1
|
Hart SFM, Garrett FES, Kerr JS, Metzger MJ. Gene expression in soft-shell clam ( Mya arenaria) transmissible cancer reveals survival mechanisms during host infection and seawater transfer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.13.612964. [PMID: 39345472 PMCID: PMC11429866 DOI: 10.1101/2024.09.13.612964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Transmissible cancers are unique instances in which cancer cells escape their original host and spread through a population as a clonal lineage, documented in Tasmanian Devils, dogs, and ten bivalve species. For a cancer to repeatedly transmit to new hosts, these lineages must evade strong barriers to transmission, notably the metastasis-like physical transfer to a new host body and rejection by that host's immune system. We quantified gene expression in a transmissible cancer lineage that has spread through the soft-shell clam (Mya arenaria) population to investigate potential drivers of its success as a transmissible cancer lineage, observing extensive differential expression of genes and gene pathways. We observed upregulation of genes involved with genotoxic stress response, ribosome biogenesis and RNA processing, and downregulation of genes involved in tumor suppression, cell adhesion, and immune response. We also observe evidence that widespread genome instability affects the cancer transcriptome via gene fusions, copy number variation, and transposable element insertions. Finally, we incubated cancer cells in seawater, the presumed host-to-host transmission vector, and observed conserved responses to halt metabolism, avoid apoptosis and survive the low-nutrient environment. Interestingly, many of these responses are also present in healthy clam cells, suggesting that bivalve hemocytes may have inherent seawater survival responses that may partially explain why transmissible cancers are so common in bivalves. Overall, this study reveals multiple mechanisms this lineage may have evolved to successfully spread through the soft-shell clam population as a contagious cancer, utilizing pathways known to be conserved in human cancers as well as pathways unique to long-lived transmissible cancers.
Collapse
Affiliation(s)
- Samuel F M Hart
- Pacific Northwest Research Institute, Seattle, WA, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA
- Genome Sciences Department, University of Washington, Seattle, WA, USA
| | | | - Jesse S Kerr
- PEI Department of Fisheries, Tourism, Sport and Culture, Canada
| | - Michael J Metzger
- Pacific Northwest Research Institute, Seattle, WA, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA
| |
Collapse
|
2
|
Modulation and function of Pumilio proteins in cancer. Semin Cancer Biol 2022; 86:298-309. [PMID: 35301091 DOI: 10.1016/j.semcancer.2022.03.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/06/2022] [Accepted: 03/11/2022] [Indexed: 01/27/2023]
Abstract
Post-transcriptional regulation is involved in tumorigenesis, and in this control, RNA-binding proteins are the main protagonists. Pumilio proteins are highly conserved RNA-binding proteins that regulate many aspects of RNA processing. The dysregulation of Pumilio expression is associated with different types of cancer. This review summarizes the roles of Pumilio 1 and Pumilio 2 in cancer and discusses the factors that account for their distinct biological functions. Pumilio levels seem to be related to tumor progression and poor prognoses in some kinds of tumors, such as lung, pancreatic, prostate, and cervical cancers. Pumilio 1 is associated with cancer proliferation, migration, and invasion, and so is Pumilio 2, although there are contradictory reports regarding the latter. Furthermore, the circular RNA, circPUM1, has been described as a miRNAs sponge, regulating miRNA involved in the cell cycle. The expression and function of Pumilio proteins depend on the fine adjustment of a set of modulators, including miRNAs, lncRNAs, and circRNAs; this demonstrates that Pumilio plays an important role in tumorigenesis through a variety of regulatory axes.
Collapse
|
3
|
Yang BY, Zhou ZY, Liu SY, Shi MJ, Liu XJ, Cheng TM, Deng GY, Tian Y, Song J, Li XH. Porous Se@SiO2 Nanoparticles Enhance Wound Healing by ROS-PI3K/Akt Pathway in Dermal Fibroblasts and Reduce Scar Formation. Front Bioeng Biotechnol 2022; 10:852482. [PMID: 35387298 PMCID: PMC8978548 DOI: 10.3389/fbioe.2022.852482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/18/2022] [Indexed: 11/25/2022] Open
Abstract
Hypertrophic scarring, which is characterized by excessive extracellular matrix deposition and abnormal fibroblast homeostasis, is an undesirable outcome of dermal wound healing. Once formed, the scar will replace the normal function of local skin, and there are few noninvasive clinical treatments that can cure it. Se@SiO2 nanoparticles were synthesized to suppress oxidative stress, which induced the presence and activation of myofibroblasts during wound recovery. The characterization, antioxidant capacity and biological safety of Se@SiO2 NPs were evaluated. A full-thickness excisional wound model was established, and the wounds were divided into three groups. The re-epithelization and distribution of collagen fibers were assessed using hematoxylin and eosin staining and Masson’s trichome staining after specific treatments. Our results revealed that the Se@SiO2 NPs accelerated dermal wound healing and suppressed the formation of hypertrophic scars, accompanied by oxidative stress inhibition. Moreover, we found that Se@SiO2 NPs worked by activating the PI3K/Akt pathway and upregulating the phosphorylation of Akt. The findings of our study provide a new method to promote dermal scar-free wound healing by suppressing excessive oxidative stress and through PI3K/Akt pathway activation.
