1
|
Kumar A, Das SK, Emdad L, Fisher PB. Applications of tissue-specific and cancer-selective gene promoters for cancer diagnosis and therapy. Adv Cancer Res 2023; 160:253-315. [PMID: 37704290 DOI: 10.1016/bs.acr.2023.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Current treatment of solid tumors with standard of care chemotherapies, radiation therapy and/or immunotherapies are often limited by severe adverse toxic effects, resulting in a narrow therapeutic index. Cancer gene therapy represents a targeted approach that in principle could significantly reduce undesirable side effects in normal tissues while significantly inhibiting tumor growth and progression. To be effective, this strategy requires a clear understanding of the molecular biology of cancer development and evolution and developing biological vectors that can serve as vehicles to target cancer cells. The advent and fine tuning of omics technologies that permit the collective and spatial recognition of genes (genomics), mRNAs (transcriptomics), proteins (proteomics), metabolites (metabolomics), epiomics (epigenomics, epitranscriptomics, and epiproteomics), and their interactomics in defined complex biological samples provide a roadmap for identifying crucial targets of relevance to the cancer paradigm. Combining these strategies with identified genetic elements that control target gene expression uncovers significant opportunities for developing guided gene-based therapeutics for cancer. The purpose of this review is to overview the current state and potential limitations in developing gene promoter-directed targeted expression of key genes and highlights their potential applications in cancer gene therapy.
Collapse
Affiliation(s)
- Amit Kumar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| |
Collapse
|
2
|
Targeting visualization of malignant tumor based on the alteration of DWI signal generated by hTERT promoter–driven AQP1 overexpression. Eur J Nucl Med Mol Imaging 2022; 49:2310-2322. [DOI: 10.1007/s00259-022-05684-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 01/09/2022] [Indexed: 02/07/2023]
|
3
|
Maishi N, Kikuchi H, Sato M, Nagao-Kitamoto H, Annan DA, Baba S, Hojo T, Yanagiya M, Ohba Y, Ishii G, Masutomi K, Shinohara N, Hida Y, Hida K. Development of Immortalized Human Tumor Endothelial Cells from Renal Cancer. Int J Mol Sci 2019; 20:ijms20184595. [PMID: 31533313 PMCID: PMC6770423 DOI: 10.3390/ijms20184595] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/13/2019] [Accepted: 09/13/2019] [Indexed: 12/20/2022] Open
Abstract
Tumor angiogenesis research and antiangiogenic drug development make use of cultured endothelial cells (ECs) including the human microvascular ECs among others. However, it has been reported that tumor ECs (TECs) are different from normal ECs (NECs). To functionally validate antiangiogenic drugs, cultured TECs are indispensable tools, but are not commercially available. Primary human TECs are available only in small quantities from surgical specimens and have a short life span in vitro due to their cellular senescence. We established immortalized human TECs (h-imTECs) and their normal counterparts (h-imNECs) by infection with lentivirus producing simian virus 40 large T antigen and human telomerase reverse transcriptase to overcome the replication barriers. These ECs exhibited an extended life span and retained their characteristic endothelial morphology, expression of endothelial marker, and ability of tube formation. Furthermore, h-imTECs showed their specific characteristics as TECs, such as increased proliferation and upregulation of TEC markers. Treatment with bevacizumab, an antiangiogenic drug, dramatically decreased h-imTEC survival, whereas the same treatment failed to alter immortalized NEC survival. Hence, these h-imTECs could be a valuable tool for drug screening to develop novel therapeutic agents specific to TECs or functional biological assays in tumor angiogenesis research.
Collapse
Affiliation(s)
- Nako Maishi
- Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo 060-8586, Japan.
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan.
- Department of Vascular Biology, Hokkaido University Graduate School of Dental Medicine, Sapporo 060-8586, Japan.
| | - Hiroshi Kikuchi
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan.
