1
|
Klaus L, Reichardt SD, Neif M, Walter L, Gayer FA, Reichardt HM. Teratoma Development in 129.MOLF-Chr19 Mice Elicits Two Waves of Immune Cell Infiltration. Int J Mol Sci 2024; 25:12750. [PMID: 39684459 DOI: 10.3390/ijms252312750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Teratomas are a highly differentiated type of testicular germ cell tumors (TGCTs), the most common type of solid cancer in young men. Prominent inflammatory infiltrates are a hallmark of TGCTs, although their compositions and dynamics in teratomas remain elusive. Here, we reached out to characterize the infiltrating immune cells and their activation and polarization state by using high-throughput gene expression analysis of 129.MOLF-Chr19 mice that spontaneously develop testicular teratomas. We showed that inconspicuous testes without any apparent alterations in size or morphology can be clustered into three groups based on their expression of stemness and immune genes, supporting a model in which initial oncogenic transformation elicits a first wave of T-cell infiltration. Moderately and severely enlarged tumorous testes then displayed a progressive infiltration with T cells, monocytes/macrophages, and B cells. Importantly, T cells seem to adopt an inactive state caused by an overexpression of immune checkpoint molecules and the polarization of monocytes/macrophages to an anti-inflammatory phenotype. Our findings are supported by the analysis of metabolic gene expression, which unveiled alterations indicative of tumor growth and immune cell infiltration. Collectively, testicular teratomas, at least in mice, are characterized by a diverse inflammatory infiltrate containing T cells that putatively become inactivated, allowing the tumors to further grow. We believe that these findings may provide a rationale for the development of new immunomodulatory therapies for TGCTs.
Collapse
Affiliation(s)
- Lucas Klaus
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Sybille D Reichardt
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Maria Neif
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, 37073 Göttingen, Germany
- Department of Dermatology, University Hospital Münster, 48149 Münster, Germany
| | - Lutz Walter
- German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany
| | - Fabian A Gayer
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, 37073 Göttingen, Germany
- Clinic of Urology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Holger M Reichardt
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, 37073 Göttingen, Germany
| |
Collapse
|
2
|
Zhang Y, Simko AC, Okoro U, Sibert DJ, Moon JH, Liu B, Matin A. Commitment Complex Splicing Factors in Cancers of the Gastrointestinal Tract-An In Silico Study. Bioinform Biol Insights 2024; 18:11779322241287115. [PMID: 39421280 PMCID: PMC11483837 DOI: 10.1177/11779322241287115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/05/2024] [Indexed: 10/19/2024] Open
Abstract
The initial step in pre-mRNA splicing involves formation of a spliceosome commitment complex (CC) or E-complex by factors that serve to bind and mark the exon-intron boundaries that will undergo splicing. The CC component U1 snRNP assembles at the 5'-splice site (ss), whereas SF1, U2AF2, and U2AF1 define the 3'-ss of the intron. A PRP40 protein bridges U1 snRNP with factors at the 3'-ss. To determine how defects in CC components impact cancers, we analyzed human gastrointestinal (GI) cancer patient tissue and clinical data from cBioPortal. cBioPortal datasets were analyzed for CC factor alterations and patient outcomes in GI cancers (bowel, stomach, esophagus, pancreas, and liver). In addition, co-expression datasets were used to determine the splicing targets of the CC. Our analysis found that frequency of genetic changes was low (1%-13%), but when combined with changes in expression levels, there was an overall surprisingly high incidence of CC component (>30%) alterations in GI cancers. Colon cancer patients carrying BRAF driver gene mutations had high incidences of CC alterations (19%-61%), whereas patients with APC, KRAS, or TP53 gene mutations had low (<5%) incidences of CC alterations. Most significantly, patients with mutations in CC genes exhibited a consistent trend of favorable survival rates, indicating that mutations that impair or lower CC component expression favor patient survival. Conversely, patients with high CC expression had worse survival. Pathway analysis indicates that the CC regulates specific metabolic and tumor suppressor pathways. Metabolic pathways involved in cell survival, nutrition, biosynthesis, autophagy, cellular movement (invasion), or immune surveillance pathways correlated with CC factor upregulation, whereas tumor suppressor pathways, which regulate cell proliferation and apoptosis, were inversely correlated with CC factor upregulation. This study demonstrates the versatility of in silico analysis to determine molecular function of large macromolecular complexes such as the spliceosome CC. Furthermore, our analysis indicates that therapeutic lowering of CC levels in colon cancer patients may enhance patient survival.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Pharmaceutical Sciences, Texas Southern University, Houston, TX, USA
| | | | - Uzondu Okoro
- Department of Pharmaceutical Sciences, Texas Southern University, Houston, TX, USA
| | - Deja Jamese Sibert
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Jin Hyung Moon
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Bin Liu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Angabin Matin
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA
| |
Collapse
|
3
|
Non-Coding RNAs and Splicing Activity in Testicular Germ Cell Tumors. Life (Basel) 2021; 11:life11080736. [PMID: 34440480 PMCID: PMC8399856 DOI: 10.3390/life11080736] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/13/2021] [Accepted: 07/22/2021] [Indexed: 01/22/2023] Open
Abstract
Testicular germ cell tumors (TGCTs) are the most common tumors in adolescent and young men. Recently, genome-wide studies have made it possible to progress in understanding the molecular mechanisms underlying the development of tumors. It is becoming increasingly clear that aberrant regulation of RNA metabolism can drive tumorigenesis and influence chemotherapeutic response. Notably, the expression of non-coding RNAs as well as specific splice variants is deeply deregulated in human cancers. Since these cancer-related RNA species are considered promising diagnostic, prognostic and therapeutic targets, understanding their function in cancer development is becoming a major challenge. Here, we summarize how the different expression of RNA species repertoire, including non-coding RNAs and protein-coding splicing variants, impacts on TGCTs’ onset and progression and sustains therapeutic resistance. Finally, the role of transcription-associated R-loop misregulation in the maintenance of genomic stability in TGCTs is also discussed.
