1
|
Shahina Z, Yennamalli RM, Dahms TE. Key essential oil components delocalize Candida albicans Kar3p and impact microtubule structure. Microbiol Res 2023; 272:127373. [PMID: 37058783 DOI: 10.1016/j.micres.2023.127373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/31/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023]
Abstract
BACKGROUND Treatment of Candida albicans associated infections is often ineffective in the light of resistance, with an urgent need to discover novel antimicrobials. Fungicides require high specificity and can contribute to antifungal resistance, so inhibition of fungal virulence factors is a good strategy for developing new antifungals. OBJECTIVES Examine the impact of four plant-derived essential oil components (1,8-cineole, α-pinene, eugenol, and citral) on C. albicans microtubules, kinesin motor protein Kar3 and morphology. METHODS Microdilution assays were used to determine minimal inhibitory concentrations, microbiological assays assessed germ tube, hyphal and biofilm formation, confocal microscopy probed morphological changes and localization of tubulin and Kar3p, and computational modelling was used to examine the theoretical binding of essential oil components to tubulin and Kar3p. RESULTS We show for the first time that essential oil components delocalize the Kar3p, ablate microtubules, and induce psuedohyphal formation with reduced biofilm formation. Single and double deletion mutants of kar3 were resistant to 1,8-cineole, sensitive to α-pinene and eugenol, but unimpacted by citral. Strains with homozygous and heterozygous Kar3p disruption had a gene-dosage effect for all essential oil components, resulting in enhanced resistance or susceptibility patterns that were identical to that of cik1 mutants. The link between microtubule (αβ-tubulin) and Kar3p defects was further supported by computational modeling, showing preferential binding to αβ-tubulin and Kar3p adjacent to their Mg2+-binding sites. CONCLUSION This study highlights how essential oil components interfere with the localization of the kinesin motor protein complex Kar3/Cik1 and disrupt microtubules, leading to their destabilization which results in hyphal and biofilm defects.
Collapse
|
2
|
Liu Z, Huang L, Zhou T, Chang X, Yang Y, Shi Y, Hao M, Li Z, Wu Y, Guan Q, Zhang W, Zuo D. A novel tubulin inhibitor, 6h, suppresses tumor-associated angiogenesis and shows potent antitumor activity against non-small cell lung cancers. J Biol Chem 2022; 298:102063. [PMID: 35618020 PMCID: PMC9218517 DOI: 10.1016/j.jbc.2022.102063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/18/2022] [Accepted: 05/18/2022] [Indexed: 11/22/2022] Open
Abstract
Tumor angiogenesis is closely associated with the metastasis and progression of non-small cell lung cancer (NSCLC), a highly vascularized solid tumor. However, novel therapeutics are lacking for the treatment of this cancer. Here, we developed a series of 2-aryl-4-(3,4,5-trimethoxy-benzoyl)-5-substituted-1,2,3-triazol analogs (6a-6x) as tubulin colchicine-binding site inhibitors, aiming to find a novel promising drug candidate for NSCLC treatment. We first identified 2-(2-fluorophenyl)-3-(3,4,5-trimethoxybenzoyl)-5-(3-hydroxyazetidin-1-yl)-2H-1,2,3-triazole (6h) as a hit compound, which inhibited angiogenesis induced by NSCLC cells both in vivo and in vitro. In addition, our data showed that 6h could tightly bind to the colchicine-binding site of tubulin and inhibit tubulin polymerization. We also found that 6h could effectively induce G2/M cell cycle arrest of A549 and H460 cells, inhibit cell proliferation, and induce apoptosis. Furthermore, we showed 6h had the potential to inhibit the migration and invasion of NSCLC cells, two basic characteristics of tumor metastasis. Finally, we found 6h could effectively inhibit tumor progression in A549 xenograft mouse models with minimal toxicity. Taken together, these findings provide strong evidence for the development of 6h as a promising microtubule colchicine-binding site inhibitor for NSCLC treatment.
Collapse
Affiliation(s)
- Zi Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Liancheng Huang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Tianhao Zhou
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Xing Chang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Yuying Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Yani Shi
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Mingjing Hao
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Zengqiang Li
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Yingliang Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Qi Guan
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China.
| | - Weige Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China.
| | - Daiying Zuo
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China.
| |
Collapse
|
3
|
Chen H, Deng S, Albadari N, Yun MK, Zhang S, Li Y, Ma D, Parke DN, Yang L, Seagroves TN, White SW, Miller DD, Li W. Design, Synthesis, and Biological Evaluation of Stable Colchicine-Binding Site Tubulin Inhibitors 6-Aryl-2-benzoyl-pyridines as Potential Anticancer Agents. J Med Chem 2021; 64:12049-12074. [PMID: 34378386 PMCID: PMC9206500 DOI: 10.1021/acs.jmedchem.1c00715] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We previously reported a potent tubulin inhibitor CH-2-77. In this study, we optimized the structure of CH-2-77 by blocking metabolically labile sites and synthesized a series of CH-2-77 analogues. Two compounds, 40a and 60c, preserved the potency while improving the metabolic stability over CH-2-77 by 3- to 4-fold (46.8 and 29.4 vs 10.8 min in human microsomes). We determined the high-resolution X-ray crystal structures of 40a (resolution 2.3 Å) and 60c (resolution 2.6 Å) in complex with tubulin and confirmed their direct binding at the colchicine-binding site. In vitro, 60c maintained its mode of action by inhibiting tubulin polymerization and was effective against P-glycoprotein-mediated multiple drug resistance and taxol resistance. In vivo, 60c exhibited a strong inhibitory effect on tumor growth and metastasis in a taxol-resistant A375/TxR xenograft model without obvious toxicity. Collectively, this work showed that 60c is a promising lead compound for further development as a potential anticancer agent.
Collapse
Affiliation(s)
- Hao Chen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Shanshan Deng
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Najah Albadari
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Mi-Kyung Yun
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Sicheng Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Yong Li
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Dejian Ma
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Deanna N Parke
- Department of Pathology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Lei Yang
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Tiffany N Seagroves
- Department of Pathology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Stephen W White
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Duane D Miller
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Wei Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| |
Collapse
|
4
|
Spanò V, Barreca M, Rocca R, Bortolozzi R, Bai R, Carbone A, Raimondi MV, Piccionello AP, Montalbano A, Alcaro S, Hamel E, Viola G, Barraja P. Insight on [1,3]thiazolo[4,5-e]isoindoles as tubulin polymerization inhibitors. Eur J Med Chem 2020; 212:113122. [PMID: 33401199 DOI: 10.1016/j.ejmech.2020.113122] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 10/22/2022]
Abstract
A series of [1,3]thiazolo[4,5-e]isoindoles has been synthesized through a versatile and high yielding multistep sequence. Evaluation of the antiproliferative activity of the new compounds on the full NCI human tumor cell line panel highlighted several compounds that are able to inhibit tumor cell proliferation at micromolar-submicromolar concentrations. The most active derivative 11g was found to cause cell cycle arrest at the G2/M phase and induce apoptosis in HeLa cells, following the mitochondrial pathway, making it a lead compound for the discovery of new antimitotic drugs.
