1
|
Zarska M, Novak O, Jakubcova T, Novotny F, Urbancokova A, Havel F, Novak J, Raabova H, Musilek K, Filimonenko V, Bartek J, Proska J, Hodny Z. Photothermal induction of pyroptosis in malignant glioma spheroids using (16-mercaptohexadecyl)trimethylammonium bromide-modified cationic gold nanorods. Colloids Surf B Biointerfaces 2024; 243:114128. [PMID: 39094210 DOI: 10.1016/j.colsurfb.2024.114128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/04/2024]
Abstract
Plasmonic photothermal therapy (PPTT) employing plasmonic gold nanorods (GNRs) presents a potent strategy for eradication of tumors including aggressive brain gliomas. Despite its promise, there is a pressing need for a more comprehensive evaluation of PPTT using sophisticated in vitro models that closely resemble tumor tissues, thereby facilitating the elucidation of therapeutic mechanisms. In this study, we exposed 3D glioma spheroids (tumoroids) to (16-mercaptohexadecyl)trimethylammonium bromide-functionalized gold nanorods (MTAB-GNRs) and a near-infrared (NIR) laser. We demonstrate that the photothermal effect can be fine-tuned by adjusting the nanoparticle concentration and laser power. Depending on the selected parameters, the laser can trigger either regulated or non-regulated cell death (necrosis) in both mouse GL261 and human U-87 MG glioma cell lines, accompanied by translocation of phosphatidylserine in the membrane. Our investigation into the mechanism of regulated cell death induced by PPTT revealed an absence of markers associated with classical apoptosis pathways, such as cleaved caspase 3. Instead, we observed the presence of cleaved caspase 1, gasdermin D, and elevated levels of NLRP3 in NIR-irradiated tumoroids, indicating the activation of pyroptosis. This finding correlates with previous observations of lysosomal accumulation of MTAB-GNRs and the known lysosomal pathway of pyroptosis activation. We further confirmed the absence of toxic breakdown products of GNRs using electron microscopy, which showed no melting or fragmentation of gold nanoparticles under the conditions causing regulated cell death. In conclusion, PPTT using coated gold nanorods offers significant potential for glioma cell elimination occurring through the activation of pyroptosis rather than classical apoptosis pathways.
Collapse
Affiliation(s)
- Monika Zarska
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.
| | - Ondrej Novak
- Department of Physiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Tereza Jakubcova
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Filip Novotny
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic; Department of Physiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Alexandra Urbancokova
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Filip Havel
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic; Department of Laser Physics and Photonics, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| | - Josef Novak
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Helena Raabova
- Electron Microscopy Core Facility, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Kamil Musilek
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic; Biomedical Research Center, University Hospital, Hradec Kralove, Czech Republic
| | - Vlada Filimonenko
- Electron Microscopy Core Facility, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic; Laboratory of Biology of the Cell Nucleus, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jiri Bartek
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic; Genome Integrity Group, Danish Cancer Institute, Danish Cancer Society, Copenhagen, Denmark; Department of Medical Biochemistry and Biophysics, Science For Life Laboratory, Division of Genome Biology, Karolinska Institute, Stockholm, Sweden
| | - Jan Proska
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic; Department of Laser Physics and Photonics, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| | - Zdenek Hodny
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
2
|
Jackson MR, Richards AR, Oladipupo ABA, Chahal SK, Caragher S, Chalmers AJ, Gomez-Roman N. ClonoScreen3D - A Novel 3-Dimensional Clonogenic Screening Platform for Identification of Radiosensitizers for Glioblastoma. Int J Radiat Oncol Biol Phys 2024; 120:162-177. [PMID: 38493899 DOI: 10.1016/j.ijrobp.2024.02.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/13/2024] [Accepted: 02/18/2024] [Indexed: 03/19/2024]
Abstract
PURPOSE Glioblastoma (GBM) is a lethal brain tumor. Standard-of-care treatment comprising surgery, radiation, and chemotherapy results in median survival rates of 12 to 15 months. Molecular-targeted agents identified using conventional 2-dimensional (2D) in vitro models of GBM have failed to improve outcome in patients, rendering such models inadequate for therapeutic target identification. A previously developed 3D GBM in vitro model that recapitulates key GBM clinical features and responses to molecular therapies was investigated for utility for screening novel radiation-drug combinations using gold-standard clonogenic survival as readout. METHODS AND MATERIALS Patient-derived GBM cell lines were optimized for inclusion in a 96-well plate 3D clonogenic screening platform, ClonoScreen3D. Radiation responses of GBM cells in this system were highly reproducible and comparable to those observed in low-throughout 3D assays. The screen methodology provided quantification of candidate drug single agent activity (half maximal effective concentration or EC50) and the interaction between drug and radiation (radiation interaction ratio). RESULTS The poly(ADP-ribose) polymerase inhibitors talazoparib, rucaparib, and olaparib each showed a significant interaction with radiation by ClonoScreen3D and were subsequently confirmed as true radiosensitizers by full clonogenic assay. Screening a panel of DNA damage response inhibitors revealed the expected propensity of these compounds to interact significantly with radiation (13/15 compounds). A second screen assessed a panel of compounds targeting pathways identified by transcriptomic analysis and demonstrated single agent activity and a previously unreported interaction with radiation of dinaciclib and cytarabine (radiation interaction ratio 1.28 and 1.90, respectively). These compounds were validated as radiosensitizers in full clonogenic assays (sensitizer enhancement ratio 1.47 and 1.35, respectively). CONCLUSIONS The ClonoScreen3D platform was demonstrated to be a robust method to screen for single agent and radiation-drug combination activity. Using gold-standard clonogenicity, this assay is a tool for identification of radiosensitizers. We anticipate this technology will accelerate identification of novel radiation-drug combinations with genuine translational value.
Collapse
Affiliation(s)
- Mark R Jackson
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Amanda R Richards
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | | | - Sandeep K Chahal
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Seamus Caragher
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, UK; Division of Plastic and Reconstructive Surgery, Department of Surgery, Massachusetts General Hospital, Massachussetts, USA
| | - Anthony J Chalmers
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Natividad Gomez-Roman
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, UK; Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK.
| |
Collapse
|
3
|
Reuvers TGA, Grandia V, Brandt RMC, Arab M, Maas SLN, Bos EM, Nonnekens J. Investigating the Radiobiological Response to Peptide Receptor Radionuclide Therapy Using Patient-Derived Meningioma Spheroids. Cancers (Basel) 2024; 16:2515. [PMID: 39061156 PMCID: PMC11275064 DOI: 10.3390/cancers16142515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/07/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Peptide receptor radionuclide therapy (PRRT) using 177Lu-DOTA-TATE has recently been evaluated for the treatment of meningioma patients. However, current knowledge of the underlying radiation biology is limited, in part due to the lack of appropriate in vitro models. Here, we demonstrate proof-of-concept of a meningioma patient-derived 3D culture model to assess the short-term response to radiation therapies such as PRRT and external beam radiotherapy (EBRT). We established short-term cultures (1 week) for 16 meningiomas with high efficiency and yield. In general, meningioma spheroids retained characteristics of the parental tumor during the initial days of culturing. For a subset of tumors, clear changes towards a more aggressive phenotype were visible over time, indicating that the culture method induced dedifferentiation of meningioma cells. To assess PRRT efficacy, we demonstrated specific uptake of 177Lu-DOTA-TATE via somatostatin receptor subtype 2 (SSTR2), which was highly overexpressed in the majority of tumor samples. PRRT induced DNA damage which was detectable for an extended timeframe as compared to EBRT. Interestingly, levels of DNA damage in spheroids after PRRT correlated with SSTR2-expression levels of parental tumors. Our patient-derived meningioma culture model can be used to assess the short-term response to PRRT and EBRT in radiobiological studies. Further improvement of this model should pave the way towards the development of a relevant culture model for assessment of the long-term response to radiation and, potentially, individual patient responses to PRRT and EBRT.
Collapse
Affiliation(s)
- Thom G A Reuvers
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Vivian Grandia
- Department of Neurosurgery, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Renata M C Brandt
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Majd Arab
- Department of Neurosurgery, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Sybren L N Maas
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- Department of Pathology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
| | - Eelke M Bos
- Department of Neurosurgery, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Julie Nonnekens
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
4
|
Korovina I, Elser M, Borodins O, Seifert M, Willers H, Cordes N. β1 integrin mediates unresponsiveness to PI3Kα inhibition for radiochemosensitization of 3D HNSCC models. Biomed Pharmacother 2024; 171:116217. [PMID: 38286037 DOI: 10.1016/j.biopha.2024.116217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/10/2024] [Accepted: 01/22/2024] [Indexed: 01/31/2024] Open
Abstract
Phosphoinositide 3-kinase (PI3K)-α represents a key intracellular signal transducer involved in the regulation of key cell functions such as cell survival and proliferation. Excessive activation of PI3Kα is considered one of the major determinants of cancer therapy resistance. Despite preclinical and clinical evaluation of PI3Kα inhibitors in various tumor entities, including head and neck squamous cell carcinoma (HNSCC), it remains elusive how conventional radiochemotherapy can be enhanced by concurrent PI3K inhibitors and how PI3K deactivation mechanistically exerts its effects. Here, we investigated the radiochemosensitizing potential and adaptation mechanisms of four PI3K inhibitors, Alpelisib, Copanlisib, AZD8186, and Idelalisib in eight HNSCC models grown under physiological, three-dimensional matrix conditions. We demonstrate that Alpelisib, Copanlisib and AZD8186 but not Idelalisib enhance radio- and radiochemosensitivity in the majority of HNSCC cell models (= responders) in a manner independent of PIK3CA mutation status. However, Alpelisib promotes MAPK signaling in non-responders compared to responders without profound impact on Akt, NFκB, TGFβ, JAK/STAT signaling and DNA repair. Bioinformatic analyses identified unique gene mutations associated with extracellular matrix to be more frequent in non-responder cell models than in responders. Finally, we demonstrate that targeting of the cell adhesion molecule β1 integrin on top of Alpelisib sensitizes non-responders to radiochemotherapy. Taken together, our study demonstrates the sensitizing potential of Alpelisib and other PI3K inhibitors in HNSCC models and uncovers a novel β1 integrin-dependent mechanism that may prove useful in overcoming resistance to PI3K inhibitors.
Collapse
Affiliation(s)
- Irina Korovina
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
| | - Marc Elser
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Olegs Borodins
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
| | - Michael Seifert
- Institute for Medical Informatics and Biometry (IMB), Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; National Center for Tumor Diseases (NCT), Partner Site Dresden, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Henning Willers
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Nils Cordes
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany; National Center for Tumor Diseases (NCT), Partner Site Dresden, German Cancer Research Center (DKFZ), Heidelberg, Germany; German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Radiotherapy and Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
5
|
Arutyunyan I, Jumaniyazova E, Makarov A, Fatkhudinov T. In Vitro Models of Head and Neck Cancer: From Primitive to Most Advanced. J Pers Med 2023; 13:1575. [PMID: 38003890 PMCID: PMC10672510 DOI: 10.3390/jpm13111575] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
For several decades now, researchers have been trying to answer the demand of clinical oncologists to create an ideal preclinical model of head and neck squamous cell carcinoma (HNSCC) that is accessible, reproducible, and relevant. Over the past years, the development of cellular technologies has naturally allowed us to move from primitive short-lived primary 2D cell cultures to complex patient-derived 3D models that reproduce the cellular composition, architecture, mutational, or viral load of native tumor tissue. Depending on the tasks and capabilities, a scientific laboratory can choose from several types of models: primary cell cultures, immortalized cell lines, spheroids or heterospheroids, tissue engineering models, bioprinted models, organoids, tumor explants, and histocultures. HNSCC in vitro models make it possible to screen agents with potential antitumor activity, study the contribution of the tumor microenvironment to its progression and metastasis, determine the prognostic significance of individual biomarkers (including using genetic engineering methods), study the effect of viral infection on the pathogenesis of the disease, and adjust treatment tactics for a specific patient or groups of patients. Promising experimental results have created a scientific basis for the registration of several clinical studies using HNSCC in vitro models.
Collapse
Affiliation(s)
- Irina Arutyunyan
- Research Institute of Molecular and Cellular Medicine, RUDN University, 6 Miklukho-Maklaya Street, 117198 Moscow, Russia; (I.A.); (A.M.); (T.F.)
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov Ministry of Healthcare of the Russian Federation, 4 Oparina Street, 117997 Moscow, Russia
| | - Enar Jumaniyazova
- Research Institute of Molecular and Cellular Medicine, RUDN University, 6 Miklukho-Maklaya Street, 117198 Moscow, Russia; (I.A.); (A.M.); (T.F.)
| | - Andrey Makarov
- Research Institute of Molecular and Cellular Medicine, RUDN University, 6 Miklukho-Maklaya Street, 117198 Moscow, Russia; (I.A.); (A.M.); (T.F.)
- Histology Department, Pirogov Russian National Research Medical University, Ministry of Healthcare of the Russian Federation, 117997 Moscow, Russia
| | - Timur Fatkhudinov
- Research Institute of Molecular and Cellular Medicine, RUDN University, 6 Miklukho-Maklaya Street, 117198 Moscow, Russia; (I.A.); (A.M.); (T.F.)
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution Petrovsky National Research Centre of Surgery, 3 Tsyurupy Street, 117418 Moscow, Russia
| |
Collapse
|
6
|
Ahmed T. Biomaterial-based in vitro 3D modeling of glioblastoma multiforme. CANCER PATHOGENESIS AND THERAPY 2023; 1:177-194. [PMID: 38327839 PMCID: PMC10846340 DOI: 10.1016/j.cpt.2023.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/24/2022] [Accepted: 01/04/2023] [Indexed: 02/09/2024]
Abstract
Adult-onset brain cancers, such as glioblastomas, are particularly lethal. People with glioblastoma multiforme (GBM) do not anticipate living for more than 15 months if there is no cure. The results of conventional treatments over the past 20 years have been underwhelming. Tumor aggressiveness, location, and lack of systemic therapies that can penetrate the blood-brain barrier are all contributing factors. For GBM treatments that appear promising in preclinical studies, there is a considerable rate of failure in phase I and II clinical trials. Unfortunately, access becomes impossible due to the intricate architecture of tumors. In vitro, bioengineered cancer models are currently being used by researchers to study disease development, test novel therapies, and advance specialized medications. Many different techniques for creating in vitro systems have arisen over the past few decades due to developments in cellular and tissue engineering. Later-stage research may yield better results if in vitro models that resemble brain tissue and the blood-brain barrier are used. With the use of 3D preclinical models made available by biomaterials, researchers have discovered that it is possible to overcome these limitations. Innovative in vitro models for the treatment of GBM are possible using biomaterials and novel drug carriers. This review discusses the benefits and drawbacks of 3D in vitro glioblastoma modeling systems.