Collapse
|
4
|
Wang Y, Yu Y, Pang Y, Yu H, Zhang W, Zhao X, Yu J. The distinct roles of zinc finger CCHC-type (ZCCHC) superfamily proteins in the regulation of RNA metabolism. RNA Biol 2021; 18:2107-2126. [PMID: 33787465 DOI: 10.1080/15476286.2021.1909320] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The zinc finger CCHC-type (ZCCHC) superfamily proteins, characterized with the consensus sequence C-X2-C-X4-H-X4-C, are accepted to have high-affinity binding to single-stranded nucleic acids, especially single-stranded RNAs. In human beings 25 ZCCHC proteins have been annotated in the HGNC database. Of interest is that among the family, most members are involved in the multiple steps of RNA metabolism. In this review, we focus on the diverged roles of human ZCCHC proteins on RNA transcription, biogenesis, splicing, as well as translation and degradation.
Collapse
Affiliation(s)
- Yishu Wang
- Department of Biochemistry and Molecular Cell Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Yu Yu
- Department of Biochemistry and Molecular Cell Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yidan Pang
- Department of Biochemistry and Molecular Cell Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haojun Yu
- Department of Biochemistry and Molecular Cell Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenqi Zhang
- Department of Biochemistry and Molecular Cell Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xian Zhao
- Department of Biochemistry and Molecular Cell Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianxiu Yu
- Department of Biochemistry and Molecular Cell Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Zhang CJ, Li ZT, Shen KJ, Chen L, Xu DF, Gao Y. Characterization of progression-related alternative splicing events in testicular germ cell tumors. Asian J Androl 2021; 23:259-265. [PMID: 33037172 PMCID: PMC8152425 DOI: 10.4103/aja.aja_30_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Accumulating evidence supports the significance of aberrant alternative splicing (AS) events in cancer; however, genome-wide profiling of progression-free survival (PFS)-related AS events in testicular germ cell tumors (TGCT) has not been reported. Here, we analyzed high-throughput RNA-sequencing data and percent-spliced-in values for 150 patients with TGCT. Using univariate and multivariate Cox regression analysis and a least absolute shrinkage and selection operator method, we identified the top 15 AS events most closely associated with disease progression. A risk-associated AS score (ASS) for the 15 AS events was calculated for each patient. ASS, pathological stage, and T stage were significantly associated with disease progression by univariate analysis, but only ASS and pathological stage remained significant by multivariate analysis. The ability of these variables to predict 5-year progression was assessed using receiver operating characteristic curve analysis. ASS had stronger predictive value than a combination of age, pathological stage, and T stage (area under the curve = 0.899 and 0.715, respectively). Furthermore, Kaplan–Meier analysis of patients with low and high ASS demonstrated that high ASS was associated with significantly worse PFS than low ASS (P = 1.46 × 10−7). We also analyzed the biological functions of the PFS-related AS-related genes and found enrichment in pathways associated with DNA repair and modification. Finally, we identified a regulatory network of splicing factors with expression levels that correlated significantly with AS events in TGCT. Collectively, this study identifies a novel method for risk stratification of patients and provides insight into the molecular events underlying TGCT.