- Department of Renal and Genitourinary Surgery, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan.
| | - Masumi Sato
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan.
| | - Hiroko Nagao-Kitamoto
- Department of Vascular Biology, Hokkaido University Graduate School of Dental Medicine, Sapporo 060-8586, Japan.
| | - Dorcas A Annan
- Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo 060-8586, Japan.
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan.
| | - Shogo Baba
- Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo 060-8586, Japan.
| | - Takayuki Hojo
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan.
- Department of Vascular Biology, Hokkaido University Graduate School of Dental Medicine, Sapporo 060-8586, Japan.
- Department of Dental Anesthesiology, Hokkaido University Graduate School of Dental Medicine, Sapporo 060-8586, Japan.
| | - Misa Yanagiya
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan.
- Department of Oral Diagnosis and Medicine, Hokkaido University Graduate School of Dental Medicine, Sapporo 060-8586, Japan.
| | - Yusuke Ohba
- Department of Cell Physiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan.
| | - Genichiro Ishii
- Division of Pathology, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa 277-8577, Japan.
| | - Kenkichi Masutomi
- Division of Cancer Stem Cell, National Cancer Center Research Institute, Tokyo 104-0045, Japan.
| | - Nobuo Shinohara
- Department of Renal and Genitourinary Surgery, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan.
| | - Yasuhiro Hida
- Department of Cardiovascular and Thoracic Surgery, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan.
| | - Kyoko Hida
- Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo 060-8586, Japan.
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan.
- Department of Vascular Biology, Hokkaido University Graduate School of Dental Medicine, Sapporo 060-8586, Japan.
| |
Collapse
|
4
|
Yu S, Zhang Y, Wu Y, Yang H, Chen Y, Yang Y, Zhang Z. Subcellular localization of mutated β-catenins with different incidences of cis-peptide bonds at the Xaa246-P247 site in HepG2 cells. FASEB J 2019; 33:6574-6583. [PMID: 30807699 PMCID: PMC6497428 DOI: 10.1096/fj.201801937rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Mutations may ultimately change the local conformation of proteins; however, little attention has been paid to alterations in protein function caused by the incidence of cis-peptide bonds (ICPB) in mammalian cells. In this study, a statistical approach, coimmunoprecipitation, and immunofluorescence staining have been used to confirm that S246→Y and S246→W missense mutations, which help increase the ICPB in Xaa246-P247 (Xaa is any amino acid) in human β-catenin, can reduce the interactions between β-catenin and adenomatous polyposis coli (APC) and between β-catenin and Ca2+-dependent cell adhesion molecule family in epithelial tissue (E-cadherin), eventually leading to increased nuclear migration of β-catenin in the HepG2 cell line (an immortalized cell line consisting of human liver carcinoma cells). Conversely, S246→L and S246→M missense mutations, which reduce the ICPB in Xaa246-P247 in human β-catenin, can enhance interactions between β-catenin and APC and between β-catenin and E-cadherin, leading to decreased nuclear migration of β-catenin. These results not only indicate that a change in the ICPB may be an important cause of functional protein changes but also provide a new basis for the study of genetic disease prediction, gene diagnosis, individualized treatment, and protein modification at the gene level for clinicians and other professionals.—Yu, S., Zhang, Y., Wu, Y., Yang, H., Chen, Y., Yang, Y., Zhang, Z. Subcellular localization of mutated β-catenins with different incidences of cis-peptide bonds at the Xaa246-P247 site in HepG2 cells.
