1
|
Cong Y, Cui Y, Wang S, Jiang L, Cao J, Zhu S, Birkin E, Lane J, Ruge F, Jiang WG, Qiao G. Calcium-Binding Protein S100P Promotes Tumor Progression but Enhances Chemosensitivity in Breast Cancer. Front Oncol 2020; 10:566302. [PMID: 33042844 PMCID: PMC7522638 DOI: 10.3389/fonc.2020.566302] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/24/2020] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Chemoresistance remains one of the obstacles to overcome in the treatment of breast cancer. S100 calcium-binding protein P (S100P) has been observed to be overexpressed in several cancers and has been associated with drug resistance, metastasis, and prognosis. However, the role of S100P in chemoresistance in breast cancer has not been thoroughly determined. METHODS Immunohistochemistry was used to evaluate the expression level of S100P protein in 22 pairs (pre-chemo and post-chemo) of breast cancer tissue from patients who underwent neoadjuvant chemotherapy. The influence of S100P on the biological behavior and chemosensitivity of breast cancer cells was then investigated. RESULTS The protein level of S100P in breast cancer tissue was significantly higher than in benign fibroadenoma (p < 0.001). The S100P expression level was shown to be decreased by 46.55% after neoadjuvant chemotherapy (p = 0.015). Subgroup analysis revealed that S100P reduction (57.58%) was mainly observed in the HER2+ tumors (p = 0.027). Our in vitro experiments showed that the knockdown of S100P suppressed the proliferation, adhesion, migrative and invasive abilities of T47D and SK-BR-3 breast cancer cells. We further demonstrated that this knockdown increased the chemoresistance to paclitaxel and cisplatin in SK-BR-3 cells. We found S100P exerted its function by upregulating NF-κB, CCND1 and Vimentin, but downregulating E-cadherin. CONCLUSION S100P promotes the aggressive properties of breast cancer cells and may be considered as a promising therapeutic target. Moreover, S100P can be used to predict the therapeutic effect of chemotherapy in HER2+ breast cancer patients.
Collapse
Affiliation(s)
- Yizi Cong
- Department of Breast Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Yuxin Cui
- Cardiff China Medical Research Collaborative, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Suxia Wang
- Department of Pathology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Lei Jiang
- Department of Pathology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Jianqiao Cao
- Department of Breast Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Shiguang Zhu
- Department of Breast Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Emily Birkin
- Cardiff China Medical Research Collaborative, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Jane Lane
- Cardiff China Medical Research Collaborative, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Fiona Ruge
- Cardiff China Medical Research Collaborative, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Wen G. Jiang
- Cardiff China Medical Research Collaborative, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Guangdong Qiao
- Department of Breast Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| |
Collapse
|
2
|
GPRC5A: An Emerging Biomarker in Human Cancer. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1823726. [PMID: 30417009 PMCID: PMC6207857 DOI: 10.1155/2018/1823726] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 09/23/2018] [Accepted: 09/26/2018] [Indexed: 12/16/2022]
Abstract
Aberrant expression of G protein-coupled receptors (GPCRs) is frequently associated with tumorigenesis. G Protein-coupled receptor class C group 5 member A (GPRC5A) is a member of the GPCR superfamily, is expressed preferentially in lung tissues, and is regulated by various entities at multiple levels. GPRC5A exerts a tumor suppressive role in lung cancer and GPRC5A deletion promotes lung tumor initiation and progression. Recent advances have highlighted that GPRC5A dysregulation is found in various human cancers and is related to many tumor-associated signaling pathways, including the cyclic adenosine monophosphate (cAMP), nuclear factor (NF)-κB, signal transducer and activator of transcription (STAT) 3, and focal adhesion kinase (FAK)/Src signaling. This review aimed to summarize our updated view on the biology and regulation of GPRC5A, its expression in human cancers, and the linked signaling pathways. A better comprehension of the underlying cellular and molecular mechanisms of GPRC5A will provide novel insights into its potential diagnostic and therapeutic value.
