido, Kanazawa, Ishikari-Tobetsu, Hokkaido, Japan
| | - Tohru Ohta
- Advanced Research Promotion Center, Health Sciences University of Hokkaido, Kanazawa, Ishikari-Tobetsu, Hokkaido, Japan
| | - Yoichi Asaoka
- Department of Systems Biochemistry in Pathology and Regeneration, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Masayuki Tokunaga
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Koji Nakagawa
- Advanced Research Promotion Center, Health Sciences University of Hokkaido, Kanazawa, Ishikari-Tobetsu, Hokkaido, Japan
| | - Makoto Furutani-Seiki
- Department of Systems Biochemistry in Pathology and Regeneration, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Norie Araki
- Department of Tumor Genetics and Biology, Faculty of Life Sciences, Kumamoto University, Kumamoto-Shi, Kumamoto, Japan
| | - Yasuhiro Kuramitsu
- Advanced Research Promotion Center, Health Sciences University of Hokkaido, Kanazawa, Ishikari-Tobetsu, Hokkaido, Japan
| | - Masanobu Kobayashi
- Advanced Research Promotion Center, Health Sciences University of Hokkaido, Kanazawa, Ishikari-Tobetsu, Hokkaido, Japan
| |
Collapse
|
11
|
Lanzi C, Cassinelli G. Combinatorial strategies to potentiate the efficacy of HDAC inhibitors in fusion-positive sarcomas. Biochem Pharmacol 2022; 198:114944. [DOI: 10.1016/j.bcp.2022.114944] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/02/2022] [Accepted: 02/02/2022] [Indexed: 12/12/2022]
|
12
|
Vasileva E, Warren M, Triche TJ, Amatruda JF. Dysregulated heparan sulfate proteoglycan metabolism promotes Ewing sarcoma tumor growth. eLife 2022; 11:69734. [PMID: 35285802 PMCID: PMC8942468 DOI: 10.7554/elife.69734] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 03/13/2022] [Indexed: 11/13/2022] Open
Abstract
The Ewing sarcoma family of tumors is a group of malignant small round blue cell tumors (SRBCTs) that affects children, adolescents, and young adults. The tumors are characterized by reciprocal chromosomal translocations that generate chimeric fusion oncogenes, the most common of which is EWSR1-FLI1. Survival is extremely poor for patients with metastatic or relapsed disease, and no molecularly-targeted therapy for this disease currently exists. The absence of a reliable genetic animal model of Ewing sarcoma has impaired investigation of tumor cell/microenvironmental interactions in vivo. We have developed a new genetic model of Ewing sarcoma based on Cre-inducible expression of human EWSR1-FLI1 in wild type zebrafish, which causes rapid onset of SRBCTs at high penetrance. The tumors express canonical EWSR1-FLI1 target genes and stain for known Ewing sarcoma markers including CD99. Growth of tumors is associated with activation of the MAPK/ERK pathway, which we link to dysregulated extracellular matrix metabolism in general and heparan sulfate catabolism in particular. Targeting heparan sulfate proteoglycans with the specific heparan sulfate antagonist Surfen reduces ERK1/2 signaling and decreases tumorigenicity of Ewing sarcoma cells in vitro and in vivo. These results highlight the important role of the extracellular matrix in Ewing sarcoma tumor growth and the potential of agents targeting proteoglycan metabolism as novel therapies for this disease.
Collapse
Affiliation(s)
- Elena Vasileva
- Cancer and Blood Disease Institute, Children's Hospital of Los Angeles, Los Angeles, United States
| | - Mikako Warren
- Division of Pathology and Laboratory Medicine, Children's Hospital of Los Angeles, Los Angeles, United States
| | - Timothy J Triche
- Division of Pathology and Laboratory Medicine, Children's Hospital of Los Angeles, Los Angeles, United States
| | - James F Amatruda
- Department of Pediatrics, Children's Hospital of Los Angeles, Los Angeles, United States
| |
Collapse
|
13
|
Flores G, Grohar PJ. One oncogene, several vulnerabilities: EWS/FLI targeted therapies for Ewing sarcoma. J Bone Oncol 2021; 31:100404. [PMID: 34976713 PMCID: PMC8686064 DOI: 10.1016/j.jbo.2021.100404] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/18/2021] [Accepted: 11/23/2021] [Indexed: 12/23/2022] Open
Abstract
EWS/FLI is the defining mutation of Ewing sarcoma. This oncogene drives malignant transformation and progression and occurs in a genetic background characterized by few other recurrent cooperating mutations. In addition, the tumor is absolutely dependent on the continued expression of EWS/FLI to maintain the malignant phenotype. However, EWS/FLI is a transcription factor and therefore a challenging drug target. The difficulty of directly targeting EWS/FLI stems from unique features of this fusion protein as well as the network of interacting proteins required to execute the transcriptional program. This network includes interacting proteins as well as upstream and downstream effectors that together reprogram the epigenome and transcriptome. While the vast number of proteins involved in this process challenge the development of a highly specific inhibitors, they also yield numerous therapeutic opportunities. In this report, we will review how this vast EWS-FLI transcriptional network has been exploited over the last two decades to identify compounds that directly target EWS/FLI and/or associated vulnerabilities.
Collapse
Affiliation(s)
- Guillermo Flores
- Van Andel Research Institute, Grand Rapids, MI, USA
- Michigan State University, College of Human Medicine, USA
| | - Patrick J Grohar
- Children's Hospital of Philadelphia, University of Pennsylvania, Perelman School of Medicine, 3501 Civic Center Blvd., Philadelphia, PA, USA
| |
Collapse
|
14
|
Gu X, Guan J, Xu J, Zheng Q, Chen C, Yang Q, Huang C, Wang G, Zhou H, Chen Z, Zhu H. Model based on five tumour immune microenvironment-related genes for predicting hepatocellular carcinoma immunotherapy outcomes. J Transl Med 2021; 19:26. [PMID: 33407546 PMCID: PMC7788940 DOI: 10.1186/s12967-020-02691-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 12/22/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Although the tumour immune microenvironment is known to significantly influence immunotherapy outcomes, its association with changes in gene expression patterns in hepatocellular carcinoma (HCC) during immunotherapy and its effect on prognosis have not been clarified. METHODS A total of 365 HCC samples from The Cancer Genome Atlas liver hepatocellular carcinoma (TCGA-LIHC) dataset were stratified into training datasets and verification datasets. In the training datasets, immune-related genes were analysed through univariate Cox regression analyses and least absolute shrinkage and selection operator (LASSO)-Cox analyses to build a prognostic model. The TCGA-LIHC, GSE14520, and Imvigor210 cohorts were subjected to time-dependent receiver operating characteristic (ROC) and Kaplan-Meier survival curve analyses to verify the reliability of the developed model. Finally, single-sample gene set enrichment analysis (ssGSEA) was used to study the underlying molecular mechanisms. RESULTS Five immune-related genes (LDHA, PPAT, BFSP1, NR0B1, and PFKFB4) were identified and used to establish the prognostic model for patient response to HCC treatment. ROC curve analysis of the TCGA (training and validation sets) and GSE14520 cohorts confirmed the predictive ability of the five-gene-based model (AUC > 0.6). In addition, ROC and Kaplan-Meier analyses indicated that the model could stratify patients into a low-risk and a high-risk group, wherein the high-risk group exhibited worse prognosis and was less sensitive to immunotherapy than the low-risk group. Functional enrichment analysis predicted potential associations of the five genes with several metabolic processes and oncological signatures. CONCLUSIONS We established a novel five-gene-based prognostic model based on the tumour immune microenvironment that can predict immunotherapy efficacy in HCC patients.
Collapse
Affiliation(s)
- Xinyu Gu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, NO. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Jun Guan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, NO. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Jia Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, NO. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Qiuxian Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, NO. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Chao Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, NO. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Qin Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, NO. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Chunhong Huang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, NO. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Gang Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, NO. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Haibo Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, NO. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Zhi Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, NO. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Haihong Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, NO. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
| |
Collapse
|
15
|
Kerdivel G, Boeva V. Chromatin Immunoprecipitation Followed by Next-Generation Sequencing (ChIP-Seq) Analysis in Ewing Sarcoma. Methods Mol Biol 2021; 2226:265-284. [PMID: 33326109 DOI: 10.1007/978-1-0716-1020-6_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
ChIP-seq is the method of choice for profiling protein-DNA interactions, and notably for characterizing the landscape of transcription factor binding and histone modifications. This technique has been widely used to study numerous aspects of tumor biology and led to the development of several promising cancer therapies. In Ewing sarcoma research, ChIP-seq provided important insights into the mechanism of action of the major oncogenic fusion protein EWSR1-FLI1 and related epigenetic and transcriptional changes. In this chapter, we provide a detailed pipeline to analyze ChIP-seq experiments from the preprocessing of raw data to tertiary analysis of detected binding sites. We also advise on best practice to prepare tumor samples prior to sequencing.
Collapse
Affiliation(s)
- Gwenneg Kerdivel
- Cochin Institute, INSERM U1016, CNRS UMR8104, University of Paris, Paris, France.
| | - Valentina Boeva
- INSERM, U1016, Cochin Institute, CNRS UMR8104, Paris Descartes University, Paris, France. .,Department of Computer Science, ETH Zurich, Institute for Machine Learning, Zurich, Switzerland. .,Swiss Institute of Bioinformatics (SIB), Zürich, Switzerland.
| |
Collapse
|
16
|
Fusion genes as biomarkers in pediatric cancers: A review of the current state and applicability in diagnostics and personalized therapy. Cancer Lett 2020; 499:24-38. [PMID: 33248210 DOI: 10.1016/j.canlet.2020.11.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 12/13/2022]
Abstract
The incidence of pediatric cancers is rising steadily across the world, along with the challenges in understanding the molecular mechanisms and devising effective therapeutic strategies. Pediatric cancers are presented with diverse molecular characteristics and more distinct subtypes when compared to adult cancers. Recent studies on the genomic landscape of pediatric cancers using next-generation sequencing (NGS) approaches have redefined this field by providing better subtype characterization and novel actionable targets. Since early identification and personalized treatment strategies influence therapeutic outcomes, survival, and quality of life in pediatric cancer patients, the quest for actionable biomarkers is of great value in this field. Fusion genes that are prevalent and recurrent in several pediatric cancers are ideally suited in this context due to their disease-specific occurrence. In this review, we explore the current status of fusion genes in pediatric cancer subtypes and their use as biomarkers for diagnosis and personalized therapy. We discuss the technological advancements made in recent years in NGS sequencing and their impact on fusion detection algorithms that have revolutionized this field. Finally, we also discuss the advantages of pairing liquid biopsy protocols for fusion detection and their eventual use in diagnosis and treatment monitoring.
