1
|
Yao VJ, D'Angelo S, Butler KS, Theron C, Smith TL, Marchiò S, Gelovani JG, Sidman RL, Dobroff AS, Brinker CJ, Bradbury ARM, Arap W, Pasqualini R. Ligand-targeted theranostic nanomedicines against cancer. J Control Release 2016; 240:267-286. [PMID: 26772878 PMCID: PMC5444905 DOI: 10.1016/j.jconrel.2016.01.002] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 12/17/2015] [Accepted: 01/02/2016] [Indexed: 02/06/2023]
Abstract
Nanomedicines have significant potential for cancer treatment. Although the majority of nanomedicines currently tested in clinical trials utilize simple, biocompatible liposome-based nanocarriers, their widespread use is limited by non-specificity and low target site concentration and thus, do not provide a substantial clinical advantage over conventional, systemic chemotherapy. In the past 20years, we have identified specific receptors expressed on the surfaces of tumor endothelial and perivascular cells, tumor cells, the extracellular matrix and stromal cells using combinatorial peptide libraries displayed on bacteriophage. These studies corroborate the notion that unique receptor proteins such as IL-11Rα, GRP78, EphA5, among others, are differentially overexpressed in tumors and present opportunities to deliver tumor-specific therapeutic drugs. By using peptides that bind to tumor-specific cell-surface receptors, therapeutic agents such as apoptotic peptides, suicide genes, imaging dyes or chemotherapeutics can be precisely and systemically delivered to reduce tumor growth in vivo, without harming healthy cells. Given the clinical applicability of peptide-based therapeutics, targeted delivery of nanocarriers loaded with therapeutic cargos seems plausible. We propose a modular design of a functionalized protocell in which a tumor-targeting moiety, such as a peptide or recombinant human antibody single chain variable fragment (scFv), is conjugated to a lipid bilayer surrounding a silica-based nanocarrier core containing a protected therapeutic cargo. The functionalized protocell can be tailored to a specific cancer subtype and treatment regimen by exchanging the tumor-targeting moiety and/or therapeutic cargo or used in combination to create unique, theranostic agents. In this review, we summarize the identification of tumor-specific receptors through combinatorial phage display technology and the use of antibody display selection to identify recombinant human scFvs against these tumor-specific receptors. We compare the characteristics of different types of simple and complex nanocarriers, and discuss potential types of therapeutic cargos and conjugation strategies. The modular design of functionalized protocells may improve the efficacy and safety of nanomedicines for future cancer therapy.
Collapse
Affiliation(s)
- Virginia J Yao
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131; Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131
| | - Sara D'Angelo
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131; Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131
| | - Kimberly S Butler
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM 87131
| | - Christophe Theron
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM 87131
| | - Tracey L Smith
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131; Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131
| | - Serena Marchiò
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131; Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131; Department of Oncology, University of Turin, Candiolo, 10060, Italy
| | - Juri G Gelovani
- Department of Biomedical Engineering, College of Engineering and School of Medicine, Wayne State University, Detroit, MI 48201
| | - Richard L Sidman
- Department of Neurology, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA 02215
| | - Andrey S Dobroff
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131; Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131
| | - C Jeffrey Brinker
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM 87131; Center for Micro-Engineered Materials, University of New Mexico, Albuquerque, NM 87131; Cancer Research and Treatment Center, Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, University of New Mexico, Albuquerque, NM 87131; Self-Assembled Materials Department, Sandia National Laboratories, Albuquerque, NM 87185
| | - Andrew R M Bradbury
- Bioscience Division, Los Alamos National Laboratories, Los Alamos, NM, 87545
| | - Wadih Arap
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131; Division of Hematology/Oncology, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131.
| | - Renata Pasqualini
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131; Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131.
| |
Collapse
|
2
|
DNA-PK mediates AKT activation and apoptosis inhibition in clinically acquired platinum resistance. Neoplasia 2012; 13:1069-80. [PMID: 22131882 DOI: 10.1593/neo.111032] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 09/20/2011] [Accepted: 09/23/2011] [Indexed: 01/04/2023] Open
Abstract
Clinical resistance to chemotherapy is a frequent event in cancer treatment and is closely linked to poor outcome. High-grade serous (HGS) ovarian cancer is characterized by p53 mutation and high levels of genomic instability. Treatment includes platinum-based chemotherapy and initial response rates are high; however, resistance is frequently acquired, at which point treatment options are largely palliative. Recent data indicate that platinum-resistant clones exist within the sensitive primary tumor at presentation, implying resistant cell selection after treatment with platinum chemotherapy. The AKT pathway is central to cell survival and has been implicated in platinum resistance. Here, we show that platinum exposure induces an AKT-dependent, prosurvival, DNA damage response in clinically platinum-resistant but not platinum-sensitive cells. AKT relocates to the nucleus of resistant cells where it is phosphorylated specifically on S473 by DNA-dependent protein kinase (DNA-PK), and this activation inhibits cisplatin-mediated apoptosis. Inhibition of DNA-PK or AKT, but not mTORC2, restores platinum sensitivity in a panel of clinically resistant HGS ovarian cancer cell lines: we also demonstrate these effects in other tumor types. Resensitization is associated with prevention of AKT-mediated BAD phosphorylation. Strikingly, in patient-matched sensitive cells, we do not see enhanced apoptosis on combining cisplatin with AKT or DNA-PK inhibition. Insulin-mediated activation of AKT is unaffected by DNA-PK inhibitor treatment, suggesting that this effect is restricted to DNA damage-mediated activation of AKT and that, clinically, DNA-PK inhibition might prevent platinum-induced AKT activation without interfering with normal glucose homeostasis, an unwanted toxicity of direct AKT inhibitors.
Collapse
|
3
|
DNA-PK mediates AKT activation and apoptosis inhibition in clinically acquired platinum resistance. Neoplasia 2011. [PMID: 22131882 DOI: 10.1593/neo.111032] [] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Clinical resistance to chemotherapy is a frequent event in cancer treatment and is closely linked to poor outcome. High-grade serous (HGS) ovarian cancer is characterized by p53 mutation and high levels of genomic instability. Treatment includes platinum-based chemotherapy and initial response rates are high; however, resistance is frequently acquired, at which point treatment options are largely palliative. Recent data indicate that platinum-resistant clones exist within the sensitive primary tumor at presentation, implying resistant cell selection after treatment with platinum chemotherapy. The AKT pathway is central to cell survival and has been implicated in platinum resistance. Here, we show that platinum exposure induces an AKT-dependent, prosurvival, DNA damage response in clinically platinum-resistant but not platinum-sensitive cells. AKT relocates to the nucleus of resistant cells where it is phosphorylated specifically on S473 by DNA-dependent protein kinase (DNA-PK), and this activation inhibits cisplatin-mediated apoptosis. Inhibition of DNA-PK or AKT, but not mTORC2, restores platinum sensitivity in a panel of clinically resistant HGS ovarian cancer cell lines: we also demonstrate these effects in other tumor types. Resensitization is associated with prevention of AKT-mediated BAD phosphorylation. Strikingly, in patient-matched sensitive cells, we do not see enhanced apoptosis on combining cisplatin with AKT or DNA-PK inhibition. Insulin-mediated activation of AKT is unaffected by DNA-PK inhibitor treatment, suggesting that this effect is restricted to DNA damage-mediated activation of AKT and that, clinically, DNA-PK inhibition might prevent platinum-induced AKT activation without interfering with normal glucose homeostasis, an unwanted toxicity of direct AKT inhibitors.
Collapse
|