Collapse
Affiliation(s)
- Bo-Yu Yang
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhi-Yuan Zhou
- Shanghai Pudong New Area GongLi Hospital, Shanghai, China
| | - Shi-Yun Liu
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming-Jun Shi
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xi-Jian Liu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, China
| | - Tian-Ming Cheng
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guo-Ying Deng
- Trauma Center, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ye Tian
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- *Correspondence: Ye Tian, ; Jian Song, ; Xuan-Hao Li,
| | - Jian Song
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- *Correspondence: Ye Tian, ; Jian Song, ; Xuan-Hao Li,
| | - Xuan-Hao Li
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- *Correspondence: Ye Tian, ; Jian Song, ; Xuan-Hao Li,
| |
Collapse
|
4
|
Cho HC, Huang Y, Hung JT, Hung TH, Cheng KC, Liu YH, Kuo MW, Wang SH, Yu AL, Yu J. Puf-A promotes cancer progression by interacting with nucleophosmin in nucleolus. Oncogene 2022; 41:1155-1165. [PMID: 34999733 PMCID: PMC8856959 DOI: 10.1038/s41388-021-02138-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 11/11/2021] [Accepted: 11/25/2021] [Indexed: 01/02/2023]
Abstract
Previously, we identified Puf-A as a novel member of Puf-family RNA-binding proteins; however, its biological functions remain obscure. Analysis of tumor samples of non-small cell lung cancer (NSCLC) showed that high Puf-A expression correlated with high histology grade and abnormal p53 status. Kaplan-Meier curve for overall survival revealed high expression of Puf-A to predict poor prognosis in stage I NSCLC. Among patients with colorectal cancer, high Puf-A expression also showed an adverse impact on overall survival. In lung cancer cell lines, downregulation of p53 increased Puf-A expression, and upregulation of p53 dampened its expression. However, luciferase reporter assays indicated that PUF-A locus harbored the p53-response element, but regulated Puf-A transcription indirectly. In vivo suppression of p53 in CCSP-rtTA/TetO-Cre/LSL-KrasG12D/p53flox/flox conditional mutant mice accelerated the progression of the KrasG12D-driven lung cancer, along with enhanced expression of Puf-A. Importantly, intranasal delivery of shPuf-A to the inducible KrasG12D/p53flox/flox mice suppressed tumor progression. Puf-A silencing led to marked decreases in the 80S ribosomes, along with decrease in S6 and L5 in the cytoplasm and accumulation in the nucleolus. Based on immunofluorescence staining and immunoprecipitation studies, Puf-A interacted with NPM1 in nucleolus. Puf-A silencing resulted in NPM1 translocation from nucleolus to nucleoplasm and this disruption of NPM1 localization was reversed by a rescue experiment. Mechanistically, Puf-A silencing altered NPM1 localization, leading to the retention of ribosomal proteins in nucleolus and diminished ribosome biogenesis, followed by cell-cycle arrest/cell death. Puf-A is a potential theranostic target for cancer therapy and an important player in cancer progression.