Collapse
|
17
|
Seo BK, Jeong SA, Cho JY, Park JS, Seo JH, Park ES, Lim JY, Woo HO, Youn HS. Report: central diabetes insipidus and schwannoma in a male with X-linked congenital adrenal hypoplasia. BMC Endocr Disord 2020; 20:73. [PMID: 32460754 PMCID: PMC7254651 DOI: 10.1186/s12902-020-00553-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 05/18/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND DAX1 mutations are related to the X-linked form of adrenal hypoplasia congenita (AHC) in infancy and to hypogonadotropic hypogonadism (HH) in puberty. We report a male patient affected by X-linked AHC who presented with central diabetes insipidus and schwannoma in adulthood, which has not been described in association with AHC. CASE PRESENTATION A 36-day-old male infant who presented with severe dehydration was admitted to the intensive care unit. His laboratory findings showed hyponatremia, hyperkalemia, hypoglycemia, and metabolic acidosis. After hormonal evaluation, he was diagnosed with adrenal insufficiency, and he recovered after treatment with hydrocortisone and a mineralocorticoid. He continued to take hydrocortisone and the mineralocorticoid after discharge. At the age of 17, he did not show any signs of puberty. On the basis of a GnRH test, a diagnosis of HH was made. At the age of 24, he was hospitalized with thirst, polydipsia and polyuria. He underwent a water deprivation test for polydipsia and was diagnosed with central diabetes insipidus. By quantitative polymerase chain reaction analysis, we identified a hemizygous frameshift mutation in DAX1 (c.543delA). CONCLUSIONS We suggest that DAX1 mutations affect a wider variety of endocrine organs than previously known, including the posterior pituitary gland.
Collapse
Affiliation(s)
- Boo Kyeong Seo
- Department of Pediatrics, Gyeongsang National University School of Medicine, 92 Chilam-dong, Jinju, Gyeongnam, 660-751, South Korea
- Gyeongsang Institute of Health Science, Jinju, Korea
| | - Seul Ah Jeong
- Department of Pediatrics, Gyeongsang National University School of Medicine, 92 Chilam-dong, Jinju, Gyeongnam, 660-751, South Korea
- Gyeongsang Institute of Health Science, Jinju, Korea
| | - Jae Young Cho
- Department of Pediatrics, Gyeongsang National University School of Medicine, 92 Chilam-dong, Jinju, Gyeongnam, 660-751, South Korea
- Gyeongsang Institute of Health Science, Jinju, Korea
| | - Ji Sook Park
- Department of Pediatrics, Gyeongsang National University School of Medicine, 92 Chilam-dong, Jinju, Gyeongnam, 660-751, South Korea
- Gyeongsang Institute of Health Science, Jinju, Korea
| | - Ji-Hyun Seo
- Department of Pediatrics, Gyeongsang National University School of Medicine, 92 Chilam-dong, Jinju, Gyeongnam, 660-751, South Korea
- Gyeongsang Institute of Health Science, Jinju, Korea
| | - Eun Sil Park
- Department of Pediatrics, Gyeongsang National University School of Medicine, 92 Chilam-dong, Jinju, Gyeongnam, 660-751, South Korea
- Gyeongsang Institute of Health Science, Jinju, Korea
| | - Jae-Young Lim
- Department of Pediatrics, Gyeongsang National University School of Medicine, 92 Chilam-dong, Jinju, Gyeongnam, 660-751, South Korea.
- Gyeongsang Institute of Health Science, Jinju, Korea.
| | - Hyang-Ok Woo
- Department of Pediatrics, Gyeongsang National University School of Medicine, 92 Chilam-dong, Jinju, Gyeongnam, 660-751, South Korea
- Gyeongsang Institute of Health Science, Jinju, Korea
| | - Hee-Shang Youn
- Department of Pediatrics, Gyeongsang National University School of Medicine, 92 Chilam-dong, Jinju, Gyeongnam, 660-751, South Korea
- Gyeongsang Institute of Health Science, Jinju, Korea
| |
Collapse
|
18
|
Harlow ML, Chasse MH, Boguslawski EA, Sorensen KM, Gedminas JM, Kitchen-Goosen SM, Rothbart SB, Taslim C, Lessnick SL, Peck AS, Madaj ZB, Bowman MJ, Grohar PJ. Trabectedin Inhibits EWS-FLI1 and Evicts SWI/SNF from Chromatin in a Schedule-dependent Manner. Clin Cancer Res 2019; 25:3417-3429. [PMID: 30723142 DOI: 10.1158/1078-0432.ccr-18-3511] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/24/2018] [Accepted: 01/23/2019] [Indexed: 12/19/2022]
Abstract
PURPOSE The successful clinical translation of compounds that target specific oncogenic transcription factors will require an understanding of the mechanism of target suppression to optimize the dose and schedule of administration. We have previously shown trabectedin reverses the gene signature of the EWS-FLI1 transcription factor. In this report, we establish the mechanism of suppression and use it to justify the reevaluation of this drug in the clinic in patients with Ewing sarcoma.Experimental Design: We demonstrate a novel epigenetic mechanism of trabectedin using biochemical fractionation and chromatin immunoprecipitation sequencing. We link the effect to drug schedule and EWS-FLI1 downstream target expression using confocal microscopy, qPCR, Western blot analysis, and cell viability assays. Finally, we quantitate target suppression within the three-dimensional architecture of the tumor in vivo using 18F-FLT imaging. RESULTS Trabectedin evicts the SWI/SNF chromatin-remodeling complex from chromatin and redistributes EWS-FLI1 in the nucleus leading to a marked increase in H3K27me3 and H3K9me3 at EWS-FLI1 target genes. These effects only occur at high concentrations of trabectedin leading to suppression of EWS-FLI1 target genes and a loss of cell viability. In vivo, low-dose irinotecan is required to improve the magnitude, penetrance, and duration of target suppression in the three-dimensional architecture of the tumor leading to differentiation of the Ewing sarcoma xenograft into benign mesenchymal tissue. CONCLUSIONS These data provide the justification to evaluate trabectedin in the clinic on a short infusion schedule in combination with low-dose irinotecan with 18F-FLT PET imaging in patients with Ewing sarcoma.
Collapse
Affiliation(s)
- Matt L Harlow
- Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee
| | | | | | | | - Jenna M Gedminas
- Van Andel Research Institute, Grand Rapids, Michigan.,Department of Pediatrics, Michigan State University, East Lansing, Michigan.,Division of Pediatric Hematology/Oncology, Helen DeVos Children's Hospital, Grand Rapids, Michigan
| | | | | | - Cenny Taslim
- Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital Research Institute, Columbus, Ohio
| | - Stephen L Lessnick
- Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital Research Institute, Columbus, Ohio.,Division of Pediatric Hematology/Oncology/BMT, The Ohio State University College of Medicine, Columbus, Ohio
| | | | | | | | - Patrick J Grohar
- Van Andel Research Institute, Grand Rapids, Michigan. .,Department of Pediatrics, Michigan State University, East Lansing, Michigan.,Division of Pediatric Hematology/Oncology, Helen DeVos Children's Hospital, Grand Rapids, Michigan
| |
Collapse
|
19
|
Nakano K, Takahashi S. Translocation-Related Sarcomas. Int J Mol Sci 2018; 19:ijms19123784. [PMID: 30487384 PMCID: PMC6320865 DOI: 10.3390/ijms19123784] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/20/2018] [Accepted: 11/27/2018] [Indexed: 12/13/2022] Open
Abstract
Chromosomal translocations are observed in approximately 20% of soft tissue sarcomas (STS). With the advances in pathological examination technology, the identification of translocations has enabled precise diagnoses and classifications of STS, and it has been suggested that the presence of and differences in translocations could be prognostic factors in some translocation-related sarcomas. Most of the translocations in STS were not regarded as targets of molecular therapies until recently. However, trabectedin, an alkylating agent, has shown clinical benefits against translocation-related sarcoma based on a modulation of the transcription of the tumor's oncogenic fusion proteins. Many molecular-targeted drugs that are specific to translocations (e.g., anaplastic lymphoma kinase and tropomyosin kinase related fusion proteins) have emerged. The progress in gene technologies has allowed researchers to identify and even induce new translocations and fusion proteins, which might become targets of molecular-targeted therapies. In this review, we discuss the clinical significance of translocation-related sarcomas, including their diagnoses and targeted therapies.
Collapse
Affiliation(s)
- Kenji Nakano
- Department of Medical Oncology, Cancer Institute Hospital of the Japanese Foundation for Cancer Research, Tokyo 135-0063, Japan.
| | - Shunji Takahashi
- Department of Medical Oncology, Cancer Institute Hospital of the Japanese Foundation for Cancer Research, Tokyo 135-0063, Japan.
| |
Collapse
|
20
|
Sen N, Cross AM, Lorenzi PL, Khan J, Gryder BE, Kim S, Caplen NJ. EWS-FLI1 reprograms the metabolism of Ewing sarcoma cells via positive regulation of glutamine import and serine-glycine biosynthesis. Mol Carcinog 2018; 57:1342-1357. [PMID: 29873416 PMCID: PMC6175245 DOI: 10.1002/mc.22849] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 05/22/2018] [Accepted: 06/01/2018] [Indexed: 12/12/2022]
Abstract
Ewing sarcoma (EWS) is a soft tissue and bone tumor that occurs primarily in adolescents and young adults. In most cases of EWS, the chimeric transcription factor, EWS-FLI1 is the primary oncogenic driver. The epigenome of EWS cells reflects EWS-FLI1 binding and activation or repression of transcription. Here, we demonstrate that EWS-FLI1 positively regulates the expression of proteins required for serine-glycine biosynthesis and uptake of the alternative nutrient source glutamine. Specifically, we show that EWS-FLI1 activates expression of PHGDH, PSAT1, PSPH, and SHMT2. Using cell-based studies, we also establish that EWS cells are dependent on glutamine for cell survival and that EWS-FLI1 positively regulates expression of the glutamine transporter, SLC1A5 and two enzymes involved in the one-carbon cycle, MTHFD2 and MTHFD1L. Inhibition of serine-glycine biosynthesis in EWS cells impacts their redox state leading to an accumulation of reactive oxygen species, DNA damage, and apoptosis. Importantly, analysis of EWS primary tumor transcriptome data confirmed that the aforementioned genes we identified as regulated by EWS-FLI1 exhibit increased expression compared with normal tissues. Furthermore, retrospective analysis of an independent data set generated a significant stratification of the overall survival of EWS patients into low- and high-risk groups based on the expression of PHGDH, PSAT1, PSPH, SHMT2, SLC1A5, MTHFD2, and MTHFD1L. In summary, our study demonstrates that EWS-FLI1 reprograms the metabolism of EWS cells and that serine-glycine metabolism or glutamine uptake are potential targetable vulnerabilities in this tumor type.