Collapse
Affiliation(s)
- Shuhui Yu
- School of Life Sciences, Chongqing University, Chongqing, China.,Information Institute of Southwest University, Southwest University, Chongqing, China
| | - Yali Zhang
- School of Life Science, Southwest University, Chongqing, China.,Department of Hematology, First Affiliated Hospital of Army Military Medical University, Chongqing, China
| | - Yuyun Wu
- School of Life Science, Southwest University, Chongqing, China
| | - Hongying Yang
- School of Life Science, Southwest University, Chongqing, China
| | - Yang Chen
- School of Life Science, Southwest University, Chongqing, China
| | - Yingbin Yang
- School of Life Science, Southwest University, Chongqing, China
| | - Ze Zhang
- School of Life Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
5
|
Qian B, Zhao L, Wang X, Xu J, Teng F, Gao L, Shen R. RETRACTED: miR-149 regulates the proliferation and apoptosis of cervical cancer cells by targeting GIT1. Biomed Pharmacother 2018; 105:1106-1116. [DOI: 10.1016/j.biopha.2018.06.075] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/07/2018] [Accepted: 06/13/2018] [Indexed: 12/31/2022] Open
|
6
|
Luo G, Chao YL, Tang B, Li BS, Xiao YF, Xie R, Wang SM, Wu YY, Dong H, Liu XD, Yang SM. miR-149 represses metastasis of hepatocellular carcinoma by targeting actin-regulatory proteins PPM1F. Oncotarget 2016; 6:37808-23. [PMID: 26498692 PMCID: PMC4741967 DOI: 10.18632/oncotarget.5676] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 10/02/2015] [Indexed: 01/22/2023] Open
Abstract
microRNAs have been implicated in hepatocellular carcinoma (HCC) metastasis, which is predominant cause of high mortality in these patients. Although an increasing body of evidence indicates that miR-149 plays an important role in the growth and metastasis of multiple types of cancers, its role in the progression of HCC remains unknown. Here, we demonstrated that miR-149 was significantly down-regulated in HCC, which was correlated with distant metastasis and TNM stage with statistical significance. A survival analysis showed that decreased miR-149 expression was correlated with a poor prognosis of HCC as well. We found that over-expression of miR-149 suppressed migration and invasion of HCC cells in vitro. In addition, we identified PPM1F (protein phosphatase, Mg(2+)/Mn(2+)-dependent, 1F) as a direct target of miR-149 whose expression was negatively correlated with the expression of miR-149 in HCC tissues. The re-expression of PPM1F rescued the miR-149-mediated inhibition of cell migration and invasion. miR-149 regulated formation of stress fibers to inhibit migration, and re-expression of PPM1F reverted the miR-149-mediated loss of stress fibers. Moreover, we demonstrated that over-expression of miR-149 reduced pMLC2, a downstream effector of PPM1F, in MHCC-97H cells. In vivo studies confirm inhibition of HCC metastasis by miR-149. Taken together, our findings indicates that miR-149 is a potential prognostic biomarker of HCC and that the miR-149/PPM1F regulatory axis represents a novel therapeutic target for HCC treatment.
Collapse
Affiliation(s)
- Gang Luo
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Ya-Ling Chao
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Bo Tang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Bo-Sheng Li
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Yu-Feng Xiao
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Rui Xie
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Shu-Ming Wang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Yu-Yun Wu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Hui Dong
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China.,Division of Gastroenterology, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Xiang D Liu
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Shi-Ming Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| |
Collapse
|
7
|
Galaine J, Kellermann G, Guillaume Y, Boidot R, Picard E, Loyon R, Queiroz L, Boullerot L, Beziaud L, Jary M, Mansi L, André C, Lethier L, Ségal-Bendirdjian E, Borg C, Godet Y, Adotévi O. Heparan Sulfate Proteoglycans Promote Telomerase Internalization and MHC Class II Presentation on Dendritic Cells. THE JOURNAL OF IMMUNOLOGY 2016; 197:1597-608. [DOI: 10.4049/jimmunol.1502633] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 06/01/2016] [Indexed: 01/18/2023]
|
8
|
Kim KI, Chung HK, Park JH, Lee YJ, Kang JH. Alpha-fetoprotein-targeted reporter gene expression imaging in hepatocellular carcinoma. World J Gastroenterol 2016; 22:6127-6134. [PMID: 27468205 PMCID: PMC4945974 DOI: 10.3748/wjg.v22.i27.6127] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 05/02/2016] [Accepted: 05/23/2016] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers in Eastern Asia, and its incidence is increasing globally. Numerous experimental models have been developed to better our understanding of the pathogenic mechanism of HCC and to evaluate novel therapeutic approaches. Molecular imaging is a convenient and up-to-date biomedical tool that enables the visualization, characterization and quantification of biologic processes in a living subject. Molecular imaging based on reporter gene expression, in particular, can elucidate tumor-specific events or processes by acquiring images of a reporter gene’s expression driven by tumor-specific enhancers/promoters. In this review, we discuss the advantages and disadvantages of various experimental HCC mouse models and we present in vivo images of tumor-specific reporter gene expression driven by an alpha-fetoprotein (AFP) enhancer/promoter system in a mouse model of HCC. The current mouse models of HCC development are established by xenograft, carcinogen induction and genetic engineering, representing the spectrum of tumor-inducing factors and tumor locations. The imaging analysis approach of reporter genes driven by AFP enhancer/promoter is presented for these different HCC mouse models. Such molecular imaging can provide longitudinal information about carcinogenesis and tumor progression. We expect that clinical application of AFP-targeted reporter gene expression imaging systems will be useful for the detection of AFP-expressing HCC tumors and screening of increased/decreased AFP levels due to disease or drug treatment.