Collapse
Affiliation(s)
- Chuan-Jie Zhang
- Department of Urinary Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Zong-Tai Li
- Department of Medical Oncology, Gaozhou People's Hospital, Gaozhou 525200, China
| | - Kan-Jie Shen
- First Clinical Medical College of Nanjing Medical University, Nanjing 210000, China
| | - Lu Chen
- Department of Urinary Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Dan-Feng Xu
- Department of Urinary Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Yi Gao
- Department of Urinary Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
6
|
Godavarthi JD, Polk S, Nunez L, Shivachar A, Glenn Griesinger NL, Matin A. Deficiency of Splicing Factor 1 (SF1) Reduces Intestinal Polyp Incidence in ApcMin/+ Mice. BIOLOGY 2020; 9:biology9110398. [PMID: 33202710 PMCID: PMC7697247 DOI: 10.3390/biology9110398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/08/2020] [Accepted: 11/10/2020] [Indexed: 11/16/2022]
Abstract
BACKGROUND Splicing factor 1 (SF1) is a conserved alternative splicing factor expressed in many different mammalian cell types. The genetically modified Sf1+/- (or Sf1β-geo/+) mice express reduced levels of SF1 protein in mouse tissues, including in cells of the intestines. Mutational inactivation of human adenomatous polyposis coli (APC) gene deregulates the Wnt signaling pathway and is a frequent genetic event in colon cancers. Mice with a point mutation in the Apc gene (ApcMin/+) also develop numerous intestinal polyps at a young age. Our aim was to determine the effect of reduced SF1 levels on polyp development due to the strong driver ApcMin/+ mutation. METHODS We utilized mice genetically deficient for expression of SF1 to assess how SF1 levels affect intestinal tumorigenesis. We crossed ApcMin/+ to Sf1+/- mice to generate a cohort of heterozygous mutant ApcMin/+;Sf1+/- mice and compared intestinal polyp development in these mice to that in a control cohort of sibling ApcMin/+ mice. We compared total polyp numbers, sizes of polyps and gender differences in polyp numbers between ApcMin/+;Sf1+/- and ApcMin/+ mice. RESULTS Our results showed that ApcMin/+ mice with lower SF1 expression developed 25-30% fewer intestinal polyps compared to their ApcMin/+ siblings with normal SF1 levels. Interestingly, this difference was most significant for females (ApcMin/+;Sf1+/- and ApcMin/+ females developed 39 and 55 median number of polyps, respectively). Furthermore, the difference in polyp numbers between ApcMin/+;Sf1+/- and ApcMin/+ mice was significant for smaller polyps with a size of 2 mm or less, whereas both groups developed similar numbers of larger polyps. CONCLUSIONS Our results suggest that lower SF1 levels likely inhibit the rate of initiation of polyp development due to ApcMin/+ driver mutation in the mouse intestine. Thus, therapeutic lowering of SF1 levels in the intestine could attenuate intestinal polyp development.
Collapse
Affiliation(s)
- Jyotsna D. Godavarthi
- Department of Pharmaceutical Sciences, Texas Southern University, Houston, TX 77004, USA; (J.D.G.); (S.P.); (L.N.); (A.S.)
| | - Shahrazad Polk
- Department of Pharmaceutical Sciences, Texas Southern University, Houston, TX 77004, USA; (J.D.G.); (S.P.); (L.N.); (A.S.)
| | - Lisa Nunez
- Department of Pharmaceutical Sciences, Texas Southern University, Houston, TX 77004, USA; (J.D.G.); (S.P.); (L.N.); (A.S.)
| | - Amruthesh Shivachar
- Department of Pharmaceutical Sciences, Texas Southern University, Houston, TX 77004, USA; (J.D.G.); (S.P.); (L.N.); (A.S.)
| | | | - Angabin Matin
- Department of Pharmaceutical Sciences, Texas Southern University, Houston, TX 77004, USA; (J.D.G.); (S.P.); (L.N.); (A.S.)
- Correspondence: ; Tel.: +1-713-313-7160; Fax: +1-713-313-1091
| |
Collapse
|
7
|
Zhang KL, Feng Z, Yang JF, Yang F, Yuan T, Zhang D, Hao GF, Fang YM, Zhang J, Wu C, Chen MX, Zhu FY. Systematic characterization of the branch point binding protein, splicing factor 1, gene family in plant development and stress responses. BMC PLANT BIOLOGY 2020; 20:379. [PMID: 32811430 PMCID: PMC7433366 DOI: 10.1186/s12870-020-02570-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/22/2020] [Indexed: 06/01/2023]
Abstract
BACKGROUND Among eukaryotic organisms, alternative splicing is an important process that can generate multiple transcripts from one same precursor messenger RNA, which greatly increase transcriptome and proteome diversity. This process is carried out by a super-protein complex defined as the spliceosome. Specifically, splicing factor 1/branchpoint binding protein (SF1/BBP) is a single protein that can bind to the intronic branchpoint sequence (BPS), connecting the 5' and 3' splice site binding complexes during early spliceosome assembly. The molecular function of this protein has been extensively investigated in yeast, metazoa and mammals. However, its counterpart in plants has been seldomly reported. RESULTS To this end, we conducted a systematic characterization of the SF1 gene family across plant lineages. In this work, a total of 92 sequences from 59 plant species were identified. Phylogenetic relationships of these sequences were constructed, and subsequent bioinformatic analysis suggested that this family likely originated from an ancient gene transposition duplication event. Most plant species were shown to maintain a single copy of this gene. Furthermore, an additional RNA binding motif (RRM) existed in most members of this gene family in comparison to their animal and yeast counterparts, indicating that their potential role was preserved in the plant lineage. CONCLUSION Our analysis presents general features of the gene and protein structure of this splicing factor family and will provide fundamental information for further functional studies in plants.