Collapse
Affiliation(s)
- Nirmalya Sen
- Functional Genetics Section, Genetics Branch, Center for Cancer Research (CCR)National Cancer Institute (NCI)BethesdaMaryland
| | - Allison M. Cross
- Functional Genetics Section, Genetics Branch, Center for Cancer Research (CCR)National Cancer Institute (NCI)BethesdaMaryland
| | - Philip L. Lorenzi
- Proteomic and Metabolomics Core Facility, Department of Bioinformatics and Computational BiologyThe University of Texas MD Anderson Cancer CenterHoustonTexas
| | - Javed Khan
- Oncogenomics Section, Genetics Branch, Center for Cancer Research (CCR)National Cancer Institute (NCI)BethesdaMaryland
| | - Berkley E. Gryder
- Oncogenomics Section, Genetics Branch, Center for Cancer Research (CCR)National Cancer Institute (NCI)BethesdaMaryland
| | - Suntae Kim
- Functional Genetics Section, Genetics Branch, Center for Cancer Research (CCR)National Cancer Institute (NCI)BethesdaMaryland
| | - Natasha J. Caplen
- Functional Genetics Section, Genetics Branch, Center for Cancer Research (CCR)National Cancer Institute (NCI)BethesdaMaryland
| |
Collapse
|
21
|
Goss KL, Gordon DJ. Gene expression signature based screening identifies ribonucleotide reductase as a candidate therapeutic target in Ewing sarcoma. Oncotarget 2018; 7:63003-63019. [PMID: 27557498 PMCID: PMC5325343 DOI: 10.18632/oncotarget.11416] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 08/13/2016] [Indexed: 11/25/2022] Open
Abstract
There is a critical need in cancer therapeutics to identify targeted therapies that will improve outcomes and decrease toxicities compared to conventional, cytotoxic chemotherapy. Ewing sarcoma is a highly aggressive bone and soft tissue cancer that is caused by the EWS-FLI1 fusion protein. Although EWS-FLI1 is specific for cancer cells, and required for tumorigenesis, directly targeting this transcription factor has proven challenging. Consequently, targeting unique dependencies or key downstream mediators of EWS-FLI1 represent important alternative strategies. We used gene expression data derived from a genetically defined model of Ewing sarcoma to interrogate the Connectivity Map and identify a class of drugs, iron chelators, that downregulate a significant number of EWS-FLI1 target genes. We then identified ribonucleotide reductase M2 (RRM2), the iron-dependent subunit of ribonucleotide reductase (RNR), as one mediator of iron chelator toxicity in Ewing sarcoma cells. Inhibition of RNR in Ewing sarcoma cells caused apoptosis in vitro and attenuated tumor growth in an in vivo, xenograft model. Additionally, we discovered that the sensitivity of Ewing sarcoma cells to inhibition or suppression of RNR is mediated, in part, by high levels of SLFN11, a protein that sensitizes cells to DNA damage. This work demonstrates a unique dependency of Ewing sarcoma cells on RNR and supports further investigation of RNR inhibitors, which are currently used in clinical practice, as a novel approach for treating Ewing sarcoma.
Collapse
Affiliation(s)
- Kelli L Goss
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Iowa, Iowa City, Iowa, USA
| | - David J Gordon
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
22
|
Yu H, Ge Y, Guo L, Huang L. Potential approaches to the treatment of Ewing's sarcoma. Oncotarget 2018; 8:5523-5539. [PMID: 27740934 PMCID: PMC5354928 DOI: 10.18632/oncotarget.12566] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 10/03/2016] [Indexed: 01/04/2023] Open
Abstract
Ewing’s sarcoma (ES) is a highly aggressive and metastatic tumor in children and young adults caused by a chromosomal fusion between the Ewing sarcoma breakpoint region 1 (EWSR1) gene and the transcription factor FLI1 gene. ES is managed with standard treatments, including chemotherapy, surgery and radiation. Although the 5-year survival rate for primary ES has improved, the survival rate for ES patients with metastases or recurrence remains low. Several novel molecular targets in ES have recently been identified and investigated in preclinical and clinical settings, and targeting the function of receptor tyrosine kinases (RTKs), the fusion protein EWS-FLI1 and mTOR has shown promise. There has also been increasing interest in the immune responses of ES patients. Immunotherapies using T cells, NK cells, cancer vaccines and monoclonal antibodies have been considered for ES, especially for recurrent patients. Because understanding the pathogenesis of ES is extremely important for the development of novel treatments, this review focuses on the mechanisms and functions of targeted therapies and immunotherapies in ES. It is anticipated that integrating the knowledge obtained from basic research and translational and clinical studies will lead to the development of novel therapeutic strategies for the treatment of ES.
Collapse
Affiliation(s)
- Hongjiu Yu
- Department of Pathophysiology, Dalian Medical University, Dalian, Liaoning, P.R. China.,Department of VIP, The First Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, P.R. China
| | - Yonggui Ge
- Department of Pathophysiology, Dalian Medical University, Dalian, Liaoning, P.R. China
| | - Lianying Guo
- Department of Pathophysiology, Dalian Medical University, Dalian, Liaoning, P.R. China
| | - Lin Huang
- Department of Pathophysiology, Dalian Medical University, Dalian, Liaoning, P.R. China
| |
Collapse
|
23
|
Abstract
Sarcomas arise from primitive mesenchymal cells, which are classified, into two main groups: Bone and soft tissue sarcomas. We have searched all-important electronic databases including Google scholar and PubMed for the collection of latest literature pertaining to pediatric sarcomas. Latest literature confirmed that these tumors are relatively rare and represent only 1% of all malignancies but they have higher incidence in children. Pediatric sarcomas comprise about 13% of all pediatric malignancies and are ranked third in childhood cancers. The highest incidence rates are reported among rhabdomyosarcoma, osteosarcoma and Ewing's sarcomas in children. All of these neoplasms often display highly aggressive behavior with tendency to form metastases. Important globally used management avenues include surgery with systemic chemotherapy and have success rate of 70% at 5-years. Furthermore, in the cases of advanced stages, the prognosis is poor, chances of treatment failure and recurrence are quite high. Utilization of cancer stem cells is the latest approach with great potential in management of above pathological state. The present review article discuss all-important aspects of commonly found pediatric sarcomas throughout the world.
Collapse
Affiliation(s)
- Junhua Cao
- Department of Pediatric Internal Medicine, Xuzhou Children's Hospital, Xuzhou, Jiangsu 221002, P.R. China
| | - Qi An
- Department of Pediatric Internal Medicine, Xuzhou Children's Hospital, Xuzhou, Jiangsu 221002, P.R. China
| | - Lei Wang
- Department of Pediatric Internal Medicine, Xuzhou Children's Hospital, Xuzhou, Jiangsu 221002, P.R. China
| |
Collapse
|
24
|
Bar-Peled L, Kemper EK, Suciu RM, Vinogradova EV, Backus KM, Horning BD, Paul TA, Ichu TA, Svensson RU, Olucha J, Chang MW, Kok BP, Zhu Z, Ihle NT, Dix MM, Jiang P, Hayward MM, Saez E, Shaw RJ, Cravatt BF. Chemical Proteomics Identifies Druggable Vulnerabilities in a Genetically Defined Cancer. Cell 2017; 171:696-709.e23. [PMID: 28965760 PMCID: PMC5728659 DOI: 10.1016/j.cell.2017.08.051] [Citation(s) in RCA: 186] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 07/07/2017] [Accepted: 08/30/2017] [Indexed: 01/11/2023]
Abstract
The transcription factor NRF2 is a master regulator of the cellular antioxidant response, and it is often genetically activated in non-small-cell lung cancers (NSCLCs) by, for instance, mutations in the negative regulator KEAP1. While direct pharmacological inhibition of NRF2 has proven challenging, its aberrant activation rewires biochemical networks in cancer cells that may create special vulnerabilities. Here, we use chemical proteomics to map druggable proteins that are selectively expressed in KEAP1-mutant NSCLC cells. Principal among these is NR0B1, an atypical orphan nuclear receptor that we show engages in a multimeric protein complex to regulate the transcriptional output of KEAP1-mutant NSCLC cells. We further identify small molecules that covalently target a conserved cysteine within the NR0B1 protein interaction domain, and we demonstrate that these compounds disrupt NR0B1 complexes and impair the anchorage-independent growth of KEAP1-mutant cancer cells. Our findings designate NR0B1 as a druggable transcriptional regulator that supports NRF2-dependent lung cancers.
Collapse
Affiliation(s)
- Liron Bar-Peled
- The Skaggs Institute for Chemical Biology and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Esther K Kemper
- The Skaggs Institute for Chemical Biology and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Radu M Suciu
- The Skaggs Institute for Chemical Biology and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ekaterina V Vinogradova
- The Skaggs Institute for Chemical Biology and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Keriann M Backus
- The Skaggs Institute for Chemical Biology and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Benjamin D Horning
- The Skaggs Institute for Chemical Biology and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Thomas A Paul
- Oncology Research Unit, Pfizer Worldwide Research and Development, La Jolla, CA 92121, USA
| | - Taka-Aki Ichu
- The Skaggs Institute for Chemical Biology and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Robert U Svensson
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Jose Olucha
- The Skaggs Institute for Chemical Biology and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Max W Chang
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Bernard P Kok
- The Skaggs Institute for Chemical Biology and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Zhou Zhu
- Oncology Research Unit, Pfizer Worldwide Research and Development, La Jolla, CA 92121, USA
| | - Nathan T Ihle
- Oncology Research Unit, Pfizer Worldwide Research and Development, La Jolla, CA 92121, USA
| | - Melissa M Dix
- The Skaggs Institute for Chemical Biology and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ping Jiang
- Oncology Research Unit, Pfizer Worldwide Research and Development, La Jolla, CA 92121, USA
| | - Matthew M Hayward
- Oncology Research Unit, Pfizer Worldwide Research and Development, La Jolla, CA 92121, USA
| | - Enrique Saez
- The Skaggs Institute for Chemical Biology and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Reuben J Shaw
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Benjamin F Cravatt
- The Skaggs Institute for Chemical Biology and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
25
|
Theisen ER, Pishas KI, Saund RS, Lessnick SL. Therapeutic opportunities in Ewing sarcoma: EWS-FLI inhibition via LSD1 targeting. Oncotarget 2017; 7:17616-30. [PMID: 26848860 PMCID: PMC4951237 DOI: 10.18632/oncotarget.7124] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 01/23/2016] [Indexed: 11/25/2022] Open
Abstract
Ewing sarcoma is an aggressive primary pediatric bone tumor, often diagnosed in adolescents and young adults. A pathognomonic reciprocal chromosomal translocation results in a fusion gene coding for a protein which derives its N-terminus from a FUS/EWS/TAF15 (FET) protein family member, commonly EWS, and C-terminus containing the DNA-binding domain of an ETS transcription factor, commonly FLI1. Nearly 85% of cases express the EWS-FLI protein which functions as a transcription factor and drives oncogenesis. As the primary genomic lesion and a protein which is not expressed in normal cells, disrupting EWS-FLI function is an attractive therapeutic strategy for Ewing sarcoma. However, transcription factors are notoriously difficult targets for the development of small molecules. Improved understanding of the oncogenic mechanisms employed by EWS-FLI to hijack normal cellular programming has uncovered potential novel approaches to pharmacologically block EWS-FLI function. In this review we examine targeting the chromatin regulatory enzymes recruited to conspire in oncogenesis with a focus on the histone lysine specific demethylase 1 (LSD1). LSD1 inhibitors are being aggressively investigated in acute myeloid leukemia and the results of early clinical trials will help inform the future use of LSD1 inhibitors in sarcoma. High LSD1 expression is observed in Ewing sarcoma patient samples and mechanistic and preclinical data suggest LSD1 inhibition globally disrupts the function of EWS-ETS proteins.