Collapse
|
9
|
Li C, Hu CJ, Tang B, Yong X, Luo G, Wu YY, Wang SM, Yu ST, Yang SM. MR molecular imaging of tumors based on an optimal hTERT promoter tyrosinase expression system. Oncotarget 2016; 7:42474-42484. [PMID: 27283901 PMCID: PMC5173149 DOI: 10.18632/oncotarget.9888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 05/13/2016] [Indexed: 12/01/2022] Open
Abstract
The early diagnosis and treatment of tumors is of vital significance to increase patient survival. Therefore, we constructed a lentiviral vector expressing tyrosinase (TYR) driven by an optimized human telomerase reverse transcriptase (hTERT) promoter or a cytomegalovirus(CMV) promoter in the hopes of performing noninvasive and real-time tumor-specific imaging. First, hTERT-TYR and CMV-TYR were constructed to infect cancer cell lines (telomerase-negative cell line: U2OS; telomerase-positive cell lines: SGC-7901, SW480 and HepG2). Subsequently, stable tyrosinase-expressing cell lines were sorted by flow cytometry out of these infected cancer cell lines. Then, the mRNA and protein levels of tyrosinase were analyzed. Thetyrosinase activity, melanin production and ferric ion adsorption were measured followed by an MR scan. Consequently the results showed that tyrosinase was only expressed in telomerase-positive tumor cells infected by hTERT-TYR, whereas tyrosinase was expressed in both telomerase-negative and telomerase-positive tumor cells infected by CMV-TYR. Finally, we performed in vivo tumor MR using a clinical 3T MR scanner and found increased signals at T1W1 from telomerase-positive cells infected by hTERT-TYR, which revealed that MR scanning could distinguish cells with hTERT -positive cells from hTERT-negative cells infected with the optimized lentivirus. The mechanism underlying this effect is that tyrosinase promotes melanin production and ferric ion adsorption only in hTERT-expressing cells. Taken together, these data show that this optimized hTERT promoter-driving tyrosinase expression system might be a useful diagnostic tool for the detection of tumors using MR imaging.