Collapse
|
3
|
Bulanova DR, Akimov YA, Rokka A, Laajala TD, Aittokallio T, Kouvonen P, Pellinen T, Kuznetsov SG. Orphan G protein-coupled receptor GPRC5A modulates integrin β1-mediated epithelial cell adhesion. Cell Adh Migr 2017; 11:434-446. [PMID: 27715394 PMCID: PMC5810789 DOI: 10.1080/19336918.2016.1245264] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
G-Protein Coupled Receptor (GPCR), Class C, Group 5, Member A (GPRC5A) has been implicated in several malignancies. The underlying mechanisms, however, remain poorly understood. Using a panel of human cell lines, we demonstrate that CRISPR/Cas9-mediated knockout and RNAi-mediated depletion of GPRC5A impairs cell adhesion to integrin substrates: collagens I and IV, fibronectin, as well as to extracellular matrix proteins derived from the Engelbreth-Holm-Swarm (EHS) mouse sarcoma (Matrigel). Consistent with the phenotype, knock-out of GPRC5A correlated with a reduced integrin β1 (ITGB1) protein expression, impaired phosphorylation of the focal adhesion kinase (FAK), and lower activity of small GTPases RhoA and Rac1. Furthermore, we provide the first evidence for a direct interaction between GPRC5A and a receptor tyrosine kinase EphA2, an upstream regulator of FAK, although its contribution to the observed adhesion phenotype is unclear. Our findings reveal an unprecedented role for GPRC5A in regulation of the ITGB1-mediated cell adhesion and it's downstream signaling, thus indicating a potential novel role for GPRC5A in human epithelial cancers.
Collapse
Affiliation(s)
- Daria R Bulanova
- a Institute for Molecular Medicine Finland (FIMM), University of Helsinki , Helsinki , Finland
| | - Yevhen A Akimov
- a Institute for Molecular Medicine Finland (FIMM), University of Helsinki , Helsinki , Finland
| | - Anne Rokka
- c Turku Centre for Biotechnology , University of Turku and Abo Academy , Turku , Finland
| | - Teemu D Laajala
- a Institute for Molecular Medicine Finland (FIMM), University of Helsinki , Helsinki , Finland.,b Department of Mathematics and Statistics , University of Turku , Turku , Finland
| | - Tero Aittokallio
- a Institute for Molecular Medicine Finland (FIMM), University of Helsinki , Helsinki , Finland.,b Department of Mathematics and Statistics , University of Turku , Turku , Finland
| | - Petri Kouvonen
- c Turku Centre for Biotechnology , University of Turku and Abo Academy , Turku , Finland
| | - Teijo Pellinen
- a Institute for Molecular Medicine Finland (FIMM), University of Helsinki , Helsinki , Finland
| | - Sergey G Kuznetsov
- a Institute for Molecular Medicine Finland (FIMM), University of Helsinki , Helsinki , Finland
| |
Collapse
|
4
|
Zhou H, Telonis AG, Jing Y, Xia NL, Biederman L, Jimbo M, Blanco F, Londin E, Brody JR, Rigoutsos I. GPRC5A is a potential oncogene in pancreatic ductal adenocarcinoma cells that is upregulated by gemcitabine with help from HuR. Cell Death Dis 2016; 7:e2294. [PMID: 27415424 PMCID: PMC4973341 DOI: 10.1038/cddis.2016.169] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 05/10/2016] [Accepted: 05/11/2016] [Indexed: 01/05/2023]
Abstract
GPRC5A is an orphan G-protein coupled receptor with an intriguing dual behavior, acting as an oncogene in some cancers and as a tumor suppressor in other cancers. In the pancreatic cancer context, very little is known about GPRC5A. By analyzing messenger RNA (mRNA) expression data from 675 human cancer cell lines and 10 609 samples from The Cancer Genome Atlas (TCGA) we found that GPRC5A's abundance in pancreatic cancer is highest (cell lines) or second highest (TCGA) among all tissues and cancer types. Further analyses of an independent set of 252 pancreatic normal and cancer samples showed GPRC5A mRNA to be more than twofold upregulated in primary tumor samples compared with normal pancreas (P-value<10−5), and even further upregulated in pancreatic cancer metastases to various organs (P-value=0.0021). Immunostaining of 208 cores (103 samples) of a tissue microarray showed generally low expression of GPRC5A protein in normal pancreatic ductal cells; on the other hand, in primary and metastatic samples, GPRC5A protein levels were dramatically increased in pancreatic ductal cells. In vitro studies of multiple pancreatic cancer cell lines showed that an increase in GPRC5A protein levels promoted pancreatic cancer cell growth and migration. Unexpectedly, when we treated pancreatic cancer cell lines with gemcitabine (2′,2′-difluorodeoxycytidine), we observed an increase in GPRC5A protein abundance. On the other hand, when we knocked down GPRC5A we sensitized pancreatic cancer cells to gemcitabine. Through further experimentation we showed that the monotonic increase in GPRC5A protein levels that we observe for the first 18 h following gemcitabine treatment results from interactions between GPRC5A's mRNA and the RNA-binding protein HuR, which is an established key mediator of gemcitabine's efficacy in cancer cells. As we discovered, the interaction between GPRC5A and HuR is mediated by at least one HuR-binding site in GPRC5A's mRNA. Our findings indicate that GPRC5A is part of a complex molecular axis that involves gemcitabine and HuR, and, possibly, other genes. Further work is warranted before it can be established unequivocally that GPRC5A is an oncogene in the pancreatic cancer context.