Collapse
Affiliation(s)
- Tanvir Ahmed
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, 1229, Bangladesh
| |
Collapse
|
7
|
Antonelli F. 3D Cell Models in Radiobiology: Improving the Predictive Value of In Vitro Research. Int J Mol Sci 2023; 24:10620. [PMID: 37445795 DOI: 10.3390/ijms241310620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Cancer is intrinsically complex, comprising both heterogeneous cellular composition and extracellular matrix. In vitro cancer research models have been widely used in the past to model and study cancer. Although two-dimensional (2D) cell culture models have traditionally been used for cancer research, they have many limitations, such as the disturbance of interactions between cellular and extracellular environments and changes in cell morphology, polarity, division mechanism, differentiation and cell motion. Moreover, 2D cell models are usually monotypic. This implies that 2D tumor models are ineffective at accurately recapitulating complex aspects of tumor cell growth, as well as their radiation responses. Over the past decade there has been significant uptake of three-dimensional (3D) in vitro models by cancer researchers, highlighting a complementary model for studies of radiation effects on tumors, especially in conjunction with chemotherapy. The introduction of 3D cell culture approaches aims to model in vivo tissue interactions with radiation by positioning itself halfway between 2D cell and animal models, and thus opening up new possibilities in the study of radiation response mechanisms of healthy and tumor tissues.
Collapse
Affiliation(s)
- Francesca Antonelli
- Laboratory of Biomedical Technologies, Division of Health Protection Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), 00123 Rome, Italy
| |
Collapse
|
8
|
Neuer AL, Vogel A, Gogos A, Kissling VM, Tsolaki E, Herrmann IK. Metal-Organic Framework Mediated Radio-Enhancement Assessed in High-Throughput-Compatible 3D Tumor Spheroid Co-Cultures. Adv Biol (Weinh) 2023:e2300075. [PMID: 37178330 DOI: 10.1002/adbi.202300075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/11/2023] [Indexed: 05/15/2023]
Abstract
Inorganic nanomaterials have gained increasing attention in radiation oncology, owing to their radiation therapy enhancing properties. To accelerate candidate material selection and overcome the disconnect between conventional 2D cell culture and in vivo findings, screening platforms unifying high-throughput with physiologically relevant endpoint analysis based on 3D in vitro models are promising. Here, a 3D tumor spheroid co-culture model based on cancerous and healthy human cells is presented for the concurrent assessment of radio-enhancement efficacy, toxicity, and intratissural biodistribution with full ultrastructural context of radioenhancer candidate materials. Its potential for rapid candidate materials screening is showcased based on the example of nano-sized metal-organic frameworks (nMOFs) and direct benchmarking against gold nanoparticles (the current "gold standard"). Dose enhancement factors (DEFs) ranging between 1.4 and 1.8 are measured for Hf-, Ti-, TiZr-, and Au-based materials in 3D tissues and are overall lower than in 2D cell cultures, where DEF values exceeding 2 are found. In summary, the presented co-cultured tumor spheroid-healthy fibroblast model with tissue-like characteristics may serve as high-throughput platform enabling rapid, cell line-specific endpoint analysis for therapeutic efficacy and toxicity assessment, as well as accelerated radio-enhancer candidate screening.
Collapse
Affiliation(s)
- Anna Lena Neuer
- Laboratory for Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland
- Nanoparticle Systems Engineering Laboratory, Institute of Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, Zurich, 8092, Switzerland
| | - Alexandra Vogel
- Laboratory for Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland
| | - Alexander Gogos
- Laboratory for Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland
- Nanoparticle Systems Engineering Laboratory, Institute of Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, Zurich, 8092, Switzerland
| | - Vera M Kissling
- Laboratory for Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland
| | - Elena Tsolaki
- Laboratory for Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland
- Nanoparticle Systems Engineering Laboratory, Institute of Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, Zurich, 8092, Switzerland
| | - Inge K Herrmann
- Laboratory for Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland
- Nanoparticle Systems Engineering Laboratory, Institute of Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, Zurich, 8092, Switzerland
| |
Collapse
|
9
|
Pawlowski KD, Duffy JT, Babak MV, Balyasnikova IV. Modeling glioblastoma complexity with organoids for personalized treatments. Trends Mol Med 2023; 29:282-296. [PMID: 36805210 PMCID: PMC11101135 DOI: 10.1016/j.molmed.2023.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/23/2022] [Accepted: 01/12/2023] [Indexed: 02/17/2023]
Abstract
Glioblastoma (GBM) remains a fatal diagnosis despite the current standard of care of maximal surgical resection, radiation, and temozolomide (TMZ) therapy. One aspect that impedes drug development is the lack of an appropriate model representative of the complexity of patient tumors. Brain organoids derived from cell culture techniques provide a robust, easily manipulatable, and high-throughput model for GBM. In this review, we highlight recent progress in developing GBM organoids (GBOs) with a focus on generating the GBM microenvironment (i.e., stem cells, vasculature, and immune cells) recapitulating human disease. Finally, we also discuss the use of organoids as a screening tool in drug development for GBM.
Collapse
Affiliation(s)
- Kristen D Pawlowski
- Rush Medical College, Rush University Medical Center, Chicago, IL 60612, USA; Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Joseph T Duffy
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Maria V Babak
- Drug Discovery Lab, Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, SAR 999077, People's Republic of China.
| | - Irina V Balyasnikova
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
10
|
Schnöller LE, Piehlmaier D, Weber P, Brix N, Fleischmann DF, Nieto AE, Selmansberger M, Heider T, Hess J, Niyazi M, Belka C, Lauber K, Unger K, Orth M. Systematic in vitro analysis of therapy resistance in glioblastoma cell lines by integration of clonogenic survival data with multi-level molecular data. Radiat Oncol 2023; 18:51. [PMID: 36906590 PMCID: PMC10007763 DOI: 10.1186/s13014-023-02241-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/06/2023] [Indexed: 03/13/2023] Open
Abstract
Despite intensive basic scientific, translational, and clinical efforts in the last decades, glioblastoma remains a devastating disease with a highly dismal prognosis. Apart from the implementation of temozolomide into the clinical routine, novel treatment approaches have largely failed, emphasizing the need for systematic examination of glioblastoma therapy resistance in order to identify major drivers and thus, potential vulnerabilities for therapeutic intervention. Recently, we provided proof-of-concept for the systematic identification of combined modality radiochemotherapy treatment vulnerabilities via integration of clonogenic survival data upon radio(chemo)therapy with low-density transcriptomic profiling data in a panel of established human glioblastoma cell lines. Here, we expand this approach to multiple molecular levels, including genomic copy number, spectral karyotyping, DNA methylation, and transcriptome data. Correlation of transcriptome data with inherent therapy resistance on the single gene level yielded several candidates that were so far underappreciated in this context and for which clinically approved drugs are readily available, such as the androgen receptor (AR). Gene set enrichment analyses confirmed these results, and identified additional gene sets, including reactive oxygen species detoxification, mammalian target of rapamycin complex 1 (MTORC1) signaling, and ferroptosis/autophagy-related regulatory circuits to be associated with inherent therapy resistance in glioblastoma cells. To identify pharmacologically accessible genes within those gene sets, leading edge analyses were performed yielding candidates with functions in thioredoxin/peroxiredoxin metabolism, glutathione synthesis, chaperoning of proteins, prolyl hydroxylation, proteasome function, and DNA synthesis/repair. Our study thus confirms previously nominated targets for mechanism-based multi-modal glioblastoma therapy, provides proof-of-concept for this workflow of multi-level data integration, and identifies novel candidates for which pharmacological inhibitors are readily available and whose targeting in combination with radio(chemo)therapy deserves further examination. In addition, our study also reveals that the presented workflow requires mRNA expression data, rather than genomic copy number or DNA methylation data, since no stringent correlation between these data levels could be observed. Finally, the data sets generated in the present study, including functional and multi-level molecular data of commonly used glioblastoma cell lines, represent a valuable toolbox for other researchers in the field of glioblastoma therapy resistance.
Collapse
Affiliation(s)
- Leon Emanuel Schnöller
- Department of Radiation Oncology, University Hospital, LMU München, Marchioninistrasse 15, 81377, Munich, Germany
| | - Daniel Piehlmaier
- Research Unit Radiation Cytogenetics (ZYTO), Helmholtz Center Munich, German Research Center for Environmental Health GmbH, 85764, Neuherberg, Germany
| | - Peter Weber
- Research Unit Radiation Cytogenetics (ZYTO), Helmholtz Center Munich, German Research Center for Environmental Health GmbH, 85764, Neuherberg, Germany.,Clinical Cooperation Group 'Personalized Radiotherapy in Head and Neck Cancer' Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Nikko Brix
- Department of Radiation Oncology, University Hospital, LMU München, Marchioninistrasse 15, 81377, Munich, Germany
| | - Daniel Felix Fleischmann
- Department of Radiation Oncology, University Hospital, LMU München, Marchioninistrasse 15, 81377, Munich, Germany.,German Cancer Consortium (DKTK), Munich, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Alexander Edward Nieto
- Department of Radiation Oncology, University Hospital, LMU München, Marchioninistrasse 15, 81377, Munich, Germany
| | - Martin Selmansberger
- Research Unit Radiation Cytogenetics (ZYTO), Helmholtz Center Munich, German Research Center for Environmental Health GmbH, 85764, Neuherberg, Germany
| | - Theresa Heider
- Research Unit Radiation Cytogenetics (ZYTO), Helmholtz Center Munich, German Research Center for Environmental Health GmbH, 85764, Neuherberg, Germany
| | - Julia Hess
- Research Unit Radiation Cytogenetics (ZYTO), Helmholtz Center Munich, German Research Center for Environmental Health GmbH, 85764, Neuherberg, Germany.,Clinical Cooperation Group 'Personalized Radiotherapy in Head and Neck Cancer' Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Maximilian Niyazi
- Department of Radiation Oncology, University Hospital, LMU München, Marchioninistrasse 15, 81377, Munich, Germany.,German Cancer Consortium (DKTK), Munich, Germany.,Bavarian Cancer Research Center (BKFZ), Munich, Germany
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, LMU München, Marchioninistrasse 15, 81377, Munich, Germany.,Clinical Cooperation Group 'Personalized Radiotherapy in Head and Neck Cancer' Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Neuherberg, Germany.,German Cancer Consortium (DKTK), Munich, Germany.,Bavarian Cancer Research Center (BKFZ), Munich, Germany
| | - Kirsten Lauber
- Department of Radiation Oncology, University Hospital, LMU München, Marchioninistrasse 15, 81377, Munich, Germany.,Clinical Cooperation Group 'Personalized Radiotherapy in Head and Neck Cancer' Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Neuherberg, Germany.,German Cancer Consortium (DKTK), Munich, Germany
| | - Kristian Unger
- Research Unit Radiation Cytogenetics (ZYTO), Helmholtz Center Munich, German Research Center for Environmental Health GmbH, 85764, Neuherberg, Germany. .,Clinical Cooperation Group 'Personalized Radiotherapy in Head and Neck Cancer' Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Neuherberg, Germany.
| | - Michael Orth
- Department of Radiation Oncology, University Hospital, LMU München, Marchioninistrasse 15, 81377, Munich, Germany.
| |
Collapse
|
11
|
Use of 3D Spheroid Models for the Assessment of RT Response in Head and Neck Cancer. Int J Mol Sci 2023; 24:ijms24043763. [PMID: 36835181 PMCID: PMC9963786 DOI: 10.3390/ijms24043763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Radiotherapy (RT) is a key player in the treatment of head and neck cancer (HNC). The RT response, however, is variable and influenced by multiple tumoral and tumor microenvironmental factors, such as human papillomavirus (HPV) infections and hypoxia. To investigate the biological mechanisms behind these variable responses, preclinical models are crucial. Up till now, 2D clonogenic and in vivo assays have remained the gold standard, although the popularity of 3D models is rising. In this study, we investigate the use of 3D spheroid models as a preclinical tool for radiobiological research by comparing the RT response of two HPV-positive and two HPV-negative HNC spheroid models to the RT response of their corresponding 2D and in vivo models. We demonstrate that HPV-positive spheroids keep their higher intrinsic radiosensitivity when compared to HPV-negative spheroids. A good correlation is found in the RT response between HPV-positive SCC154 and HPV-negative CAL27 spheroids and their respective xenografts. In addition, 3D spheroids are able to capture the heterogeneity of RT responses within HPV-positive and HPV-negative models. Moreover, we demonstrate the potential use of 3D spheroids in the study of the mechanisms underlying these RT responses in a spatial manner by whole-mount Ki-67 and pimonidazole staining. Overall, our results show that 3D spheroids are a promising model to assess the RT response in HNC.
Collapse
|
12
|
Li D, Thomas C, Shrivastava N, Gersten A, Gadsden N, Schlecht N, Kawachi N, Schiff BA, Smith RV, Rosenblatt G, Augustine S, Gavathiotis E, Burk R, Prystowsky MB, Guha C, Mehta V, Ow TJ. Establishment of a diverse head and neck squamous cancer cell bank using conditional reprogramming culture methods. J Med Virol 2023; 95:e28388. [PMID: 36477880 PMCID: PMC10168123 DOI: 10.1002/jmv.28388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 12/14/2022]
Abstract
Most laboratory models of head and neck squamous cell cancer (HNSCC) rely on established immortalized cell lines, which carry inherent bias due to selection and clonality. We established a robust panel of HNSCC tumor cultures using a "conditional reprogramming" (CR) method, which utilizes a rho kinase inhibitor (Y-27632) and co-culture with irradiated fibroblast (J2 strain) feeder cells to support indefinite tumor cell survival. Sixteen CR cultures were successfully generated from 19 consecutively enrolled ethnically and racially diverse patients with HNSCC at a tertiary care center in the Bronx, NY. Of the 16 CR cultures, 9/16 were derived from the oral cavity, 4/16 were derived from the oropharynx, and 3/16 were from laryngeal carcinomas. Short tandem repeat (STR) profiling was used to validate culture against patient tumor tissue DNA. All CR cultures expressed ΔNp63 and cytokeratin 5/6, which are markers of squamous identity. Human papillomavirus (HPV) testing was assessed utilizing clinical p16 staining on primary tumors, reverse transcription polymerase chain reaction (RT-PCR) of HPV16/18-specific viral oncogenes E6 and E7 in RNA extracted from tumor samples, and HPV DNA sequencing. Three of four oropharyngeal tumors were p16 and HPV-positive and maintained HPV in culture. CR cultures were able to establish three-dimensional spheroid and murine flank and orthotopic tongue models. CR methods can be readily applied to all HNSCC tumors regardless of patient characteristics, disease site, and molecular background, providing a translational research model that properly includes patient and tumor diversity.