Collapse
Affiliation(s)
- Emily R Theisen
- Center for Childhood Cancer and Blood Disorders, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Kathleen I Pishas
- Center for Childhood Cancer and Blood Disorders, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA.,Cancer Therapeutics Laboratory, Centre for Personalized Cancer Medicine, Discipline of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Ranajeet S Saund
- Center for Childhood Cancer and Blood Disorders, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Stephen L Lessnick
- Center for Childhood Cancer and Blood Disorders, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA.,Division of Pediatric Hematology/Oncology/Bone Marrow Transplant at The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
26
|
Gierisch ME, Pfistner F, Lopez-Garcia LA, Harder L, Schäfer BW, Niggli FK. Proteasomal Degradation of the EWS-FLI1 Fusion Protein Is Regulated by a Single Lysine Residue. J Biol Chem 2016; 291:26922-26933. [PMID: 27875302 DOI: 10.1074/jbc.m116.752063] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 11/01/2016] [Indexed: 12/26/2022] Open
Abstract
E-26 transformation-specific (ETS) proteins are transcription factors directing gene expression through their conserved DNA binding domain. They are implicated as truncated forms or interchromosomal rearrangements in a variety of tumors including Ewing sarcoma, a pediatric tumor of the bone. Tumor cells express the chimeric oncoprotein EWS-FLI1 from a specific t(22;11)(q24;12) translocation. EWS-FLI1 harbors a strong transactivation domain from EWSR1 and the DNA-binding ETS domain of FLI1 in the C-terminal part of the protein. Although Ewing cells are crucially dependent on continuous expression of EWS-FLI1, its regulation of turnover has not been characterized in detail. Here, we identify the EWS-FLI1 protein as a substrate of the ubiquitin-proteasome system with a characteristic polyubiquitination pattern. Using a global protein stability approach, we determined the half-life of EWS-FLI1 to lie between 2 and 4 h, whereas full-length EWSR1 and FLI1 were more stable. By mass spectrometry, we identified two ubiquitin acceptor lysine residues of which only mutation of Lys-380 in the ETS domain of the FLI1 part abolished EWS-FLI1 ubiquitination and stabilized the protein posttranslationally. Expression of this highly stable mutant protein in Ewing cells while simultaneously depleting the endogenous wild type protein differentially modulates two subgroups of target genes to be either EWS-FLI1 protein-dependent or turnover-dependent. The majority of target genes are in an unaltered state and cannot be further activated. Our study provides novel insights into EWS-FLI1 turnover, a critical pathway in Ewing sarcoma pathogenesis, and lays new ground to develop novel therapeutic strategies in Ewing sarcoma.
Collapse
Affiliation(s)
- Maria E Gierisch
- From the Department of Oncology and Children's Research Center, University Children's Hospital, Steinwiesstrasse 32, 8032 Zurich, Switzerland
| | - Franziska Pfistner
- From the Department of Oncology and Children's Research Center, University Children's Hospital, Steinwiesstrasse 32, 8032 Zurich, Switzerland
| | - Laura A Lopez-Garcia
- From the Department of Oncology and Children's Research Center, University Children's Hospital, Steinwiesstrasse 32, 8032 Zurich, Switzerland
| | - Lena Harder
- From the Department of Oncology and Children's Research Center, University Children's Hospital, Steinwiesstrasse 32, 8032 Zurich, Switzerland
| | - Beat W Schäfer
- From the Department of Oncology and Children's Research Center, University Children's Hospital, Steinwiesstrasse 32, 8032 Zurich, Switzerland
| | - Felix K Niggli
- From the Department of Oncology and Children's Research Center, University Children's Hospital, Steinwiesstrasse 32, 8032 Zurich, Switzerland
| |
Collapse
|
27
|
Harlow ML, Maloney N, Roland J, Guillen Navarro MJ, Easton MK, Kitchen-Goosen SM, Boguslawski EA, Madaj ZB, Johnson BK, Bowman MJ, D'Incalci M, Winn ME, Turner L, Hostetter G, Galmarini CM, Aviles PM, Grohar PJ. Lurbinectedin Inactivates the Ewing Sarcoma Oncoprotein EWS-FLI1 by Redistributing It within the Nucleus. Cancer Res 2016; 76:6657-6668. [PMID: 27697767 DOI: 10.1158/0008-5472.can-16-0568] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 08/31/2016] [Accepted: 09/05/2016] [Indexed: 12/17/2022]
Abstract
There is a great need to develop novel approaches to target oncogenic transcription factors with small molecules. Ewing sarcoma is emblematic of this need, as it depends on the continued activity of the EWS-FLI1 transcription factor to maintain the malignant phenotype. We have previously shown that the small molecule trabectedin interferes with EWS-FLI1. Here, we report important mechanistic advances and a second-generation inhibitor to provide insight into the therapeutic targeting of EWS-FLI1. We discovered that trabectedin functionally inactivated EWS-FLI1 by redistributing the protein within the nucleus to the nucleolus. This effect was rooted in the wild-type functions of the EWSR1, compromising the N-terminal half of the chimeric oncoprotein, which is known to be similarly redistributed within the nucleus in the presence of UV light damage. A second-generation trabectedin analogue lurbinectedin (PM01183) caused the same nuclear redistribution of EWS-FLI1, leading to a loss of activity at the promoter, mRNA, and protein levels of expression. Tumor xenograft studies confirmed this effect, and it was increased in combination with irinotecan, leading to tumor regression and replacement of Ewing sarcoma cells with benign fat cells. The net result of combined lurbinectedin and irinotecan treatment was a complete reversal of EWS-FLI1 activity and elimination of established tumors in 30% to 70% of mice after only 11 days of therapy. Our results illustrate the preclinical safety and efficacy of a disease-specific therapy targeting the central oncogenic driver in Ewing sarcoma. Cancer Res; 76(22); 6657-68. ©2016 AACR.
Collapse
Affiliation(s)
- Matt L Harlow
- Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee
| | - Nichole Maloney
- Department of Pediatrics, Vanderbilt University, Nashville, Tennessee
| | - Joseph Roland
- Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | | | | | | | | | | | - Ben K Johnson
- Van Andel Research Institute, Grand Rapids, Michigan
| | | | | | - Mary E Winn
- Van Andel Research Institute, Grand Rapids, Michigan
| | - Lisa Turner
- Van Andel Research Institute, Grand Rapids, Michigan
| | | | | | | | - Patrick J Grohar
- Department of Pediatrics, Vanderbilt University, Nashville, Tennessee. .,Van Andel Research Institute, Grand Rapids, Michigan.,Helen De Vos Children's Hospital, Grand Rapids, Michigan.,Department of Pediatrics, Michigan State University, Grand Rapids, Michigan
| |
Collapse
|
28
|
Osgood CL, Maloney N, Kidd CG, Kitchen-Goosen S, Segars L, Gebregiorgis M, Woldemichael GM, He M, Sankar S, Lessnick SL, Kang M, Smith M, Turner L, Madaj ZB, Winn ME, Núñez LE, González-Sabín J, Helman LJ, Morís F, Grohar PJ. Identification of Mithramycin Analogues with Improved Targeting of the EWS-FLI1 Transcription Factor. Clin Cancer Res 2016; 22:4105-18. [PMID: 26979396 PMCID: PMC4987166 DOI: 10.1158/1078-0432.ccr-15-2624] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 02/18/2016] [Indexed: 12/22/2022]
Abstract
PURPOSE The goal of this study was to identify second-generation mithramycin analogues that better target the EWS-FLI1 transcription factor for Ewing sarcoma. We previously established mithramycin as an EWS-FLI1 inhibitor, but the compound's toxicity prevented its use at effective concentrations in patients. EXPERIMENTAL DESIGN We screened a panel of mithralogs to establish their ability to inhibit EWS-FLI1 in Ewing sarcoma. We compared the IC50 with the MTD established in mice to determine the relationship between efficacy and toxicity. We confirmed the suppression of EWS-FLI1 at the promoter, mRNA, gene signature, and protein levels. We established an improved therapeutic window by using time-lapse microscopy to model the effects on cellular proliferation in Ewing sarcoma cells relative to HepG2 control cells. Finally, we established an improved therapeutic window using a xenograft model of Ewing sarcoma. RESULTS EC-8105 was found to be the most potent analogue and was able to suppress EWS-FLI1 activity at concentrations nontoxic to other cell types. EC-8042 was substantially less toxic than mithramycin in multiple species but maintained suppression of EWS-FLI1 at similar concentrations. Both compounds markedly suppressed Ewing sarcoma xenograft growth and inhibited EWS-FLI1 in vivo CONCLUSIONS These results provide a basis for the continued development of EC-8042 and EC-8105 as EWS-FLI1 inhibitors for the clinic. Clin Cancer Res; 22(16); 4105-18. ©2016 AACR.