Collapse
Affiliation(s)
- H Zhou
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, 1020 Locust Street Philadelphia, PA 19107, USA
| | - A G Telonis
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, 1020 Locust Street Philadelphia, PA 19107, USA
| | - Y Jing
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, 1020 Locust Street Philadelphia, PA 19107, USA
| | - N L Xia
- Department of Neuroscience and The Farber Institute for Neuroscience, Thomas Jefferson University, 900 Walnut Street, Philadelphia, PA 19107, USA
| | - L Biederman
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - M Jimbo
- Department of Surgery, The Jefferson Biliary and Related Cancer Center, Sidney Kimmel Medical College, Thomas Jefferson University, 1025 Walnut Street, Philadelphia, PA 19107, USA
| | - F Blanco
- Department of Surgery, The Jefferson Biliary and Related Cancer Center, Sidney Kimmel Medical College, Thomas Jefferson University, 1025 Walnut Street, Philadelphia, PA 19107, USA
| | - E Londin
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, 1020 Locust Street Philadelphia, PA 19107, USA
| | - J R Brody
- Department of Surgery, The Jefferson Biliary and Related Cancer Center, Sidney Kimmel Medical College, Thomas Jefferson University, 1025 Walnut Street, Philadelphia, PA 19107, USA
| | - I Rigoutsos
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, 1020 Locust Street Philadelphia, PA 19107, USA
| |
Collapse
|
5
|
Liu H, Zhang Y, Hao X, Kong F, Li X, Yu J, Jia Y. GPRC5A overexpression predicted advanced biological behaviors and poor prognosis in patients with gastric cancer. Tumour Biol 2015; 37:503-10. [PMID: 26227221 DOI: 10.1007/s13277-015-3817-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 07/20/2015] [Indexed: 01/09/2023] Open
Abstract
G protein-coupled receptor, family C, group 5, member A (GPRC5A) had received attentions for its role in carcinogenesis and prognostic values in several types of cancer. However, the functional roles of GPRC5A in gastric cancer (GC) had never been elucidated. The expression levels of GPRC5A were detected by real-time quantitative reverse transcription PCR and Western blot in GC tissues and adjacent non-tumor tissues. GPRC5A expression in tissue sections of 106 GC samples was evaluated using immunohistochemistry. The staining results were compared with clinicopathological factors and to the prognosis of GC patients. The mRNA and protein expression levels of GPRC5A in gastric cancer tissues were higher than those in adjacent non-tumor tissues. Positive GPRC5A expression was significantly correlated with larger size of primary tumor, diffuse type (Lauren's classification), deeper serosal invasion, and more lymph node metastasis. In addition, Kaplan-Meier curve analysis demonstrated that GC patients with positive GPRC5A expression had poor prognosis than those with negative GPRC5A expression. GPRC5A expression was identified as an independent factor of the overall survival in GC patients by multivariate Cox analysis. Further, the overall survival difference existed between patients with GPRC5A positive and negative groups in GC patients with lymph node metastasis. Our results suggested that elevated levels of GPRC5A played significant roles in GC progression. GPRC5A could serve as a prognostic biomarker of GC.