Collapse
Affiliation(s)
- Daniel Li
- Department of Pathology, Montefiore Medical Center / Albert Einstein College of Medicine, Bronx, NY, USA
| | - Carlos Thomas
- Department of Pathology, Montefiore Medical Center / Albert Einstein College of Medicine, Bronx, NY, USA
| | - Nitisha Shrivastava
- Department of Pathology, Montefiore Medical Center / Albert Einstein College of Medicine, Bronx, NY, USA
| | - Adam Gersten
- Department of Pathology, Montefiore Medical Center / Albert Einstein College of Medicine, Bronx, NY, USA
| | - Nicholas Gadsden
- Department of Anesthesiology, Columbia University, New York, NY, USA
| | - Nicolas Schlecht
- Department of Pathology, Montefiore Medical Center / Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Cancer Prevention & Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Nicole Kawachi
- Department of Pathology, Montefiore Medical Center / Albert Einstein College of Medicine, Bronx, NY, USA
| | - Bradley A. Schiff
- Department of Otorhinolaryngology - Head and Neck Surgery, Montefiore Medical Center / Albert Einstein College of Medicine, Bronx, NY, USA
| | - Richard V. Smith
- Department of Otorhinolaryngology - Head and Neck Surgery, Montefiore Medical Center / Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Surgery, Montefiore Medical Center/ Albert Einstein College of Medicine, Bronx, NY USA
| | - Gregory Rosenblatt
- Department of Pathology, Montefiore Medical Center / Albert Einstein College of Medicine, Bronx, NY, USA
| | - Stelby Augustine
- Department of Otorhinolaryngology - Head and Neck Surgery, Montefiore Medical Center / Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Robert Burk
- Department of Pediatrics, Montefiore Medical Center/ Albert Einstein College of Medicine, Bronx, NY USA
| | - Michael B. Prystowsky
- Department of Pathology, Montefiore Medical Center / Albert Einstein College of Medicine, Bronx, NY, USA
| | - Chandan Guha
- Department of Radiation Oncology, Montefiore Medical Center / Albert Einstein College of Medicine, Bronx, NY, USA
| | - Vikas Mehta
- Department of Otorhinolaryngology - Head and Neck Surgery, Montefiore Medical Center / Albert Einstein College of Medicine, Bronx, NY, USA
| | - Thomas J Ow
- Department of Pathology, Montefiore Medical Center / Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Otorhinolaryngology - Head and Neck Surgery, Montefiore Medical Center / Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
13
|
Tenschert E, Kern J, Affolter A, Rotter N, Lammert A. Optimisation of Conditions for the Formation of Spheroids of Head and Neck Squamous Cell Carcinoma Cell Lines for Use as Animal Alternatives. Altern Lab Anim 2022; 50:414-422. [PMID: 36263982 DOI: 10.1177/02611929221135042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The use of in vitro 3-D cell culture models in cancer research has yielded substantial gains in knowledge on various aspects of tumour biology. Such cell culture models could be useful in the study of head and neck squamous cell carcinoma (HNSCC), where mimicking intratumoral and intertumoral heterogeneity is especially challenging. Our research aims to establish 3-D spheroid models for HNSCC that reproduce in vitro the connections between tumour cells and the surrounding microenvironment. The aims of this study were to determine the optimal conditions for the culture and use of spheroids from HNSCC cell lines and optimal timepoint for using the spheroids obtained, to evaluate the effects of coculture with tumour-specific fibroblasts on spheroid formation, and to investigate spheroid responses to cisplatin treatment. Four HNSCC cell lines (UMSCC-11A, UMSCC-11B, UMSCC-22B and UD-SCC-01) were seeded in flat or round bottom well ultra-low attachment spheroid plates, and spheroid formation was evaluated. The HNSCC cell lines were then cocultured with stromal cells of the tumour microenvironment, producing an accelerated formation of dense spheroids. The viability of cells within the spheroids was assessed during cell culture by using a fluorescent dye. Our results suggest that: three out of the four cell lines tested could form usable spheroids with acceptable viability; the addition of stromal cells did not improve the number of viable cells; and the use of round bottom well plates supported the formation of a single spheroid, whereas flat bottom well plates led to the formation of multiple spheroids of different sizes.
Collapse
Affiliation(s)
- Esther Tenschert
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Mannheim, Medical Faculty Mannheim, University Heidelberg, Mannheim, Germany
| | - Johann Kern
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Mannheim, Medical Faculty Mannheim, University Heidelberg, Mannheim, Germany
| | - Annette Affolter
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Mannheim, Medical Faculty Mannheim, University Heidelberg, Mannheim, Germany
| | - Nicole Rotter
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Mannheim, Medical Faculty Mannheim, University Heidelberg, Mannheim, Germany
| | - Anne Lammert
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Mannheim, Medical Faculty Mannheim, University Heidelberg, Mannheim, Germany
| |
Collapse
|
14
|
Lacombe J, Zenhausern F. Effect of mechanical forces on cellular response to radiation. Radiother Oncol 2022; 176:187-198. [PMID: 36228760 DOI: 10.1016/j.radonc.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/08/2022] [Accepted: 10/05/2022] [Indexed: 12/14/2022]
Abstract
While the cellular interactions and biochemical signaling has been investigated for long and showed to play a major role in the cell's fate, it is now also evident that mechanical forces continuously applied to the cells in their microenvironment are as important for tissue homeostasis. Mechanical cues are emerging as key regulators of cellular drug response and we aimed to demonstrate in this review that such effects should also be considered vital for the cellular response to radiation. In order to explore the mechanobiology of the radiation response, we reviewed the main mechanoreceptors and transducers, including integrin-mediated adhesion, YAP/TAZ pathways, Wnt/β-catenin signaling, ion channels and G protein-coupled receptors and showed their implication in the modulation of cellular radiosensitivity. We then discussed the current studies that investigated a direct effect of mechanical stress, including extracellular matrix stiffness, shear stress and mechanical strain, on radiation response of cancer and normal cells and showed through preliminary results that such stress effectively can alter cell response after irradiation. However, we also highlighted the limitations of these studies and emphasized some of the contradictory data, demonstrating that the effect of mechanical cues could involve complex interactions and potential crosstalk with numerous cellular processes also affected by irradiation. Overall, mechanical forces alter radiation response and although additional studies are required to deeply understand the underlying mechanisms, these effects should not be neglected in radiation research as they could reveal new fundamental knowledge for predicting radiosensitivity or understanding resistance to radiotherapy.
Collapse
Affiliation(s)
- Jerome Lacombe
- Center for Applied NanoBioscience and Medicine, College of Medicine Phoenix, University of Arizona, 475 North 5th Street, Phoenix, AZ 85004, USA; Department of Basic Medical Sciences, College of Medicine Phoenix, University of Arizona, 425 N 5th St, Phoenix, AZ 85004, USA.
| | - Frederic Zenhausern
- Center for Applied NanoBioscience and Medicine, College of Medicine Phoenix, University of Arizona, 475 North 5th Street, Phoenix, AZ 85004, USA; Department of Basic Medical Sciences, College of Medicine Phoenix, University of Arizona, 425 N 5th St, Phoenix, AZ 85004, USA; Department of Biomedical Engineering, College of Engineering, University of Arizona, 1127 E. James E. Rogers Way, Tucson, AZ 85721, USA.
| |
Collapse
|
15
|
Seliger B, Al-Samadi A, Yang B, Salo T, Wickenhauser C. In vitro models as tools for screening treatment options of head and neck cancer. Front Med (Lausanne) 2022; 9:971726. [PMID: 36160162 PMCID: PMC9489836 DOI: 10.3389/fmed.2022.971726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/09/2022] [Indexed: 12/24/2022] Open
Abstract
Various in vitro models using primary and established 2- and 3-dimensional cultures, multicellular tumor spheroids, standardized tumor slice cultures, tumor organoids, and microfluidic systems obtained from tumor lesions/biopsies of head and neck cancer (HNC) have been employed for exploring and monitoring treatment options. All of these in vitro models are to a different degree able to capture the diversity of tumors, recapitulate the disease genetically, histologically, and functionally and retain their tumorigenic potential upon xenotransplantation. The models were used for the characterization of the malignant features of the tumors and for in vitro screens of drugs approved for the treatment of HNC, including chemotherapy and radiotherapy as well as recently developed targeted therapies and immunotherapies, or for novel treatments not yet licensed for these tumor entities. The implementation of the best suitable model will enlarge our knowledge of the oncogenic properties of HNC, expand the drug repertoire and help to develop individually tailored treatment strategies resulting in the translation of these findings into the clinic. This review summarizes the different approaches using preclinical in vitro systems with their advantages and disadvantages and their implementation as preclinical platforms to predict disease course, evaluate biomarkers and test therapy efficacy.
Collapse
Affiliation(s)
- Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle, Germany
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
- *Correspondence: Barbara Seliger,
| | - Ahmed Al-Samadi
- Department of Oral and Maxillofacial Diseases, Clinicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Translational Immunology Research Program, Research Program Unit, University of Helsinki, Helsinki, Finland
| | - Bo Yang
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Tuula Salo
- Department of Oral and Maxillofacial Diseases, Clinicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Translational Immunology Research Program, Research Program Unit, University of Helsinki, Helsinki, Finland
- Cancer Research and Translational Medicine Research Unit, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Claudia Wickenhauser
- Institute of Pathology, Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
16
|
Biological Mechanisms to Reduce Radioresistance and Increase the Efficacy of Radiotherapy: State of the Art. Int J Mol Sci 2022; 23:ijms231810211. [PMID: 36142122 PMCID: PMC9499172 DOI: 10.3390/ijms231810211] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/25/2022] [Accepted: 09/02/2022] [Indexed: 12/02/2022] Open
Abstract
Cancer treatment with ionizing radiation (IR) is a well-established and effective clinical method to fight different types of tumors and is a palliative treatment to cure metastatic stages. Approximately half of all cancer patients undergo radiotherapy (RT) according to clinical protocols that employ two types of ionizing radiation: sparsely IR (i.e., X-rays) and densely IR (i.e., protons). Most cancer cells irradiated with therapeutic doses exhibit radio-induced cytotoxicity in terms of cell proliferation arrest and cell death by apoptosis. Nevertheless, despite the more tailored advances in RT protocols in the last few years, several tumors show a relatively high percentage of RT failure and tumor relapse due to their radioresistance. To counteract this extremely complex phenomenon and improve clinical protocols, several factors associated with radioresistance, of both a molecular and cellular nature, must be considered. Tumor genetics/epigenetics, tumor microenvironment, tumor metabolism, and the presence of non-malignant cells (i.e., fibroblast-associated cancer cells, macrophage-associated cancer cells, tumor-infiltrating lymphocytes, endothelial cells, cancer stem cells) are the main factors important in determining the tumor response to IR. Here, we attempt to provide an overview of how such factors can be taken advantage of in clinical strategies targeting radioresistant tumors.
Collapse
|
17
|
Potiron V, Delpon G, Ollivier L, Vaugier L, Doré M, Guimas V, Rio E, Thillays F, Llagostera C, Moignier A, Josset S, Chiavassa S, Perennec T, Supiot S. [Clinical research in radiation oncology: how to move from the laboratory to the patient?]. Cancer Radiother 2022; 26:808-813. [PMID: 35999162 DOI: 10.1016/j.canrad.2022.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 11/19/2022]
Abstract
Translational research in radiation oncology is undergoing intense development. An increasingly rapid transfer is taking place from the laboratory to the patients, both in the selection of patients who can benefit from radiotherapy and in the development of innovative irradiation strategies or the development of combinations with drugs. Accelerating the passage of discoveries from the laboratory to the clinic represents the ideal of any translational research program but requires taking into account the multiple obstacles that can slow this progress. The ambition of the RadioTransNet network, a project to structure preclinical research in radiation oncology in France, is precisely to promote scientific and clinical interactions at the interface of radiotherapy and radiobiology, in its preclinical positioning, in order to identify priorities for strategic research dedicated to innovation in radiotherapy. The multidisciplinary radiotherapy teams with experts in biology, medicine, medical physics, mathematics and engineering sciences are able to meet these new challenges which will allow these advances to be made available to patients as quickly as possible.
Collapse
Affiliation(s)
- V Potiron
- Institut de cancérologie de l'Ouest, boulevard Jacques-Monod, 44800 Saint-Herblain, France; Unité en sciences biologiques et biotechnologies, UMR CNRS 6286, 2, rue de la Houssinière, 44322 Nantes, France
| | - G Delpon
- Institut de cancérologie de l'Ouest, boulevard Jacques-Monod, 44800 Saint-Herblain, France; IMT Atlantique, UMR CNRS 6457/IN2P3, Subatech, laboratoire de physique subatomique et des technologies associées, Nantes, France
| | - L Ollivier
- Institut de cancérologie de l'Ouest, boulevard Jacques-Monod, 44800 Saint-Herblain, France
| | - L Vaugier
- Institut de cancérologie de l'Ouest, boulevard Jacques-Monod, 44800 Saint-Herblain, France
| | - M Doré
- Institut de cancérologie de l'Ouest, boulevard Jacques-Monod, 44800 Saint-Herblain, France
| | - V Guimas
- Institut de cancérologie de l'Ouest, boulevard Jacques-Monod, 44800 Saint-Herblain, France
| | - E Rio
- Institut de cancérologie de l'Ouest, boulevard Jacques-Monod, 44800 Saint-Herblain, France
| | - F Thillays
- Institut de cancérologie de l'Ouest, boulevard Jacques-Monod, 44800 Saint-Herblain, France
| | - C Llagostera
- Institut de cancérologie de l'Ouest, boulevard Jacques-Monod, 44800 Saint-Herblain, France
| | - A Moignier
- Institut de cancérologie de l'Ouest, boulevard Jacques-Monod, 44800 Saint-Herblain, France
| | - S Josset
- Institut de cancérologie de l'Ouest, boulevard Jacques-Monod, 44800 Saint-Herblain, France
| | - S Chiavassa
- Institut de cancérologie de l'Ouest, boulevard Jacques-Monod, 44800 Saint-Herblain, France; IMT Atlantique, UMR CNRS 6457/IN2P3, Subatech, laboratoire de physique subatomique et des technologies associées, Nantes, France
| | - T Perennec
- Institut de cancérologie de l'Ouest, boulevard Jacques-Monod, 44800 Saint-Herblain, France
| | - S Supiot
- Institut de cancérologie de l'Ouest, boulevard Jacques-Monod, 44800 Saint-Herblain, France; Unité en sciences biologiques et biotechnologies, UMR CNRS 6286, 2, rue de la Houssinière, 44322 Nantes, France.
| |
Collapse
|
18
|
Nanodosimetric Calculations of Radiation-Induced DNA Damage in a New Nucleus Geometrical Model Based on the Isochore Theory. Int J Mol Sci 2022; 23:ijms23073770. [PMID: 35409128 PMCID: PMC8998209 DOI: 10.3390/ijms23073770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 11/16/2022] Open
Abstract
Double-strand breaks (DSBs) in nuclear DNA represents radiation-induced damage that has been identified as particularly deleterious. Calculating this damage using Monte Carlo track structure modeling could be a suitable indicator to better assess and anticipate the side-effects of radiation therapy. However, as already demonstrated in previous work, the geometrical description of the nucleus and the DNA content used in the simulation significantly influence damage calculations. Therefore, in order to obtain accurate results, this geometry must be as realistic as possible. In this study, a new geometrical model of an endothelial cell nucleus and DNA distribution according to the isochore theory are presented and used in a Monte Carlo simulation chain based on the Geant4-DNA toolkit. In this theory, heterochromatin and euchromatin compaction are distributed along the genome according to five different families (L1, L2, H1, H2, and H3). Each of these families is associated with a different hetero/euchromatin rate related to its compaction level. In order to compare the results with those obtained using a previous nuclear geometry, simulations were performed for protons with linear energy transfers (LETs) of 4.29 keV/µm, 19.51 keV/µm, and 43.25 keV/µm. The organization of the chromatin fibers at different compaction levels linked to isochore families increased the DSB yield by 6-10%, and it allowed the most affected part of the genome to be identified. These new results indicate that the genome core is more radiosensitive than the genome desert, with a 3-8% increase in damage depending on the LET. This work highlights the importance of using realistic distributions of chromatin compaction levels to calculate radio-induced damage using Monte Carlo simulation methods.