Collapse
Affiliation(s)
- Chuan Li
- Department of Radiology, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China.,Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Chang-Jiang Hu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Bo Tang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Xin Yong
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Gang Luo
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Yu-Yun Wu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Su-Min Wang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Song-Tao Yu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China.,Department of Oncology, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Shi-Ming Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| |
Collapse
|
10
|
Yang Y, Gong MF, Yang H, Zhang S, Wang GX, Su TS, Wen L, Zhang D. MR molecular imaging of tumours using ferritin heavy chain reporter gene expression mediated by the hTERT promoter. Eur Radiol 2016; 26:4089-4097. [PMID: 26960542 PMCID: PMC5052315 DOI: 10.1007/s00330-016-4259-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 12/06/2015] [Accepted: 01/28/2016] [Indexed: 11/25/2022]
Abstract
Objectives Using the human telomerase reverse transcriptase (hTERT) promoter and the modified ferritin heavy chain (Fth) reporter gene, reporter gene expression for MRI was examined in telomerase positive and negative tumour cells and xenografts. Methods Activity of the reporter gene expression vector Lenti-hTERT-Fth1-3FLAG-Puro was compared to constitutive CMV-driven expression and to the untransfected parental control in five tumour cell lines: A549, SKOV3, 293T, U2OS and HPDLF. In vitro, transfected cells were evaluated for FLAG-tagged protein expression, iron accumulation and transverse relaxation. In vivo, tumours transduced by lentiviral vector injection were imaged using T2*WI. Changes in tumour signal intensity were validated by histology. Results Only telomerase positive tumour cells expressed FLAG-tagged Fth and displayed an increase in R2* above the parental control, with a corresponding change in T2*WI. In addition, only telomerase positive tumours, transduced by injection of the reporter gene expression construct, exhibited a change in signal intensity on T2*WI. Tumour histology verified the expression of FLAG-tagged Fth and iron accumulation in telomerase positive tissue. Conclusion Reporter gene expression for MRI, using the Fth reporter and the hTERT promoter, may be a useful strategy for the non-invasive diagnosis of many types of cancer. Key points • Modified heavy chain of ferritin can serve as an MR reporter gene • hTERT promoter can direct the expression of reporter gene in cancer cells • MR reporter imaging mediated by hTERT promoter can be used for cancer diagnosis
Collapse
Affiliation(s)
- Yan Yang
- Department of Radiology, XinQiao Hospital, Third Military Medical University, ChongQing, 400037, People's Republic of China
- Department of Radiology, The First Affiliated Hospital of ChengDu Medical College, ChengDu, 610500, People's Republic of China
| | - Ming-Fu Gong
- Department of Radiology, XinQiao Hospital, Third Military Medical University, ChongQing, 400037, People's Republic of China
| | - Hua Yang
- Department of Radiology, XinQiao Hospital, Third Military Medical University, ChongQing, 400037, People's Republic of China
| | - Song Zhang
- Department of Radiology, XinQiao Hospital, Third Military Medical University, ChongQing, 400037, People's Republic of China
| | - Guang-Xian Wang
- Department of Radiology, XinQiao Hospital, Third Military Medical University, ChongQing, 400037, People's Republic of China
| | - Tong-Sheng Su
- Department of Radiology, XinQiao Hospital, Third Military Medical University, ChongQing, 400037, People's Republic of China
| | - Li Wen
- Department of Radiology, XinQiao Hospital, Third Military Medical University, ChongQing, 400037, People's Republic of China.
| | - Dong Zhang
- Department of Radiology, XinQiao Hospital, Third Military Medical University, ChongQing, 400037, People's Republic of China.
| |
Collapse
|
11
|
Wang JY, Wu PK, Chen PCH, Yen CC, Hung GY, Chen CF, Hung SC, Tsai SF, Liu CL, Chen TH, Chen WM. Manipulation therapy prior to diagnosis induced primary osteosarcoma metastasis--from clinical to basic research. PLoS One 2014; 9:e96571. [PMID: 24804772 PMCID: PMC4013034 DOI: 10.1371/journal.pone.0096571] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 04/07/2014] [Indexed: 11/18/2022] Open
Abstract
Osteosarcoma (OS) patients who suffer manipulation therapy (MT) prior to diagnosis resulted in poor prognosis with increasing metastasis or recurrence rate. The aim of the study is to establish an in vivo model to identify the effects of MT on OS. The enrolled 235 OS patients were followed up in this study. In vivo nude mice model with tibia injection of GFP-labeled human OS cells were randomly allocated into MT(+) that with repeated massage on tumor site twice a week and no treatment as MT(-) group. The five-year survival, metastasis and recurrence rates were recorded in clinical subjects. X-ray plainfilm, micro-PET/CT scan, histopathology, serum metalloproteinase 2 (MMP2), metalloproteinase 9 (MMP9) level and human kinase domain insert receptor (KDR) pattern were assayed in mice model. The results showed that patient with MT decreased 5-year survival and higher recurrence or metastasis rate. Compatible with clinical findings, the decreased body weight (30.5 ± 0.65 g) and an increased tumor volume (8.3 ± 1.18 mm3) in MT(+) mice were observed. The increasing signal intensity over lymph node region of hind limb by micro-PET/CT and the tumor cells were detected in lung and bilateral lymph nodes only in MT(+) group. MMP2 (214 ± 9.8 ng/ml) and MMP9 (25.5 ± 1.81 ng/ml) were higher in MT(+) group than in MT(-) group (165 ± 7.8 ng/ml and 16.9 ± 1.40 ng/ml, individually) as well as KDR expression. Taking clinical observations and in vivo evidence together, MT treatment leads to poor prognosis of primary osteosarcoma; physicians should pay more attention on patients who seek MT before diagnosis.