Collapse
Affiliation(s)
- Kai-Lu Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037 Jiangsu Province China
| | - Zhen Feng
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037 Jiangsu Province China
| | - Jing-Fang Yang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079 China
| | - Feng Yang
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Tian Yuan
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Di Zhang
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Ge-Fei Hao
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079 China
| | - Yan-Ming Fang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037 Jiangsu Province China
| | - Jianhua Zhang
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
- Department of Biology, Hong Kong Baptist University, and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Caie Wu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037 Jiangsu Province China
| | - Mo-Xian Chen
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 PR China
| | - Fu-Yuan Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037 Jiangsu Province China
| |
Collapse
|
8
|
Hu Y, Cheng L, Zhong W, Chen M, Zhang Q. Bioinformatics Analysis of Gene Expression Profiles for Risk Prediction in Patients with Septic Shock. Med Sci Monit 2019; 25:9563-9571. [PMID: 31838482 PMCID: PMC6929537 DOI: 10.12659/msm.918491] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background Septic shock occurs when sepsis is associated with critically low blood pressure, and has a high mortality rate. This study aimed to undertake a bioinformatics analysis of gene expression profiles for risk prediction in septic shock. Material/Methods Two good quality datasets associated with septic shock were downloaded from the Gene Expression Omnibus (GEO) database, GSE64457 and GSE57065. Patients with septic shock had both sepsis and hypotension, and a normal control group was included. The differentially expressed genes (DEGs) were identified using OmicShare tools based on R. Functional enrichment of DEGs was analyzed using DAVID. The protein-protein interaction (PPI) network was established using STRING. Survival curves of key genes were constructed using GraphPad Prism version 7.0. Each putative central gene was analyzed by receiver operating characteristic (ROC) curves using MedCalc statistical software. Results GSE64457 and GSE57065 included 130 RNA samples derived from whole blood from 97 patients with septic shock and 33 healthy volunteers to obtain 975 DEGs, 455 of which were significantly down-regulated and 520 were significantly upregulated (P<0.05). Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis identified significantly enriched DEGs in four signaling pathways, MAPK, TNF, HIF-1, and insulin. Six genes, WDR82, ASH1L, NCOA1, TPR, SF1, and CREBBP in the center of the PPI network were associated with septic shock, according to survival curve and ROC analysis. Conclusions Bioinformatics analysis of gene expression profiles identified four signaling pathways and six genes, potentially representing molecular mechanisms for the occurrence, progression, and risk prediction in septic shock.
Collapse
Affiliation(s)
- Yingchun Hu
- Department of Emergency Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China (mainland)
| | - Lingxia Cheng
- Department of Emergency Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China (mainland)
| | - Wu Zhong
- Department of Emergency Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China (mainland)
| | - Muhu Chen
- Department of Emergency Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China (mainland)
| | - Qian Zhang
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China (mainland)
| |
Collapse
|
9
|
Wu L, Liu C, Zhang Z. Knockdown of lncRNA MIAT inhibits proliferation and cisplatin resistance in non-small cell lung cancer cells by increasing miR-184 expression. Oncol Lett 2019; 19:533-541. [PMID: 31897168 DOI: 10.3892/ol.2019.11084] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 08/13/2019] [Indexed: 12/13/2022] Open
Abstract
Accumulating evidence has demonstrated the important role of long non-coding RNA myocardial infarction-associated transcript (MIAT) in tumorigenesis as a potential oncogene. However, the function of MIAT in non-small cell lung cancer (NSCLC) has yet to be completely elucidated. The present study demonstrated that MIAT expression was significantly upregulated in NSCLC tissues, particularly in aggressive cases, and was highly associated with a poor prognosis. In addition, the upregulated expression of MIAT was observed in cisplatin (CDDP)-resistant H1299 cells. Knockdown of MIAT inhibited the proliferation of NSCLC cells and enhanced the sensitivity of NSCLC cells to CDDP in vitro and in vivo. Further functional analysis demonstrated that MIAT partially exerted its oncogenic effect by upregulating the expression of splicing factor 1 (SF1), by serving as a microRNA (miR)-184 sponge. In conclusion, the present study identified that MIAT functions as a competitive endogenous RNA of miR-184to modulate SF1 expression in NSCLC, which provides a novel insight into the potential therapeutic application of MIAT in NSCLC progression.
Collapse
Affiliation(s)
- Longqiu Wu
- Department of Cardiothoracic Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Chi Liu
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, P.R. China
| | - Zuxiong Zhang
- Department of Cardiothoracic Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| |
Collapse
|
10
|
Nunez L, Mokkapati S, Yu C, Deng JM, Behringer RR, Matin A. Generation of a novel mouse strain with conditional, cell-type specific, expression of DND1. Genesis 2019; 57:e23335. [PMID: 31513344 DOI: 10.1002/dvg.23335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 08/28/2019] [Accepted: 08/29/2019] [Indexed: 01/26/2023]
Abstract
Dead-End 1 (DND1) encodes an RNA binding protein critical for viable primordial germ cells in vertebrates. When introduced into cancer cell lines, DND1 suppresses cell proliferation and enhances apoptosis. However, the molecular function of mammalian wild-type DND1 has mostly been studied in cell lines and not verified in the organism. To facilitate study of wild-type DND1 function in mammalian systems, we generated a novel transgenic mouse line, LSL-FM-DND1 flox/+ , which conditionally expresses genetically engineered, FLAG-tagged and myc-tagged DND1 in a cell type-specific manner. We report that FLAG-myc-DND1 is indeed expressed in specific tissues of the mouse when LSL-FM-DND1 flox/+ is combined with mouse strains expressing Cre-recombinase. LSL-FM-DND1 flox/+ mice are fertile with no overt health effects. We expressed FLAG-myc-DND1 in the pancreas and found that chronic, ectopic expression of FLAG-myc-DND1 led to increase in fasting glucose levels in older mice. Thus, this novel LSL-FM-DND1 flox/+ mouse strain will facilitate studies on the biological and molecular function of wild-type DND1.