Collapse
Affiliation(s)
- Virginia Spanò
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Marilia Barreca
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Roberta Rocca
- Dipartimento di Medicina Sperimentale e Clinica, Università Magna Græcia di Catanzaro, Viale Europa, 88100, Catanzaro, Italy; Net4Science srl, Academic Spinoff, Università Magna Græcia di Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Roberta Bortolozzi
- Istituto di Ricerca Pediatrica IRP, Fondazione Città della Speranza, Corso Stati Uniti 4, 35127, Padova, Italy
| | - Ruoli Bai
- Molecular Pharmacology Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, United States
| | - Anna Carbone
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Maria Valeria Raimondi
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Antonio Palumbo Piccionello
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Alessandra Montalbano
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123, Palermo, Italy.
| | - Stefano Alcaro
- Net4Science srl, Academic Spinoff, Università Magna Græcia di Catanzaro, Viale Europa, 88100, Catanzaro, Italy; Dipartimento di Scienze della Salute, Università Magna Græcia di Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Ernest Hamel
- Molecular Pharmacology Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, United States
| | - Giampietro Viola
- Istituto di Ricerca Pediatrica IRP, Fondazione Città della Speranza, Corso Stati Uniti 4, 35127, Padova, Italy; Dipartimento di Salute della Donna e del Bambino, Laboratorio di Oncoematologia, Università di Padova, via Giustiniani 2, 35131, Padova, Italy.
| | - Paola Barraja
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123, Palermo, Italy
| |
Collapse
|
5
|
New Paracyclophanylthiazoles with Anti-Leukemia Activity: Design, Synthesis, Molecular Docking, and Mechanistic Studies. Molecules 2020; 25:molecules25133089. [PMID: 32645912 PMCID: PMC7411887 DOI: 10.3390/molecules25133089] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 11/23/2022] Open
Abstract
A new series of methyl 2-(2-(4′-[2.2]paracyclophanyl)-hydrazinylidene)-3-substituted-4-oxothiazolidin-5-ylidene)acetates 3a–f were synthesized from the reaction of paracyclophanyl-acylthiosemicarbazides 2a–f with dimethyl acetylenedicarboxylate. Based upon nuclear magnetic resonance (NMR), infrared (IR), and mass spectra (HRMS), the structure of the obtained products was elucidated. X-ray structure analysis was also used as unambiguous tool to elucidate the structure of the products. The target compounds 3a–f were screened against 60 cancer cell lines. They displayed anticancer activity against a leukemia subpanel, namely, RPMI-8226 and SR cell lines. The activity of compound 3a was found as the most cytotoxic potency against 60 cancer cell lines. Consequently, it was selected for further five doses analysis according to National Cancer Institute (NCI) protocol. The cytotoxic effect showed selectivity ratios ranging between 0.63 and 1.28 and between 0.58 and 5.89 at the GI50 and total growth inhibition (TGI) levels, respectively. Accordingly, compound 3a underwent further mechanistic study against the most sensitive leukemia RPMI-8226 and SR cell lines. It showed antiproliferation with IC50 = 1.61 ± 0.04 and 1.11 ± 0.03 µM against RPMI-8226 and SR cell lines, respectively. It also revealed a remarkable tubulin inhibitory activity, compared to colchicine with IC50 = 4.97 µM/mL. Caspase-3, BAX, and Bcl-2 assays for 3a using annexin V-FITC staining revealed significant pro-apoptotic activity. Furthermore, multidrug-resistant leukemia SR cells were used to show better resistance indices (1.285 ng/mL, 1.15-fold) than the reference. Docking studies with β-tubulin indicate that most of the tested compounds illustrated good binding at the colchicine binding site of the enzyme, especially for compound 3a, which made several interactions better than that of the reference colchicine.
Collapse
|
6
|
Guo J, Zhang J, Liang L, Liu N, Qi M, Zhao S, Su J, Liu J, Peng C, Chen X, Liu H. Potent USP10/13 antagonist spautin-1 suppresses melanoma growth via ROS-mediated DNA damage and exhibits synergy with cisplatin. J Cell Mol Med 2020; 24:4324-4340. [PMID: 32129945 PMCID: PMC7171391 DOI: 10.1111/jcmm.15093] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/04/2019] [Accepted: 01/27/2020] [Indexed: 12/31/2022] Open
Abstract
Malignant melanoma is one of the most invasive tumours. However, effective therapeutic strategies are limited, and overall survival rates remain low. By utilizing transcriptomic profiling, tissue array and molecular biology, we revealed that two key ubiquitin-specific proteases (USPs), ubiquitin-specific peptidase10 (USP10) and ubiquitin-specific peptidase10 (USP13), were significantly elevated in melanoma at the mRNA and protein levels. Spautin-1 has been reported as a USP10 and USP13 antagonist, and we demonstrated that spautin-1 has potent anti-tumour effects as reflected by MTS and the colony formation assays in various melanoma cell lines without cytotoxic effects in HaCaT and JB6 cell lines. Mechanistically, we identified apoptosis and ROS-mediated DNA damage as critical mechanisms underlying the spautin-1-mediated anti-tumour effect by utilizing transcriptomics, qRT-PCR validation, flow cytometry, Western blotting and immunofluorescence staining. Importantly, by screening spautin-1 with targeted or chemotherapeutic drugs, we showed that spautin-1 exhibited synergy with cisplatin in the treatment of melanoma. Pre-clinically, we demonstrated that spautin-1 significantly attenuated tumour growth in a cell line-derived xenograft mouse model, and its anti-tumour effect was further enhanced by cotreatment with cisplatin. Taken together, our study revealed a novel molecular mechanism of spautin-1 effecting in melanoma and identified a potential therapeutic strategy in treatment of melanoma patients.