Collapse
Affiliation(s)
- Huan-Chieh Cho
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Yenlin Huang
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Department of Anatomic Pathology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Jung-Tung Hung
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Tsai-Hsien Hung
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Kai-Chun Cheng
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Yun-Hen Liu
- Department of Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Ming-Wei Kuo
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Sheng-Hung Wang
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Alice L Yu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- Department of Pediatrics, University of California San Diego Medical Center, San Diego, CA, USA
| | - John Yu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
5
|
Chung WC, Song MJ. Virus–Host Interplay Between Poly (ADP-Ribose) Polymerase 1 and Oncogenic Gammaherpesviruses. Front Microbiol 2022; 12:811671. [PMID: 35095818 PMCID: PMC8795711 DOI: 10.3389/fmicb.2021.811671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/23/2021] [Indexed: 12/14/2022] Open
Abstract
The gammaherpesviruses, include the Epstein–Barr virus, Kaposi’s sarcoma-associated herpesvirus, and murine gammaherpesvirus 68. They establish latent infection in the B lymphocytes and are associated with various lymphoproliferative diseases and tumors. The poly (ADP-ribose) polymerase-1 (PARP1), also called ADP-ribosyltransferase diphtheria-toxin-like 1 (ARTD1) is a nuclear enzyme that catalyzes the transfer of the ADP-ribose moiety to its target proteins and participates in important cellular activities, such as the DNA-damage response, cell death, transcription, chromatin remodeling, and inflammation. In gammaherpesvirus infection, PARP1 acts as a key regulator of the virus life cycle: lytic replication and latency. These viruses also develop various strategies to regulate PARP1, facilitating their replication. This review summarizes the roles of PARP1 in the viral life cycle as well as the viral modulation of host PARP1 activity and discusses the implications. Understanding the interactions between the PARP1 and oncogenic gammaherpesviruses may lead to the identification of effective therapeutic targets for the associated diseases.
Collapse
|
6
|
Ribosomal stress induces 2-cell embryo-like state transition of the mouse ESCs through p53 activation. Biochem Biophys Res Commun 2021; 579:175-180. [PMID: 34607171 DOI: 10.1016/j.bbrc.2021.09.068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/26/2021] [Indexed: 12/31/2022]
Abstract
Embryonic stem cells (ESCs) maintain a pluripotent state and genome integrity in long-term culture. A rare population of ESCs showing 2-cell embryo-specific gene expression is believed to play critical roles in sustainable pluripotency and genome stability. However, the molecular mechanism controlling this transition to a 2-cell embryo-like (2CL) state remains unclear. We carried out screening to search for the factors involved in 2CL state induction and found a ribosomal RNA processing factor, Pum3 to be a candidate. Increased 2CL state population accompanied with an accumulation of pre-ribosomal RNA and activated p53 in the Pum3-KO ESC. Furthermore, the increase of 2CL state cells in the Pum3-KO ESCs was completely abrogated by the deletion of p53. The DNA damage induced by the Ultraviolet light (UV) irradiation and Zeocin promoted the transition to a 2CL state in a p53-dependent manner. Thus, our study provides new insights into a 2CL state transition mechanism through stress-dependent p53 activation of ESCs.
Collapse
|
7
|
Lin HW, Lee JY, Chou NL, Shih TW, Chang MS. Phosphorylation of PUF-A/PUM3 on Y259 modulates PUF-A stability and cell proliferation. PLoS One 2021; 16:e0256282. [PMID: 34407138 PMCID: PMC8372891 DOI: 10.1371/journal.pone.0256282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 08/03/2021] [Indexed: 01/24/2023] Open
Abstract
Human PUF-A/PUM3 is a RNA and DNA binding protein participating in the nucleolar processing of 7S to 5.8S rRNA. The nucleolar localization of PUF-A redistributes to the nucleoplasm upon the exposure to genotoxic agents in cells. However, little is known regarding the roles of PUF-A in tumor progression. Phosphoprotein database analysis revealed that Y259 phosphorylation of PUF-A is the most prevalent residue modified. Here, we reported the importance of PUF-A’s phosphorylation on Y259 in tumorigenesis. PUF-A gene was knocked out by the Crispr/Cas9 method in human cervix epithelial HeLa cells. Loss of PUF-A in HeLa cells resulted in reduced clonogenic and lower transwell invasion capacity. Introduction of PUF-AY259F to PUF-A deficient HeLa cells was unable to restore colony formation. In addition, the unphosphorylated mutant of PUF-A, PUF-AY259F, attenuated PUF-A protein stability. Our results suggest the important role of Y259 phosphorylation of PUF-A in cell proliferation.