Collapse
Affiliation(s)
- Lisa Nunez
- Department of Pharmaceutical Sciences, Texas Southern University, Houston, Texas
| | - Sharada Mokkapati
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Chengtai Yu
- Department of Biology and Biochemistry, University of Houston, Houston, Texas
| | - Jian M Deng
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Richard R Behringer
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Angabin Matin
- Department of Pharmaceutical Sciences, Texas Southern University, Houston, Texas
| |
Collapse
|
11
|
Xuan W, Yu H, Zhang X, Song D. Crosstalk between the lncRNA UCA1 and microRNAs in cancer. FEBS Lett 2019; 593:1901-1914. [PMID: 31166011 DOI: 10.1002/1873-3468.13470] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 12/11/2022]
Abstract
Long non-coding RNAs (lncRNAs) are a major subset of highly conserved non-coding RNAs (ncRNAs) that consist of at least 200 nucleotides and have limited protein-coding potential. Cumulative data have shown that lncRNAs are deregulated in many types of cancer and may control pathophysiological processes of cancer at various levels, including transcription, post-transcription and translation. Recently, lncRNAs have been demonstrated to interact with microRNAs (miRNAs), another major subset of ncRNAs, which regulate physiological and pathological processes by inhibiting target mRNA translation or promoting mRNA degradation. The lncRNA urothelial carcinoma-associated 1 (UCA1) has recently gained much attention as it is overexpressed in many types of cancer and is involved in carcinogenesis. Here, we review the crosstalk between UCA1 and miRNAs during the pathogenesis of cancer, with a focus on cancer-cell proliferation, invasion, drug resistance, and metabolism.
Collapse
Affiliation(s)
- Wei Xuan
- Department of Hepatopancreaticobiliary Surgery, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Hongyu Yu
- Department of Nephrology, Second Hospital of Jilin University, Changchun, China
| | - Xiaoling Zhang
- The First Hospital and Institute of Immunology, Jilin University, Changchun, China
| | - Dandan Song
- Department of Clinical Laboratory, Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
12
|
Zhang R, Lin P, Yang X, He RQ, Wu HY, Dang YW, Gu YY, Peng ZG, Feng ZB, Chen G. Survival associated alternative splicing events in diffuse large B-cell lymphoma. Am J Transl Res 2018; 10:2636-2647. [PMID: 30210700 PMCID: PMC6129525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 07/25/2018] [Indexed: 06/08/2023]
Abstract
Growing evidence has revealed that the initiation of various malignancies is closely associated with alternative splicing (AS) events in certain key oncogenes. However, in diffuse large B-cell lymphoma (DLBCL), there is still a great deal to learn about AS variants. In this study, 33,724 AS variant profiles were obtained from 16,278 genes in 48 DLBCL cases. A total of 10 AS variants were identified as overall survival (OS)- related events via multivariate Cox regression analysis. Notably, alternative donor (AD) sites in AS events in the low-risk group showed a significantly better outcome in DLBCL patients than in the high-risk group (P=0.0002). The area under the curve (AUC) of the receiver-operator characteristic curve (ROC) for ADs in DLBCL was 0.746. Furthermore, 66 related splicing factors were obtained to investigate their potential correlations with AS events. Factors SF1, HNRNPC, HNRNPD, and HNRNPH3 were significantly involved in different OS-related AS variants. Collectively, we constructed valuable prognostic predictors for DLBCL patients and mapped novel splicing networks for further investigation of the underlying mechanisms related to AS variants in DLBCLs.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Peng Lin
- Department of Ultrasonography, First Affiliated Hospital of Guangxi Medical University6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Xia Yang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Rong-Quan He
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Hua-Yu Wu
- Department of Cell Biology and Genetics, Guangxi Medical University22 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Yi-Wu Dang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Yong-Yao Gu
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Zhi-Gang Peng
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Zhen-Bo Feng
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
13
|
Angel J, DiGiovanni J. Genetic Determinants of Cancer Susceptibility. COMPREHENSIVE TOXICOLOGY 2018:330-360. [DOI: 10.1016/b978-0-12-801238-3.65251-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
14
|
Salz HK, Dawson EP, Heaney JD. Germ cell tumors: Insights from the Drosophila ovary and the mouse testis. Mol Reprod Dev 2017; 84:200-211. [PMID: 28079292 DOI: 10.1002/mrd.22779] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 01/10/2017] [Indexed: 12/14/2022]
Abstract
Ovarian and testicular germ cell tumors of young adults are thought to arise from defects in germ cell development, but the molecular mechanisms underlying malignant transformation are poorly understood. In this review, we focus on the biology of germ cell tumor formation in the Drosophila ovary and the mouse testis, for which evidence supports common underlying mechanisms, such as blocking initiation into the differentiation pathway, impaired lineage progression, and sexual identity instability. We then discuss how these concepts inform our understanding of the disease in humans. Mol. Reprod. Dev. 84: 200-211, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Helen K Salz