Collapse
Affiliation(s)
- Honggen Liu
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Yunchao Zhang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Xuwen Hao
- Department of Gastroenterology, Tianjin Nankai Hospital, Tianjin, 300193, China
| | - Fanming Kong
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Xiaojiang Li
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Jianchun Yu
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Yingjie Jia
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| |
Collapse
|
6
|
Sávio ALV, da Silva GN, Salvadori DMF. Inhibition of bladder cancer cell proliferation by allyl isothiocyanate (mustard essential oil). Mutat Res 2014; 771:29-35. [PMID: 25771977 DOI: 10.1016/j.mrfmmm.2014.11.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 10/19/2014] [Accepted: 11/21/2014] [Indexed: 02/08/2023]
Abstract
Natural compounds hold great promise for combating antibiotic resistance, the failure to control some diseases, the emergence of new diseases and the toxicity of some contemporary medical products. Allyl isothiocyanate (AITC), which is abundant in cruciferous vegetables and mustard seeds and is commonly referred to as mustard essential oil, exhibits promising antineoplastic activity against bladder cancer, although its mechanism of action is not fully understood. Therefore, the aim of this study was to investigate the effects of AITC activity on bladder cancer cell lines carrying a wild type (wt; RT4) or mutated (T24) TP53 gene. Morphological changes, cell cycle kinetics and CDK1, SMAD4, BAX, BCL2, ANLN and S100P gene expression were evaluated. In both cell lines, treatment with AITC inhibited cell proliferation (at 62.5, 72.5, 82.5 and 92.5μM AITC) and induced morphological changes, including scattered and elongated cells and cellular debris. Gene expression profiles revealed increased S100P and BAX and decreased BCL2 expression in RT4 cells following AITC treatment. T24 cells displayed increased BCL2, BAX and ANLN and decreased S100P expression. No changes in SMAD4 and CDK1 expression were observed in either cell line. In conclusion, AITC inhibits cell proliferation independent of TP53 status. However, the mechanism of action of AITC differed in the two cell lines; in RT4 cells, it mainly acted via the classical BAX/BCL2 pathway, while in T24 cells, AITC modulated the activities of ANLN (related to cytokinesis) and S100P. These data confirm the role of AITC as a potential antiproliferative compound that modulates gene expression according to the tumor cell TP53 genotype.
Collapse
Affiliation(s)
- André Luiz Ventura Sávio
- UNESP - Universidade Estadual Paulista, Faculdade de Medicina de Botucatu, Departamento de Patologia, Botucatu, SP, Brazil.
| | - Glenda Nicioli da Silva
- UFOP - Universidade Federal de Ouro Preto, Escola de Farmácia, Departamento de Análises Clínicas, Ouro Preto, MG, Brazil
| | - Daisy Maria Fávero Salvadori
- UNESP - Universidade Estadual Paulista, Faculdade de Medicina de Botucatu, Departamento de Patologia, Botucatu, SP, Brazil
| |
Collapse
|
7
|
Zhou H, Rigoutsos I. The emerging roles of GPRC5A in diseases. Oncoscience 2014; 1:765-76. [PMID: 25621293 PMCID: PMC4303886 DOI: 10.18632/oncoscience.104] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 11/24/2014] [Indexed: 12/14/2022] Open
Abstract
The ‘Retinoic Acid-Inducible G-protein-coupled receptors’ or RAIG are a group comprising the four orphan receptors GPRC5A, GPRC5B, GPRC5C and GPRC5D. As the name implies, their expression is induced by retinoic acid but beyond that very little is known about their function. In recent years, one member, GPRC5A, has been receiving increasing attention as it was shown to play important roles in human cancers. As a matter of fact, dysregulation of GPRC5A has been associated with several cancers including lung cancer, breast cancer, colorectal cancer, and pancreatic cancer. Here we review the current state of knowledge about the heterogeneity and evolution of GPRC5A, its regulation, its molecular functions, and its involvement in human disease.