Collapse
Affiliation(s)
- Hung-Wei Lin
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Jin-Yu Lee
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Nai-Lin Chou
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Ting-Wei Shih
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Mau-Sun Chang
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
8
|
Amuzu S, Carmona E, Mes-Masson AM, Greenwood CMT, Tonin PN, Ragoussis J. Candidate Markers of Olaparib Response from Genomic Data Analyses of Human Cancer Cell Lines. Cancers (Basel) 2021; 13:1296. [PMID: 33803939 PMCID: PMC7998846 DOI: 10.3390/cancers13061296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/04/2021] [Accepted: 03/09/2021] [Indexed: 12/16/2022] Open
Abstract
The benefit of PARP inhibitor olaparib in relapsed and advanced high-grade serous ovarian carcinoma (HGSOC) is well established especially in BRCA1/2 mutation carriers. Identification of additional biomarkers can help expand the population of patients most likely to benefit from olaparib treatment. To identify candidate markers of olaparib response we analyzed genomic and in vitro olaparib response data from two independent groups of cancer cell lines. Using pan-cancer cell lines (n = 896) from the Genomics of Drug Sensitivity in Cancer database, we applied linear regression methods to identify statistically significant gene predictors of olaparib response based on mRNA expression. We then analyzed whole exome sequencing and mRNA gene expression data from our collection of 18 HGSOC cell lines previously classified as sensitive, intermediate, or resistant based on in vitro olaparib response for mutations, copy number variation and differential expression of candidate olaparib response genes. We identify genes previously associated with olaparib response (SLFN11, ABCB1), and discover novel candidate olaparib sensitivity genes with known functions including interaction with PARP1 (PUM3, EEF1A1) and involvement in homologous recombination DNA repair (ELP4). Further investigations at experimental and clinical levels are required to validate novel candidates, and ultimately determine their efficacy as potential biomarkers of olaparib sensitivity.
Collapse
Affiliation(s)
- Setor Amuzu
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada; (C.M.T.G.); (P.N.T.); (J.R.)
- McGill Genome Centre, McGill University, Montreal, QC H3A 0G1, Canada
| | - Euridice Carmona
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada; (E.C.); (A.-M.M.-M.)
- Institut du Cancer de Montréal, Montreal, QC H2X 0A9, Canada
| | - Anne-Marie Mes-Masson
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada; (E.C.); (A.-M.M.-M.)
- Institut du Cancer de Montréal, Montreal, QC H2X 0A9, Canada
- Department of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Celia M. T. Greenwood
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada; (C.M.T.G.); (P.N.T.); (J.R.)
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC H3T 1E2, Canada
- Departments of Oncology and Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, QC H3A 1A2, Canada
| | - Patricia N. Tonin
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada; (C.M.T.G.); (P.N.T.); (J.R.)
- Cancer Research Program, Centre for Translational Biology, The Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Department of Medicine, McGill University, Montreal, QC H3A 0G4, Canada
| | - Jiannis Ragoussis
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada; (C.M.T.G.); (P.N.T.); (J.R.)
- McGill Genome Centre, McGill University, Montreal, QC H3A 0G1, Canada
| |
Collapse
|
9
|
Wang C, Zhou Z, Subhramanyam CS, Cao Q, Heng ZSL, Liu W, Fu X, Hu Q. SRPK1 acetylation modulates alternative splicing to regulate cisplatin resistance in breast cancer cells. Commun Biol 2020; 3:268. [PMID: 32461560 PMCID: PMC7253463 DOI: 10.1038/s42003-020-0983-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 05/04/2020] [Indexed: 12/22/2022] Open
Abstract
Cisplatin and other platinum-based compounds are frequently used to treat breast cancer, but their utility is severely compromised by drug resistance. Many genes dictating drug responsiveness are subject to pre-mRNA alternative splicing which is regulated by key kinases such as the serine-arginine protein kinase 1 (SRPK1). However, its contribution to drug resistance remains controversial. In this study, we have identified that Tip60-mediated acetylation of SRPK1 is closely associated with chemotherapy sensitivity. In breast cancer cells, cisplatin induced SRPK1 acetylation but in the corresponding resistant cells, it reduced acetylation yet increased phosphorylation and kinase activity of SRPK1, favouring the splicing of some anti-apoptotic variants. Significantly, the cisplatin-resistant cells could be re-sensitized by enhancing SRPK1 acetylation or inhibiting its kinase activity. Hence, our study reveals a key role of SRPK1 in the development of cisplatin resistance in breast cancer cells and suggests a potential therapeutic avenue for overcoming chemotherapy resistance. Wang et al. find that the therapeutic agent cisplatin has opposite effect on acetylation of serine-arginine protein kinase 1 (SRPK1) in cisplatin-resistant versus – sensitive breast cancer cells. Inhibiting SRPK1 activity or enhancing its acetylation re-sensitises cells to cisplatin, suggesting a potential strategy to treat cancers resistant to platinum-based therapy.