Collapse
Affiliation(s)
- Jia Guo
- Department of DermatologyXiangya HospitalCentral South UniversityChangshaChina
- Hunan Key Laboratory of Skin Cancer and PsoriasisChangshaChina
- Hunan Engineering Research Center of Skin Health and DiseaseChangshaChina
| | - JiangLing Zhang
- Department of DermatologyXiangya HospitalCentral South UniversityChangshaChina
- Hunan Key Laboratory of Skin Cancer and PsoriasisChangshaChina
- Hunan Engineering Research Center of Skin Health and DiseaseChangshaChina
| | - Long Liang
- Department of DermatologyXiangya HospitalCentral South UniversityChangshaChina
- Hunan Key Laboratory of Skin Cancer and PsoriasisChangshaChina
- Hunan Engineering Research Center of Skin Health and DiseaseChangshaChina
- Molecular Biology Research Center and Center for Medical GeneticsCentral South UniversityChangshaChina
| | - Nian Liu
- Department of DermatologyXiangya HospitalCentral South UniversityChangshaChina
- Hunan Key Laboratory of Skin Cancer and PsoriasisChangshaChina
- Hunan Engineering Research Center of Skin Health and DiseaseChangshaChina
| | - Min Qi
- Department of Plastic and Cosmetic SurgeryXiangya HospitalCentral South UniversityChangshaChina
| | - Shuang Zhao
- Department of DermatologyXiangya HospitalCentral South UniversityChangshaChina
- Hunan Key Laboratory of Skin Cancer and PsoriasisChangshaChina
- Hunan Engineering Research Center of Skin Health and DiseaseChangshaChina
- Xiangya Clinical Research Center for Cancer ImmunotherapyCentral South UniversityChangshaChina
| | - Juan Su
- Department of DermatologyXiangya HospitalCentral South UniversityChangshaChina
- Hunan Key Laboratory of Skin Cancer and PsoriasisChangshaChina
- Hunan Engineering Research Center of Skin Health and DiseaseChangshaChina
- Xiangya Clinical Research Center for Cancer ImmunotherapyCentral South UniversityChangshaChina
| | - Jing Liu
- Molecular Biology Research Center and Center for Medical GeneticsCentral South UniversityChangshaChina
| | - Cong Peng
- Department of DermatologyXiangya HospitalCentral South UniversityChangshaChina
- Hunan Key Laboratory of Skin Cancer and PsoriasisChangshaChina
- Hunan Engineering Research Center of Skin Health and DiseaseChangshaChina
- Xiangya Clinical Research Center for Cancer ImmunotherapyCentral South UniversityChangshaChina
| | - Xiang Chen
- Department of DermatologyXiangya HospitalCentral South UniversityChangshaChina
- Hunan Key Laboratory of Skin Cancer and PsoriasisChangshaChina
- Hunan Engineering Research Center of Skin Health and DiseaseChangshaChina
- Xiangya Clinical Research Center for Cancer ImmunotherapyCentral South UniversityChangshaChina
| | - Hong Liu
- Department of DermatologyXiangya HospitalCentral South UniversityChangshaChina
- Hunan Key Laboratory of Skin Cancer and PsoriasisChangshaChina
- Hunan Engineering Research Center of Skin Health and DiseaseChangshaChina
- Xiangya Clinical Research Center for Cancer ImmunotherapyCentral South UniversityChangshaChina
- Research Center of Molecular MetabolomicsXiangya HospitalCentral South UniversityChangshaChina
| |
Collapse
|
7
|
Zhang P, Ma S. Recent development of leucyl-tRNA synthetase inhibitors as antimicrobial agents. MEDCHEMCOMM 2019; 10:1329-1341. [PMID: 31534653 PMCID: PMC6727470 DOI: 10.1039/c9md00139e] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 05/26/2019] [Indexed: 12/14/2022]
Abstract
Aminoacyl-tRNA synthetases (aaRSs) widely exist in organisms and mediate protein synthesis. Inhibiting these synthetases can lead to the termination of protein synthesis and subsequently achieve antibacterial and antiparasitic purposes. Moreover, the structures of aaRSs found in eukaryotes have considerable structural differences compared to those in prokaryotes, based on which it is possible to develop highly selective inhibitors. Leucyl-tRNA synthetase (LeuRS) with unique synthesis and editing sites is one of 20 kinds of aaRSs. Many inhibitors targeting LeuRS have been designed and synthesized, some of which have entered clinical use. For example, the benzoxaborole compound AN2690 has been approved by the FDA for the treatment of onychomycosis. AN3365 is suspended in the phase II clinical trial due to the rapid development of AN3365 resistance, but it may be used in combination with other antibiotics. The aaRSs, especially LeuRS, are being considered as targets of new potential anti-infective drugs for the treatment of not only bacterial or fungal infections but also infections by trypanosomes and malaria parasites. This review mainly describes the development of LeuRS inhibitors, focusing on their mechanisms of action, structure-activity relationships (SARs), and in vitro and in vivo activities.
Collapse
Affiliation(s)
- Panpan Zhang
- Department of Medicinal Chemistry , Key Laboratory of Chemical Biology , Ministry of Education , School of Pharmaceutical Sciences , Shandong University , 44, West Culture Road , Jinan 250012 , P. R. China . E mail:
| | - Shutao Ma
- Department of Medicinal Chemistry , Key Laboratory of Chemical Biology , Ministry of Education , School of Pharmaceutical Sciences , Shandong University , 44, West Culture Road , Jinan 250012 , P. R. China . E mail:
| |
Collapse
|
8
|
Wang Q, Arnst KE, Wang Y, Kumar G, Ma D, White SW, Miller DD, Li W, Li W. Structure-Guided Design, Synthesis, and Biological Evaluation of (2-(1 H-Indol-3-yl)-1 H-imidazol-4-yl)(3,4,5-trimethoxyphenyl) Methanone (ABI-231) Analogues Targeting the Colchicine Binding Site in Tubulin. J Med Chem 2019; 62:6734-6750. [PMID: 31251599 DOI: 10.1021/acs.jmedchem.9b00706] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
ABI-231 is a potent, orally bioavailable tubulin inhibitor that interacts with the colchicine binding site and is currently undergoing clinical trials for prostate cancer. Guided by the crystal structure of ABI-231 in complex with tubulin, we performed structure-activity relationship studies around the 3-indole moiety that led to the discovery of several potent ABI-231 analogues, most notably 10ab and 10bb. The crystal structures of 10ab and 10bb in complex with tubulin confirmed their improved molecular interactions to the colchicine site. In vitro, biological studies showed that new ABI-231 analogues disrupt tubulin polymerization, promote microtubule fragmentation, and inhibit cancer cell migration. In vivo, analogue 10bb not only significantly inhibits primary tumor growth and decreases tumor metastasis in melanoma xenograft models but also shows a significant ability to overcome paclitaxel resistance in a taxane-resistant PC-3/TxR model. In addition, pharmacological screening suggested that 10bb has a low risk of potential off-target function.