Collapse
Affiliation(s)
- Honglei Zhou
- Computational Medicine Center, Jefferson Alumni Hall, Thomas Jefferson University, Philadelphia, PA
| | - Isidore Rigoutsos
- Computational Medicine Center, Jefferson Alumni Hall, Thomas Jefferson University, Philadelphia, PA
| |
Collapse
|
8
|
Sokolenko AP, Bulanova DR, Iyevleva AG, Aleksakhina SN, Preobrazhenskaya EV, Ivantsov AO, Kuligina ES, Mitiushkina NV, Suspitsin EN, Yanus GA, Zaitseva OA, Yatsuk OS, Togo AV, Kota P, Dixon JM, Larionov AA, Kuznetsov SG, Imyanitov EN. High prevalence of GPRC5A germline mutations in BRCA1-mutant breast cancer patients. Int J Cancer 2014; 134:2352-8. [PMID: 24470238 DOI: 10.1002/ijc.28569] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Revised: 09/21/2013] [Accepted: 10/18/2013] [Indexed: 01/22/2023]
Abstract
In a search for new breast cancer (BC) predisposing genes, we performed a whole exome sequencing analysis using six patient samples of familial BC and identified a germline inactivating mutation c.183delG [p. Arg61fs] in an orphan G protein-coupled receptor GPRC5A. An extended case-control study revealed a tenfold enrichment for this mutation in BC patients carrying the 5382insC allele of BRCA1, the major founder mutation in the Russian population, compared to wild-type BRCA1 BC cases [6/117 (5.1%) vs. 8/1578 (0.5%), p = 0.0002]. In mammary tumors (n = 60), the mRNA expression of GPRC5A significantly correlated with that of BRCA1 (p = 0.00018). In addition, the amount of GPRC5A transcript was significantly lower in BC obtained from BRCA1 mutation carriers (n = 17) compared to noncarriers (n = 93) (p = 0.026). Accordingly, a siRNA-mediated knockdown of either BRCA1 or GPRC5A in the MDA-MB-231 human BC cell line reduced expression of GPRC5A or BRCA1, respectively. Knockdown of GPRC5A also attenuated radiation-induced BRCA1- and RAD51-containing nuclear DNA repair foci. Taken together, these data suggest that GPRC5A is a modifier of BC risk in BRCA1 mutation carriers and reveals a functional interaction of these genes.
Collapse
Affiliation(s)
- Anna P Sokolenko
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg, Russia; Department of Medical Genetics, St.-Petersburg Pediatric Medical University, St.-Petersburg, Russia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Sayeed A, Luciani-Torres G, Meng Z, Bennington JL, Moore DH, Dairkee SH. Aberrant regulation of the BST2 (Tetherin) promoter enhances cell proliferation and apoptosis evasion in high grade breast cancer cells. PLoS One 2013; 8:e67191. [PMID: 23840623 PMCID: PMC3688682 DOI: 10.1371/journal.pone.0067191] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 05/16/2013] [Indexed: 11/18/2022] Open
Abstract
Normal cellular phenotypes that serve an oncogenic function during tumorigenesis are potential candidates for cancer targeting drugs. Within a subset of invasive primary breast carcinoma, we observed relatively abundant expression of Tetherin, a cell surface protein encoded by the Bone Marrow Stromal Cell Antigen (BST2) known to play an inhibitory role in viral release from infected immune cells of the host. Using breast cancer cell lines derived from low and intermediate histopathologic grade invasive primary tumors that maintain growth-suppressive TGFβ signaling, we demonstrate that BST2 is negatively regulated by the TGFβ axis in epithelial cells. Binding of the transcription factor AP2 to the BST2 promoter was attenuated by inhibition of the TGFβ pathway thereby increasing BST2 expression in tumor cells. In contrast, inherent TGFβ resistance characteristic of high grade breast tumors is a key factor underlying compromised BST2 regulation, and consequently its constitutive overexpression relative to non-malignant breast epithelium, and to most low and intermediate grade cancer cells. In both 2-dimensional and 3-dimensional growth conditions, BST2-silenced tumor cells displayed an enhancement in tamoxifen or staurosporine-induced apoptotic cell death together with a reduction in the S-phase fraction compared to BST2 overexpressing counterparts. In a subset of breast cancer patients treated with pro apoptotic hormonal therapy, BST2 expression correlated with a trend for poor clinical outcome, further supporting its role in conferring an anti apoptotic phenotype. Similar to the effects of gene manipulation, declining levels of endogenous BST2 induced by the phytoalexin – resveratrol, restored apoptotic function, and curbed cell proliferation. We provide evidence for a direct approach that diminishes aberrant BST2 expression in cancer cells as an early targeting strategy to assist in surmounting resistance to pro apoptotic therapies.