Collapse
|
19
|
Eke I, Aryankalayil MJ, Bylicky MA, Makinde AY, Liotta L, Calvert V, Petricoin EF, Graves EE, Coleman CN. Radiotherapy alters expression of molecular targets in prostate cancer in a fractionation- and time-dependent manner. Sci Rep 2022; 12:3500. [PMID: 35241721 PMCID: PMC8894377 DOI: 10.1038/s41598-022-07394-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 02/11/2022] [Indexed: 12/13/2022] Open
Abstract
The efficacy of molecular targeted therapy depends on expression and enzymatic activity of the target molecules. As radiotherapy modulates gene expression and protein phosphorylation dependent on dose and fractionation, we analyzed the long-term effects of irradiation on the post-radiation efficacy of molecular targeted drugs. We irradiated prostate cancer cells either with a single dose (SD) of 10 Gy x-ray or a multifractionated (MF) regimen with 10 fractions of 1 Gy. Whole genome arrays and reverse phase protein microarrays were used to determine gene expression and protein phosphorylation. Additionally, we evaluated radiation-induced pathway activation with the Ingenuity Pathway Analysis software. To measure cell survival and sensitivity to clinically used molecular targeted drugs, we performed colony formation assays. We found increased activation of several pathways regulating important cell functions such as cell migration and cell survival at 24 h after MF irradiation or at 2 months after SD irradiation. Further, cells which survived a SD of 10 Gy showed a long-term upregulation and increased activity of multiple molecular targets including AKT, IGF-1R, VEGFR2, or MET, while HDAC expression was decreased. In line with this, 10 Gy SD cells were more sensitive to target inhibition with Capivasertib or Ipatasertib (AKTi), BMS-754807 (IGF-1Ri), or Foretinib (VEGFR2/METi), but less sensitive to Panobinostat or Vorinostat (HDACi). In summary, understanding the molecular short- and long-term changes after irradiation can aid in optimizing the efficacy of multimodal radiation oncology in combination with post-irradiation molecularly-targeted drug treatment and improving the outcome of prostate cancer patients.
Collapse
Affiliation(s)
- Iris Eke
- Department of Radiation Oncology, Center for Clinical Sciences Research (CCSR), Stanford University School of Medicine, 269 Campus Dr., Room 1260, Stanford, CA, 94305, USA.
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Molykutty J Aryankalayil
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Michelle A Bylicky
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Adeola Y Makinde
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lance Liotta
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, 20110, USA
| | - Valerie Calvert
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, 20110, USA
| | - Emanuel F Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, 20110, USA
| | - Edward E Graves
- Department of Radiation Oncology, Center for Clinical Sciences Research (CCSR), Stanford University School of Medicine, 269 Campus Dr., Room 1260, Stanford, CA, 94305, USA
| | - C Norman Coleman
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Radiation Research Program, National Cancer Institute, National Institutes of Health, Rockville, MD, 20850, USA
| |
Collapse
|
20
|
Liu X, Sun Q, Wang Q, Hu C, Chen X, Li H, Czajkowsky DM, Shao Z. Epithelial Cells in 2D and 3D Cultures Exhibit Large Differences in Higher-order Genomic Interactions. GENOMICS, PROTEOMICS & BIOINFORMATICS 2022; 20:101-109. [PMID: 33631432 PMCID: PMC9510857 DOI: 10.1016/j.gpb.2020.06.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 03/09/2020] [Accepted: 08/09/2020] [Indexed: 02/07/2023]
Abstract
Recent studies have characterized the genomic structures of many eukaryotic cells, often focusing on their relation to gene expression. However, these studies have largely investigated cells grown in 2D cultures, although the transcriptomes of 3D-cultured cells are generally closer to their in vivo phenotypes. To examine the effects of spatial constraints on chromosome conformation, we investigated the genomic architecture of mouse hepatocytes grown in 2D and 3D cultures using in situ Hi-C. Our results reveal significant differences in higher-order genomic interactions, notably in compartment identity and strength as well as in topologically associating domain (TAD)-TAD interactions, but only minor differences are found at the TAD level. Our RNA-seq analysis reveals an up-regulated expression of genes involved in physiological hepatocyte functions in the 3D-cultured cells. These genes are associated with a subset of structural changes, suggesting that differences in genomic structure are critically important for transcriptional regulation. However, there are also many structural differences that are not directly associated with changes in gene expression, whose cause remains to be determined. Overall, our results indicate that growth in 3D significantly alters higher-order genomic interactions, which may be consequential for a subset of genes that are important for the physiological functioning of the cell.
Collapse
Affiliation(s)
- Xin Liu
- State Key Laboratory for Oncogenes and Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qiu Sun
- Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qi Wang
- Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Science and Technology, Shanghai Key Laboratory of Signaling and Disease Research, Tongji University, Shanghai 200092, China
| | - Chuansheng Hu
- State Key Laboratory for Oncogenes and Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xuecheng Chen
- Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hua Li
- State Key Laboratory for Oncogenes and Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Daniel M Czajkowsky
- State Key Laboratory for Oncogenes and Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Zhifeng Shao
- State Key Laboratory for Oncogenes and Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
21
|
High-Throughput 3D Tumor Spheroid Array Platform for Evaluating Sensitivity of Proton-Drug Combinations. Int J Mol Sci 2022; 23:ijms23020587. [PMID: 35054773 PMCID: PMC8775525 DOI: 10.3390/ijms23020587] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/25/2021] [Accepted: 01/04/2022] [Indexed: 12/18/2022] Open
Abstract
Proton beam therapy (PBT) is a critical treatment modality for head and neck squamous cell carcinoma (HNSCC). However, not much is known about drug combinations that may improve the efficacy of PBT. This study aimed to test the feasibility of a three-dimensional (3D) tumor-spheroid-based high-throughput screening platform that could assess cellular sensitivity against PBT. Spheroids of two HNSCC cell lines—Fadu and Cal27—cultured with a mixture of Matrigel were arrayed on a 384-pillar/well plate, followed by exposure to graded doses of protons or targeted drugs including olaparib at various concentrations. Calcein staining of HNSCC spheroids revealed a dose-dependent decrease in cell viability for proton irradiation or multiple targeted drugs, and provided quantitative data that discriminated the sensitivity between the two HNSCC cell lines. The combined effect of protons and olaparib was assessed by calculating the combination index from the survival rates of 4 × 4 matrices, showing that Cal27 spheroids had greater synergy with olaparib than Fadu spheroids. In contrast, adavosertib did not synergize with protons in both spheroids. Taken together, we demonstrated that the 3D pillar/well array platform was a useful tool that provided rapid, quantitative data for evaluating sensitivity to PBT and drug combinations. Our results further supported that administration of the combination of PBT and olaparib may be an effective treatment strategy for HNSCC patients.
Collapse
|
22
|
Xiang XS, Li PC, Wang WQ, Liu L. Histone deacetylases: A novel class of therapeutic targets for pancreatic cancer. Biochim Biophys Acta Rev Cancer 2022; 1877:188676. [PMID: 35016922 DOI: 10.1016/j.bbcan.2022.188676] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/31/2021] [Accepted: 01/05/2022] [Indexed: 12/24/2022]
Abstract
Pancreatic cancer is the seventh leading cause of cancer death worldwide, with a low 5-year survival rate. Novel agents are urgently necessary to treat the main pathological type, known as pancreatic ductal carcinoma (PDAC). The dysregulation of histone deacetylases (HDACs) has been identified in association with PDAC, which can be more easily targeted by small molecular inhibitors than gene mutations and may represent a therapeutic breakthrough for PDAC. However, the contributions of HDACs to PDAC remain controversial, and pharmacokinetic challenges have limited the application of HDAC inhibitors (HDACis) in PDAC. This review summarizes the mechanisms associated with success and failure of HDACis in PDAC and discusses the recent progress made in HDACi development and application, such as combination therapies designed to enhance efficacy. More precise strategies involving HDACis might eventually improve the outcomes of PDAC treatment.
Collapse
Affiliation(s)
- Xue-Song Xiang
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Peng-Cheng Li
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wen-Quan Wang
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Liang Liu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
23
|
Carlos-Reyes A, Muñiz-Lino MA, Romero-Garcia S, López-Camarillo C, Hernández-de la Cruz ON. Biological Adaptations of Tumor Cells to Radiation Therapy. Front Oncol 2021; 11:718636. [PMID: 34900673 PMCID: PMC8652287 DOI: 10.3389/fonc.2021.718636] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 10/28/2021] [Indexed: 12/15/2022] Open
Abstract
Radiation therapy has been used worldwide for many decades as a therapeutic regimen for the treatment of different types of cancer. Just over 50% of cancer patients are treated with radiotherapy alone or with other types of antitumor therapy. Radiation can induce different types of cell damage: directly, it can induce DNA single- and double-strand breaks; indirectly, it can induce the formation of free radicals, which can interact with different components of cells, including the genome, promoting structural alterations. During treatment, radiosensitive tumor cells decrease their rate of cell proliferation through cell cycle arrest stimulated by DNA damage. Then, DNA repair mechanisms are turned on to alleviate the damage, but cell death mechanisms are activated if damage persists and cannot be repaired. Interestingly, some cells can evade apoptosis because genome damage triggers the cellular overactivation of some DNA repair pathways. Additionally, some surviving cells exposed to radiation may have alterations in the expression of tumor suppressor genes and oncogenes, enhancing different hallmarks of cancer, such as migration, invasion, and metastasis. The activation of these genetic pathways and other epigenetic and structural cellular changes in the irradiated cells and extracellular factors, such as the tumor microenvironment, is crucial in developing tumor radioresistance. The tumor microenvironment is largely responsible for the poor efficacy of antitumor therapy, tumor relapse, and poor prognosis observed in some patients. In this review, we describe strategies that tumor cells use to respond to radiation stress, adapt, and proliferate after radiotherapy, promoting the appearance of tumor radioresistance. Also, we discuss the clinical impact of radioresistance in patient outcomes. Knowledge of such cellular strategies could help the development of new clinical interventions, increasing the radiosensitization of tumor cells, improving the effectiveness of these therapies, and increasing the survival of patients.
Collapse
Affiliation(s)
- Angeles Carlos-Reyes
- Department of Chronic-Degenerative Diseases, National Institute of Respiratory Diseases “Ismael Cosío Villegas”, Mexico City, Mexico
| | - Marcos A. Muñiz-Lino
- Laboratorio de Patología y Medicina Bucal, Universidad Autónoma Metropolitana Unidad Xochimilco, Mexico City, Mexico
| | - Susana Romero-Garcia
- Department of Chronic-Degenerative Diseases, National Institute of Respiratory Diseases “Ismael Cosío Villegas”, Mexico City, Mexico
| | - César López-Camarillo
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Mexico, Mexico City
| | | |
Collapse
|
24
|
Pan D, Du Y, Li R, Shen A, Liu X, Li C, Hu B. miR-29b-3p Increases Radiosensitivity in Stemness Cancer Cells via Modulating Oncogenes Axis. Front Cell Dev Biol 2021; 9:741074. [PMID: 34604239 PMCID: PMC8481616 DOI: 10.3389/fcell.2021.741074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022] Open
Abstract
Radioresistance conferred by cancer stem cells (CSCs) is the principal cause of the failure of cancer radiotherapy. Eradication of CSCs is a prime therapeutic target and a requirement for effective radiotherapy. Three dimensional (3D) cell-cultured model could mimic the morphology of cells in vivo and induce CSC properties. Emerging evidence suggests that microRNAs (miRNAs) play crucial roles in the regulation of radiosensitivity in cancers. In this study, we aim to investigate the effects of miRNAs on the radiosensitivity of 3D cultured stem-like cells. Using miRNA microarray analysis in 2D and 3D cell culture models, we found that the expression of miR-29b-3p was downregulated in 3D cultured A549 and MCF7 cells compared with monolayer (2D) cells. Clinic data analysis from The Cancer Genome Atlas database exhibited that miR-29b-3p high expression showed significant advantages in lung adenocarcinoma and breast invasive carcinoma patients’ prognosis. The subsequent experiments proved that miR-29b-3p overexpression decreased the radioresistance of cells in 3D culture and tumors in vivo through interfering kinetics process of DNA damage repair and inhibiting oncogenes RBL1, PIK3R1, AKT2, and Bcl-2. In addition, miR-29b-3p knockdown enhanced cancer cells invasion and migration capability. MiR-29b-3p overexpression decreased the stemness of 3D cultured cells. In conclusion, our results demonstrate that miR-29b-3p could be a sensitizer of radiation killing in CSC-like cells via inhibiting oncogenes expression. MiR-29b-3p could be a novel therapeutic candidate target for radiotherapy.
Collapse
Affiliation(s)
- Dong Pan
- Department of Radiation Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Key Laboratory of Space Radiobiology of Gansu Province, Institute of Modern Physics, Chinese Academy of Sciences (CAS), Lanzhou, China.,Department of Dermatology, Duke University Medical Center, Durham, NC, United States
| | - Yarong Du
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Key Laboratory of Space Radiobiology of Gansu Province, Institute of Modern Physics, Chinese Academy of Sciences (CAS), Lanzhou, China
| | - Rong Li
- Department of Radiation Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Aihua Shen
- Department of Radiation Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Xiaodong Liu
- Department of Radiation Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Chuanyuan Li
- Department of Dermatology, Duke University Medical Center, Durham, NC, United States
| | - Burong Hu
- Department of Radiation Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Key Laboratory of Space Radiobiology of Gansu Province, Institute of Modern Physics, Chinese Academy of Sciences (CAS), Lanzhou, China
| |
Collapse
|
25
|
Loo SY, Syn NL, Koh APF, Teng JCF, Deivasigamani A, Tan TZ, Thike AA, Vali S, Kapoor S, Wang X, Wang JW, Tan PH, Yip GW, Sethi G, Huang RYJ, Hui KM, Wang L, Goh BC, Kumar AP. Epigenetic derepression converts PPARγ into a druggable target in triple-negative and endocrine-resistant breast cancers. Cell Death Discov 2021; 7:265. [PMID: 34580286 PMCID: PMC8476547 DOI: 10.1038/s41420-021-00635-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/23/2021] [Accepted: 09/03/2021] [Indexed: 01/04/2023] Open
Abstract
Clinical trials repurposing peroxisome proliferator-activated receptor-gamma (PPARγ) agonists as anticancer agents have exhibited lackluster efficacy across a variety of tumor types. Here, we report that increased PPARG expression is associated with a better prognosis but is anticorrelated with histone deacetylase (HDAC) 1 and 2 expressions. We show that HDAC overexpression blunts anti-proliferative and anti-angiogenic responses to PPARγ agonists via transcriptional and post-translational mechanisms, however, these can be neutralized with clinically approved and experimental HDAC inhibitors. Supporting this notion, concomitant treatment with HDAC inhibitors was required to license the tumor-suppressive effects of PPARγ agonists in triple-negative and endocrine-refractory breast cancer cells, and combination therapy also restrained angiogenesis in a tube formation assay. This combination was also synergistic in estrogen receptor-alpha (ERα)-positive cells because HDAC blockade abrogated ERα interference with PPARγ-regulated transcription. Following a pharmacokinetics optimization study, the combination of rosiglitazone and a potent pan-HDAC inhibitor, LBH589, stalled disease progression in a mouse model of triple-negative breast cancer greater than either of the monotherapies, while exhibiting a favorable safety profile. Our findings account for historical observations of de-novo resistance to PPARγ agonist monotherapy and propound a therapeutically cogent intervention against two aggressive breast cancer subtypes.