Collapse
Affiliation(s)
- Jir-You Wang
- Department of Orthopaedics, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Orthopaedics, Therapeutical and Research Center of Musculoskeletal Tumor, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Po-Kuei Wu
- Department of Orthopaedics, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Orthopaedics, Therapeutical and Research Center of Musculoskeletal Tumor, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Surgery and Institute of Clinical Medicine School, National Yang-Ming University, Taipei, Taiwan
| | - Paul Chih-Hsueh Chen
- Department of Orthopaedics, Therapeutical and Research Center of Musculoskeletal Tumor, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chuen-Chuan Yen
- Department of Orthopaedics, Therapeutical and Research Center of Musculoskeletal Tumor, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of Hematology and Oncology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Giun-Yi Hung
- Department of Orthopaedics, Therapeutical and Research Center of Musculoskeletal Tumor, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Cheng-Fong Chen
- Department of Orthopaedics, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Orthopaedics, Therapeutical and Research Center of Musculoskeletal Tumor, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Surgery and Institute of Clinical Medicine School, National Yang-Ming University, Taipei, Taiwan
| | - Shih-Chieh Hung
- Department of Orthopaedics, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Orthopaedics, Therapeutical and Research Center of Musculoskeletal Tumor, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Surgery and Institute of Clinical Medicine School, National Yang-Ming University, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Pharmacology, National Yang-Ming University, Taipei, Taiwan
| | - Shih-Fen Tsai
- Department of Orthopaedics, Therapeutical and Research Center of Musculoskeletal Tumor, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Chien-Lin Liu
- Department of Orthopaedics, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Orthopaedics, Therapeutical and Research Center of Musculoskeletal Tumor, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Surgery and Institute of Clinical Medicine School, National Yang-Ming University, Taipei, Taiwan
| | - Tain-Hsiung Chen
- Department of Orthopaedics, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Orthopaedics, Therapeutical and Research Center of Musculoskeletal Tumor, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Surgery and Institute of Clinical Medicine School, National Yang-Ming University, Taipei, Taiwan
| | - Wei-Ming Chen
- Department of Orthopaedics, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Orthopaedics, Therapeutical and Research Center of Musculoskeletal Tumor, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Surgery and Institute of Clinical Medicine School, National Yang-Ming University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
12
|
Chen L, Lü MH, Zhang D, Hao NB, Fan YH, Wu YY, Wang SM, Xie R, Fang DC, Zhang H, Hu CJ, Yang SM. miR-1207-5p and miR-1266 suppress gastric cancer growth and invasion by targeting telomerase reverse transcriptase. Cell Death Dis 2014; 5:e1034. [PMID: 24481448 PMCID: PMC4040688 DOI: 10.1038/cddis.2013.553] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 11/25/2013] [Accepted: 12/12/2013] [Indexed: 12/31/2022]
Abstract