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio
| | - Emily P Dawson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Jason D Heaney
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
15
|
Fang Z, Zhao J, Xie W, Sun Q, Wang H, Qiao B. LncRNA UCA1 promotes proliferation and cisplatin resistance of oral squamous cell carcinoma by sunppressing miR-184 expression. Cancer Med 2017; 6:2897-2908. [PMID: 29125238 PMCID: PMC5727307 DOI: 10.1002/cam4.1253] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/06/2017] [Accepted: 10/10/2017] [Indexed: 12/13/2022] Open
Abstract
Chemotherapy resistance has become the main obstacle for the effective treatment of human cancers. Long non‐coding RNA urothelial cancer associated 1 (UCA1) is generally regarded as an oncogene in some cancers. However, the function and molecular mechanism of UCA1 implicated in cisplatin (CDDP) chemoresistance of oral squamous cell carcinoma (OSCC) is still not fully established. UCA1 expression in tumor tissues and cells was tested by qRT‐PCR. MTT, flow cytometry and caspase‐3 activity analysis were explored to evaluate the CDDP sensitivity in OSCC cells. Western blot analysis was used to measure BCL2, Bax and SF1 protein expression. Luciferase reporter assay was conducted to investigate the molecular relationship between UCA1, miR‐184, and SF1. Nude mice model was used to confirm the functional role of UCA1 in CDDP resistance in vivo. UCA1 expression was upregulated in OSCC tissues, cell lines, and CDDP resistant OSCC cells. Function analysis revealed that UCA1 facilitated proliferation, enhanced CDDP chemoresistance, and suppressed apoptosis in OSCC cells. Mechanisms investigation indicated that UCA1 could interact with miR‐184 to repress its expression. Rescue experiments suggested that downregulation of miR‐184 partly reversed the tumor suppression effect and CDDP chemosensitivity of UCA1 knockdown in CDDP‐resistant OSCC cells. Moreover, UCA1 could perform as a miR‐184 sponge to modulate SF1 expression. The OSCC nude mice model experiments demonstrated that depletion of UCA1 further boosted CDDP‐mediated repression effect on tumor growth. UCA1 accelerated proliferation, increased CDDP chemoresistance and restrained apoptosis partly through modulating SF1 via sponging miR‐184 in OSCC cells, suggesting that targeting UCA1 may be a potential therapeutic strategy for OSCC patients
Collapse
Affiliation(s)
- Zheng Fang
- Department of Stomatology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Junfang Zhao
- Department of Stomatology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Weihong Xie
- Department of Stomatology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Qiang Sun
- Department of Stomatology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Haibin Wang
- Department of Stomatology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Bin Qiao
- Department of Stomatology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| |
Collapse
|
16
|
Buchner DA, Nadeau JH. Contrasting genetic architectures in different mouse reference populations used for studying complex traits. Genome Res 2015; 25:775-91. [PMID: 25953951 PMCID: PMC4448675 DOI: 10.1101/gr.187450.114] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 03/31/2015] [Indexed: 01/14/2023]
Abstract
Quantitative trait loci (QTLs) are being used to study genetic networks, protein functions, and systems properties that underlie phenotypic variation and disease risk in humans, model organisms, agricultural species, and natural populations. The challenges are many, beginning with the seemingly simple tasks of mapping QTLs and identifying their underlying genetic determinants. Various specialized resources have been developed to study complex traits in many model organisms. In the mouse, remarkably different pictures of genetic architectures are emerging. Chromosome Substitution Strains (CSSs) reveal many QTLs, large phenotypic effects, pervasive epistasis, and readily identified genetic variants. In contrast, other resources as well as genome-wide association studies (GWAS) in humans and other species reveal genetic architectures dominated with a relatively modest number of QTLs that have small individual and combined phenotypic effects. These contrasting architectures are the result of intrinsic differences in the study designs underlying different resources. The CSSs examine context-dependent phenotypic effects independently among individual genotypes, whereas with GWAS and other mouse resources, the average effect of each QTL is assessed among many individuals with heterogeneous genetic backgrounds. We argue that variation of genetic architectures among individuals is as important as population averages. Each of these important resources has particular merits and specific applications for these individual and population perspectives. Collectively, these resources together with high-throughput genotyping, sequencing and genetic engineering technologies, and information repositories highlight the power of the mouse for genetic, functional, and systems studies of complex traits and disease models.