Collapse
Affiliation(s)
- Qinghui Wang
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Tennessee Health Science Center , Memphis , Tennessee 38163 , United States
| | - Kinsie E Arnst
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Tennessee Health Science Center , Memphis , Tennessee 38163 , United States
| | - Yuxi Wang
- Department of Respiratory and Critical Care Medicine, West China Hospital , Sichuan University , Chengdu , Sichuan 610041 , China
| | - Gyanendra Kumar
- Department of Structural Biology , St. Jude Children's Research Hospital , Memphis , Tennessee 38105 , United States
| | - Dejian Ma
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Tennessee Health Science Center , Memphis , Tennessee 38163 , United States
| | - Stephen W White
- Department of Structural Biology , St. Jude Children's Research Hospital , Memphis , Tennessee 38105 , United States
| | - Duane D Miller
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Tennessee Health Science Center , Memphis , Tennessee 38163 , United States
| | - Weimin Li
- Department of Respiratory and Critical Care Medicine, West China Hospital , Sichuan University , Chengdu , Sichuan 610041 , China
| | - Wei Li
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Tennessee Health Science Center , Memphis , Tennessee 38163 , United States
| |
Collapse
|
9
|
Couto GK, Segatto NV, Oliveira TL, Seixas FK, Schachtschneider KM, Collares T. The Melding of Drug Screening Platforms for Melanoma. Front Oncol 2019; 9:512. [PMID: 31293965 PMCID: PMC6601395 DOI: 10.3389/fonc.2019.00512] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/28/2019] [Indexed: 12/30/2022] Open
Abstract
The global incidence of cancer is rising rapidly and continues to be one of the leading causes of death in the world. Melanoma deserves special attention since it represents one of the fastest growing types of cancer, with advanced metastatic forms presenting high mortality rates due to the development of drug resistance. The aim of this review is to evaluate how the screening of drugs and compounds for melanoma has been performed over the last seven decades. Thus, we performed literature searches to identify melanoma drug screening methods commonly used by research groups during this timeframe. In vitro and in vivo tests are essential for the development of new drugs; however, incorporation of in silico analyses increases the possibility of finding more suitable candidates for subsequent tests. In silico techniques, such as molecular docking, represent an important and necessary first step in the screening process. However, these techniques have not been widely used by research groups to date. Our research has shown that the vast majority of research groups still perform in vitro and in vivo tests, with emphasis on the use of in vitro enzymatic tests on melanoma cell lines such as SKMEL and in vivo tests using the B16 mouse model. We believe that the union of these three approaches (in silico, in vitro, and in vivo) is essential for improving the discovery and development of new molecules with potential antimelanoma action. This workflow would provide greater confidence and safety for preclinical trials, which will translate to more successful clinical trials and improve the translatability of new melanoma treatments into clinical practice while minimizing the unnecessary use of laboratory animals under the principles of the 3R's.
Collapse
Affiliation(s)
- Gabriela Klein Couto
- Research Group in Molecular and Cellular Oncology, Postgraduate Program in Biochemistry and Bioprospecting, Cancer Biotechnology Laboratory, Center for Technological Development, Federal University of Pelotas, Pelotas, Brazil
| | - Natália Vieira Segatto
- Biotechnology Graduate Program, Molecular and Cellular Oncology Research Group, Laboratory of Cancer Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, Brazil
| | - Thaís Larré Oliveira
- Biotechnology Graduate Program, Molecular and Cellular Oncology Research Group, Laboratory of Cancer Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, Brazil
| | - Fabiana Kömmling Seixas
- Biotechnology Graduate Program, Molecular and Cellular Oncology Research Group, Laboratory of Cancer Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, Brazil
| | - Kyle M Schachtschneider
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, United States.,Department of Biochemistry & Molecular Genetics, University of Illinois at Chicago, Chicago, IL, United States.,National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Tiago Collares
- Biotechnology Graduate Program, Molecular and Cellular Oncology Research Group, Laboratory of Cancer Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, Brazil
| |
Collapse
|
10
|
Facile synthesis of novel substituted aryl-thiazole (SAT) analogs via one-pot multi-component reaction as potent cytotoxic agents against cancer cell lines. Bioorg Chem 2017; 70:133-143. [DOI: 10.1016/j.bioorg.2016.12.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 10/07/2016] [Accepted: 12/17/2016] [Indexed: 11/21/2022]
|
11
|
Ding Y, Li Y, Li Z, Zhang J, Lu C, Wang H, Shen Y, Du L. Alteramide B is a microtubule antagonist of inhibiting Candida albicans. Biochim Biophys Acta Gen Subj 2016; 1860:2097-106. [PMID: 27373684 DOI: 10.1016/j.bbagen.2016.06.025] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 06/20/2016] [Accepted: 06/28/2016] [Indexed: 01/06/2023]
Abstract
BACKGROUND Alteramide B (ATB), isolated from Lysobacter enzymogenes C3, was a new polycyclic tetramate macrolactam (PTM). ATB exhibited potent inhibitory activity against several yeasts, particularly Candida albicans SC5314, but its antifungal mechanism is unknown. METHODS The structure of ATB was established by extensive spectroscopic analyses, including high-resolution mass spectrometry, 1D- and 2D-NMR, and CD spectra. Flow cytometry, fluorescence microscope, transmission electron microscope, molecular modeling, overexpression and site-directed mutation studies were employed to delineate the anti-Candida molecular mechanism of ATB. RESULTS ATB induced apoptosis in C. albicans through inducing reactive oxygen species (ROS) production by disrupting microtubules. Molecular dynamics studies revealed the binding patterns of ATB to the β-tubulin subunit. Overexpression of the wild type and site-directed mutants of the β-tubulin gene (TUBB) changed the sensitivity of C. albicans to ATB, confirming the binding of ATB to β-tubulin, and indicating that the binding sites are L215, L217, L273, L274 and R282. In vivo, ATB significantly improved the survival of the candidiasis mice and reduced fungal burden. CONCLUSION The molecular mechanism underlying the ATB-induced apoptosis in C. albicans is through inhibiting tubulin polymerization that leads to cell cycle arrest at the G2/M phase. The identification of ATB and the study of its activity provide novel mechanistic insights into the mode of action of PTMs against the human pathogen. GENERAL SIGNIFICANCE This study shows that ATB is a new microtubule inhibitor and a promising anti-Candida lead compound. The results also support β-tubulin as a potential target for anti-Candida drug discovery.
Collapse
Affiliation(s)
- Yanjiao Ding
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, No. 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Yaoyao Li
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, No. 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Zhenyu Li
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, No. 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Juanli Zhang
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, No. 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Chunhua Lu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, No. 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Haoxin Wang
- State Key laboratory of Microbial Technology, Shandong University, No. 27 South Shanda Road, Jinan, Shandong 250100, PR China
| | - Yuemao Shen
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, No. 44 West Wenhua Road, Jinan, Shandong 250012, PR China; State Key laboratory of Microbial Technology, Shandong University, No. 27 South Shanda Road, Jinan, Shandong 250100, PR China.
| | - Liangcheng Du
- State Key laboratory of Microbial Technology, Shandong University, No. 27 South Shanda Road, Jinan, Shandong 250100, PR China; Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA.