Collapse
MESH Headings
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antineoplastic Agents, Hormonal/pharmacology
- Apoptosis
- Base Sequence
- Binding Sites
- Breast Neoplasms/metabolism
- Breast Neoplasms/mortality
- Breast Neoplasms/pathology
- Carcinoma, Ductal, Breast/metabolism
- Carcinoma, Ductal, Breast/mortality
- Carcinoma, Ductal, Breast/pathology
- Cell Line, Tumor
- Cell Proliferation
- Drug Synergism
- Fatty Acid-Binding Proteins/metabolism
- Female
- GPI-Linked Proteins/genetics
- GPI-Linked Proteins/metabolism
- Gene Expression
- Gene Expression Regulation, Neoplastic
- Humans
- Kaplan-Meier Estimate
- Molecular Sequence Data
- Promoter Regions, Genetic
- Proportional Hazards Models
- Protein Binding
- Resveratrol
- Stilbenes/pharmacology
- Tamoxifen/pharmacology
- Transforming Growth Factor beta/physiology
Collapse
Affiliation(s)
- Aejaz Sayeed
- California Pacific Medical Center Research Institute, San Francisco, California, United States of America
| | - Gloria Luciani-Torres
- California Pacific Medical Center Research Institute, San Francisco, California, United States of America
| | - Zhenhang Meng
- California Pacific Medical Center Research Institute, San Francisco, California, United States of America
| | - James L. Bennington
- California Pacific Medical Center Research Institute, San Francisco, California, United States of America
| | - Dan H. Moore
- California Pacific Medical Center Research Institute, San Francisco, California, United States of America
| | - Shanaz H. Dairkee
- California Pacific Medical Center Research Institute, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
10
|
Tissue biomarkers of breast cancer and their association with conventional pathologic features. Br J Cancer 2013; 108:351-60. [PMID: 23299531 PMCID: PMC3566809 DOI: 10.1038/bjc.2012.552] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background: Tissue protein expression profiling has the potential to detect new biomarkers to improve breast cancer (BC) diagnosis, staging, and prognostication. This study aimed to identify tissue proteins that differentiate breast cancer tissue from healthy breast tissue using protein chip mass spectrometry and to examine associations with conventional pathological features. Methods: To develop a training model, 82 BC and 82 adjacent unaffected tissue (AT) samples were analysed on cation-exchange protein chips by time-of-flight mass spectrometry. For validation, 89 independent BC and AT sample pairs were analysed. Results: From the protein peaks that were differentially expressed between BC and AT by univariate analysis, binary logistic regression yielded two peaks that together classified BC and AT with a ROC area under the curve of 0.92. Two proteins, ubiquitin and S100P (in a novel truncated form), were identified by liquid chromatography/tandem mass spectrometry and validated by immunoblotting and reactive-surface protein chip immunocapture. The combined marker panel was positively associated with high histologic grade, larger tumour size, lymphovascular invasion, ER and PR positivity, and HER2 overexpression, suggesting that it may be associated with a HER2-enriched molecular subtype of breast cancer. Conclusion: This independently validated protein panel may be valuable in the classification and prognostication of breast cancer patients.
Collapse
|
11
|
Meding S, Balluff B, Elsner M, Schöne C, Rauser S, Nitsche U, Maak M, Schäfer A, Hauck SM, Ueffing M, Langer R, Höfler H, Friess H, Rosenberg R, Walch A. Tissue-based proteomics reveals FXYD3, S100A11 and GSTM3 as novel markers for regional lymph node metastasis in colon cancer. J Pathol 2012; 228:459-70. [PMID: 22430872 DOI: 10.1002/path.4021] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2011] [Revised: 03/05/2012] [Accepted: 03/09/2012] [Indexed: 01/08/2023]
Abstract
Regional lymph node metastasis negatively affects prognosis in colon cancer patients. The molecular processes leading to regional lymph node metastasis are only partially understood and proteomic markers for metastasis are still scarce. Therefore, a tissue-based proteomic approach was undertaken for identifying proteins associated with regional lymph node metastasis. Two complementary tissue-based proteomic methods have been employed. MALDI imaging was used for identifying small proteins (≤25 kDa) in situ and label-free quantitative proteomics was used for identifying larger proteins. A tissue cohort comprising primary colon tumours without metastasis (UICC II, pN0, n = 21) and with lymph node metastasis (UICC III, pN2, n = 33) was analysed. Subsequent validation of identified proteins was done by immunohistochemical staining on an independent tissue cohort consisting of primary colon tumour specimens (n = 168). MALDI imaging yielded ten discriminating m/z species, and label-free quantitative proteomics 28 proteins. Two MALDI imaging-derived candidate proteins (FXYD3 and S100A11) and one from the label-free quantitative proteomics (GSTM3) were validated on the independent tissue cohort. All three markers correlated significantly with regional lymph node metastasis: FXYD3 (p = 0.0110), S100A11 (p = 0.0071), and GSTM3 (p = 0.0173). FXYD3 and S100A11 were more highly expressed in UICC II patient tumour tissues. GSTM3 was more highly expressed in UICC III patient tumour tissues. By our tissue-based proteomic approach, we could identify a large panel of proteins which are associated with regional lymph node metastasis and which have not been described so far. Here we show that novel markers for regional lymph metastasis can be identified by MALDI imaging or label-free quantitative proteomics and subsequently validated on an independent tissue cohort.