Collapse
Affiliation(s)
- David A Buchner
- Department of Genetics and Genome Sciences, Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Joseph H Nadeau
- Pacific Northwest Diabetes Research Institute, Seattle, Washington 98122, USA
| |
Collapse
|
17
|
Tumor loci and their interactions on mouse chromosome 19 that contribute to testicular germ cell tumors. BMC Genet 2014; 15:65. [PMID: 24886204 PMCID: PMC4053281 DOI: 10.1186/1471-2156-15-65] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 05/23/2014] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Complex genetic factors underlie testicular germ cell tumor (TGCT) development. One experimental approach to dissect the genetics of TGCT predisposition is to use chromosome substitution strains, such as the 129.MOLF-Chr 19 (M19). M19 carries chromosome (Chr) 19 from the MOLF whereas all other chromosomes are from the 129 strain. 71% of M19 males develop TGCTs in contrast to 5% in 129 strain. To identify and map tumor loci from M19 we generated congenic strains harboring MOLF chromosome 19 segments on 129 strain background and monitored their TGCT incidence. RESULTS We found 3 congenic strains that each harbored tumor promoting loci that had high (14%-32%) whereas 2 other congenics had low (4%) TGCT incidences. To determine how multiple loci influence TGCT development, we created double and triple congenic strains. We found additive interactions were predominant when 2 loci were combined in double congenic strains. Surprisingly, we found an example where 2 loci, both which do not contribute significantly to TGCT, when combined in a double congenic strain resulted in greater than expected TGCT incidence (positive interaction). In an opposite example, when 2 loci with high TGCT incidences were combined, males of the double congenic showed lower than expected TGCT incidence (negative interaction). For the triple congenic strain, depending on the analysis, the overall TGCT incidence could be additive or could also be due to a positive interaction of one region with others. Additionally, we identified loci that promote bilateral tumors or testicular abnormalities. CONCLUSIONS The congenic strains each with their characteristic TGCT incidences, laterality of tumors and incidence of testicular abnormalities, are useful for identification of TGCT susceptibility modifier genes that map to Chr 19 and also for studies on the genetic and environmental causes of TGCT development. TGCTs are a consequence of aberrant germ cell and testis development. By defining predisposing loci and some of the locus interactions from M19, this study further advances our understanding of the complex genetics of TGCTs, which is the most common cancer in young human males.
Collapse
|
18
|
Zechel JL, Doerner SK, Lager A, Tesar PJ, Heaney JD, Nadeau JH. Contrasting effects of Deadend1 (Dnd1) gain and loss of function mutations on allelic inheritance, testicular cancer, and intestinal polyposis. BMC Genet 2013; 14:54. [PMID: 23773267 PMCID: PMC3693958 DOI: 10.1186/1471-2156-14-54] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Accepted: 06/07/2013] [Indexed: 11/10/2022] Open
Abstract
Background Certain mutations in the Deadend1 (Dnd1) gene are the most potent modifiers of testicular germ cell tumor (TGCT) susceptibility in mice and rats. In the 129 family of mice, the Dnd1Ter mutation significantly increases occurrence of TGCT-affected males. To test the hypothesis that he Dnd1Ter allele is a loss-of-function mutation; we characterized the consequences of a genetically-engineered loss-of-function mutation in mice, and compared these results with those for Dnd1Ter. Results We found that intercrossing Dnd1+/KO heterozygotes to generate a complete loss-of-function led to absence of Dnd1KO/KO homozygotes and significantly reduced numbers of Dnd1+/KO heterozygotes. Further crosses showed that Dnd1Ter partially rescues loss of Dnd1KO mice. We also found that loss of a single copy of Dnd1 in Dnd1KO/+ heterozygotes did not affect baseline occurrence of TGCT-affected males and that Dnd1Ter increased TGCT risk regardless whether the alternative allele was loss-of-function (Dnd1KO) or wild-type (Dnd1+). Finally, we found that the action of Dnd1Ter was not limited to testicular cancer, but also significantly increased polyp number and burden in the Apc+/Min model of intestinal polyposis. Conclusion These results show that Dnd1 is essential for normal allelic inheritance and that Dnd1Ter has a novel combination of functions that significantly increase risk for both testicular and intestinal cancer.
Collapse
Affiliation(s)
- Jennifer L Zechel
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland OH 44106, USA
| | | | | | | | | | | |
Collapse
|
19
|
Izaguirre DI, Zhu W, Hai T, Cheung HC, Krahe R, Cote GJ. PTBP1-dependent regulation of USP5 alternative RNA splicing plays a role in glioblastoma tumorigenesis. Mol Carcinog 2012; 51:895-906. [PMID: 21976412 PMCID: PMC3319169 DOI: 10.1002/mc.20859] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2011] [Revised: 06/21/2011] [Accepted: 09/08/2011] [Indexed: 11/08/2022]
Abstract
Aberrant RNA splicing is thought to play a key role in tumorigenesis. The assessment of its specific contributions is limited by the complexity of information derived from genome-wide array-based approaches. We describe how performing splicing factor-specific comparisons using both tumor and cell line data sets may more readily identify physiologically relevant tumor-specific splicing events. Affymetrix exon array data derived from glioblastoma (GBM) tumor samples with defined polypyrimidine tract-binding protein 1 (PTBP1) levels were compared with data from U251 GBM cells with and without PTBP1 knockdown. This comparison yielded overlapping gene sets that comprised only a minor fraction of each data set. The identification of a novel GBM-specific splicing event involving the USP5 gene led us to further examine its role in tumorigenesis. In GBM, USP5 generates a shorter isoform 2 through recognition of a 5' splice site within exon 15. Production of the USP5 isoform 2 was strongly correlated with PTBP1 expression in GBM tumor samples and cell lines. Splicing regulation was consistent with the presence of an intronic PTBP1 binding site and could be modulated through antisense targeting of the isoform 2 splice site to force expression of isoform 1 in GBM cells. The forced expression of USP5 isoform 1 in two GBM cell lines inhibited cell growth and migration, implying an important role for USP5 splicing in gliomagenesis. These results support a role for aberrant RNA splicing in tumorigenesis and suggest that changes in relatively few genes may be sufficient to drive the process.