Collapse
Affiliation(s)
- Cheng Wang
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, 4 Medical Drive, Singapore, Singapore, 117594
| | - Zhihong Zhou
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 2 Medical Drive, Singapore, Singapore, 117593
| | | | - Qiong Cao
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, 4 Medical Drive, Singapore, Singapore, 117594
| | - Zealyn Shi Lin Heng
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, 4 Medical Drive, Singapore, Singapore, 117594
| | - Wen Liu
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
| | - Xiangdong Fu
- Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0651, USA
| | - Qidong Hu
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, 4 Medical Drive, Singapore, Singapore, 117594.
| |
Collapse
|
10
|
Li H, Kittur FS, Hung CY, Li PA, Ge X, Sane DC, Xie J. Quantitative Proteomics Reveals the Beneficial Effects of Low Glucose on Neuronal Cell Survival in an in vitro Ischemic Penumbral Model. Front Cell Neurosci 2020; 14:272. [PMID: 33033473 PMCID: PMC7491318 DOI: 10.3389/fncel.2020.00272] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/31/2020] [Indexed: 01/04/2023] Open
Abstract
Understanding proteomic changes in the ischemic penumbra are crucial to rescue those salvageable cells and reduce the damage of an ischemic stroke. Since the penumbra region is dynamic with heterogeneous cells/tissues, tissue sampling from animal models of stroke for the molecular study is a challenge. In this study, cultured hippocampal HT22 cells under hypoxia treatment for 17.5 h with 0.69 mM low glucose (H+LG) could mimic ischemic penumbral cells since they had much higher cell viability and viable cell number compared to hypoxia without glucose (H-G) treatment. To validate established cell-based ischemic penumbral model and understand the beneficial effects of low glucose (LG), quantitative proteomics analysis was performed on H+LG, H-G, and normoxia with normal 22 mM glucose (N+G) treated cells. We identified 427 differentially abundant proteins (DAPs) between H-G and N+G and further identified 105 DAPs between H+LG and H-G. Analysis of 105 DAPs revealed that LG promotes cell survival by activating HIF1α to enhance glycolysis; preventing the dysregulations of extracellular matrix remodeling, cell cycle and division, and antioxidant and detoxification; as well as attenuating inflammatory reaction response, protein synthesis and neurotransmission activity. Our results demonstrated that this established cell-based system could mimic penumbral conditions and can be used for molecular studies.
Collapse
Affiliation(s)
- Hua Li
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, United States
| | - Farooqahmed S Kittur
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, United States
| | - Chiu-Yueh Hung
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, United States
| | - P Andy Li
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, United States
| | - Xinghong Ge
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, United States.,Department of Dermatology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - David C Sane
- Carilion Clinic, Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
| | - Jiahua Xie
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, United States
| |
Collapse
|
11
|
Bütepage M, Preisinger C, von Kriegsheim A, Scheufen A, Lausberg E, Li J, Kappes F, Feederle R, Ernst S, Eckei L, Krieg S, Müller-Newen G, Rossetti G, Feijs KLH, Verheugd P, Lüscher B. Nucleolar-nucleoplasmic shuttling of TARG1 and its control by DNA damage-induced poly-ADP-ribosylation and by nucleolar transcription. Sci Rep 2018; 8:6748. [PMID: 29712969 PMCID: PMC5928194 DOI: 10.1038/s41598-018-25137-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/09/2018] [Indexed: 02/06/2023] Open
Abstract
Macrodomains are conserved protein folds associated with ADP-ribose binding and turnover. ADP-ribosylation is a posttranslational modification catalyzed primarily by ARTD (aka PARP) enzymes in cells. ARTDs transfer either single or multiple ADP-ribose units to substrates, resulting in mono- or poly-ADP-ribosylation. TARG1/C6orf130 is a macrodomain protein that hydrolyzes mono-ADP-ribosylation and interacts with poly-ADP-ribose chains. Interactome analyses revealed that TARG1 binds strongly to ribosomes and proteins associated with rRNA processing and ribosomal assembly factors. TARG1 localized to transcriptionally active nucleoli, which occurred independently of ADP-ribose binding. TARG1 shuttled continuously between nucleoli and nucleoplasm. In response to DNA damage, which activates ARTD1/2 (PARP1/2) and promotes synthesis of poly-ADP-ribose chains, TARG1 re-localized to the nucleoplasm. This was dependent on the ability of TARG1 to bind to poly-ADP-ribose. These findings are consistent with the observed ability of TARG1 to competitively interact with RNA and PAR chains. We propose a nucleolar role of TARG1 in ribosome assembly or quality control that is stalled when TARG1 is re-located to sites of DNA damage.