Collapse
Affiliation(s)
- Stephan Meding
- Institute of Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Single cell profiling of circulating tumor cells: transcriptional heterogeneity and diversity from breast cancer cell lines. PLoS One 2012; 7:e33788. [PMID: 22586443 PMCID: PMC3346739 DOI: 10.1371/journal.pone.0033788] [Citation(s) in RCA: 401] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 02/21/2012] [Indexed: 12/15/2022] Open
Abstract
Background To improve cancer therapy, it is critical to target metastasizing cells. Circulating tumor cells (CTCs) are rare cells found in the blood of patients with solid tumors and may play a key role in cancer dissemination. Uncovering CTC phenotypes offers a potential avenue to inform treatment. However, CTC transcriptional profiling is limited by leukocyte contamination; an approach to surmount this problem is single cell analysis. Here we demonstrate feasibility of performing high dimensional single CTC profiling, providing early insight into CTC heterogeneity and allowing comparisons to breast cancer cell lines widely used for drug discovery. Methodology/Principal Findings We purified CTCs using the MagSweeper, an immunomagnetic enrichment device that isolates live tumor cells from unfractionated blood. CTCs that met stringent criteria for further analysis were obtained from 70% (14/20) of primary and 70% (21/30) of metastatic breast cancer patients; none were captured from patients with non-epithelial cancer (n = 20) or healthy subjects (n = 25). Microfluidic-based single cell transcriptional profiling of 87 cancer-associated and reference genes showed heterogeneity among individual CTCs, separating them into two major subgroups, based on 31 highly expressed genes. In contrast, single cells from seven breast cancer cell lines were tightly clustered together by sample ID and ER status. CTC profiles were distinct from those of cancer cell lines, questioning the suitability of such lines for drug discovery efforts for late stage cancer therapy. Conclusions/Significance For the first time, we directly measured high dimensional gene expression in individual CTCs without the common practice of pooling such cells. Elevated transcript levels of genes associated with metastasis NPTN, S100A4, S100A9, and with epithelial mesenchymal transition: VIM, TGFß1, ZEB2, FOXC1, CXCR4, were striking compared to cell lines. Our findings demonstrate that profiling CTCs on a cell-by-cell basis is possible and may facilitate the application of ‘liquid biopsies’ to better model drug discovery.
Collapse
|
13
|
Luciani MG, Seok J, Sayeed A, Champion S, Goodson WH, Jeffrey SS, Xiao W, Mindrinos M, Davis RW, Dairkee SH. Distinctive responsiveness to stromal signaling accompanies histologic grade programming of cancer cells. PLoS One 2011; 6:e20016. [PMID: 21625507 PMCID: PMC3098270 DOI: 10.1371/journal.pone.0020016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 04/08/2011] [Indexed: 12/21/2022] Open
Abstract
Whether stromal components facilitate growth, invasion, and dissemination of cancer cells or suppress neoplastic lesions from further malignant progression is a continuing conundrum in tumor biology. Conceptualizing a dynamic picture of tumorigenesis is complicated by inter-individual heterogeneity. In the post genomic era, unraveling such complexity remains a challenge for the cancer biologist. Towards establishing a functional association between cellular crosstalk and differential cancer aggressiveness, we identified a signature of malignant breast epithelial response to stromal signaling. Proximity to fibroblasts resulted in gene transcript alterations of >2-fold for 107 probes, collectively designated as Fibroblast Triggered Gene Expression in Tumor (FTExT). The hazard ratio predicted by the FTExT classifier for distant relapse in patients with intermediate and high grade breast tumors was significant compared to routine clinical variables (dataset 1, n = 258, HR – 2.11, 95% CI 1.17–3.80, p-value 0.01; dataset 2, n = 171, HR - 3.07, 95% CI 1.21–7.83, p-value 0.01). Biofunctions represented by FTExT included inflammatory signaling, free radical scavenging, cell death, and cell proliferation. Unlike genes of the ‘proliferation cluster’, which are overexpressed in aggressive primary tumors, FTExT genes were uniquely repressed in such cases. As proof of concept for our correlative findings, which link stromal-epithelial crosstalk and tumor behavior, we show a distinctive differential in stromal impact on prognosis-defining functional endpoints of cell cycle progression, and resistance to therapy-induced growth arrest and apoptosis in low vs. high grade cancer cells. Our experimental data thus reveal aspects of ‘paracrine cooperativity’ that are exclusively contingent upon the histopathologically defined grade of interacting tumor epithelium, and demonstrate that epithelial responsiveness to the tumor microenvironment is a deterministic factor underlying clinical outcome. In this light, early attenuation of epithelial-stromal crosstalk could improve the management of cases prone to be clinically challenging.