hTERT is the catalytic subunit of the telomerase complex. Elevated expression of hTERT is associated with the expansion and metastasis of gastric tumor. In this study, we aimed to identify novel tumor suppressor miRNAs that restrain hTERT expression. We began our screen for hTERT-targeting miRNAs with a miRNA microarray. miRNA candidates were further filtered by bioinformatic analysis, general expression pattern in different cell lines, gain-of-function effects on hTERT protein and the potential of these effects to suppress hTERT 3′ untranslated region (3′UTR) luciferase activity. The clinical relevance of two miRNAs (miR-1207-5p and miR-1266) was evaluated by real-time RT-PCR. The effects of these miRNAs on cell growth, cell cycle and invasion of gastric cancer cells were measured with CCK-8, flow cytometry and transwell assays. Finally, the ability of these miRNAs to suppress the transplanted tumors was also investigated. Fourteen miRNAs were identified using a combination of bioinformatics and miRNA microarray analysis. Of these fourteen miRNAs, nine were expressed at significantly lower levels in hTERT-positive cell lines compared with hTERT-negative cell lines and five could downregulate hTERT protein expression. Only miR-1207-5p and miR-1266 interacted with the 3′ UTR of hTERT and the expression levels of these two miRNAs were significantly decreased in gastric cancer tissues. These two miRNAs also inhibited gastric tumor growth in vitro and in vivo. Altogether, miR-1207-5p and miR-1266 were determined to be hTERT suppressors in gastric cancer, and the delivery of these two miRNAs represents a novel therapeutic strategy for gastric cancer treatment.
Collapse
Affiliation(s)
- L Chen
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - M-H Lü
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - D Zhang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - N-B Hao
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Y-H Fan
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Y-Y Wu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - S-M Wang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - R Xie
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - D-C Fang
- Institute of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing 400037, China
| | - H Zhang
- Department of Gastroenterology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400037, China
| | - C-J Hu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - S-M Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| |
Collapse
|
13
|
Liu M, Wang RF, Yan P, Zhang CL, Cui YG. Molecular imaging and pharmacokinetics of (99m) Tc-hTERT antisense oligonucleotide as a potential tumor imaging probe. J Labelled Comp Radiopharm 2013; 57:97-101. [PMID: 24307558 DOI: 10.1002/jlcr.3171] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 11/03/2013] [Accepted: 11/05/2013] [Indexed: 12/12/2022]
Abstract
Targeting and visualization of human telomerase reverse transcriptase (hTERT) represents a promising approach for providing diagnostic value. The uptake kinetics and imaging results of (99m) Tc-hTERT antisense oligonucleotides (ASON) in hTERT-expressing cells were examined in vitro and in vivo. The pharmacokinetics and acute toxicity studies of (99m) Tc-hTERT ASON were also performed. The labeling efficiencies of radiolabeled oligonucleotide reached 76 ± 5%, the specific activity was up to 1850 kBq/µg, and the radiochemical purity was above 96%. Radioactivity accumulated to a higher concentration in hTERT-expressing cells with antisense probe than with sense control (p < 0.05). Lipid carrier incorporation significantly increased the transmembrane delivery of radiolabeled probes (p < 0.05). hTERT-expressing xenografts in nude mice were clearly visualized at 6 h postinjection of the antisense probe but not the sense control probe. However, liposome did not increase the radioactivity accumulation of probes in tumors for either antisense or sense probe (p > 0.05). Radioactivity counts per minute versus time profiles for (99m) Tc-hTERT ASON were biphasic, indicative of a three-compartment model. The pharmacokinetics parameters of half-life of distribution (T1/2α ), half-life of elimination (T1/2β ), total apparent volume of distribution (Vd), and total rate of clearance were 2.04 ± 0.48 min, 24 ± 4.8 min, 109.83 ± 17.20 mL, and 3.19 ± 0.17 mL/min, respectively. The acute toxicity study results showed the safe application of (99m) Tc-hTERT ASON in vivo. This study provides further evidences that (99m) Tc-hTERT ASON should be developed as a safe, potential molecular image-guided diagnostic agent.