Collapse
MESH Headings
- Animals
- Antibiotics, Antineoplastic/pharmacology
- Cell Line, Tumor
- Disease Models, Animal
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Mice
- Molecular Targeted Therapy
- Oncogene Proteins, Fusion/antagonists & inhibitors
- Oncogene Proteins, Fusion/metabolism
- Plicamycin/pharmacology
- Promoter Regions, Genetic
- Proto-Oncogene Protein c-fli-1/antagonists & inhibitors
- Proto-Oncogene Protein c-fli-1/metabolism
- RNA-Binding Protein EWS/antagonists & inhibitors
- RNA-Binding Protein EWS/metabolism
- Sarcoma, Ewing/drug therapy
- Sarcoma, Ewing/genetics
- Sarcoma, Ewing/metabolism
- Sarcoma, Ewing/mortality
- Transcription Factors
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Christy L Osgood
- Division of Pediatric Hematology/Oncology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Nichole Maloney
- Division of Pediatric Hematology/Oncology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Christopher G Kidd
- Division of Pediatric Hematology/Oncology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | | | - Laura Segars
- Division of Pediatric Hematology/Oncology, Vanderbilt University School of Medicine, Nashville, Tennessee. Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland
| | - Meti Gebregiorgis
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland
| | - Girma M Woldemichael
- Basic Science Program, Leidos Biomedical Research Laboratory, Inc., Molecular Targets Laboratory, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Min He
- Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Savita Sankar
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri
| | - Stephen L Lessnick
- Center for Childhood Cancer and Blood Disorders, Nationwide Children's Hospital, Division of Pediatric Hematology/Oncology/BMT, The Ohio State University, Columbus, Ohio
| | - Min Kang
- Texas Tech University Health Science Center, School of Medicine, Lubbock, Texas
| | - Malcolm Smith
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland. Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Lisa Turner
- Van Andel Research Institute, Grand Rapids, Michigan
| | | | - Mary E Winn
- Van Andel Research Institute, Grand Rapids, Michigan
| | | | | | - Lee J Helman
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland
| | | | - Patrick J Grohar
- Division of Pediatric Hematology/Oncology, Vanderbilt University School of Medicine, Nashville, Tennessee. Van Andel Research Institute, Grand Rapids, Michigan. Helen De Vos Children's Hospital, Grand Rapids, Michigan. Department of Pediatrics, Michigan State University School of Medicine, East Lansing, Michigan.
| |
Collapse
|
29
|
Ke C, Duan Q, Yang H, Zhu F, Yan M, Xu SP, Zhou S, Wan F, Shu K, Lei T, Xia LM. Meningeal Ewing Sarcoma/Peripheral PNET: Clinicopathological, Immunohistochemical and FISH study of four cases. Neuropathology 2016; 37:35-44. [PMID: 27500883 DOI: 10.1111/neup.12325] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 06/19/2016] [Accepted: 06/19/2016] [Indexed: 01/14/2023]
Abstract
Meningeal Ewing Sarcoma (ES)/peripheral primitive neuroectodermal tumor (pPNET) is a rare diagnostically challenging small round cell tumor in the CNS. This study investigates the clinical pathological features of four cases of this tumor from archives of 6 years in our hospital. Patients were within the median age of 21.5 years and male to female ratio was 1:1. The tumors distributed at the supra-tentorial location, posterior fossa and lumbar vertebral canal, usually presenting as the dura-sited nodule or having close connection with the meninges within the cranium or vertebral canal. Histopathologically, small round undifferentiated tumor cells with hypercellularities, scant cytoplasm and inconspicuous nucleoli were observed, although some components such as atypical larger vesicular nuclei, prominent nucleoli of tumor cells, necrotic foci and mesenchymal collagen proliferation forming the lobular structure, were also appreciated. Immunohistochemally, tumor cells displayed membranous positivity of CD99 (4/4), nuclear positivity of FLI-1 (4/4) and NKX2.2 (4/4), negativity of EMA, GFAP and synaptophysin expression. The histochemical PAS staining showed weak positivity in one case. Fluorescence in situ hybridization (FISH) test using EWSR1 (22q12) dual color break apart rearrangement probe showed positive results in two cases. Results suggest that using a panel of immunohistochemical markers, including NKX2.2, CD99, FLI-1, EMA, GFAP and synaptophysin, combined with the supplementary EWSR1 FISH test, helps to define the diagnosis of meningeal ES/pPNET of CNS.
Collapse
Affiliation(s)
- Changshu Ke
- Department of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Qiuhong Duan
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Hui Yang
- Department of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Feng Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Meng Yan
- Department of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - San-Peng Xu
- Department of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Sheng Zhou
- Department of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Feng Wan
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Kai Shu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Ting Lei
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Li-Ming Xia
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
30
|
Wu D, Cheung A, Wang Y, Yu S, Chan FL. The emerging roles of orphan nuclear receptors in prostate cancer. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1866:23-36. [PMID: 27264242 DOI: 10.1016/j.bbcan.2016.06.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 05/31/2016] [Accepted: 06/01/2016] [Indexed: 12/25/2022]
Abstract
Orphan nuclear receptors are members of the nuclear receptor (NR) superfamily and are so named because their endogenous physiological ligands are either unknown or may not exist. Because of their important regulatory roles in many key physiological processes, dysregulation of signalings controlled by these receptors is associated with many diseases including cancer. Over years, studies of orphan NRs have become an area of great interest because their specific physiological and pathological roles have not been well-defined, and some of them are promising drug targets for diseases. The recently identified synthetic small molecule ligands, acting as agonists or antagonists, to these orphan NRs not only help to understand better their functional roles but also highlight that the signalings mediated by these ligand-independent NRs in diseases could be therapeutically intervened. This review is a summary of the recent advances in elucidating the emerging functional roles of orphan NRs in cancers, especially prostate cancer. In particular, some orphan NRs, RORγ, TR2, TR4, COUP-IFII, ERRα, DAX1 and SHP, exhibit crosstalk or interference with androgen receptor (AR) signaling in either normal or malignant prostatic cells, highlighting their involvement in prostate cancer progression as androgen and AR signaling pathway play critical roles in this process. We also propose that a better understanding of the mechanism of actions of these orphan NRs in prostate gland or prostate cancer could help to evaluate their potential value as therapeutic targets for prostate cancer.
Collapse
Affiliation(s)
- Dinglan Wu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Alyson Cheung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Yuliang Wang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Shan Yu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| | - Franky L Chan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| |
Collapse
|
31
|
Kim SK, Park YK. Ewing sarcoma: a chronicle of molecular pathogenesis. Hum Pathol 2016; 55:91-100. [PMID: 27246176 DOI: 10.1016/j.humpath.2016.05.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 04/25/2016] [Accepted: 05/12/2016] [Indexed: 01/08/2023]
Abstract
Sarcomas have traditionally been classified according to their chromosomal alterations regardless of whether they accompany simple or complex genetic changes. Ewing sarcoma, a classic small round cell bone tumor, is a well-known mesenchymal malignancy that results from simple sarcoma-specific genetic alterations. The genetic alterations are translocations between genes of the TET/FET family (TLS/FUS, EWSR1, and TAF15) and genes of the E26 transformation-specific (ETS) family. In this review, we intend to summarize a chronicle of molecular findings of Ewing sarcoma including recent advances and explain resultant molecular pathogenesis.
Collapse
Affiliation(s)
- Sang Kyum Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Yong-Koo Park
- Department of Pathology, Kyung Hee University College of Medicine, Seoul, Korea.
| |
Collapse
|
32
|
Caropreso V, Darvishi E, Turbyville TJ, Ratnayake R, Grohar PJ, McMahon JB, Woldemichael GM. Englerin A Inhibits EWS-FLI1 DNA Binding in Ewing Sarcoma Cells. J Biol Chem 2016; 291:10058-66. [PMID: 26961871 PMCID: PMC4858959 DOI: 10.1074/jbc.m115.701375] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 03/03/2016] [Indexed: 12/22/2022] Open
Abstract
High-throughput screening of extracts from plants, marine, and micro-organisms led to the identification of the extract from the plant Phyllanthus engleri as the most potent inhibitor of EWS-FLI1 induced luciferase reporter expression. Testing of compounds isolated from this extract in turn led to the identification of Englerin A (EA) as the active constituent of the extract. EA induced both necrosis and apoptosis in Ewing cells subsequent to a G2M accumulation of cells in the cell cycle. It also impacted clonogenic survival and anchorage-independent proliferation while also decreasing the proportion of chemotherapy-resistant cells identified by high ALDH activity. EA also caused a sustained increase in cytosolic calcium levels. EA appears to exert its effect on Ewing cells through a decrease in phosphorylation of EWS-FLI1 and its ability to bind DNA. This effect is mediated, at least in part, through a decrease in the levels of the calcium-dependent protein kinase PKC-βI after a transient up-regulation.
Collapse
MESH Headings
- Aldehyde Dehydrogenase/genetics
- Aldehyde Dehydrogenase/metabolism
- Apoptosis/drug effects
- Apoptosis/genetics
- Bone Neoplasms/drug therapy
- Bone Neoplasms/genetics
- Bone Neoplasms/metabolism
- Bone Neoplasms/pathology
- Cell Line, Tumor
- DNA, Neoplasm/genetics
- DNA, Neoplasm/metabolism
- Humans
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Phosphorylation/drug effects
- Phosphorylation/genetics
- Protein Binding/drug effects
- Proto-Oncogene Protein c-fli-1/genetics
- Proto-Oncogene Protein c-fli-1/metabolism
- RNA-Binding Protein EWS/genetics
- RNA-Binding Protein EWS/metabolism
- Sarcoma, Ewing/drug therapy
- Sarcoma, Ewing/genetics
- Sarcoma, Ewing/metabolism
- Sarcoma, Ewing/pathology
- Sesquiterpenes, Guaiane/pharmacology
Collapse
Affiliation(s)
- Vittorio Caropreso
- From the Molecular Targets Laboratory, NCI, National Institutes of Health
| | - Emad Darvishi
- From the Molecular Targets Laboratory, NCI, National Institutes of Health
| | - Thomas J Turbyville
- Optical Microscopy and Analysis Laboratory, Leidos Biomedical Research, Inc., and
| | - Ranjala Ratnayake
- From the Molecular Targets Laboratory, NCI, National Institutes of Health
| | - Patrick J Grohar
- Center for Cancer and Cell Biology, Van Andel Institute, Grand Rapids, Michigan 49503, and Division of Hematology/Oncology, Helen DeVos Children's Hospital, Grand Rapids, Michigan 49503
| | - James B McMahon
- From the Molecular Targets Laboratory, NCI, National Institutes of Health
| | - Girma M Woldemichael
- Basic Science Program, Leidos Biomedical Research, Inc., Molecular Targets Laboratory, Frederick National Laboratory, Frederick, Maryland 21702,
| |
Collapse
|
33
|
Abstract
MicroRNA molecules have a variety of roles in cellular development and proliferation processes, including normal osteogenesis. These effects are exerted through post-translational inhibition of target genes. Altered miRNA expression has been demonstrated in several cancers, both in the tumor tissue and in the peripheral circulation. This may influence carcinogenesis if the specific miRNA targets are encoded by tumor suppressor genes or oncogenes. To date, most research investigating the role of microRNAs and primary bone tumors has focused on osteosarcoma and Ewing sarcoma. Several microRNAs including the miR-34 family have been implicated in osteosarcoma tumorigenesis via effects on the Notch signaling pathway. Progression, invasion, and metastasis of osteosarcoma tumor cells is also influenced by microRNA expression. In addition, microRNA expression may affect the response to chemotherapy in osteosarcoma and thus hold potential for future use as either a prognostic indicator or a therapeutic target. The EWS-FLI1 fusion protein produced in Ewing sarcoma has been shown to induce changes in miRNA expression. MicroRNA expression profiling may have some potential for prediction of disease progression and survival in Ewing sarcoma. There is limited evidence to support a role for microRNAs in other primary bone tumors, either malignant or benign; however, early work is suggestive of involvement in chondrosarcoma, multiple osteochondromatosis, and giant cell tumors of bone.