Collapse
Affiliation(s)
- Ser Yue Loo
- Cancer Science Institute of Singapore and Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Genome Institute of Singapore, A*STAR, Singapore, Singapore
| | - Nicholas L Syn
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, Singapore.,Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Angele Pei-Fern Koh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Janet Cheng-Fei Teng
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Amudha Deivasigamani
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore, Singapore
| | - Tuan Zea Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Aye Aye Thike
- Department of Pathology, Singapore General Hospital, Singapore, Singapore
| | - Shireen Vali
- Cellworks Research India Pvt. Ltd., Bengaluru, India
| | - Shweta Kapoor
- Cellworks Research India Pvt. Ltd., Bengaluru, India
| | - Xiaoyuan Wang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Cardiovascular Research Institute (CVRI), National University Heart Centre, Singapore (NUHCS), National University Health System, Singapore, Singapore
| | - Jiong Wei Wang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Puay Hoon Tan
- Department of Pathology, Singapore General Hospital, Singapore, Singapore
| | - George W Yip
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ruby Yun-Ju Huang
- School of Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Kam Man Hui
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore, Singapore
| | - Lingzhi Wang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Boon Cher Goh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.,Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,National University Cancer Institute, National University Health System, Singapore, Singapore.,Department of Haematology-Oncology, National University Hospital, National University Health System, Singapore, Singapore
| | - Alan Prem Kumar
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore. .,NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore. .,National University Cancer Institute, National University Health System, Singapore, Singapore.
| |
Collapse
|
26
|
Saddawi-Konefka R, Simon AB, Sumner W, Sharabi A, Mell LK, Cohen EEW. Defining the Role of Immunotherapy in the Curative Treatment of Locoregionally Advanced Head and Neck Cancer: Promises, Challenges, and Opportunities. Front Oncol 2021; 11:738626. [PMID: 34621678 PMCID: PMC8490924 DOI: 10.3389/fonc.2021.738626] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/01/2021] [Indexed: 12/30/2022] Open
Abstract
Recent advancements in the development of immunotherapies have raised the hope for patients with locally-advanced HNSCC (LA-HNSCC) to achieve improved oncologic outcomes without the heavy burden of treatment-related morbidity. While there are several ongoing late phase clinical trials that seek to determine whether immunotherapy can be effectively employed in the definitive setting, initial results from concurrent immuno-radiotherapy therapy trials have not shown strong evidence of benefit. Encouragingly, evidence from preclinical studies and early-phase neoadjuvant studies have begun to show potential pathways forward, with therapeutic combinations and sequences that intentionally spare tumor draining lymphatics in order to maximize the synergy between definitive local therapy and immunotherapy. The intent of this review is to summarize the scientific rationale and current clinical evidence for employing immunotherapy for LA-HNSCC as well as the ongoing efforts and challenges to determine how to optimally deliver and sequence immunotherapy alongside traditional therapeutics. In both the preclinical and clinical settings, we will discuss the application of immunotherapies to both surgical and radiotherapeutic management of HNSCC.
Collapse
Affiliation(s)
- Robert Saddawi-Konefka
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, UC San Diego School of Medicine, San Diego, CA, United States
- Moores Cancer Center, UC San Diego, La Jolla, CA, United States
| | - Aaron B. Simon
- Moores Cancer Center, UC San Diego, La Jolla, CA, United States
- Department of Radiation Oncology, UC Irvine School of Medicine, Irvine, CA, United States
| | - Whitney Sumner
- Moores Cancer Center, UC San Diego, La Jolla, CA, United States
- Department of Radiation Medicine and Applied Sciences, UC San Diego School of Medicine, San Diego, CA, United States
| | - Andrew Sharabi
- Moores Cancer Center, UC San Diego, La Jolla, CA, United States
- Department of Radiation Medicine and Applied Sciences, UC San Diego School of Medicine, San Diego, CA, United States
| | - Loren K. Mell
- Moores Cancer Center, UC San Diego, La Jolla, CA, United States
- Department of Radiation Medicine and Applied Sciences, UC San Diego School of Medicine, San Diego, CA, United States
| | - Ezra E. W. Cohen
- Moores Cancer Center, UC San Diego, La Jolla, CA, United States
- Department of Medicine, Division of Hematology-Oncology, UC San Diego School of Medicine, San Diego, CA, United States
| |
Collapse
|
27
|
|
28
|
Tissue Architecture Influences the Biological Effectiveness of Boron Neutron Capture Therapy in In Vitro/In Silico Three-Dimensional Self-Assembly Cell Models of Pancreatic Cancers. Cancers (Basel) 2021; 13:cancers13164058. [PMID: 34439214 PMCID: PMC8394840 DOI: 10.3390/cancers13164058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/05/2021] [Accepted: 08/08/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Boron neutron capture therapy (BNCT) is becoming one of the most promising radiotherapies for aggressive cancers, but the detailed cellular mechanisms of BNCT remain largely underexplored. Solid tumors are composed of heterogeneous cell populations, which create a 3-dimensional complicated microenvironment for tumor progression. To recapture the influences of the microenvironment on BNCT efficacy, we applied a self-assembly 3D cell culture system with two different types of pancreatic cancer cells. In contrast to previous findings with γ-ray exposure, we found that the 3D architecture of pancreatic tumor can facilitate the susceptibility of cancer cells to BNCT, as compared to 2D tissue structure; a computer simulation model was established to further confirm this unexpected finding. These outcomes can contribute to better understanding of the radiobiology of BNCT, and the developed models may facilitate the recent development in personalized radiotherapy. Abstract Pancreatic cancer is a leading cause of cancer death, and boron neutron capture therapy (BNCT) is one of the promising radiotherapy techniques for patients with pancreatic cancer. In this study, we evaluated the biological effectiveness of BNCT at multicellular levels using in vitro and in silico models. To recapture the phenotypic characteristic of pancreatic tumors, we developed a cell self-assembly approach with human pancreatic cancer cells Panc-1 and BxPC-3 cocultured with MRC-5 fibroblasts. On substrate with physiological stiffness, tumor cells self-assembled into 3D spheroids, and the cocultured fibroblasts further facilitated the assembly process, which recapture the influence of tumor stroma. Interestingly, after 1.2 MW neutron irradiation, lower survival rates and higher apoptosis (increasing by 4-fold for Panc-1 and 1.5-fold for BxPC-3) were observed in 3D spheroids, instead of in 2D monolayers. The unexpected low tolerance of 3D spheroids to BNCT highlights the unique characteristics of BNCT over conventional radiotherapy. The uptake of boron-containing compound boronophenylalanine (BPA) and the alteration of E-cadherin can partially contribute to the observed susceptibility. In addition to biological effects, the probability of induced α-particle exposure correlated to the multicellular organization was speculated to affect the cellular responses to BNCT. A Monte Carlo (MC) simulation was also established to further interpret the observed survival. Intracellular boron distribution in the multicellular structure and related treatment resistance were reconstructed in silico. Simulation results demonstrated that the physical architecture is one of the essential factors for biological effectiveness in BNCT, which supports our in vitro findings. In summary, we developed in vitro and in silico self-assembly 3D models to evaluate the effectiveness of BNCT on pancreatic tumors. Considering the easy-access of this 3D cell-assembly platform, this study may not only contribute to the current understanding of BNCT but is also expected to be applied to evaluate the BNCT efficacy for individualized treatment plans in the future.
Collapse
|
29
|
Verrelle P, Meseure D, Berger F, Forest A, Leclère R, Nicolas A, Fortas E, Sastre-Garau X, Lae M, Boudjemaa S, Mbagui R, Calugaru V, Labiod D, De Koning L, Almouzni G, Quivy JP. CENP-A Subnuclear Localization Pattern as Marker Predicting Curability by Chemoradiation Therapy for Locally Advanced Head and Neck Cancer Patients. Cancers (Basel) 2021; 13:cancers13163928. [PMID: 34439087 PMCID: PMC8391827 DOI: 10.3390/cancers13163928] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary For clinicians, rapid diagnosis of early neoplastic lesions and prediction of treatment response are two key aspects to guide their choice of treatment. Current histological markers are based on proliferation, differentiation states or specific cell function, but do not take full advantage of tumor characteristics. We show that the subnuclear distribution of CENP-A, the centromeric histone variant, provides, for both aspects, information distinct from and independent of commonly used markers. Our study reveals that in locally advanced head and neck squamous cell cancer patients, the subnuclear distribution of CENP-A at the time of diagnosis is an independent predictive marker of local disease control and curability by concurrent chemoradiation therapy. We provide evidence for the clinical applicability of this CENP-A labeling as a cost-effective marker regardless of genetic alterations in the tumor, perfectly compatible with the clinical time constraints in the course of therapy. Abstract Effective biomarkers predictive of the response to treatments are key for precision medicine. This study identifies the staining pattern of the centromeric histone 3 variant, CENP-A, as a predictive biomarker of locoregional disease curability by chemoradiation therapy. We compared by imaging the subnuclear distribution of CENP-A in normal and tumoral tissues, and in a retrospective study in biopsies of 62 locally advanced head and neck squamous cell carcinoma (HNSCC) patients treated by chemoradiation therapy. We looked for predictive factors of locoregional disease control and patient’s survival, including CENP-A patterns, Ki67, HPV status and anisokaryosis. In different normal tissues, we reproducibly found a CENP-A subnuclear pattern characterized by CENP-A clusters both localized at the nuclear periphery and regularly spaced. In corresponding tumors, both features are lost. In locally advanced HNSCC, a specific CENP-A pattern identified in pretreatment biopsies predicts definitive locoregional disease control after chemoradiation treatment in 96% (24/25) of patients (OR = 17.6 CI 95% [2.6; 362.8], p = 0.002), independently of anisokaryosis, Ki67 labeling or HPV status. The characteristics of the subnuclear pattern of CENP-A in cell nuclei revealed by immunohistochemistry could provide an easy to use a reliable marker of disease curability by chemoradiation therapy in locally advanced HNSCC patients.
Collapse
Affiliation(s)
- Pierre Verrelle
- Institut Curie, PSL Research University, CNRS, Sorbonne Université, Nuclear Dynamics Unit, Equipe Labellisée Ligue Contre le Cancer, 26 rue d’Ulm, 75005 Paris, France;
- University of Clermont Auvergne, UFR Médecine, 63001 Clermont-Ferrand, France
- CNRS UMR 9187, INSERM U1196, Institut Curie, PSL Research University and Paris-Saclay University, 91405 Orsay, France
- Radiation Oncology Department, Institut Curie, 75005 Paris, France; (R.M.); (V.C.)
- Correspondence: (P.V.); (G.A.); (J.-P.Q.)
| | - Didier Meseure
- Platform of Experimental Pathology PATHEX, Institut Curie, 75005 Paris, France; (D.M.); (R.L.); (A.N.); (E.F.)
- Department of Diagnostic and Theranostic Medicine, Institut Curie, 75005 Paris, France
| | - Frédérique Berger
- Institut Curie, PSL Research University, Biometry Unit, 75005 Paris, France;
| | - Audrey Forest
- Institut Curie, PSL Research University, CNRS, Sorbonne Université, Nuclear Dynamics Unit, Equipe Labellisée Ligue Contre le Cancer, 26 rue d’Ulm, 75005 Paris, France;
| | - Renaud Leclère
- Platform of Experimental Pathology PATHEX, Institut Curie, 75005 Paris, France; (D.M.); (R.L.); (A.N.); (E.F.)
- Department of Diagnostic and Theranostic Medicine, Institut Curie, 75005 Paris, France
| | - André Nicolas
- Platform of Experimental Pathology PATHEX, Institut Curie, 75005 Paris, France; (D.M.); (R.L.); (A.N.); (E.F.)
- Department of Diagnostic and Theranostic Medicine, Institut Curie, 75005 Paris, France
| | - Emilie Fortas
- Platform of Experimental Pathology PATHEX, Institut Curie, 75005 Paris, France; (D.M.); (R.L.); (A.N.); (E.F.)
- Department of Diagnostic and Theranostic Medicine, Institut Curie, 75005 Paris, France
| | - Xavier Sastre-Garau
- Department of Pathology, Intercommunal Hospital Center of Creteil, 94000 Créteil, France;
| | - Marick Lae
- Department of Pathology, Centre Henri Becquerel, INSERM U1245, UNIROUEN, University of Normandie, 76031 Rouen, France;
| | - Sabah Boudjemaa
- Department of Pathology, Hôpital Armand Trousseau, 75012 Paris, France;
| | - Rodrigue Mbagui
- Radiation Oncology Department, Institut Curie, 75005 Paris, France; (R.M.); (V.C.)
| | - Valentin Calugaru
- Radiation Oncology Department, Institut Curie, 75005 Paris, France; (R.M.); (V.C.)
| | - Dalila Labiod
- Translational Research Department, Experimental Radiotherapy Platform, Institut Curie, PSL Research University, University Paris Saclay, 91400 Orsay, France;
| | - Leanne De Koning
- Department of Translational Research, Institut Curie, PSL Research University, 75005 Paris, France;
| | - Geneviève Almouzni
- Institut Curie, PSL Research University, CNRS, Sorbonne Université, Nuclear Dynamics Unit, Equipe Labellisée Ligue Contre le Cancer, 26 rue d’Ulm, 75005 Paris, France;
- Correspondence: (P.V.); (G.A.); (J.-P.Q.)
| | - Jean-Pierre Quivy
- Institut Curie, PSL Research University, CNRS, Sorbonne Université, Nuclear Dynamics Unit, Equipe Labellisée Ligue Contre le Cancer, 26 rue d’Ulm, 75005 Paris, France;
- Correspondence: (P.V.); (G.A.); (J.-P.Q.)
| |
Collapse
|
30
|
Affolter A, Lammert A, Kern J, Scherl C, Rotter N. Precision Medicine Gains Momentum: Novel 3D Models and Stem Cell-Based Approaches in Head and Neck Cancer. Front Cell Dev Biol 2021; 9:666515. [PMID: 34307351 PMCID: PMC8296983 DOI: 10.3389/fcell.2021.666515] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/30/2021] [Indexed: 12/12/2022] Open
Abstract
Despite the current progress in the development of new concepts of precision medicine for head and neck squamous cell carcinoma (HNSCC), in particular targeted therapies and immune checkpoint inhibition (CPI), overall survival rates have not improved during the last decades. This is, on the one hand, caused by the fact that a significant number of patients presents with late stage disease at the time of diagnosis, on the other hand HNSCC frequently develop therapeutic resistance. Distinct intratumoral and intertumoral heterogeneity is one of the strongest features in HNSCC and has hindered both the identification of specific biomarkers and the establishment of targeted therapies for this disease so far. To date, there is a paucity of reliable preclinical models, particularly those that can predict responses to immune CPI, as these models require an intact tumor microenvironment (TME). The "ideal" preclinical cancer model is supposed to take both the TME as well as tumor heterogeneity into account. Although HNSCC patients are frequently studied in clinical trials, there is a lack of reliable prognostic biomarkers allowing a better stratification of individuals who might benefit from new concepts of targeted or immunotherapeutic strategies. Emerging evidence indicates that cancer stem cells (CSCs) are highly tumorigenic. Through the process of stemness, epithelial cells acquire an invasive phenotype contributing to metastasis and recurrence. Specific markers for CSC such as CD133 and CD44 expression and ALDH activity help to identify CSC in HNSCC. For the majority of patients, allocation of treatment regimens is simply based on histological diagnosis and on tumor location and disease staging (clinical risk assessments) rather than on specific or individual tumor biology. Hence there is an urgent need for tools to stratify HNSCC patients and pave the way for personalized therapeutic options. This work reviews the current literature on novel approaches in implementing three-dimensional (3D) HNSCC in vitro and in vivo tumor models in the clinical daily routine. Stem-cell based assays will be particularly discussed. Those models are highly anticipated to serve as a preclinical prediction platform for the evaluation of stable biomarkers and for therapeutic efficacy testing.