| |
Collapse
|
12
|
Rohena CC, Telang NS, Da C, Risinger AL, Sikorski JA, Kellogg GE, Gupton JT, Mooberry SL. Biological Characterization of an Improved Pyrrole-Based Colchicine Site Agent Identified through Structure-Based Design. Mol Pharmacol 2015; 89:287-96. [PMID: 26655304 DOI: 10.1124/mol.115.101592] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 12/09/2015] [Indexed: 01/31/2023] Open
Abstract
A refined model of the colchicine site on tubulin was used to design an improved analog of the pyrrole parent compound, JG-03-14. The optimized compound, NT-7-16, was evaluated in biological assays that confirm that it has potent activities as a new colchicine site microtubule depolymerizer. NT-7-16 exhibits antiproliferative and cytotoxic activities against multiple cancer cell lines, with IC(50) values of 10-16 nM, and it is able to overcome drug resistance mediated by the expression of P-glycoprotein and the βIII isotype of tubulin. NT-7-16 initiated the concentration-dependent loss of cellular microtubules and caused the formation of abnormal mitotic spindles, leading to mitotic accumulation. The direct interaction of NT-7-16 with purified tubulin was confirmed, and it was more potent than combretastatin A-4 in these assays. Binding studies verified that NT-7-16 binds to tubulin within the colchicine site. The antitumor effects of NT-7-16 were evaluated in an MDA-MB-435 xenograft model and it had excellent activity at concentrations that were not toxic. A second compound, NT-9-21, which contains dichloro moieties in place of the 3,5-dibromo substituents of NT-7-16, had a poorer fit within the colchicine site as predicted by modeling and the Hydropathic INTeractions score. Biological evaluations showed that NT-9-21 has 10-fold lower potency than NT-7-16, confirming the modeling predictions. These studies highlight the value of the refined colchicine-site model and identify a new pyrrole-based colchicine-site agent with potent in vitro activities and promising in vivo antitumor actions.
Collapse
Affiliation(s)
- Cristina C Rohena
- Department of Pharmacology and Cancer Therapy & Research Center, University of Texas Health Science Center at San Antonio, San Antonio, Texas (C.C.R., A.L.R., S.L.M.); Department of Chemistry University of Richmond, Richmond Virginia (N.T., J.T.G.); Department of Medicinal Chemistry and Institute of Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, Virginia (C.D., G.E.K.); and Medicinal Chemistry & Drug Discovery, Chesterfield, Missouri (J.A.S.)
| | - Nakul S Telang
- Department of Pharmacology and Cancer Therapy & Research Center, University of Texas Health Science Center at San Antonio, San Antonio, Texas (C.C.R., A.L.R., S.L.M.); Department of Chemistry University of Richmond, Richmond Virginia (N.T., J.T.G.); Department of Medicinal Chemistry and Institute of Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, Virginia (C.D., G.E.K.); and Medicinal Chemistry & Drug Discovery, Chesterfield, Missouri (J.A.S.)
| | - Chenxiao Da
- Department of Pharmacology and Cancer Therapy & Research Center, University of Texas Health Science Center at San Antonio, San Antonio, Texas (C.C.R., A.L.R., S.L.M.); Department of Chemistry University of Richmond, Richmond Virginia (N.T., J.T.G.); Department of Medicinal Chemistry and Institute of Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, Virginia (C.D., G.E.K.); and Medicinal Chemistry & Drug Discovery, Chesterfield, Missouri (J.A.S.)
| | - April L Risinger
- Department of Pharmacology and Cancer Therapy & Research Center, University of Texas Health Science Center at San Antonio, San Antonio, Texas (C.C.R., A.L.R., S.L.M.); Department of Chemistry University of Richmond, Richmond Virginia (N.T., J.T.G.); Department of Medicinal Chemistry and Institute of Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, Virginia (C.D., G.E.K.); and Medicinal Chemistry & Drug Discovery, Chesterfield, Missouri (J.A.S.)
| | - James A Sikorski
- Department of Pharmacology and Cancer Therapy & Research Center, University of Texas Health Science Center at San Antonio, San Antonio, Texas (C.C.R., A.L.R., S.L.M.); Department of Chemistry University of Richmond, Richmond Virginia (N.T., J.T.G.); Department of Medicinal Chemistry and Institute of Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, Virginia (C.D., G.E.K.); and Medicinal Chemistry & Drug Discovery, Chesterfield, Missouri (J.A.S.)
| | - Glen E Kellogg
- Department of Pharmacology and Cancer Therapy & Research Center, University of Texas Health Science Center at San Antonio, San Antonio, Texas (C.C.R., A.L.R., S.L.M.); Department of Chemistry University of Richmond, Richmond Virginia (N.T., J.T.G.); Department of Medicinal Chemistry and Institute of Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, Virginia (C.D., G.E.K.); and Medicinal Chemistry & Drug Discovery, Chesterfield, Missouri (J.A.S.)
| | - John T Gupton
- Department of Pharmacology and Cancer Therapy & Research Center, University of Texas Health Science Center at San Antonio, San Antonio, Texas (C.C.R., A.L.R., S.L.M.); Department of Chemistry University of Richmond, Richmond Virginia (N.T., J.T.G.); Department of Medicinal Chemistry and Institute of Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, Virginia (C.D., G.E.K.); and Medicinal Chemistry & Drug Discovery, Chesterfield, Missouri (J.A.S.)
| | - Susan L Mooberry
- Department of Pharmacology and Cancer Therapy & Research Center, University of Texas Health Science Center at San Antonio, San Antonio, Texas (C.C.R., A.L.R., S.L.M.); Department of Chemistry University of Richmond, Richmond Virginia (N.T., J.T.G.); Department of Medicinal Chemistry and Institute of Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, Virginia (C.D., G.E.K.); and Medicinal Chemistry & Drug Discovery, Chesterfield, Missouri (J.A.S.).
| |
Collapse
|
13
|
Synthesis of arylpyrazole linked benzimidazole conjugates as potential microtubule disruptors. Bioorg Med Chem 2015; 23:1082-95. [DOI: 10.1016/j.bmc.2015.01.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 01/01/2015] [Accepted: 01/02/2015] [Indexed: 11/21/2022]
|
14
|
Lu Y, Chen J, Wang J, Li CM, Ahn S, Barrett CM, Dalton JT, Li W, Miller DD. Design, synthesis, and biological evaluation of stable colchicine binding site tubulin inhibitors as potential anticancer agents. J Med Chem 2014; 57:7355-66. [PMID: 25122533 PMCID: PMC4161160 DOI: 10.1021/jm500764v] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To block the metabolically labile sites of novel tubulin inhibitors targeting the colchicine binding site based on SMART, ABI, and PAT templates, we have designed, synthesized, and biologically tested three focused sets of new derivatives with modifications at the carbonyl linker, the para-position in the C ring of SMART template, and modification of A ring of the PAT template. Structure-activity relationships of these compounds led to the identification of new benzimidazole and imidazo[4,5-c]pyridine-fused ring templates, represented by compounds 4 and 7, respectively, which showed enhanced antitumor activity and substantially improved the metabolic stability in liver microsomes compared to SMART. MOM group replaced TMP C ring and generated a potent analogue 15, which showed comparable potency to the parent SMART compound. Further modification of PAT template yielded another potent analogue 33 with 5-indolyl substituent at A ring.