Collapse
|
34
|
Zhi X, Zhou XE, Melcher K, Xu HE. Structures and regulation of non-X orphan nuclear receptors: A retinoid hypothesis. J Steroid Biochem Mol Biol 2016; 157:27-40. [PMID: 26159912 DOI: 10.1016/j.jsbmb.2015.06.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 06/10/2015] [Accepted: 06/16/2015] [Indexed: 12/28/2022]
Abstract
Nuclear receptors are defined as a family of ligand regulated transcription factors [1-6]. While this definition reflects that ligand binding is a key property of nuclear receptors, it is still a heated subject of debate if all the nuclear receptors (48 human members) can bind ligands (ligands referred here to both physiological and synthetic ligands). Recent studies in nuclear receptor structure biology and pharmacology have undoubtedly increased our knowledge of nuclear receptor functions and their regulation. As a result, they point to new avenues for the discovery and development of nuclear receptor regulators, including nuclear receptor ligands. Here we review the recent literature on orphan nuclear receptor structural analysis and ligand identification, particularly on the orphan nuclear receptors that do not heterodimerize with retinoid X receptors, which we term as non-X orphan receptors. We also propose a speculative "retinoid hypothesis" for a subset of non-X orphan nuclear receptors, which we hope to help shed light on orphan nuclear receptor biology and drug discovery. This article is part of a Special Issue entitled 'Orphan Nuclear Receptors'.
Collapse
Affiliation(s)
- Xiaoyong Zhi
- Laboratory of Structural Sciences, Van Andel Research Institute, 333 Bostwick Ave., N.E., Grand Rapids, MI 49503, USA; Autophagy Research Center, University of Texas Southwestern Medical Center, 6000Harry Hines Blvd., Dallas, TX 75390, USA.
| | - X Edward Zhou
- Laboratory of Structural Sciences, Van Andel Research Institute, 333 Bostwick Ave., N.E., Grand Rapids, MI 49503, USA
| | - Karsten Melcher
- Laboratory of Structural Sciences, Van Andel Research Institute, 333 Bostwick Ave., N.E., Grand Rapids, MI 49503, USA
| | - H Eric Xu
- Laboratory of Structural Sciences, Van Andel Research Institute, 333 Bostwick Ave., N.E., Grand Rapids, MI 49503, USA; VARI-SIMM Center, Key Laboratory of Receptor Research, Shanghai Institute of MateriaMedica, Chinese Academy of Sciences, Shanghai 201203, China.
| |
Collapse
|
35
|
Park H, Turkalo TK, Nelson K, Folmsbee SS, Robb C, Roper B, Azuma M. Ewing sarcoma EWS protein regulates midzone formation by recruiting Aurora B kinase to the midzone. Cell Cycle 2015; 13:2391-9. [PMID: 25483190 DOI: 10.4161/cc.29337] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Ewing sarcoma is a malignant bone cancer that primarily occurs in children and adolescents. Eighty-five percent of Ewing sarcoma is characterized by the presence of the aberrant chimeric EWS/FLI1 fusion gene. Previously, we demonstrated that an interaction between EWS/FLI1 and wild-type EWS led to the inhibition of EWS activity and mitotic dysfunction. Although defective mitosis is considered to be a critical step in cancer initiation, it is unknown how interference with EWS contributes to Ewing sarcoma formation. Here, we demonstrate that EWS/FLI1- and EWS-knockdown cells display a high incidence of defects in the midzone, a midline structure located between segregating chromatids during anaphase. Defects in the midzone can lead to the failure of cytokinesis and can result in the induction of aneuploidy. The similarity among the phenotypes of EWS/FLI1- and EWS siRNA-transfected HeLa cells points to the inhibition of EWS as the key mechanism for the induction of midzone defects. Supporting this observation, the ectopic expression of EWS rescues the high incidence of midzone defects observed in Ewing sarcoma A673 cells. We discovered that EWS interacts with Aurora B kinase, and that EWS is also required for recruiting Aurora B to the midzone. A domain analysis revealed that the R565 in the RGG3 domain of EWS is essential for both Aurora B interaction and the recruitment of Aurora B to the midzone. Here, we propose that the impairment of EWS-dependent midzone formation via the recruitment of Aurora B is a potential mechanism of Ewing sarcoma development.
Collapse
Affiliation(s)
- Hyewon Park
- a Department of Molecular Biosciences; University of Kansas; Lawrence, KS USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Cidre-Aranaz F, Alonso J. EWS/FLI1 Target Genes and Therapeutic Opportunities in Ewing Sarcoma. Front Oncol 2015; 5:162. [PMID: 26258070 PMCID: PMC4507460 DOI: 10.3389/fonc.2015.00162] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 07/06/2015] [Indexed: 12/31/2022] Open
Abstract
Ewing sarcoma is an aggressive bone malignancy that affect children and young adults. Ewing sarcoma is the second most common primary bone malignancy in pediatric patients. Although significant progress has been made in the treatment of Ewing sarcoma since it was first described in the 1920s, in the last decade survival rates have remained unacceptably invariable, thus pointing to the need for new approaches centered in the molecular basis of the disease. Ewing sarcoma driving mutation, EWS–FLI1, which results from a chromosomal translocation, encodes an aberrant transcription factor. Since its first characterization in 1990s, many molecular targets have been described to be regulated by this chimeric transcription factor. Their contribution to orchestrate Ewing sarcoma phenotype has been reported over the last decades. In this work, we will focus on the description of a selection of EWS/FLI1 targets, their functional role, and their potential clinical relevance. We will also discuss their role in other types of cancer as well as the need for further studies to be performed in order to achieve a broader understanding of their particular contribution to Ewing sarcoma development.
Collapse
Affiliation(s)
- Florencia Cidre-Aranaz
- Unidad de Tumores Sólidos Infantiles, Área de Genética Humana, Instituto de Investigación de Enfermedades Raras, Instituto de Salud Carlos III , Madrid , Spain
| | - Javier Alonso
- Unidad de Tumores Sólidos Infantiles, Área de Genética Humana, Instituto de Investigación de Enfermedades Raras, Instituto de Salud Carlos III , Madrid , Spain
| |
Collapse
|
37
|
Orekhova AS, Rubtsov PM. DAX1, an unusual member of the nuclear receptor superfamily with diverse functions. Mol Biol 2015. [DOI: 10.1134/s0026893315010124] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
38
|
Merkes C, Turkalo TK, Wilder N, Park H, Wenger LW, Lewin SJ, Azuma M. Ewing sarcoma ewsa protein regulates chondrogenesis of Meckel's cartilage through modulation of Sox9 in zebrafish. PLoS One 2015; 10:e0116627. [PMID: 25617839 PMCID: PMC4305327 DOI: 10.1371/journal.pone.0116627] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 12/11/2014] [Indexed: 11/19/2022] Open
Abstract
Ewing sarcoma is the second most common skeletal (bone and cartilage) cancer in adolescents, and it is characterized by the expression of the aberrant chimeric fusion gene EWS/FLI1. Wild-type EWS has been proposed to play a role in mitosis, splicing and transcription. We have previously shown that EWS/FLI1 interacts with EWS, and it inhibits EWS activity in a dominant manner. Ewing sarcoma is a cancer that specifically develops in skeletal tissues, and although the above data suggests the significance of EWS, its role in chondrogenesis/skeletogenesis is not understood. To elucidate the function of EWS in skeletal development, we generated and analyzed a maternal zygotic (MZ) ewsa/ewsa line because the ewsa/wt and ewsa/ewsa zebrafish appeared to be normal and fertile. Compared with wt/wt, the Meckel's cartilage of MZ ewsa/ewsa mutants had a higher number of craniofacial prehypertrophic chondrocytes that failed to mature into hypertrophic chondrocytes at 4 days post-fertilization (dpf). Ewsa interacted with Sox9, which is the master transcription factor for chondrogenesis. Sox9 target genes were either upregulated (ctgfa, ctgfb, col2a1a, and col2a1b) or downregulated (sox5, nog1, nog2, and bmp4) in MZ ewsa/ewsa embryos compared with the wt/wt zebrafish embryos. Among these Sox9 target genes, the chromatin immunoprecipitation (ChIP) experiment demonstrated that Ewsa directly binds to ctgfa and ctgfb loci. Consistently, immunohistochemistry showed that the Ctgf protein is upregulated in the Meckel's cartilage of MZ ewsa/ewsa mutants. Together, we propose that Ewsa promotes the differentiation from prehypertrophic chondrocytes to hypertrophic chondrocytes of Meckel's cartilage through inhibiting Sox9 binding site of the ctgf gene promoter. Because Ewing sarcoma specifically develops in skeletal tissue that is originating from chondrocytes, this new role of EWS may provide a potential molecular basis of its pathogenesis.
Collapse
Affiliation(s)
- Chris Merkes
- Molecular Biosciences, University of Kansas, 7031 Haworth, 1200 Sunnyside Avenue, Lawrence, KS 66045, United States of America
| | - Timothy K. Turkalo
- Molecular Biosciences, University of Kansas, 7031 Haworth, 1200 Sunnyside Avenue, Lawrence, KS 66045, United States of America
| | - Nicole Wilder
- Molecular Biosciences, University of Kansas, 7031 Haworth, 1200 Sunnyside Avenue, Lawrence, KS 66045, United States of America
| | - Hyewon Park
- Molecular Biosciences, University of Kansas, 7031 Haworth, 1200 Sunnyside Avenue, Lawrence, KS 66045, United States of America
| | - Luke W. Wenger
- Molecular Biosciences, University of Kansas, 7031 Haworth, 1200 Sunnyside Avenue, Lawrence, KS 66045, United States of America
| | - Seth J. Lewin
- Molecular Biosciences, University of Kansas, 7031 Haworth, 1200 Sunnyside Avenue, Lawrence, KS 66045, United States of America
| | - Mizuki Azuma
- Molecular Biosciences, University of Kansas, 7031 Haworth, 1200 Sunnyside Avenue, Lawrence, KS 66045, United States of America
- * E-mail:
| |
Collapse
|
39
|
Tosso PN, Kong Y, Scher L, Cummins R, Schneider J, Rahim S, Holman KT, Toretsky J, Wang K, Üren A, Brown ML. Synthesis and structure-activity relationship studies of small molecule disruptors of EWS-FLI1 interactions in Ewing's sarcoma. J Med Chem 2014; 57:10290-303. [PMID: 25432018 PMCID: PMC4281097 DOI: 10.1021/jm501372p] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
EWS-FLI1 is an oncogenic fusion protein implicated in the development of Ewing's sarcoma family tumors (ESFT). Using our previously reported lead compound 2 (YK-4-279), we designed and synthesized a focused library of analogues. The functional inhibition of the analogues was measured by an EWS-FLI1/NR0B1 reporter luciferase assay and a paired cell screening approach measuring effects on growth inhibition for human cells containing EWS-FLI1 (TC32 and TC71) and control PANC1 cell lines devoid of the oncoprotein. Our data revealed that substitution of electron donating groups at the para-position on the phenyl ring was the most favorable for inhibition of EWS-FLI1 by analogs of 2. Compound 9u (with a dimethylamino substitution) was the most active inhibitor with GI50 = 0.26 ± 0.1 μM. Further, a correlation of growth inhibition (EWS-FLI1 expressing TC32 cells) and the luciferase reporter activity was established (R(2) = 0.84). Finally, we designed and synthesized a biotinylated analogue and determined the binding affinity for recombinant EWS-FLI1 (Kd = 4.8 ± 2.6 μM).