Collapse
Affiliation(s)
- Annette Affolter
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | | | | | | |
Collapse
|
31
|
El Feky SE, Ghany Megahed MA, Abd El Moneim NA, Zaher ER, Khamis SA, Ali LMA. Cytotoxic, chemosensitizing and radiosensitizing effects of curcumin based on thioredoxin system inhibition in breast cancer cells: 2D vs. 3D cell culture system. Exp Ther Med 2021; 21:506. [PMID: 33791015 DOI: 10.3892/etm.2021.9937] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 10/15/2020] [Indexed: 12/17/2022] Open
Abstract
Targeting the thioredoxin/thioredoxin reductase (Trx/TrxR) system is a promising strategy to overcome cancer resistance to conventional therapy. The present study investigated the effect of curcumin on the Trx/TrxR system either alone or in combination with chemotherapy, or radiotherapy in human MCF-7 breast cancer cells seeded in 2 and 3D culture systems. Cell viability, thioredoxin reductase 1 (TrxR1) activity, and the genetic expression of Trx, TrxR1, Bcl2 and BAX genes were studied. The findings showed that the mode of culture significantly affected the response of cancer cells to different treatment modalities, as well as their gene expression patterns. Curcumin treatment resulted in a reduction of breast cancer cell proliferation and induction of apoptosis, an effect that may be mediated by manipulating Trx system components, mainly Trx expression, and to a lesser extent TrxR1 expression and concentration. Furthermore, curcumin increased the sensitivity of breast cancer cells to chemotherapy and radiotherapy by reducing Trx and TrxR1 expression levels. Thus, curcumin may have a potential role as a dose-modifying agent that can be used either to sensitize resistant cells to therapy or to reduce the dose of these therapeutic agents.
Collapse
Affiliation(s)
- Shaymaa Essam El Feky
- Department of Radiation Sciences, Medical Research Institute, University of Alexandria, Alexandra 21561, Egypt
| | - Magda Abdel Ghany Megahed
- Department of Biochemistry, Medical Research Institute, University of Alexandria, Alexandra 21561, Egypt
| | - Nadia Ahmed Abd El Moneim
- Department of Cancer Management and Research, Medical Research Institute, University of Alexandria, Alexandra 21561, Egypt
| | - Ebtsam Rizq Zaher
- Department of Radiation Sciences, Medical Research Institute, University of Alexandria, Alexandra 21561, Egypt
| | - Shadwa Ahmed Khamis
- Department of Biochemistry, Medical Research Institute, University of Alexandria, Alexandra 21561, Egypt
| | - Lamiaa Mohamed Ahmed Ali
- Department of Biochemistry, Medical Research Institute, University of Alexandria, Alexandra 21561, Egypt
| |
Collapse
|
32
|
Li H, Ma L, Bian X, Lv Y, Lin W. FK228 sensitizes radioresistant small cell lung cancer cells to radiation. Clin Epigenetics 2021; 13:41. [PMID: 33632300 PMCID: PMC7905898 DOI: 10.1186/s13148-021-01025-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 02/10/2021] [Indexed: 01/22/2023] Open
Abstract
Background Concurrent thoracic radiation plus chemotherapy is the mainstay of first-line treatment for limited-stage small cell lung cancer (LS-SCLC). Despite initial high responsiveness to combined chemo- and radiotherapy, SCLC almost invariably relapses and develops resistance within one year, leading to poor prognosis in patients with LS-SCLC. Developing new chemical agents that increase ionizing radiation’s cytotoxicity against SCLC is urgently needed. Results Dual histone deacetylase (HDAC) and PI3K inhibitor FK228 not only displayed potent anticancer activity, but also enhanced the therapeutic effects of radiotherapy in SCLC cells. Mechanistically, radioresistant SCLC cells exhibit a lower level of histone H3K9 acetylation and a higher expression level of the MRE11-RAD50-NBS1 (MRN) complex and show more efficient and redundant DNA damage repair capacities than radiosensitive SCLC cells. FK228 pretreatment resulted in marked induction of H3k9 acetylation, attenuated homologous recombination (HR) repair competency and impaired non-homologous end joining (NHEJ) repair efficacy, leading to the accumulation of radiation-induced DNA damage and radiosensitization. Conclusion The study uncovered that FK228 sensitized human radioresistant SCLC cells to radiation mainly through induction of chromatin decondensation and suppression of DNA damage signaling and repair. Our study provides a rational basis for a further clinical study to test the potential of FK228 as a radiosensitizing agent to increase the radiation-induced tumor cell kill in LS-SCLC patients.
Collapse
Affiliation(s)
- Hong Li
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, People's Republic of China.,Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, People's Republic of China
| | - Liying Ma
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, People's Republic of China.,University of Science and Technology of China, Hefei, 230026, Anhui, People's Republic of China.,Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, People's Republic of China
| | - Xing Bian
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, People's Republic of China.,University of Science and Technology of China, Hefei, 230026, Anhui, People's Republic of China.,Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, People's Republic of China
| | - Yang Lv
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, People's Republic of China.,University of Science and Technology of China, Hefei, 230026, Anhui, People's Republic of China.,Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, People's Republic of China
| | - Wenchu Lin
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, People's Republic of China. .,Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, People's Republic of China.
| |
Collapse
|
33
|
Maury P, Porcel E, Mau A, Lux F, Tillement O, Mahou P, Schanne-Klein MC, Lacombe S. Rapid Evaluation of Novel Therapeutic Strategies Using a 3D Collagen-Based Tissue-Like Model. Front Bioeng Biotechnol 2021; 9:574035. [PMID: 33681152 PMCID: PMC7929985 DOI: 10.3389/fbioe.2021.574035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 01/18/2021] [Indexed: 11/25/2022] Open
Abstract
2D cell cultures are commonly used to rapidly evaluate the therapeutic potential of various treatments on living cells. However, the effects of the extracellular matrix (ECM) including the 3D arrangement of cells and the complex physiology of native environment are missing, which makes these models far from in vivo conditions. 3D cell models have emerged in preclinical studies to simulate the impact of the ECM and partially bridge the gap between monolayer cultures and in vivo tissues. To date, the difficulty to handle the existing 3D models, the cost of their production and their poor reproducibility have hindered their use. Here, we present a reproducible and commercially available "3D cell collagen-based model" (3D-CCM) that allows to study the influence of the matrix on nanoagent uptake and radiation effects. The cell density in these samples is homogeneous. The oxygen concentration in the 3D-CCM is tunable, which opens the opportunity to investigate hypoxic effects. In addition, thanks to the intrinsic properties of the collagen, the second harmonic imaging microscopy may be used to probe the whole volume and visualize living cells in real-time. Thus, the architecture and composition of 3D-CCMs as well as the impact of various therapeutic strategies on cells embedded in the ECM is observed directly. Moreover, the disaggregation of the collagen matrix allows recovering of cells without damaging them. It is a major advantage that makes possible single cell analysis and quantification of treatment effects using clonogenic assay. In this work, 3D-CCMs were used to evaluate the correlative efficacies of nanodrug exposure and medical radiation on cells contained in a tumor like sample. A comparison with monolayer cell cultures was performed showing the advantageous outcome and the higher potential of 3D-CCMs. This cheap and easy to handle approach is more ethical than in vivo experiments, thus, giving a fast evaluation of cellular responses to various treatments.
Collapse
Affiliation(s)
- Pauline Maury
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d’Orsay, Orsay, France
| | - Erika Porcel
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d’Orsay, Orsay, France
| | - Adrien Mau
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d’Orsay, Orsay, France
| | - François Lux
- Institut Universitaire de France, Paris, France
- Institut Lumière Matière, Université Claude Bernard Lyon 1, UMR 5306 CNRS-UCBL, Villeurbanne, France
| | - Olivier Tillement
- Institut Lumière Matière, Université Claude Bernard Lyon 1, UMR 5306 CNRS-UCBL, Villeurbanne, France
| | - Pierre Mahou
- Laboratoire d’Optique et Biosciences, Ecole Polytechnique, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut Polytechnique de Paris, Palaiseau, France
| | - Marie-Claire Schanne-Klein
- Laboratoire d’Optique et Biosciences, Ecole Polytechnique, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut Polytechnique de Paris, Palaiseau, France
| | - Sandrine Lacombe
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d’Orsay, Orsay, France
| |
Collapse
|
34
|
Kartini DA, Sokol O, Wiedemann J, Tinganelli W, Witt M, Camazzola G, Krämer M, Talabnin C, Kobdaj C, Fuss MC. Validation of a pseudo-3D phantom for radiobiological treatment plan verifications. Phys Med Biol 2020; 65:225039. [PMID: 32937608 DOI: 10.1088/1361-6560/abb92d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Performing realistic and reliable in vitro biological dose verification with good resolution for a complex treatment plan remains a challenge in particle beam therapy. Here, a new 3D bio-phantom consisting of 96-well plates containing cells embedded into Matrigel matrix was investigated as an alternative tool for biological dose verification. Feasibility tests include cell growth in the Matrigel as well as film dosimetric experiments that rule out the appearance of field inhomogeneities due to the presence of the well plate irregular structure. The response of CHO-K1 cells in Matrigel to radiation was studied by obtaining survival curves following x-ray and monoenergetic 12C ion irradiation, which showed increased radioresistance of 3D cell cultures in Matrigel as compared to a monolayer. Finally, as a proof of concept, a 12C treatment plan was optimized using in-house treatment planning system TRiP98 for uniform cell survival in a rectangular volume and employed to irradiate the 3D phantom. Cell survival distribution in the Matrigel-based phantom was analyzed and compared to cell survival in a reference setup using cell monolayers. Results of both methods were in good agreement and followed the TRiP98 calculation. Therefore, we conclude that this 3D bio-phantom can be a suitable, accurate alternative tool for verifying the biological effect calculated by treatment planning systems, which could be applied to test novel treatment planning approaches involving multiple fields, multiple ion modalities, complex geometries, or unconventional optimization strategies.
Collapse
Affiliation(s)
- D A Kartini
- School of Physics, Suranaree University of Technology, 111 University Avenue, Muang, Nakhon Ratchasima 30000, Thailand. Thailand Center of Excellence in Physics, Ministry of Higher Education, Science, Research and Innovation, 328 Si Ayutthaya Road, Bangkok 10400, Thailand. Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstrasse 1, 64291 Darmstadt, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Görte J, Beyreuther E, Danen EHJ, Cordes N. Comparative Proton and Photon Irradiation Combined with Pharmacological Inhibitors in 3D Pancreatic Cancer Cultures. Cancers (Basel) 2020; 12:cancers12113216. [PMID: 33142778 PMCID: PMC7692858 DOI: 10.3390/cancers12113216] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 10/23/2020] [Accepted: 10/29/2020] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Due to higher precision and consequent sparing of normal tissue, pancreatic cancer patients might profit from proton beam radiotherapy, a treatment modality increasingly used. Since molecular data upon proton irradiation in comparison to standard photon radiotherapy are limited in pancreatic cancer, the aims of our study were to unravel differences in the effectiveness of photon versus proton irradiation and to exploit radiation type-specific molecular changes for radiosensitizing 3D PDAC cell cultures. Although protons showed a slightly higher effectiveness and a stronger induction of molecular alterations than photons, our results revealed a radiation-type independent sensitization of molecular-targeted agents selected according to the discovered molecular, radiation-induced alterations. Abstract Pancreatic ductal adenocarcinoma (PDAC) is a highly therapy-resistant tumor entity of unmet needs. Over the last decades, radiotherapy has been considered as an additional treatment modality to surgery and chemotherapy. Owing to radiosensitive abdominal organs, high-precision proton beam radiotherapy has been regarded as superior to photon radiotherapy. To further elucidate the potential of combination therapies, we employed a more physiological 3D, matrix-based cell culture model to assess tumoroid formation capacity after photon and proton irradiation. Additionally, we investigated proton- and photon-irradiation-induced phosphoproteomic changes for identifying clinically exploitable targets. Here, we show that proton irradiation elicits a higher efficacy to reduce 3D PDAC tumoroid formation and a greater extent of phosphoproteome alterations compared with photon irradiation. The targeting of proteins identified in the phosphoproteome that were uniquely altered by protons or photons failed to cause radiation-type-specific radiosensitization. Targeting DNA repair proteins associated with non-homologous endjoining, however, revealed a strong radiosensitizing potential independent of the radiation type. In conclusion, our findings suggest proton irradiation to be potentially more effective in PDAC than photons without additional efficacy when combined with DNA repair inhibitors.
Collapse
Affiliation(s)
- Josephine Görte
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine Carl Gustav Carus Technische Universität Dresden, 01307 Dresden, Germany; (J.G.); (E.B.)
- Institute of Radiooncology—OncoRay, Helmholtz-Zentrum Dresden—Rossendorf, 01328 Dresden, Germany
| | - Elke Beyreuther
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine Carl Gustav Carus Technische Universität Dresden, 01307 Dresden, Germany; (J.G.); (E.B.)
- Institute of Radiation Physics, Helmholtz-Zentrum Dresden—Rossendorf, 01328 Dresden, Germany
| | - Erik H. J. Danen
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, 2333CC Leiden, The Netherlands;
| | - Nils Cordes
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine Carl Gustav Carus Technische Universität Dresden, 01307 Dresden, Germany; (J.G.); (E.B.)
- Institute of Radiooncology—OncoRay, Helmholtz-Zentrum Dresden—Rossendorf, 01328 Dresden, Germany
- German Cancer Consortium, Partner Site Dresden: German Cancer Research Center, 69120 Heidelberg, Germany
- Department of Radiotherapy and Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- Correspondence: ; Tel.: +49-351-458-7401; Fax: +49-351-458-7311
| |
Collapse
|
36
|
Ruiz-Garcia H, Alvarado-Estrada K, Schiapparelli P, Quinones-Hinojosa A, Trifiletti DM. Engineering Three-Dimensional Tumor Models to Study Glioma Cancer Stem Cells and Tumor Microenvironment. Front Cell Neurosci 2020; 14:558381. [PMID: 33177991 PMCID: PMC7596188 DOI: 10.3389/fncel.2020.558381] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/24/2020] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma (GBM) is the most common and devastating primary brain tumor, leading to a uniform fatality after diagnosis. A major difficulty in eradicating GBM is the presence of microscopic residual infiltrating disease remaining after multimodality treatment. Glioma cancer stem cells (CSCs) have been pinpointed as the treatment-resistant tumor component that seeds ultimate tumor progression. Despite the key role of CSCs, the ideal preclinical model to study the genetic and epigenetic landmarks driving their malignant behavior while simulating an accurate interaction with the tumor microenvironment (TME) is still missing. The introduction of three-dimensional (3D) tumor platforms, such as organoids and 3D bioprinting, has allowed for a better representation of the pathophysiologic interactions between glioma CSCs and the TME. Thus, these technologies have enabled a more detailed study of glioma biology, tumor angiogenesis, treatment resistance, and even performing high-throughput screening assays of drug susceptibility. First, we will review the foundation of glioma biology and biomechanics of the TME, and then the most up-to-date insights about the applicability of these new tools in malignant glioma research.