Collapse
Affiliation(s)
- Maria Gloria Luciani
- California Pacific Medical Center Research Institute, San Francisco, California, United States of America
| | - Junhee Seok
- Stanford Genome Technology Center, Stanford University School of Medicine, Stanford, California, United States of America
| | - Aejaz Sayeed
- California Pacific Medical Center Research Institute, San Francisco, California, United States of America
| | - Stacey Champion
- California Pacific Medical Center Research Institute, San Francisco, California, United States of America
| | - William H. Goodson
- California Pacific Medical Center Research Institute, San Francisco, California, United States of America
| | - Stefanie S. Jeffrey
- Department of Surgery, Stanford University School of Medicine, Stanford, California, United States of America
| | - Wenzhong Xiao
- Stanford Genome Technology Center, Stanford University School of Medicine, Stanford, California, United States of America
| | - Michael Mindrinos
- Stanford Genome Technology Center, Stanford University School of Medicine, Stanford, California, United States of America
| | - Ronald W. Davis
- Stanford Genome Technology Center, Stanford University School of Medicine, Stanford, California, United States of America
| | - Shanaz H. Dairkee
- California Pacific Medical Center Research Institute, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
14
|
Negative regulation of UCP2 by TGFβ signaling characterizes low and intermediate-grade primary breast cancer. Cell Death Dis 2010; 1:e53. [PMID: 21364658 PMCID: PMC3032562 DOI: 10.1038/cddis.2010.30] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The histological manifestation of growth-regulating and differentiation-inducing signals in cancer cells is considered as a key component for clinical outcome prediction and commonly defined as tumor differentiation grade. However, the molecular and functional framework underlying this clinical parameter remains poorly understood. Our correlative data display a significant association (P>0.001) between mitochondrial uncoupling protein 2 (UCP2) and tumor grade in primary breast cancer (n=234). Through mechanistic analyses, we show a synergistic link between UCP2 and established cellular pathways in conferring grade-associated functional phenotypes. Here, the application of well to moderately differentiated primary tumor cell lines has enabled direct observation of SMAD recruitment to the UCP2 promoter underlying repression of gene transcription. In contrast, poorly differentiated tumor cells, known to be TGFβ resistant, displayed aberrant UCP2 regulation, and consequently, gene overexpression, which reduced mitochondrial calcium and facilitated the maintenance of mitochondrial membrane potential, thereby significantly decreasing oxidative stress and inhibiting cell death. Conversely, UCP2 silencing in such cells rapidly led to the induction of apoptosis and cell differentiation, concurrent with reduced cell survival and proliferation, confirming gene-specific effects. Demonstration of a biologically driven role for UCP2 dysregulation in promoting multiple characteristics of tumor aggressiveness strongly endorses assessment of gene expression at clinical presentation to augment therapeutic decision-making and improve patient outcome through personalized targeting approaches.
Collapse
|
15
|
S100P: a novel therapeutic target for cancer. Amino Acids 2010; 41:893-9. [PMID: 20509035 DOI: 10.1007/s00726-010-0496-4] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Accepted: 01/21/2010] [Indexed: 10/19/2022]
Abstract
S100P expression is described in many different cancers, and its expression is associated with drug resistance, metastasis, and poor clinical outcome. S100P is member of the S100 family of small calcium-binding proteins that have been reported to have either intracellular or extracellular functions, or both. Extracellular S100P can bind with the receptor for advanced glycation end products (RAGE) and activate cellular signaling. Through RAGE, S100P has been shown to mediate tumor growth, drug resistance, and metastasis. S100P is specifically expressed in cancer cells in the adult. Therefore, S100P is a useful marker for differentiating cancer cells from normal cells, and can aid in the diagnosis of cancer by cytological examination. The expression of S100P in cancer cells has been related to hypomethylation of the gene. Multiple studies have confirmed the beneficial effects of blocking S100P/RAGE in cancer cells, and different blockers are being developed including small molecules and antagonist peptides. This review summarizes the role and significance of S100P in different cancers.
Collapse
|