Collapse
Affiliation(s)
- Daisy I. Izaguirre
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, Texas
- The University of Texas Graduate School of Biomedical Sciences, Houston, Texas
| | - Wen Zhu
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Tao Hai
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hannah C. Cheung
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, Texas
- The University of Texas Graduate School of Biomedical Sciences, Houston, Texas
| | - Ralf Krahe
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas
- The University of Texas Graduate School of Biomedical Sciences, Houston, Texas
| | - Gilbert J. Cote
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, Texas
- The University of Texas Graduate School of Biomedical Sciences, Houston, Texas
| |
Collapse
|
20
|
Nadeau JH, Forejt J, Takada T, Shiroishi T. Chromosome substitution strains: gene discovery, functional analysis, and systems studies. Mamm Genome 2012; 23:693-705. [PMID: 22961226 DOI: 10.1007/s00335-012-9426-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2012] [Accepted: 08/02/2012] [Indexed: 12/31/2022]
Abstract
Laboratory mice are valuable in biomedical research in part because of the extraordinary diversity of genetic resources that are available for studies of complex genetic traits and as models for human biology and disease. Chromosome substitution strains (CSSs) are important in this resource portfolio because of their demonstrated use for gene discovery, genetic and epigenetic studies, functional characterizations, and systems analysis. CSSs are made by replacing a single chromosome in a host strain with the corresponding chromosome from a donor strain. A complete CSS panel involves a total of 22 engineered inbred strains, one for each of the 19 autosomes, one each for the X and Y chromosomes, and one for mitochondria. A genome survey simply involves comparing each phenotype for each of the CSSs with the phenotypes of the host strain. The CSS panels that are available for laboratory mice have been used to dissect a remarkable variety of phenotypes and to characterize an impressive array of disease models. These surveys have revealed considerable phenotypic diversity even among closely related progenitor strains, evidence for strong epistasis and for heritable epigenetic changes. Perhaps most importantly, and presumably because of their unique genetic constitution, CSSs, and congenic strains derived from them, the genetic variants underlying quantitative trait loci (QTLs) are readily identified and functionally characterized. Together these studies show that CSSs are important resource for laboratory mice.
Collapse
Affiliation(s)
- Joseph H Nadeau
- Pacific Northwest Research Institute, 720 Broadway, Seattle, WA 98122, USA.
| | | | | | | |
Collapse
|
21
|
Manceau V, Kremmer E, Nabel EG, Maucuer A. The protein kinase KIS impacts gene expression during development and fear conditioning in adult mice. PLoS One 2012; 7:e43946. [PMID: 22937132 PMCID: PMC3427225 DOI: 10.1371/journal.pone.0043946] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 07/27/2012] [Indexed: 11/18/2022] Open
Abstract
The brain-enriched protein kinase KIS (product of the gene UHMK1) has been shown to phosphorylate the human splicing factor SF1 in vitro. This phosphorylation in turn favors the formation of a U2AF65-SF1-RNA complex which occurs at the 3′ end of introns at an early stage of spliceosome assembly. Here, we analyzed the effects of KIS knockout on mouse SF1 phosphorylation, physiology, adult behavior, and gene expression in the neonate brain. We found SF1 isoforms are differently expressed in KIS-ko mouse brains and fibroblasts. Re-expression of KIS in fibroblasts restores a wild type distribution of SF1 isoforms, confirming the link between KIS and SF1. Microarray analysis of transcripts in the neonate brain revealed a subtle down-regulation of brain specific genes including cys-loop ligand-gated ion channels and metabolic enzymes. Q-PCR analyses confirmed these defects and point to an increase of pre-mRNA over mRNA ratios, likely due to changes in splicing efficiency. While performing similarly in prepulse inhibition and most other behavioral tests, KIS-ko mice differ in spontaneous activity and contextual fear conditioning. This difference suggests that disregulation of gene expression due to KIS inactivation affects specific brain functions.
Collapse
Affiliation(s)
- Valérie Manceau
- INSERM, UMR-S 839, Paris, France
- Université Pierre et Marie Curie, Paris, France
- Institut du Fer à Moulin, Paris, France
| | - Elisabeth Kremmer
- Institute of Molecular Immunology, Helmholtz Zentrum München, München, Germany
| | - Elizabeth G. Nabel
- Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Alexandre Maucuer
- INSERM, UMR-S 839, Paris, France
- Université Pierre et Marie Curie, Paris, France
- Institut du Fer à Moulin, Paris, France
- * E-mail:
| |
Collapse
|