Collapse
Affiliation(s)
- Mareike Bütepage
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Christian Preisinger
- Proteomics Facility, Interdisciplinary Centre for Clinical Research (IZKF), Medical School, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Alexander von Kriegsheim
- Systems Biology Ireland, Conway Institute, University College Dublin, Dublin 4, Ireland.,Edinburgh Cancer Research Centre, IGMM, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Anja Scheufen
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Eva Lausberg
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany.,Institute of Human Genetics, Medical School, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Jinyu Li
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany.,College of Chemistry, Fuzhou University, 350116, Fuzhou, China
| | - Ferdinand Kappes
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany.,Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, No 111, Ren Ai Road, Dushu Lake Higher Education Town, Suzhou Industrial Park, Suzhou, 215123, P.R. China
| | - Regina Feederle
- Institute for Diabetes and Obesity, Monoclonal Antibody Core Facility, Helmholtz Center Munich, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, Neuherberg, Germany
| | - Sabrina Ernst
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany.,Immunohistochemistry and Confocal Microscopy Facility, Interdisciplinary Centre for Clinical Research (IZKF), Medical School, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Laura Eckei
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Sarah Krieg
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Gerhard Müller-Newen
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany.,Immunohistochemistry and Confocal Microscopy Facility, Interdisciplinary Centre for Clinical Research (IZKF), Medical School, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Giulia Rossetti
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich, 52425, Jülich, Germany.,Jülich Supercomputing Centre, Forschungszentrum Jülich, 52425, Jülich, Germany.,Department of Oncology, Hematology and Stem Cell Transplantation, Medical School, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Karla L H Feijs
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Patricia Verheugd
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Bernhard Lüscher
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany.
| |
Collapse
|
12
|
Liang X, Hart KJ, Dong G, Siddiqui FA, Sebastian A, Li X, Albert I, Miao J, Lindner SE, Cui L. Puf3 participates in ribosomal biogenesis in malaria parasites. J Cell Sci 2018; 131:jcs.212597. [PMID: 29487181 DOI: 10.1242/jcs.212597] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 02/16/2018] [Indexed: 12/11/2022] Open
Abstract
In this study, we characterized the Puf family gene member Puf3 in the malaria parasites Plasmodium falciparum and Plasmodium yoelii Secondary structure prediction suggested that the RNA-binding domains of the Puf3 proteins consisted of 11 pumilio repeats that were similar to those in the human Puf-A (also known as PUM3) and Saccharomyces cerevisiae Puf6 proteins, which are involved in ribosome biogenesis. Neither P. falciparum (Pf)Puf3 nor P. yoelii (Py)Puf3 could be genetically disrupted, suggesting they may be essential for the intraerythrocytic developmental cycle. Cellular fractionation of PfPuf3 in the asexual stages revealed preferential partitioning to the nuclear fraction, consistent with nuclear localization of PfPuf3::GFP and PyPuf3::GFP as detected by immunofluorescence. Furthermore, PfPuf3 colocalized with the nucleolar marker PfNop1, demonstrating that PfPuf3 is a nucleolar protein in the asexual stages. We found, however, that PyPuf3 changed its localization from being nucleolar to being present in cytosolic puncta in the mosquito and liver stages, which may reflect alternative functions in these stages. Affinity purification of molecules that associated with a PTP-tagged variant of PfPuf3 revealed 31 proteins associated with the 60S ribosome, and an enrichment of 28S rRNA and internal transcribed spacer 2 sequences. Taken together, these results suggest an essential function for PfPuf3 in ribosomal biogenesis.