Collapse
Affiliation(s)
- Perrer N Tosso
- Center for Drug Discovery, Georgetown University Medical Center , New Research Building EP07, 3970 Reservoir Road, NW, Washington, D.C. 20057, United States
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Marques Howarth M, Simpson D, Ngok SP, Nieves B, Chen R, Siprashvili Z, Vaka D, Breese MR, Crompton BD, Alexe G, Hawkins DS, Jacobson D, Brunner AL, West R, Mora J, Stegmaier K, Khavari P, Sweet-Cordero EA. Long noncoding RNA EWSAT1-mediated gene repression facilitates Ewing sarcoma oncogenesis. J Clin Invest 2014; 124:5275-90. [PMID: 25401475 DOI: 10.1172/jci72124] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 10/09/2014] [Indexed: 12/23/2022] Open
Abstract
Chromosomal translocation that results in fusion of the genes encoding RNA-binding protein EWS and transcription factor FLI1 (EWS-FLI1) is pathognomonic for Ewing sarcoma. EWS-FLI1 alters gene expression through mechanisms that are not completely understood. We performed RNA sequencing (RNAseq) analysis on primary pediatric human mesenchymal progenitor cells (pMPCs) expressing EWS-FLI1 in order to identify gene targets of this oncoprotein. We determined that long noncoding RNA-277 (Ewing sarcoma-associated transcript 1 [EWSAT1]) is upregulated by EWS-FLI1 in pMPCs. Inhibition of EWSAT1 expression diminished the ability of Ewing sarcoma cell lines to proliferate and form colonies in soft agar, whereas EWSAT1 inhibition had no effect on other cell types tested. Expression of EWS-FLI1 and EWSAT1 repressed gene expression, and a substantial fraction of targets that were repressed by EWS-FLI1 were also repressed by EWSAT1. Analysis of RNAseq data from primary human Ewing sarcoma further supported a role for EWSAT1 in mediating gene repression. We identified heterogeneous nuclear ribonucleoprotein (HNRNPK) as an RNA-binding protein that interacts with EWSAT1 and found a marked overlap in HNRNPK-repressed genes and those repressed by EWS-FLI1 and EWSAT1, suggesting that HNRNPK participates in EWSAT1-mediated gene repression. Together, our data reveal that EWSAT1 is a downstream target of EWS-FLI1 that facilitates the development of Ewing sarcoma via the repression of target genes.
Collapse
MESH Headings
- Cell Line, Tumor
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Down-Regulation/genetics
- Gene Expression Regulation, Neoplastic
- Heterogeneous-Nuclear Ribonucleoprotein K
- Humans
- Oncogene Proteins, Fusion/biosynthesis
- Oncogene Proteins, Fusion/genetics
- Proto-Oncogene Protein c-fli-1/biosynthesis
- Proto-Oncogene Protein c-fli-1/genetics
- RNA, Long Noncoding/biosynthesis
- RNA, Long Noncoding/genetics
- RNA, Neoplasm/biosynthesis
- RNA, Neoplasm/genetics
- RNA-Binding Protein EWS/biosynthesis
- RNA-Binding Protein EWS/genetics
- Ribonucleoproteins/genetics
- Ribonucleoproteins/metabolism
- Sarcoma, Ewing/genetics
- Sarcoma, Ewing/metabolism
- Sarcoma, Ewing/pathology
- Sequence Analysis, RNA
- Up-Regulation/genetics
Collapse
|
41
|
Cancer and bone: A complex complex. Arch Biochem Biophys 2014; 561:159-66. [DOI: 10.1016/j.abb.2014.07.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 07/03/2014] [Accepted: 07/08/2014] [Indexed: 12/13/2022]
|
42
|
Kovar H. Blocking the road, stopping the engine or killing the driver? Advances in targeting EWS/FLI-1 fusion in Ewing sarcoma as novel therapy. Expert Opin Ther Targets 2014; 18:1315-28. [PMID: 25162919 DOI: 10.1517/14728222.2014.947963] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Ewing sarcoma (ES) represents the paradigm of an aberrant E-twenty-six (ETS) oncogene-driven cancer. It is characterized by specific rearrangements of one of five alternative ETS family member genes with EWSR1. There is experimental evidence that the resulting fusion proteins act as aberrant transcription factors driving ES pathogenesis. The transcriptional gene regulatory network driven by EWS-ETS proteins provides the oncogenic engine to the tumor. Therefore, EWS-ETS and their downstream machinery are considered ideal tumor-specific therapeutic targets. AREAS COVERED This review critically discusses the literature on the development of EWS-ETS-directed ES targeting strategies considering current knowledge of EWS-ETS biology and cellular context. It focuses on determinants of EWS-FLI1 function with an emphasis on interactions with chromatin structure. We speculate about the relevance of poorly investigated aspects in ES research such as chromatin remodeling and DNA damage repair for the development of targeted therapies. EXPERT OPINION This review questions the specificity of signature-based screening approaches to the identification of EWS-FLI1-targeted compounds. It challenges the view that targeting the downstream gene regulatory network carries potential for therapeutic breakthroughs because of resistance-inducing network rewiring. Instead, we propose to combine targeting of the fusion protein with epigenetic therapy as a future treatment strategy in ES.
Collapse
Affiliation(s)
- Heinrich Kovar
- Children´s Cancer Research Institute, St. Anna Kinderkrebsforschung, and Medical University Vienna, Department of Pediatrics , Zimmermannplatz 10, A1090 Vienna , Austria +43 1 40470 4092 ; +43 1 40470 64092 ;
| |
Collapse
|
43
|
Monument MJ, Johnson KM, McIlvaine E, Abegglen L, Watkins WS, Jorde LB, Womer RB, Beeler N, Monovich L, Lawlor ER, Bridge JA, Schiffman JD, Krailo MD, Randall RL, Lessnick SL. Clinical and biochemical function of polymorphic NR0B1 GGAA-microsatellites in Ewing sarcoma: a report from the Children's Oncology Group. PLoS One 2014; 9:e104378. [PMID: 25093581 PMCID: PMC4122435 DOI: 10.1371/journal.pone.0104378] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 07/08/2014] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The genetics involved in Ewing sarcoma susceptibility and prognosis are poorly understood. EWS/FLI and related EWS/ETS chimeras upregulate numerous gene targets via promoter-based GGAA-microsatellite response elements. These microsatellites are highly polymorphic in humans, and preliminary evidence suggests EWS/FLI-mediated gene expression is highly dependent on the number of GGAA motifs within the microsatellite. OBJECTIVES Here we sought to examine the polymorphic spectrum of a GGAA-microsatellite within the NR0B1 promoter (a critical EWS/FLI target) in primary Ewing sarcoma tumors, and characterize how this polymorphism influences gene expression and clinical outcomes. RESULTS A complex, bimodal pattern of EWS/FLI-mediated gene expression was observed across a wide range of GGAA motifs, with maximal expression observed in constructs containing 20-26 GGAA motifs. Relative to white European and African controls, the NR0B1 GGAA-microsatellite in tumor cells demonstrated a strong bias for haplotypes containing 21-25 GGAA motifs suggesting a relationship between microsatellite function and disease susceptibility. This selection bias was not a product of microsatellite instability in tumor samples, nor was there a correlation between NR0B1 GGAA-microsatellite polymorphisms and survival outcomes. CONCLUSIONS These data suggest that GGAA-microsatellite polymorphisms observed in human populations modulate EWS/FLI-mediated gene expression and may influence disease susceptibility in Ewing sarcoma.