Collapse
Affiliation(s)
- Yan Lu
- Department of Pharmaceutical Sciences, University of Tennessee , Health Science Center, Memphis, Tennessee 38163, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Zinzi L, Capparelli E, Cantore M, Contino M, Leopoldo M, Colabufo NA. Small and Innovative Molecules as New Strategy to Revert MDR. Front Oncol 2014; 4:2. [PMID: 24478983 PMCID: PMC3896858 DOI: 10.3389/fonc.2014.00002] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 01/03/2014] [Indexed: 12/26/2022] Open
Abstract
Multidrug resistance (MDR) is a complex phenomenon principally due to the overexpression of some transmembrane proteins belonging to the ATP binding cassette (ABC) transporter family. Among these transporters, P-glycoprotein (P-gp) is mostly involved in MDR and its overexpression is the major cause of cancer therapy failure. The classical approach used to overcome MDR is the co-administration of a P-gp inhibitor and the classic antineoplastic drugs, although the results were often unsatisfactory. Different classes of P-gp ligands have been developed and, among them, Tariquidar has been extensively studied both in vitro and in vivo. Although Tariquidar has been considered for several years as the lead compound for the development of P-gp inhibitors, recent studies demonstrated it to be a substrate and inhibitor, in a dose-dependent manner. Moreover, Tariquidar structure-activity relationship studies were difficult to carry out because of the complexity of the structure that does not allow establishing the role of each moiety for P-gp activity. For this purpose, SMALL molecules bearing different scaffolds such as tetralin, biphenyl, arylthiazole, furoxane, furazan have been developed. Many of these ligands have been tested both in in vitro assays and in in vivo PET studies. These preliminary evaluations lead to obtain a library of P-gp interacting agents useful to conjugate chemotherapeutic agents displaying reduced pharmacological activity and appropriate small molecules. These molecules could get over the limits due to the antineoplastic-P-gp inhibitor co-administration since pharmacokinetic and pharmacodynamic profiles are related to a dual innovative drug.
Collapse
Affiliation(s)
- Laura Zinzi
- Dipartimento di Farmacia - Scienze del Farmaco, Università degli Studi di Bari "A. Moro" , Bari , Italy
| | - Elena Capparelli
- Dipartimento di Farmacia - Scienze del Farmaco, Università degli Studi di Bari "A. Moro" , Bari , Italy
| | - Mariangela Cantore
- Dipartimento di Farmacia - Scienze del Farmaco, Università degli Studi di Bari "A. Moro" , Bari , Italy
| | - Marialessandra Contino
- Dipartimento di Farmacia - Scienze del Farmaco, Università degli Studi di Bari "A. Moro" , Bari , Italy
| | - Marcello Leopoldo
- Dipartimento di Farmacia - Scienze del Farmaco, Università degli Studi di Bari "A. Moro" , Bari , Italy
| | - Nicola Antonio Colabufo
- Dipartimento di Farmacia - Scienze del Farmaco, Università degli Studi di Bari "A. Moro" , Bari , Italy
| |
Collapse
|
16
|
Wang DM, Kuo JW, Kuo WT, Hsu CF, Wang MH, Chang Y, Lin WJ, Wang JT. Synthesis and cellular uptake ofp-[123I]-phenyl-amino-thiazole (123I-PAT) as a potential agent for targeting tubulin polymerization in tumors. J Labelled Comp Radiopharm 2014; 57:132-5. [DOI: 10.1002/jlcr.3178] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 11/27/2013] [Accepted: 11/30/2013] [Indexed: 11/11/2022]
Affiliation(s)
- Da-Ming Wang
- Chemistry Division; Institute of Nuclear Energy Research; Longtan Taoyuan 325 Taiwan
| | - Jia-Wei Kuo
- Isotope Application Division; Institute of Nuclear Energy Research; Longtan Taoyuan 325 Taiwan
| | - Wei-Ti Kuo
- Isotope Application Division; Institute of Nuclear Energy Research; Longtan Taoyuan 325 Taiwan
| | - Cheng-Fang Hsu
- Chemistry Division; Institute of Nuclear Energy Research; Longtan Taoyuan 325 Taiwan
| | - Mei-Hui Wang
- Isotope Application Division; Institute of Nuclear Energy Research; Longtan Taoyuan 325 Taiwan
| | - Yu Chang
- Chemistry Division; Institute of Nuclear Energy Research; Longtan Taoyuan 325 Taiwan
| | - Wuu-Jyh Lin
- Isotope Application Division; Institute of Nuclear Energy Research; Longtan Taoyuan 325 Taiwan
| | - Jen-Tsung Wang
- Isotope Application Division; Institute of Nuclear Energy Research; Longtan Taoyuan 325 Taiwan
- Department of Specialty Chemical Division; Eternal Chemical Co., Ltd.; Lu-Chu district Kaohsiung 821 Taiwan
| |
Collapse
|
17
|
Meng T, Wang W, Zhang Z, Ma L, Zhang Y, Miao Z, Shen J. Synthesis and biological evaluation of 6H-pyrido[2′,1′:2,3]imidazo[4,5-c]isoquinolin-5(6H)-ones as antimitotic agents and inhibitors of tubulin polymerization. Bioorg Med Chem 2014; 22:848-55. [DOI: 10.1016/j.bmc.2013.12.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 10/20/2013] [Accepted: 12/03/2013] [Indexed: 11/30/2022]
|
18
|
Kamal A, Shaik AB, Jain N, Kishor C, Nagabhushana A, Supriya B, Bharath Kumar G, Chourasiya SS, Suresh Y, Mishra RK, Addlagatta A. Design and synthesis of pyrazole-oxindole conjugates targeting tubulin polymerization as new anticancer agents. Eur J Med Chem 2013; 92:501-13. [PMID: 25599948 DOI: 10.1016/j.ejmech.2013.10.077] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 10/29/2013] [Accepted: 10/31/2013] [Indexed: 01/08/2023]
Abstract
A series of twenty one compounds with pyrazole and oxindole conjugates were synthesized by Knoevenagel condensation and investigated for their antiproliferative activity on different human cancer cell lines. The conjugates are comprised of a four ring scaffold; the structural isomers 12b and 12c possess chloro-substitution in the D ring. Among the congeners 12b, 12c, and 12d manifested significant cytotoxicity and inhibited tubulin assembly. Treatments with 12b, 12c and 12d resulted in accumulation of cells in G2/M phase, disruption of microtubule network, and increase in cyclin B1 protein. Zebrafish screening revealed that 12b, and 12d caused developmental defects. Docking analysis demonstrated that the congeners occupy the colchicine binding pocket of tubulin.