Collapse
Affiliation(s)
- Xiaoying Liang
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA
| | - Kevin J Hart
- Department of Biochemistry and Molecular Biology, Center for Malaria Research, Pennsylvania State University, University Park, PA 16802, USA
| | - Gang Dong
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, 1030 Vienna, Austria
| | - Faiza A Siddiqui
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA
| | - Aswathy Sebastian
- Bioinformatics Consulting Center, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Xiaolian Li
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA
| | - Istvan Albert
- Bioinformatics Consulting Center, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Jun Miao
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA
| | - Scott E Lindner
- Department of Biochemistry and Molecular Biology, Center for Malaria Research, Pennsylvania State University, University Park, PA 16802, USA
| | - Liwang Cui
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
13
|
Shanmugam T, Abbasi N, Kim HS, Kim HB, Park NI, Park GT, Oh SA, Park SK, Muench DG, Choi Y, Park YI, Choi SB. An Arabidopsis divergent pumilio protein, APUM24, is essential for embryogenesis and required for faithful pre-rRNA processing. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:1092-1105. [PMID: 29031033 DOI: 10.1111/tpj.13745] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 09/28/2017] [Accepted: 10/03/2017] [Indexed: 05/06/2023]
Abstract
Pumilio RNA-binding proteins are largely involved in mRNA degradation and translation repression. However, a few evolutionarily divergent Pumilios are also responsible for proper pre-rRNA processing in human and yeast. Here, we describe an essential Arabidopsis nucleolar Pumilio, APUM24, that is expressed in tissues undergoing rapid proliferation and cell division. A T-DNA insertion for APUM24 did not affect the male and female gametogenesis, but instead resulted in a negative female gametophytic effect on zygotic cell division immediately after fertilization. Additionally, the mutant embryos displayed defects in cell patterning from pro-embryo through globular stages. The mutant embryos were marked by altered auxin maxima, which were substantiated by the mislocalization of PIN1 and PIN7 transporters in the defective embryos. Homozygous apum24 callus accumulates rRNA processing intermediates, including uridylated and adenylated 5.8S and 25S rRNA precursors. An RNA-protein interaction assay showed that the histidine-tagged recombinant APUM24 binds RNAin vitro with no apparent specificity. Overall, our results demonstrated that APUM24 is required for rRNA processing and early embryogenesis in Arabidopsis.
Collapse
Affiliation(s)
- Thiruvenkadam Shanmugam
- Division of Bioscience and Bioinformatics, Myongji University, Yongin, Kyunggi-do, 449-728, South Korea
| | - Nazia Abbasi
- Division of Bioscience and Bioinformatics, Myongji University, Yongin, Kyunggi-do, 449-728, South Korea
| | - Hyung-Sae Kim
- Division of Bioscience and Bioinformatics, Myongji University, Yongin, Kyunggi-do, 449-728, South Korea
| | - Ho Bang Kim
- Division of Bioscience and Bioinformatics, Myongji University, Yongin, Kyunggi-do, 449-728, South Korea
| | - Nam-Il Park
- Division of Bioscience and Bioinformatics, Myongji University, Yongin, Kyunggi-do, 449-728, South Korea
| | - Guen Tae Park
- School of Biological Sciences, Seoul National University, Seoul, 151-747, South Korea
| | - Sung Aeong Oh
- School of Applied Biosciences, Kyungpook National University, Daegu, 702-701, South Korea
| | - Soon Ki Park
- School of Applied Biosciences, Kyungpook National University, Daegu, 702-701, South Korea
| | - Douglas G Muench
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Yeonhee Choi
- School of Biological Sciences, Seoul National University, Seoul, 151-747, South Korea
| | - Youn-Il Park
- Department of Biological Sciences, Chungnam National University, Daejeon, 305-764, South Korea
| | - Sang-Bong Choi
- Division of Bioscience and Bioinformatics, Myongji University, Yongin, Kyunggi-do, 449-728, South Korea
| |
Collapse
|
14
|
Ozdian T, Holub D, Maceckova Z, Varanasi L, Rylova G, Rehulka J, Vaclavkova J, Slavik H, Moudry P, Znojek P, Stankova J, de Sanctis JB, Hajduch M, Dzubak P. Proteomic profiling reveals DNA damage, nucleolar and ribosomal stress are the main responses to oxaliplatin treatment in cancer cells. J Proteomics 2017; 162:73-85. [DOI: 10.1016/j.jprot.2017.05.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 04/26/2017] [Accepted: 05/02/2017] [Indexed: 12/18/2022]
|
15
|
Pirlot C, Thiry M, Trussart C, Di Valentin E, Piette J, Habraken Y. Melanoma antigen-D2: A nucleolar protein undergoing delocalization during cell cycle and after cellular stress. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:581-95. [DOI: 10.1016/j.bbamcr.2015.12.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 12/11/2015] [Accepted: 12/15/2015] [Indexed: 12/25/2022]
|
16
|
Zhang C, Muench DG. A Nucleolar PUF RNA-binding Protein with Specificity for a Unique RNA Sequence. J Biol Chem 2015; 290:30108-18. [PMID: 26487722 DOI: 10.1074/jbc.m115.691675] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Indexed: 12/21/2022] Open
Abstract
PUF proteins are a conserved group of sequence specific RNA-binding proteins that bind to RNA in a modular fashion. The RNA-binding domain of PUF proteins typically consists of eight clustered Puf repeats. Plant genomes code for large families of PUF proteins that show significant variability in their predicted Puf repeat number, organization, and amino acid sequence. Here we sought to determine whether the observed variability in the RNA-binding domains of four plant PUFs results in a preference for nonclassical PUF RNA target sequences. We report the identification of a novel RNA binding sequence for a nucleolar Arabidopsis PUF protein that contains an atypical RNA-binding domain. The Arabidopsis PUM23 (APUM23) binding sequence was 10 nucleotides in length, contained a centrally located UUGA core element, and had a preferred cytosine at nucleotide position 8. These RNA sequence characteristics differ from those of other PUF proteins, because all natural PUFs studied to date bind to RNAs that contain a conserved UGU sequence at their 5' end and lack specificity for cytosine. Gel mobility shift assays validated the identity of the APUM23 binding sequence and supported the location of 3 of the 10 predicted Puf repeats in APUM23, including the cytosine-binding repeat. The preferred 10-nucleotide sequence bound by APUM23 is present within the 18S rRNA sequence, supporting the known role of APUM23 in 18S rRNA maturation. This work also reveals that APUM23, an ortholog of yeast Nop9, could provide an advanced structural backbone for Puf repeat engineering and target-specific regulation of cellular RNAs.