Collapse
Affiliation(s)
- Michael J. Monument
- Sarcoma Services, Department of Orthopedic Surgery, University of Utah, Salt Lake City, Utah, United States of America
- Center for Children's Cancer Research, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, United States of America
| | - Kirsten M. Johnson
- Center for Children's Cancer Research, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, United States of America
| | - Elizabeth McIlvaine
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Lisa Abegglen
- Center for Children's Cancer Research, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, United States of America
| | - W. Scott Watkins
- Department of Human Genetics and Eccles Institute of Human Genetics, University of Utah, Salt Lake City, Utah, United States of America
| | - Lynn B. Jorde
- Department of Human Genetics and Eccles Institute of Human Genetics, University of Utah, Salt Lake City, Utah, United States of America
| | - Richard B. Womer
- Division of Oncology, The Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Natalie Beeler
- Children's Oncology Group Biopathology Center, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Laura Monovich
- Children's Oncology Group Biopathology Center, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Elizabeth R. Lawlor
- Departments of Pediatrics and Pathology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Julia A. Bridge
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Joshua D. Schiffman
- Center for Children's Cancer Research, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, United States of America
- Division of Pediatric Hematology/Oncology, University of Utah, Salt Lake City, Utah, United States of America
| | - Mark D. Krailo
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - R. Lor Randall
- Sarcoma Services, Department of Orthopedic Surgery, University of Utah, Salt Lake City, Utah, United States of America
- Center for Children's Cancer Research, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, United States of America
| | - Stephen L. Lessnick
- Sarcoma Services, Department of Orthopedic Surgery, University of Utah, Salt Lake City, Utah, United States of America
- Center for Children's Cancer Research, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, United States of America
- Division of Pediatric Hematology/Oncology, University of Utah, Salt Lake City, Utah, United States of America
- * E-mail:
| |
Collapse
|
44
|
Niedan S, Kauer M, Aryee DNT, Kofler R, Schwentner R, Meier A, Pötschger U, Kontny U, Kovar H. Suppression of FOXO1 is responsible for a growth regulatory repressive transcriptional sub-signature of EWS-FLI1 in Ewing sarcoma. Oncogene 2014; 33:3927-38. [PMID: 23995784 PMCID: PMC4114138 DOI: 10.1038/onc.2013.361] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 06/17/2013] [Accepted: 07/26/2013] [Indexed: 11/09/2022]
Abstract
The Ewing sarcoma (ES) EWS-FLI1 chimeric oncoprotein is a prototypic aberrant ETS transcription factor with activating and repressive regulatory functions. We report that EWS-FLI1-repressed promoters are enriched in forkhead box (FOX) recognition motifs, and identify FOXO1 as a EWS-FLI1-suppressed regulator orchestrating a major subset of EWS-FLI1-repressed genes. In addition to FOXO1 regulation by direct promoter binding of EWS-FLI1, its subcellular localization and activity is regulated by cyclin-dependent kinase 2- and AKT-mediated phosphorylation downstream of EWS-FLI1. Restoration of nuclear FOXO1 expression in ES cells impaired proliferation and significantly reduced clonogenicity. Gene-expression profiling revealed a significant overlap between EWS-FLI1-repressed and FOXO1-activated genes. As a proof of principle for a potential therapeutic application of our findings, the treatment of ES cell lines with methylseleninic acid (MSA) reactivated endogenous FOXO1 in the presence of EWS-FLI1 in a dose- and time-dependent manner and induced massive cell death dependent on FOXO1. In an orthotopic xenograft mouse model, MSA increased FOXO1 expression in the tumor paralleled by a significant decrease in ES tumor growth. FOXO1 reactivation by small molecules may therefore serve as a promising strategy for a future ES-specific therapy.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Base Sequence
- Binding Sites
- Bone Neoplasms/drug therapy
- Bone Neoplasms/genetics
- Bone Neoplasms/metabolism
- Cell Line, Tumor
- Cell Proliferation
- Consensus Sequence
- Cyclin-Dependent Kinase 2/metabolism
- Forkhead Box Protein O1
- Forkhead Box Protein O3
- Forkhead Transcription Factors/genetics
- Forkhead Transcription Factors/metabolism
- Gene Expression Regulation, Neoplastic
- Gene Silencing
- Humans
- Mice
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Organoselenium Compounds/pharmacology
- Phosphorylation
- Promoter Regions, Genetic
- Protein Processing, Post-Translational
- Protein Transport
- Proto-Oncogene Protein c-fli-1/genetics
- Proto-Oncogene Protein c-fli-1/metabolism
- Proto-Oncogene Proteins c-akt/metabolism
- RNA-Binding Protein EWS/genetics
- RNA-Binding Protein EWS/metabolism
- Sarcoma, Ewing/drug therapy
- Sarcoma, Ewing/genetics
- Sarcoma, Ewing/metabolism
- Transcription, Genetic
- Tumor Burden/drug effects
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- S Niedan
- Children's Cancer Research Institute, St Anna Kinderkrebsforschung, Vienna, Austria
| | - M Kauer
- Children's Cancer Research Institute, St Anna Kinderkrebsforschung, Vienna, Austria
| | - D N T Aryee
- Children's Cancer Research Institute, St Anna Kinderkrebsforschung, Vienna, Austria
- Department of Pediatrics, Medical University, Vienna, Austria
| | - R Kofler
- Division of Molecular Pathophysiology, Biocenter, Medical University Innsbruck, Innsbruck, Austria
| | - R Schwentner
- Children's Cancer Research Institute, St Anna Kinderkrebsforschung, Vienna, Austria
| | - A Meier
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, University Medical Center, Freiburg, Germany
| | - U Pötschger
- Children's Cancer Research Institute, St Anna Kinderkrebsforschung, Vienna, Austria
| | - U Kontny
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, University Medical Center, Freiburg, Germany
| | - H Kovar
- Children's Cancer Research Institute, St Anna Kinderkrebsforschung, Vienna, Austria
- Department of Pediatrics, Medical University, Vienna, Austria
| |
Collapse
|
45
|
The combination of CD99 and NKX2.2, a transcriptional target of EWSR1-FLI1, is highly specific for the diagnosis of Ewing sarcoma. Virchows Arch 2014; 465:599-605. [DOI: 10.1007/s00428-014-1627-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 06/16/2014] [Accepted: 07/02/2014] [Indexed: 10/25/2022]
|
46
|
Role of Orphan Nuclear Receptor DAX-1/NR0B1 in Development, Physiology, and Disease. ACTA ACUST UNITED AC 2014. [DOI: 10.1155/2014/582749] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
DAX-1/NR0B1 is an unusual orphan receptor that has a pivotal role in the development and function of steroidogenic tissues and of the reproductive axis. Recent studies have also indicated that this transcription factor has an important function in stem cell biology and in several types of cancer. Here I critically review the most important findings on the role of DAX-1 in development, physiology, and disease of endocrine tissues since the cloning of its gene twenty years ago.
Collapse
|
47
|
Abstract
Micro ribonucleic acids (miRNAs) are small non-coding RNA segments that have a role in the regulation of normal cellular development and proliferation including normal osteogenesis. They exert their effects through inhibition of specific target genes at the post-transcriptional level. Many miRNAs have altered expression levels in cancer (either increased or decreased depending on the specific miRNA). Altered miRNA expression profiles have been identified in several malignancies including primary bone tumors such as osteosarcoma and Ewing’s sarcoma. It is thought that they may function as tumor suppressor genes or oncogenes and hence when dysregulated contribute to the initiation and progression of malignancy. miRNAs are also thought to have a role in the development of bone metastases in other malignancies. In addition, evidence increasingly suggests that miRNAs may play a part in determining the response to chemotherapy in the treatment of osteosarcoma. These molecules are readily detectable in tissues, both fresh and formalin fixed paraffin embedded and, more recently, in blood. Although there are fewer published studies regarding circulating miRNA profiles, they appear to reflect changes in tissue expression. Thus miRNAs may serve as potential indicators of disease presence but more importantly, may have a role in disease characterization or as potential therapeutic targets. This review gives a brief overview of miRNA biochemistry and explores the evidence to date implicating these small molecules in the pathogenesis of bone tumors.
Collapse
Affiliation(s)
- Mary Nugent
- Department of Orthopaedic Surgery, Cappagh National Orthopaedic Hospital, Finglas, Dublin, Ireland
| |
Collapse
|
48
|
Safe S, Jin UH, Hedrick E, Reeder A, Lee SO. Minireview: role of orphan nuclear receptors in cancer and potential as drug targets. Mol Endocrinol 2013; 28:157-72. [PMID: 24295738 DOI: 10.1210/me.2013-1291] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The nuclear orphan receptors for which endogenous ligands have not been identified include nuclear receptor (NR)0B1 (adrenal hypoplasia congenita critical region on chromosome X gene), NR0B2 (small heterodimer partner), NR1D1/2 (Rev-Erbα/β), NR2C1 (testicular receptor 2), NR2C2 (testicular receptor 4), NR2E1 (tailless), NR2E3 (photoreceptor-specific NR [PNR]), NR2F1 chicken ovalbumin upstream promoter transcription factor 1 (COUP-TFI), NR2F2 (COUP-TFII), NR2F6 (v-erbA-related protein), NR4A1 (Nur77), NR4A2 (Nurr1), NR4A3 (Nor1), and NR6A1 (GCNF). These receptors play essential roles in development, cellular homeostasis, and disease including cancer where over- or underexpression of some receptors has prognostic significance for patient survival. Results of receptor knockdown or overexpression in vivo and in cancer cell lines demonstrate that orphan receptors exhibit tumor-specific pro-oncogenic or tumor suppressor-like activity. For example, COUP-TFII expression is both a positive (ovarian) and negative (prostate and breast) prognostic factor for cancer patients; in contrast, the prognostic activity of adrenal hypoplasia congenita critical region on chromosome X gene for the same tumors is the inverse of COUP-TFII. Functional studies show that Nur77 is tumor suppressor like in acute leukemia, whereas silencing Nur77 in pancreatic, colon, lung, lymphoma, melanoma, cervical, ovarian, gastric, and some breast cancer cell lines induces one or more of several responses including growth inhibition and decreased survival, migration, and invasion. Although endogenous ligands for the orphan receptors have not been identified, there is increasing evidence that different structural classes of compounds activate, inactivate, and directly bind several orphan receptors. Thus, the screening and development of selective orphan receptor modulators will have important clinical applications as novel mechanism-based agents for treating cancer patients overexpressing one or more orphan receptors and also for combined drug therapies.
Collapse
Affiliation(s)
- Stephen Safe
- Department of Veterinary Physiology and Pharmacology (S.S., E.H., A.R.), Texas A&M University, College Station, Texas 77808; and Institute of Biosciences and Technology (S.S., U.-H.J., S.-O.L.), Texas A&M Health Science Center, Houston, Texas 77030
| | | | | | | | | |
Collapse
|
49
|
Abstract
The nuclear receptor superfamily includes many receptors, identified based on their similarity to steroid hormone receptors but without a known ligand. The study of how these receptors are diversely regulated to interact with genomic regions to control a plethora of biological processes has provided critical insight into development, physiology, and the molecular pathology of disease. Here we provide a compendium of these so-called orphan receptors and focus on what has been learned about their modes of action, physiological functions, and therapeutic promise.
Collapse
Affiliation(s)
- Shannon E Mullican
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, and The Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
50
|
Grohar PJ, Segars LE, Yeung C, Pommier Y, D'Incalci M, Mendoza A, Helman LJ. Dual targeting of EWS-FLI1 activity and the associated DNA damage response with trabectedin and SN38 synergistically inhibits Ewing sarcoma cell growth. Clin Cancer Res 2013; 20:1190-203. [PMID: 24277455 PMCID: PMC5510643 DOI: 10.1158/1078-0432.ccr-13-0901] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The goal of this study is to optimize the activity of trabectedin for Ewing sarcoma by developing a molecularly targeted combination therapy. EXPERIMENTAL DESIGN We have recently shown that trabectedin interferes with the activity of EWS-FLI1 in Ewing sarcoma cells. In this report, we build on this work to develop a trabectedin-based combination therapy with improved EWS-FLI1 suppression that also targets the drug-associated DNA damage to Ewing sarcoma cells. RESULTS We demonstrate by siRNA experiments that EWS-FLI1 drives the expression of the Werner syndrome protein (WRN) in Ewing sarcoma cells. Because WRN-deficient cells are known to be hypersensitive to camptothecins, we utilize trabectedin to block EWS-FLI1 activity, suppress WRN expression, and selectively sensitize Ewing sarcoma cells to the DNA-damaging effects of SN38. We show that trabectedin and SN38 are synergistic, demonstrate an increase in DNA double-strand breaks, an accumulation of cells in S-phase and a low picomolar IC50. In addition, SN38 cooperates with trabectedin to augment the suppression of EWS-FLI1 downstream targets, leading to an improved therapeutic index in vivo. These effects translate into the marked regression of two Ewing sarcoma xenografts at a fraction of the dose of camptothecin used in other xenograft studies. CONCLUSIONS These results provide the basis and rationale for translating this drug combination to the clinic. In addition, the study highlights an approach that utilizes a targeted agent to interfere with an oncogenic transcription factor and then exploits the resulting changes in gene expression to develop a molecularly targeted combination therapy.
Collapse
Affiliation(s)
- Patrick J Grohar
- Authors' Affiliations: Monroe Carrell Jr. Children's Hospital at Vanderbilt and the Vanderbilt Ingram Cancer Center, Nashville, Tennessee; Molecular Oncology Section, Pediatric Oncology Branch; Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland; and Istituto di Ricerche Farmacologiche "Mario Negri" -IRCCS, Milan, Italy
| | | | | | | | | | | | | |
Collapse
|