Collapse
Affiliation(s)
- Henry Ruiz-Garcia
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, United States.,Department of Neurological Surgery, Mayo Clinic, Jacksonville, FL, United States
| | | | - Paula Schiapparelli
- Department of Neurological Surgery, Mayo Clinic, Jacksonville, FL, United States
| | | | - Daniel M Trifiletti
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, United States.,Department of Neurological Surgery, Mayo Clinic, Jacksonville, FL, United States
| |
Collapse
|
37
|
Spiegelberg D, Mortensen ACL, Palupi KD, Micke P, Wong J, Vojtesek B, Lane DP, Nestor M. The Novel Anti-cMet Antibody seeMet 12 Potentiates Sorafenib Therapy and Radiotherapy in a Colorectal Cancer Model. Front Oncol 2020; 10:1717. [PMID: 33014851 PMCID: PMC7516085 DOI: 10.3389/fonc.2020.01717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 07/31/2020] [Indexed: 12/23/2022] Open
Abstract
Rational cMet is abnormally regulated in gastrointestinal cancer, and is associated with increased invasiveness of the disease and poor overall survival. There are indications that targeted therapy against cMet, alone or in combination with additional cancer therapies, can help improve treatment outcome. Thus, in the present study we investigated the therapeutic efficacy of a novel cMet-targeting antibody therapy in gastrointestinal cancer models, and assessed potential augmenting effects in combination with tyrosine kinase inhibitor (TKI) targeted therapy or radiotherapy. Methods Three different cMet-targeting antibodies were first characterized with respect to antigen binding and effects on cell viability in vitro. The best performing candidate seeMet 12 was then further assessed for effects on colorectal cancer cell growth, proliferation and migration. Combinations with the TKI-inhibitor sorafenib or external beam radiotherapy were then evaluated for potential additive or synergistic effects in vitro using monolayer- and multicellular tumor spheroid assays. Finally, the combination of seeMet 12 and radiotherapy was evaluated in vivo in a proof-of-concept colorectal cancer xenograft study. Results Dose-dependent therapeutic effects were demonstrated for all three cMet-targeting antibodies. Monotherapy using seeMet 12 resulted in impaired cellular migration/proliferation and reduced tumor spheroid growth. Moreover, seeMet 12 was able to potentiate therapeutic effects in vitro for both sorafenib and radiotherapy treatments. Finally, the in vivo therapy study demonstrated promising results, where a combination of seeMet 12 and fractionated radiotherapy increased median survival by 79% compared to radiotherapy alone, and tripled maximum survival. Conclusion The novel anti-cMet antibody seeMet 12 demonstrated therapeutic effects in cMet positive gastrointestinal cancer cells in vitro. Moreover, the addition of seeMet 12 augmented the effects of sorafenib and radiotherapy. An in vivo proof-of-concept study of seeMet 12 and radiotherapy further validated the results. Thus, cMet-targeted therapy should be further explored as a promising approach to increase therapeutic effects, circumvent treatment resistance, and reduce side effects.
Collapse
Affiliation(s)
- Diana Spiegelberg
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.,Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | | | - Kartika Dyah Palupi
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Patrick Micke
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Julin Wong
- p53 Laboratory, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Borivoj Vojtesek
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czechia
| | - David Philip Lane
- p53 Laboratory, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore.,Department of Microbiology, Tumor and Cell Biology, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Marika Nestor
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
38
|
Lee JH, Kim EW, Croteau DL, Bohr VA. Heterochromatin: an epigenetic point of view in aging. Exp Mol Med 2020; 52:1466-1474. [PMID: 32887933 PMCID: PMC8080806 DOI: 10.1038/s12276-020-00497-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/08/2020] [Accepted: 06/15/2020] [Indexed: 12/19/2022] Open
Abstract
Aging is an inevitable process of life. Defined by progressive physiological and functional loss of tissues and organs, aging increases the risk of mortality for the organism. The aging process is affected by various factors, including genetic and epigenetic ones. Here, we review the chromatin-specific epigenetic changes that occur during normal (chronological) aging and in premature aging diseases. Taking advantage of the reversible nature of epigenetic modifications, we will also discuss possible lifespan expansion strategies through epigenetic modulation, which was considered irreversible until recently.
Collapse
Affiliation(s)
- Jong-Hyuk Lee
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Edward W Kim
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Deborah L Croteau
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Vilhelm A Bohr
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA. .,Danish Center for Healthy Aging, University of Copenhagen, 2200, Copenhagen, Denmark.
| |
Collapse
|
39
|
Shirbhate E, Patel P, Patel VK, Veerasamy R, Sharma PC, Rajak H. The combination of histone deacetylase inhibitors and radiotherapy: a promising novel approach for cancer treatment. Future Oncol 2020; 16:2457-2469. [PMID: 32815411 DOI: 10.2217/fon-2020-0385] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
HDAC inhibitors (HDACi) play an essential role in various cellular processes, such as differentiation and transcriptional regulation of key genes and cytostatic factors, cell cycle arrest and apoptosis that facilitates the targeting of epigenome of eukaryotic cells. In the majority of cancers, only a handful of patients receive optimal benefit from chemotherapeutics. Additionally, there is emerging interest in the use of HDACi to modulate the effects of ionizing radiations. The use of HDACi with radiotherapy, with the goal of reaching dissimilar, often distinct pathways or multiple biological targets, with the expectation of synergistic effects, reduced toxicity and diminished intrinsic and acquired resistance, conveys an approach of increasing interest. In this review, the clinical potential of HDACi in combination with radiotherapy is described as an efficient synergy for cancer treatment will be overviewed.
Collapse
Affiliation(s)
- Ekta Shirbhate
- Institute of Pharmaceutical Sciences, Guru Ghasidas University, Bilaspur-495 009, Chhattisgarh, India
| | - Preeti Patel
- Institute of Pharmaceutical Sciences, Guru Ghasidas University, Bilaspur-495 009, Chhattisgarh, India
| | - Vijay K Patel
- Institute of Pharmaceutical Sciences, Guru Ghasidas University, Bilaspur-495 009, Chhattisgarh, India
| | - Ravichandran Veerasamy
- Faculty of Pharmacy, AIMST University, Semeling, 08100 Bedong, Kedah Darul Aman, Malaysia
| | - Prabodh C Sharma
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra-136 119, Haryana, India
| | - Harish Rajak
- Institute of Pharmaceutical Sciences, Guru Ghasidas University, Bilaspur-495 009, Chhattisgarh, India
| |
Collapse
|
40
|
Preclinical models of head and neck squamous cell carcinoma for a basic understanding of cancer biology and its translation into efficient therapies. CANCERS OF THE HEAD & NECK 2020; 5:9. [PMID: 32714605 PMCID: PMC7376675 DOI: 10.1186/s41199-020-00056-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/15/2020] [Indexed: 12/12/2022]
Abstract
Comprehensive molecular characterization of head and neck squamous cell carcinoma (HNSCC) has led to the identification of distinct molecular subgroups with fundamental differences in biological properties and clinical behavior. Despite improvements in tumor classification and increased understanding about the signaling pathways involved in neoplastic transformation and disease progression, current standard-of-care treatment for HNSCC mostly remains to be based on a stage-dependent strategy whereby all patients at the same stage receive the same treatment. Preclinical models that closely resemble molecular HNSCC subgroups that can be exploited for dissecting the biological function of genetic variants and/or altered gene expression will be highly valuable for translating molecular findings into improved clinical care. In the present review, we merge and discuss existing and new information on established cell lines, primary two- and three-dimensional ex vivo tumor cultures from HNSCC patients, and animal models. We review their value in elucidating the basic biology of HNSCC, molecular mechanisms of treatment resistance and their potential for the development of novel molecularly stratified treatment.
Collapse
|
41
|
Development and Radiation Response Assessment in A Novel Syngeneic Mouse Model of Tongue Cancer: 2D Culture, 3D Organoids and Orthotopic Allografts. Cancers (Basel) 2020; 12:cancers12030579. [PMID: 32131500 PMCID: PMC7139805 DOI: 10.3390/cancers12030579] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 12/31/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) are aggressive cancers that contribute to significant morbidity and mortality in humans. Although numerous human xenograft models of OSCC have been developed, only a few syngeneic models of OSCC exist. Here, we report on a novel murine model of OSCC, RP-MOC1, derived from a tongue tumor in a C57Bl/6 mouse exposed to the carcinogen 4-nitroquinoline-1-oxide. Phenotypic characterization and credentialing (STR profiling, exome sequencing) of RP-MOC1 cells was performed in vitro. Radiosensitivity was evaluated in 2D culture, 3D organoids, and in vivo using orthotopic allografts. RP-MOC1 cells exhibited a stable epithelial phenotype with proliferative, migratory and invasive properties. Exome sequencing identified several mutations commonly found in OSCC patients. The LD50 for RP-MOC1 cells in 2D culture and 3D organoids was found to be 2.4 Gy and 12.6 Gy, respectively. Orthotopic RP-MOC1 tumors were pan-cytokeratin+ and Ki-67+. Magnetic resonance imaging of orthotopic RP-MOC1 tumors established in immunocompetent mice revealed marked growth inhibition following 10 Gy and 15 Gy fractionated radiation regimens. This radiation response was completely abolished in tumors established in immunodeficient mice. This novel syngeneic model of OSCC can serve as a valuable platform for the evaluation of combination strategies to enhance radiation response against this deadly disease.
Collapse
|
42
|
Xia H, Avci NG, Akay Y, Esquenazi Y, Schmitt LH, Tandon N, Zhu JJ, Akay M. Temozolomide in Combination With NF-κB Inhibitor Significantly Disrupts the Glioblastoma Multiforme Spheroid Formation. IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY 2020; 1:9-16. [PMID: 35402955 PMCID: PMC8983150 DOI: 10.1109/ojemb.2019.2962801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/22/2019] [Accepted: 12/22/2019] [Indexed: 11/15/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common malignant primary brain tumor, accounting for 50% of all cases. GBM patients have a five-year survival rate of merely 5.6% and a median overall survival of 14.6 months with the "Stupp" regimen, 20.9 months with tumor treatment fields (TTF, OptuneR) in patients who participated in clinical trials, and 11 months for all GBM patients prior to TTF use. Objective: Our group recently developed a brain cancer chip which generates tumor spheroids, and provides large-scale assessments on the response of tumor cells to various concentrations and combinations of drugs. This platform could optimize the use of tumor samples derived from GBM patients to provide valuable insight on the tumor growth and responses to drug therapies. To minimize any sample loss in vitro, we improved our brain cancer chip system by adding an additional laminar flow distribution layer, which reduces sample loss during cell seeding and prevents spheroids from escaping from the microwells. Methods: In this study, we cultured 3D spheroids from GBM cell lines and patient-derived GBM cells in vitro, and investigated the effect of the combination of Temozolomide and nuclear factor-κB inhibitor on tumor growth. Results: Our study revealed that these drugs have synergistic effects in inhibiting spheroid formation when used in combination. Conclusions: These results suggest that the brain cancer chip enables large-scale, inexpensive and sample-effective drug screening to 3D cancer tumors in vitro, and could be applied to related tissue engineering drug screening studies.
Collapse
Affiliation(s)
- Hui Xia
- Biomedical Engineering DepartmentUniversity of HoustonHoustonTX77204USA
| | - Naze G. Avci
- Biomedical Engineering DepartmentUniversity of HoustonHoustonTX77204USA
| | - Yasemin Akay
- Biomedical Engineering DepartmentUniversity of HoustonHoustonTX77204USA
| | - Yoshua Esquenazi
- Mischer Neuroscience Associates and the Vivian L. Smith Department of NeurosurgeryUniversity of Texas Health Science Center in Houston, UTHealth and Memorial HermannHoustonTX77030USA
| | - Lisa H. Schmitt
- Mischer Neuroscience Associates and the Vivian L. Smith Department of NeurosurgeryUniversity of Texas Health Science Center in Houston, UTHealth and Memorial HermannHoustonTX77030USA
| | - Nitin Tandon
- Mischer Neuroscience Associates and the Vivian L. Smith Department of NeurosurgeryUniversity of Texas Health Science Center in Houston, UTHealth and Memorial HermannHoustonTX77030USA
| | - Jay-Jiguang Zhu
- Mischer Neuroscience Associates and the Vivian L. Smith Department of NeurosurgeryUniversity of Texas Health Science Center in Houston, UTHealth and Memorial HermannHoustonTX77030USA
| | - Metin Akay
- Biomedical Engineering DepartmentUniversity of HoustonHoustonTX77204USA
| |
Collapse
|
43
|
Gomez-Roman N, Chong MY, Chahal SK, Caragher SP, Jackson MR, Stevenson KH, Dongre SA, Chalmers AJ. Radiation Responses of 2D and 3D Glioblastoma Cells: A Novel, 3D-specific Radioprotective Role of VEGF/Akt Signaling through Functional Activation of NHEJ. Mol Cancer Ther 2020; 19:575-589. [PMID: 31672763 DOI: 10.1158/1535-7163.mct-18-1320] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 07/12/2019] [Accepted: 10/24/2019] [Indexed: 11/16/2022]
Abstract
Glioblastoma is resistant to conventional treatments and has dismal prognosis. Despite promising in vitro data, molecular targeted agents have failed to improve outcomes in patients, indicating that conventional two-dimensional (2D) in vitro models of GBM do not recapitulate the clinical scenario. Responses of primary glioblastoma stem-like cells (GSC) to radiation in combination with EGFR, VEGF, and Akt inhibition were investigated in conventional 2D cultures and a three-dimensional (3D) in vitro model of GBM that recapitulates key GBM clinical features. VEGF deprivation had no effect on radiation responses of 2D GSCs, but enhanced radiosensitivity of GSC cultures in 3D. The opposite effects were observed for EGFR inhibition. Detailed analysis of VEGF and EGF signaling demonstrated a radioprotective role of Akt that correlates with VEGF in 3D and with EGFR in 2D. In all cases, positive correlations were observed between increased radiosensitivity, markers of unrepaired DNA damage and persistent phospho-DNA-PK nuclear foci. Conversely, increased numbers of Rad51 foci were observed in radioresistant populations, indicating a novel role for VEGF/Akt signaling in influencing radiosensitivity by regulating the balance between nonhomologous end-joining and homologous recombination-mediated DNA repair. Differential activation of tyrosine kinase receptors in 2D and 3D models of GBM explains the well documented discrepancy between preclinical and clinical effects of EGFR inhibitors. Data obtained from our 3D model identify novel determinants and mechanisms of DNA repair and radiosensitivity in GBM, and confirm Akt as a promising therapeutic target in this cancer of unmet need.