Collapse
Affiliation(s)
- Meng Liu
- Department of Nuclear Medicine, Peking University First Hospital, No. 8, Xishiku St., West District, Beijing, 100034, China
| | | | | | | | | |
Collapse
|
14
|
Jacobson O, Chen X. Interrogating tumor metabolism and tumor microenvironments using molecular positron emission tomography imaging. Theranostic approaches to improve therapeutics. Pharmacol Rev 2013; 65:1214-56. [PMID: 24064460 DOI: 10.1124/pr.113.007625] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Positron emission tomography (PET) is a noninvasive molecular imaging technology that is becoming increasingly important for the measurement of physiologic, biochemical, and pharmacological functions at cellular and molecular levels in patients with cancer. Formation, development, and aggressiveness of tumor involve a number of molecular pathways, including intrinsic tumor cell mutations and extrinsic interaction between tumor cells and the microenvironment. Currently, evaluation of these processes is mainly through biopsy, which is invasive and limited to the site of biopsy. Ongoing research on specific target molecules of the tumor and its microenvironment for PET imaging is showing great potential. To date, the use of PET for diagnosing local recurrence and metastatic sites of various cancers and evaluation of treatment response is mainly based on [(18)F]fluorodeoxyglucose ([(18)F]FDG), which measures glucose metabolism. However, [(18)F]FDG is not a target-specific PET tracer and does not give enough insight into tumor biology and/or its vulnerability to potential treatments. Hence, there is an increasing need for the development of selective biologic radiotracers that will yield specific biochemical information and allow for noninvasive molecular imaging. The possibility of cancer-associated targets for imaging will provide the opportunity to use PET for diagnosis and therapy response monitoring (theranostics) and thus personalized medicine. This article will focus on the review of non-[(18)F]FDG PET tracers for specific tumor biology processes and their preclinical and clinical applications.
Collapse
Affiliation(s)
- Orit Jacobson
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD.
| | | |
Collapse
|
15
|
Yu ST, Li C, Lü MH, Liang GP, Li N, Tang XD, Wu YY, Shi CM, Chen L, Li CZ, Cao YL, Fang DC, Yang SM. Noninvasive and real-time monitoring of the therapeutic response of tumors in vivo with an optimized hTERT promoter. Cancer 2011; 118:1884-93. [PMID: 22009660 DOI: 10.1002/cncr.26476] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 06/23/2011] [Accepted: 07/06/2011] [Indexed: 01/23/2023]
Abstract
BACKGROUND Telomerase is commonly recognized as an effective anticancer target. The human telomerase reverse transcriptase (hTERT), the rate-limiting component of telomerase, is expressed in most malignant tumors, but it is not found in most normal somatic cells. Here, we report a real-time and noninvasive method to monitor tumor response to a lentivirus-based hTERT-conditional suicidal gene therapy. METHODS In this study, we constructed a lentivirus system in which an optimized hTERT promoter was used to drive the expression of the cytosine deaminase (CD) gene, one of the suicide genes, and a green fluorescent protein (GFP) reporter gene (pLenti-CD/GFP). The lentivirus was used to infect telomerase-positive or telomerase-negative cell lines. In vitro and in vivo experiments were conducted to analyze the dynamic processes of exogenous gene expression noninvasively in cell culture and living animals in real time via optical imaging. RESULTS The lentivirus was able to express the CD gene and GFP in telomerase-positive tumor cells and significantly decrease cell proliferation after the use of prodrug 5-flucytosine. However, it could not express GFP and CD in telomerase-negative cell lines, nor could it induce any suicidal effect in those cells. The in vivo study showed that telomerase-positive tumors can be visualized after intratumor injection of the lentivirus in tumor-bearing nude mice via an optical imaging system. Significant tumor growth suppression was observed in telomerase-positive tumors. CONCLUSIONS Collectively, this technology provides a valuable, noninvasive method to evaluate the real-time therapeutic response of tumors in vivo.
Collapse
Affiliation(s)
- Song-Tao Yu
- Institute of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Correction: An Optimized Telomerase-Specific Lentivirus for Optical Imaging of Tumors. Cancer Res 2010. [DOI: 10.1158/0008-5472.can-10-3753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|