Collapse
Affiliation(s)
- Ahmed Kamal
- Medicinal Chemistry and Pharmacology, CSIR - Indian Institute of Chemical Technology, Hyderabad 500007, India.
| | - Anver Basha Shaik
- Medicinal Chemistry and Pharmacology, CSIR - Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Nishant Jain
- Centre for Chemical Biology, CSIR - Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Chandan Kishor
- Centre for Chemical Biology, CSIR - Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Ananthamurthy Nagabhushana
- CSIR - Centre for Cellular and Molecular Biology, Hyderabad 500007, India; CoE in Epigenetics, IISER-Pune, Pune 411021, India
| | - Bhukya Supriya
- Centre for Chemical Biology, CSIR - Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - G Bharath Kumar
- Medicinal Chemistry and Pharmacology, CSIR - Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Sumit S Chourasiya
- Medicinal Chemistry and Pharmacology, CSIR - Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Yerramsetty Suresh
- Centre for Chemical Biology, CSIR - Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Rakesh K Mishra
- CSIR - Centre for Cellular and Molecular Biology, Hyderabad 500007, India
| | - Anthony Addlagatta
- Centre for Chemical Biology, CSIR - Indian Institute of Chemical Technology, Hyderabad 500007, India.
| |
Collapse
|
19
|
Chen J, Ahn S, Wang J, Lu Y, Dalton JT, Miller DD, Li W. Discovery of novel 2-aryl-4-benzoyl-imidazole (ABI-III) analogues targeting tubulin polymerization as antiproliferative agents. J Med Chem 2012; 55:7285-9. [PMID: 22783954 DOI: 10.1021/jm300564b] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Novel ABI-III compounds were designed and synthesized based on our previously reported ABI-I and ABI-II analogues. ABI-III compounds are highly potent against a panel of melanoma and prostate cancer cell lines, with the best compound having an average IC(50) value of 3.8 nM. They are not substrate of Pgp and thus may effectively overcome Pgp-mediated multidrug resistance. ABI-III analogues maintain their mechanisms of action by inhibition of tubulin polymerization.
Collapse
Affiliation(s)
- Jianjun Chen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | | | | | | | | | | | | |
Collapse
|
20
|
Lu Y, Chen J, Xiao M, Li W, Miller DD. An overview of tubulin inhibitors that interact with the colchicine binding site. Pharm Res 2012; 29:2943-71. [PMID: 22814904 DOI: 10.1007/s11095-012-0828-z] [Citation(s) in RCA: 555] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 07/05/2012] [Indexed: 12/13/2022]
Abstract
Tubulin dynamics is a promising target for new chemotherapeutic agents. The colchicine binding site is one of the most important pockets for potential tubulin polymerization destabilizers. Colchicine binding site inhibitors (CBSI) exert their biological effects by inhibiting tubulin assembly and suppressing microtubule formation. A large number of molecules interacting with the colchicine binding site have been designed and synthesized with significant structural diversity. CBSIs have been modified as to chemical structure as well as pharmacokinetic properties, and tested in order to find a highly potent, low toxicity agent for treatment of cancers. CBSIs are believed to act by a common mechanism via binding to the colchicine site on tubulin. The present review is a synopsis of compounds that have been reported in the past decade that have provided an increase in our understanding of the actions of CBSIs.
Collapse
Affiliation(s)
- Yan Lu
- Department of Pharmaceutical Sciences, Health Science Center, University of Tennessee, 847 Monroe Ave, Memphis, TN 38163, USA
| | | | | | | | | |
Collapse
|
21
|
Orally bioavailable tubulin antagonists for paclitaxel-refractory cancer. Pharm Res 2012; 29:3053-63. [PMID: 22760659 DOI: 10.1007/s11095-012-0814-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 06/20/2012] [Indexed: 12/17/2022]
Abstract
PURPOSE To evaluate the efficacy and oral activity of two promising indoles, (2-(1H-indol-3-yl)-1H-imidazol-4-yl)(3,4,5-trimethoxyphenyl)methanone [compound II] and (2-(1H-indol-5-ylamino)-thiazol-4-yl)(3,4,5-trimethoxyphenyl)methanone [compound IAT], in paclitaxel- and docetaxel-resistant tumor models in vitro and in vivo. METHODS The in vitro drug-like properties, including potency, solubility, metabolic stability, and drug-drug interactions were examined for our two active compounds. An in vivo pharmacokinetic study and antitumor efficacy study were also completed to compare their efficacy with docetaxel. RESULTS Both compounds bound to the colchicine-binding site on tubulin, and inhibited tubulin polymerization, resulting in highly potent cytotoxic activity in vitro. While the potency of paclitaxel and docetaxel was compromised in a multidrug-resistant cell line that overexpresses P-glycoprotein, the potency of compounds II and IAT was maintained. Both compounds had favorable drug-like properties, and acceptable oral bioavailability (21-50 %) in mice, rats, and dogs. Tumor growth inhibition of greater than 100 % was achieved when immunodeficient mice with rapidly growing paclitaxel-resistant prostate cancer cells were treated orally at doses of 3-30 mg/kg of II or IAT. CONCLUSIONS These studies highlight the potent and broad anticancer activity of two orally bioavailable compounds, offering significant pharmacologic advantage over existing drugs of this class for multidrug resistant or taxane-refractory cancers.