Collapse
Affiliation(s)
- Natividad Gomez-Roman
- Wolfson Wohl Translational Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, United Kingdom.
| | - Ming Y Chong
- Wolfson Wohl Translational Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, United Kingdom
| | - Sandeep K Chahal
- Wolfson Wohl Translational Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, United Kingdom
| | - Seamus P Caragher
- Wolfson Wohl Translational Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, United Kingdom
| | - Mark R Jackson
- Wolfson Wohl Translational Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, United Kingdom
| | - Katrina H Stevenson
- Wolfson Wohl Translational Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, United Kingdom
| | - Sidhartha A Dongre
- Wolfson Wohl Translational Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, United Kingdom
| | - Anthony J Chalmers
- Wolfson Wohl Translational Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, United Kingdom
| |
Collapse
|
44
|
Igaz N, Szőke K, Kovács D, Buhala A, Varga Z, Bélteky P, Rázga Z, Tiszlavicz L, Vizler C, Hideghéty K, Kónya Z, Kiricsi M. Synergistic Radiosensitization by Gold Nanoparticles and the Histone Deacetylase Inhibitor SAHA in 2D and 3D Cancer Cell Cultures. NANOMATERIALS 2020; 10:nano10010158. [PMID: 31963267 PMCID: PMC7023030 DOI: 10.3390/nano10010158] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/04/2020] [Accepted: 01/13/2020] [Indexed: 12/24/2022]
Abstract
Radiosensitizing agents are capable of augmenting the damage of ionizing radiation preferentially on cancer cells, thereby increasing the potency and the specificity of radiotherapy. Metal-based nanoparticles have recently gathered ground in radio-enhancement applications, owing to their exceptional competence in amplifying the cell-killing effects of irradiation. Our aim was to examine the radiosensitizing performance of gold nanoparticles (AuNPs) and the chromatin-modifying histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) alone and in combination. We observed that the colony-forming capability of cancer cells decreased significantly and the DNA damage, detected by γH2AX immunostaining, was substantially greater after combinational treatments than upon individual drug exposures followed by irradiation. Synergistic radiosensitizing effects of AuNPs and SAHA were proven on various cell lines, including radioresistant A549 and DU-145 cancer cells. 3D cultures often manifest radio- and drug-resistance, nevertheless, AuNPs in combination with SAHA could effectively enhance the potency of irradiation as the number of viable cells decreased significantly when spheroids received AuNP + SAHA prior to radiotherapy. Our results imply that a relaxed chromatin structure induced by SAHA renders the DNA of cancerous cells more susceptible to the damaging effects of irradiation-triggered, AuNP-released reactive electrons. This feature of AuNPs should be exploited in multimodal treatment approaches.
Collapse
Affiliation(s)
- Nóra Igaz
- Department of Biochemistry and Molecular Biology, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary; (N.I.); (K.S.); (D.K.)
- Doctoral School of Biology, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | - Krisztina Szőke
- Department of Biochemistry and Molecular Biology, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary; (N.I.); (K.S.); (D.K.)
| | - Dávid Kovács
- Department of Biochemistry and Molecular Biology, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary; (N.I.); (K.S.); (D.K.)
| | - Andrea Buhala
- Institute of Biochemistry, Biological Research Centre, Szeged, Temesvári krt. 62, H-6726 Szeged, Hungary; (A.B.); (C.V.)
| | - Zoltán Varga
- Department of Oncotherapy, University of Szeged, Korányi fasor 12, H-6720 Szeged, Hungary; (Z.V.); (K.H.)
| | - Péter Bélteky
- Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla tér 1, H-6720 Szeged, Hungary; (P.B.); (Z.K.)
| | - Zsolt Rázga
- Department of Pathology, University of Szeged, Állomás utca 2, H-6720 Szeged, Hungary; (Z.R.); (L.T.)
| | - László Tiszlavicz
- Department of Pathology, University of Szeged, Állomás utca 2, H-6720 Szeged, Hungary; (Z.R.); (L.T.)
| | - Csaba Vizler
- Institute of Biochemistry, Biological Research Centre, Szeged, Temesvári krt. 62, H-6726 Szeged, Hungary; (A.B.); (C.V.)
| | - Katalin Hideghéty
- Department of Oncotherapy, University of Szeged, Korányi fasor 12, H-6720 Szeged, Hungary; (Z.V.); (K.H.)
| | - Zoltán Kónya
- Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla tér 1, H-6720 Szeged, Hungary; (P.B.); (Z.K.)
| | - Mónika Kiricsi
- Department of Biochemistry and Molecular Biology, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary; (N.I.); (K.S.); (D.K.)
- Correspondence:
| |
Collapse
|
45
|
Elevated HDAC activity and altered histone phospho-acetylation confer acquired radio-resistant phenotype to breast cancer cells. Clin Epigenetics 2020; 12:4. [PMID: 31900196 PMCID: PMC6942324 DOI: 10.1186/s13148-019-0800-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 12/23/2019] [Indexed: 12/18/2022] Open
Abstract
Background Poor-responsiveness of tumors to radiotherapy is a major clinical problem. Owing to the dynamic nature of the epigenome, the identification and targeting of potential epigenetic modifiers may be helpful to curb radio-resistance. This requires a detailed exploration of the epigenetic changes that occur during the acquirement of radio-resistance. Such an understanding can be applied for effective utilization of treatment adjuncts to enhance the efficacy of radiotherapy and reduce the incidence of tumor recurrence. Results This study explored the epigenetic alterations that occur during the acquirement of radio-resistance. Sequential irradiation of MCF7 breast cancer cell line up to 20 Gy generated a radio-resistant model. Micrococcal nuclease digestion demonstrated the presence of compact chromatin architecture coupled with decreased levels of histone PTMs H3K9ac, H3K27 ac, and H3S10pK14ac in the G0/G1 and mitotic cell cycle phases of the radio-resistant cells. Further investigation revealed that the radio-resistant population possessed high HDAC and low HAT activity, thus making them suitable candidates for HDAC inhibitor–based radio-sensitization. Treatment of radio-resistant cells with HDAC inhibitor valproic acid led to the retention of γH2AX and decreased H3S10p after irradiation. Additionally, an analysis of 38 human patient samples obtained from 8 different tumor types showed variable tumor HDAC activity, thus demonstrating inter-tumoral epigenetic heterogeneity in a patient population. Conclusion The study revealed that an imbalance of HAT and HDAC activities led to the loss of site-specific histone acetylation and chromatin compaction as breast cancer cells acquired radio-resistance. Due to variation in the tumor HDAC activity among patients, our report suggests performing a prior assessment of the tumor epigenome to maximize the benefit of HDAC inhibitor–based radio-sensitization. Graphical abstract ![]()
Collapse
|
46
|
Tomaselli D, Lucidi A, Rotili D, Mai A. Epigenetic polypharmacology: A new frontier for epi-drug discovery. Med Res Rev 2020; 40:190-244. [PMID: 31218726 PMCID: PMC6917854 DOI: 10.1002/med.21600] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 05/10/2019] [Accepted: 05/14/2019] [Indexed: 12/11/2022]
Abstract
Recently, despite the great success achieved by the so-called "magic bullets" in the treatment of different diseases through a marked and specific interaction with the target of interest, the pharmacological research is moving toward the development of "molecular network active compounds," embracing the related polypharmacology approach. This strategy was born to overcome the main limitations of the single target therapy leading to a superior therapeutic effect, a decrease of adverse reactions, and a reduction of potential mechanism(s) of drug resistance caused by robustness and redundancy of biological pathways. It has become clear that multifactorial diseases such as cancer, neurological, and inflammatory disorders, may require more complex therapeutic approaches hitting a certain biological system as a whole. Concerning epigenetics, the goal of the multi-epi-target approach consists in the development of small molecules able to simultaneously and (often) reversibly bind different specific epi-targets. To date, two dual histone deacetylase/kinase inhibitors (CUDC-101 and CUDC-907) are in an advanced stage of clinical trials. In the last years, the growing interest in polypharmacology encouraged the publication of high-quality reviews on combination therapy and hybrid molecules. Hence, to update the state-of-the-art of these therapeutic approaches avoiding redundancy, herein we focused only on multiple medication therapies and multitargeting compounds exploiting epigenetic plus nonepigenetic drugs reported in the literature in 2018. In addition, all the multi-epi-target inhibitors known in literature so far, hitting two or more epigenetic targets, have been included.
Collapse
Affiliation(s)
- Daniela Tomaselli
- Department of Chemistry and Technologies of Drugs,
“Sapienza” University of Rome, P.le A. Moro 5, 00185 Roma, Italy
| | - Alessia Lucidi
- Department of Chemistry and Technologies of Drugs,
“Sapienza” University of Rome, P.le A. Moro 5, 00185 Roma, Italy
| | - Dante Rotili
- Department of Chemistry and Technologies of Drugs,
“Sapienza” University of Rome, P.le A. Moro 5, 00185 Roma, Italy
| | - Antonello Mai
- Department of Chemistry and Technologies of Drugs,
“Sapienza” University of Rome, P.le A. Moro 5, 00185 Roma, Italy
- Pasteur Institute - Cenci Bolognetti Foundation, Viale
Regina Elena 291, 00161 Roma, Italy
| |
Collapse
|
47
|
Ionizing radiation attracts tumor targeting and apoptosis by radiotropic lysyl oxidase traceable nanoparticles. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 24:102141. [PMID: 31830613 DOI: 10.1016/j.nano.2019.102141] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 10/23/2019] [Accepted: 11/29/2019] [Indexed: 02/05/2023]
Abstract
Lysyl oxidase (LOX) is a cell-secreted amine oxidase that crosslinks collagen and elastin in extracellular microenvironment. LOX-traceable nanoparticles (LOXab-NPs) consisting of LOX antibodies (LOXab) and paclitaxel, can accumulate at high concentrations at radiation-treated target sites, as a tumor-targeting drug carrier for chemotherapy. Tumor-targeting and anticancer effects of PLGA based LOXab-NPs in vitro and in vivo were evaluated at radiation-targeted site. In the in vivo A549 lung carcinoma xenograft model, we showed highly specific tumor targeting (above 7.0 times higher) of LOXab-NPs on irradiated tumors. Notably, systemically administered NPs delayed tumor growth, reducing tumor volumes by more than 2 times compared with non-irradiated groups (222% vs. >500%) over 2 weeks. Radiotropic LOXab-NPs can serve as chemotherapeutic vehicles for combined targeted chemo-radiotherapy in clinical oncology.
Collapse
|
48
|
Deville SS, Cordes N. The Extracellular, Cellular, and Nuclear Stiffness, a Trinity in the Cancer Resistome-A Review. Front Oncol 2019; 9:1376. [PMID: 31867279 PMCID: PMC6908495 DOI: 10.3389/fonc.2019.01376] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/22/2019] [Indexed: 12/19/2022] Open
Abstract
Alterations in mechano-physiological properties of a tissue instigate cancer burdens in parallel to common genetic and epigenetic alterations. The chronological and mechanistic interrelation between the various extra- and intracellular aspects remains largely elusive. Mechano-physiologically, integrins and other cell adhesion molecules present the main mediators for transferring and distributing forces between cells and the extracellular matrix (ECM). These cues are channeled via focal adhesion proteins, termed the focal adhesomes, to cytoskeleton and nucleus and vice versa thereby affecting the pathophysiology of multicellular cancer tissues. In combination with simultaneous activation of diverse downstream signaling pathways, the phenotypes of cancer cells are created and driven characterized by deregulated transcriptional and biochemical cues that elicit the hallmarks of cancer. It, however, remains unclear how elastostatic modifications, i.e., stiffness, in the extracellular, intracellular, and nuclear compartment contribute and control the resistance of cancer cells to therapy. In this review, we discuss how stiffness of unique tumor components dictates therapy response and what is known about the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Sara Sofia Deville
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Helmholtz-Zentrum Dresden - Rossendorf, Technische Universität Dresden, Dresden, Germany
- Department of Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
| | - Nils Cordes
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Helmholtz-Zentrum Dresden - Rossendorf, Technische Universität Dresden, Dresden, Germany
- Department of Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
- German Cancer Consortium (DKTK), Dresden, Germany
- Germany German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
49
|
Lee JH, Demarest TG, Babbar M, Kim EW, Okur MN, De S, Croteau DL, Bohr VA. Cockayne syndrome group B deficiency reduces H3K9me3 chromatin remodeler SETDB1 and exacerbates cellular aging. Nucleic Acids Res 2019; 47:8548-8562. [PMID: 31276581 DOI: 10.1093/nar/gkz568] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 06/09/2019] [Accepted: 06/29/2019] [Indexed: 12/30/2022] Open
Abstract
Cockayne syndrome is an accelerated aging disorder, caused by mutations in the CSA or CSB genes. In CSB-deficient cells, poly (ADP ribose) polymerase (PARP) is persistently activated by unrepaired DNA damage and consumes and depletes cellular nicotinamide adenine dinucleotide, which leads to mitochondrial dysfunction. Here, the distribution of poly (ADP ribose) (PAR) was determined in CSB-deficient cells using ADPr-ChAP (ADP ribose-chromatin affinity purification), and the results show striking enrichment of PAR at transcription start sites, depletion of heterochromatin and downregulation of H3K9me3-specific methyltransferases SUV39H1 and SETDB1. Induced-expression of SETDB1 in CSB-deficient cells downregulated PAR and normalized mitochondrial function. The results suggest that defects in CSB are strongly associated with loss of heterochromatin, downregulation of SETDB1, increased PAR in highly-transcribed regions, and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Jong-Hyuk Lee
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Tyler G Demarest
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Mansi Babbar
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Edward W Kim
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Mustafa N Okur
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Supriyo De
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Deborah L Croteau
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Vilhelm A Bohr
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.,Danish Center for Healthy Aging, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
50
|
Kang J, Park MC, Kim J, Hur H, Min BS, Baik SH, Lee KY, Kim NK. Prediction of tumor response of rectal cancer cells via 3D cell culture and in vitro cytotoxicity assay before initiating preoperative chemoradiotherapy. Oncol Lett 2019; 18:3863-3872. [PMID: 31516597 DOI: 10.3892/ol.2019.10702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 07/23/2019] [Indexed: 11/05/2022] Open
Abstract
The aim of the present study was to investigate the utility of 3D cell culture and in vitro cytotoxicity assays, performed using cells derived from biopsies obtained prior to the initiation of preoperative chemoradiotherapy (preop-CRT), in predicting tumor response to chemoradiotherapy following preop-CRT in rectal cancer. Biopsies were obtained from 49 patients with locally advanced rectal cancer that underwent preop-CRT between August 2015 and March 2017. Tumor tissue was obtained before initiating preop-CRT. The response to chemoradiation was assessed by in vitro cytotoxicity assay following 3D cell culture and radiation treatment. The associations between the results from the cytotoxicity assay, and tumor regression grade (TRG) and yp node (ypN) positivity were investigated. Among 49 patients, 26 patients were available for analysis. Cytotoxicity ranged from 25.5-72.6% (median, 47.6%). There was no difference in cytotoxicity according to the TRGs 1-5 (P=0.940), or good tumor response (TRGs 1-2 vs. TRGs 3-5; P=0.729). However, there was a significant difference in cytotoxicity between the ypN-negative and -positive groups (53.2±14.1 and 38.7±10.1, respectively; P=0.021). Following dichotomization of patients with 45% cut-off value, the cytotoxicity assay was the only factor that predicted ypN positivity in multivariate analysis (odds ratio, 13; 95% confidence interval, 1.2-133.2; P=0.031). In conclusion, the cytotoxicity assay using the 3D cell culture method can be used to predict tumor response, particularly ypN positivity, in patients with rectal cancer who are scheduled for preop-CRT.
Collapse
Affiliation(s)
- Jeonghyun Kang
- Department of Surgery, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Min Chul Park
- CureBio Co., Ltd., Suwon, Gyeonggi 16229, Republic of Korea
| | - Jina Kim
- CureBio Co., Ltd., Suwon, Gyeonggi 16229, Republic of Korea
| | - Hyuk Hur
- Department of Surgery, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Byung Soh Min
- Department of Surgery, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Seung Hyuk Baik
- Department of Surgery, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Kang Young Lee
- Department of Surgery, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Nam Kyu Kim
- Department of Surgery, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| |
Collapse
|