Collapse
Affiliation(s)
- Chi Zhang
- From the Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Douglas G Muench
- From the Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
17
|
A divergent Pumilio repeat protein family for pre-rRNA processing and mRNA localization. Proc Natl Acad Sci U S A 2014; 111:18554-9. [PMID: 25512524 DOI: 10.1073/pnas.1407634112] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Pumilio/feminization of XX and XO animals (fem)-3 mRNA-binding factor (PUF) proteins bind sequence specifically to mRNA targets using a single-stranded RNA-binding domain comprising eight Pumilio (PUM) repeats. PUM repeats have now been identified in proteins that function in pre-rRNA processing, including human Puf-A and yeast Puf6. This is a role not previously ascribed to PUF proteins. Here we present crystal structures of human Puf-A that reveal a class of nucleic acid-binding proteins with 11 PUM repeats arranged in an "L"-like shape. In contrast to classical PUF proteins, Puf-A forms sequence-independent interactions with DNA or RNA, mediated by conserved basic residues. We demonstrate that equivalent basic residues in yeast Puf6 are important for RNA binding, pre-rRNA processing, and mRNA localization. Thus, PUM repeats can be assembled into alternative folds that bind to structured nucleic acids in addition to forming canonical eight-repeat crescent-shaped RNA-binding domains found in classical PUF proteins.
Collapse
|
18
|
Fan CC, Lee LY, Yu MY, Tzen CY, Chou C, Chang MS. Upregulated hPuf-A promotes breast cancer tumorigenesis. Tumour Biol 2013; 34:2557-64. [PMID: 23625657 DOI: 10.1007/s13277-013-0801-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Accepted: 04/09/2013] [Indexed: 12/11/2022] Open
Abstract
hPuf-A is a member of RNA-binding PUF family that regulates mRNA translation. Redistribution of hPuf-A from the nucleolus to the nucleoplasm upon genotoxic stress modulates the poly(ADP-ribosyl)ation activity of PARP-1. Here, we report a novel function of hPuf-A involved in promoting breast cancer progression. Immunohistochemical studies showed higher expression levels of hPuf-A in stage I, II, III, and IV breast cancer specimens in contrast with those of hPuf-A in ductal carcinoma in situ. The presence of hPuf-A is highly associated with colony formation capacities in breast cancer T47D and MDA-MB-231 cells. Xenograft growth of hPuf-A-silenced and hPuf-A overexpressing MDA-MB-231 cells in nude mice was substantially in concert with colony formation capacities. This promoting effect of hPuf-A in tumorigenesis might be correlated with the regulation of its associated mRNAs, such as RbAp48 and DDX3. Collectively, hPuf-A may have diagnostic values in breast cancer progression.
Collapse
Affiliation(s)
- Chi-Chen Fan
- Department of Physiology, Mackay Memorial Hospital, Taipei, Taiwan,
| | | | | | | | | | | |
Collapse
|
19
|
Bucur O, Stancu AL, Khosravi-Far R, Almasan A. Analysis of apoptosis methods recently used in Cancer Research and Cell Death & Disease publications. Cell Death Dis 2012; 3:e263. [PMID: 22297295 PMCID: PMC3288344 DOI: 10.1038/cddis.2012.2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|