Collapse
|
22
|
Singh U, Bhat H, Gahtori P. Antifungal activity, SAR and physicochemical correlation of some thiazole-1,3,5-triazine derivatives. J Mycol Med 2012; 22:134-41. [PMID: 23518015 DOI: 10.1016/j.mycmed.2011.12.073] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 12/12/2011] [Indexed: 01/26/2023]
|
23
|
Wang Z, Chen J, Wang J, Ahn S, Li CM, Lu Y, Loveless VS, Dalton JT, Miller DD, Li W. Novel tubulin polymerization inhibitors overcome multidrug resistance and reduce melanoma lung metastasis. Pharm Res 2012; 29:3040-52. [PMID: 22410804 DOI: 10.1007/s11095-012-0726-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 02/27/2012] [Indexed: 01/24/2023]
Abstract
PURPOSE To evaluate abilities of 2-aryl-4-benzoyl-imidazoles (ABI) to overcome multidrug resistance (MDR), define their cellular target, and assess in vivo antimelanoma efficacy. METHODS MDR cell lines that overexpressed P-glycoprotein, MDR-associated proteins, and breast cancer resistance protein were used to evaluate ABI ability to overcome MDR. Cell cycle analysis, molecular modeling, and microtubule imaging were used to define ABI cellular target. SHO mice bearing A375 human melanoma xenograft were used to evaluate ABI in vivo antitumor activity. B16-F10/C57BL mouse melanoma lung metastasis model was used to test ABI efficacy to inhibit tumor lung metastasis. RESULTS ABIs showed similar potency to MDR cells compared to matching parent cells. ABIs were identified to target tubulin on the colchicine binding site. After 31 days of treatment, ABI-288 dosed at 25 mg/kg inhibited melanoma tumor growth by 69%; dacarbazine at 60 mg/kg inhibited growth by 52%. ABI-274 dosed at 25 mg/kg showed better lung metastasis inhibition than dacarbazine at 60 mg/kg. CONCLUSIONS This new class of antimitotic compounds can overcome several clinically important drug resistant mechanisms in vitro and are effective in inhibiting melanoma lung metastasis in vivo, supporting their further development.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Animals
- Animals, Outbred Strains
- Antimitotic Agents/pharmacology
- Antineoplastic Agents/pharmacology
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Cell Cycle/drug effects
- Cell Line, Tumor
- Colchicine/metabolism
- Drug Resistance, Multiple
- Drug Resistance, Neoplasm
- Endothelial Cells/drug effects
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Female
- HEK293 Cells
- Humans
- Imidazoles/pharmacology
- Lung Neoplasms/metabolism
- Lung Neoplasms/prevention & control
- Lung Neoplasms/secondary
- Melanoma/drug therapy
- Melanoma/metabolism
- Melanoma/pathology
- Melanoma/secondary
- Melanoma, Experimental/metabolism
- Melanoma, Experimental/pathology
- Mice
- Mice, Hairless
- Mice, Inbred C57BL
- Mice, SCID
- Microtubules/drug effects
- Microtubules/metabolism
- Neoplasm Metastasis
- Tubulin/metabolism
- Tubulin Modulators/pharmacology
Collapse
Affiliation(s)
- Zhao Wang
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 847 Monroe Ave., Memphis, Tennessee 38163, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Bucur O, Stancu AL, Khosravi-Far R, Almasan A. Analysis of apoptosis methods recently used in Cancer Research and Cell Death & Disease publications. Cell Death Dis 2012; 3:e263. [PMID: 22297295 PMCID: PMC3288344 DOI: 10.1038/cddis.2012.2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
Li CM, Chen J, Lu Y, Narayanan R, Parke DN, Li W, Ahn S, Miller DD, Dalton JT. Pharmacokinetic optimization of 4-substituted methoxybenzoyl-aryl-thiazole and 2-aryl-4-benzoyl-imidazole for improving oral bioavailability. Drug Metab Dispos 2011; 39:1833-9. [PMID: 21742898 DOI: 10.1124/dmd.110.036616] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Microtubules are critical components of the cytoskeleton. Perturbing their function arrests the growth of a broad spectrum of cancer cell lines, making microtubules an excellent and established target for chemotherapy. All of the U.S. Food and Drug Administration-approved antitubulin agents bind to paclitaxel or vinblastine binding sites in tubulin. Because of the complexity of their structures, it is difficult to structurally modify the vinca alkaloids and taxanes and develop orally bioavailable agents. Antitubulin agents that target the colchicine-binding site in tubulin may provide a better opportunity to be developed for oral use because of their relatively simple structures and physicochemical properties. A potent antitubulin agent, 4-(3,4,5-trimethoxybenzoyl)-2-phenyl-thiazole (SMART-H), binding to the colchicine-binding site, was discovered in our laboratory. However, the bioavailability of SMART-H was low because of its poor solubility. Structural modification of SMART-H led to the development of 2-aryl-4-benzoyl-imidazole analog (ABI-274), with improved bioavailability and potency but still considerable first-pass metabolism. A chlorine derivative (ABI-286), replacing the methyl site of ABI-274, resulted in 1.5-fold higher metabolic stability in vitro and 1.8-fold lower clearance in rats in vivo, indicating that metabolic stability of ABI-274 can be extended by blocking benzylic hydroxylation. Overall, ABI-274 and ABI-286 provided 2.4- and 5.5-fold increases in exposure (area under the curve) after oral dosing in rats compared with SMART-H. Most importantly, the structural modifications did not compromise potency. ABI-286 exhibited moderate clearance, moderate volume of distribution, and acceptable oral bioavailability. This study provided the first evidence that ABI-286 may be the first member of a new class of orally bioavailable antitubulin agents.
Collapse
|
26
|
Lu Y, Li CM, Wang Z, Chen J, Mohler ML, Li W, Dalton JT, Miller DD. Design, synthesis, and SAR studies of 4-substituted methoxylbenzoyl-aryl-thiazoles analogues as potent and orally bioavailable anticancer agents. J Med Chem 2011; 54:4678-93. [PMID: 21557538 DOI: 10.1021/jm2003427] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In a continued effort to improve upon the previously published 4-substituted methoxybenzoyl-aryl-thiazole (SMART) template, we explored chemodiverse "B" rings and "B" to "C" ring linkage. Further, to overcome the poor aqueous solubility of this series of agents, we introduced polar and ionizable hydrophilic groups to obtain water-soluble compounds. For instance, based on in vivo pharmacokinetic (PK) studies, an orally bioavailable phenyl-amino-thiazole (PAT) template was designed and synthesized in which an amino linkage was inserted between "A" and "B" rings of compound 1. The PAT template maintained nanomolar (nM) range potency against cancer cell lines via inhibiting tubulin polymerization and was not susceptible to P-glycoprotein mediated multidrug resistance in vitro, and markedly improved solubility and bioavailability compared with the SMART template (45a-c (PAT) vs 1 (SMART)).
Collapse
Affiliation(s)
- Yan Lu
- Department of Pharmaceutical Sciences, University of Tennessee, Health Science Center, Memphis, Tennessee 38163, United States
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Lai MJ, Chang JY, Lee HY, Kuo CC, Lin MH, Hsieh HP, Chang CY, Wu JS, Wu SY, Shey KS, Liou JP. Synthesis and biological evaluation of 1-(4'-Indolyl and 6'-Quinolinyl) indoles as a new class of potent anticancer agents. Eur J Med Chem 2011; 46:3623-9. [PMID: 21641700 DOI: 10.1016/j.ejmech.2011.04.065] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 04/20/2011] [Accepted: 04/21/2011] [Indexed: 10/18/2022]
Abstract
A novel series of the biheterocycles-based compounds with core structure distinguished from combretastatin A-4 (1) and colchicine (5) have been synthesized and evaluated as potent anti-mitotic agents. Compound 1-(4'-Indolyl and 6'-quinolinyl)-4,5,6-trimethoxyindoles 13 and 19 showed substantial anti-proliferative activity against various human cancer cell lines, regardless to the tissue origin and the expression of multiple-drug resistance MDR1, with a mean IC(50) value of 38 and 24 nM respectively. Compound 13 (IC(50) = 1.7 μM) also exhibited similar anti-tubulin activities to 1 (IC(50) = 1.8 μM) and displayed strong binding property to the colchicine binding site on the microtubules. Computational modeling analysis revealed that the binding mechanism of compound 13 is similar to that of CA4.
Collapse
Affiliation(s)
- Mei-Jung Lai
- School of Pharmacy, College of Pharmacy, Taipei Medical University, No 250, Wuxing Street, Taipei 11031, Taiwan, ROC
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|