1
|
Maebele LT, Mulaudzi TV, Yasasve M, Dlamini Z, Damane BP. Immunomodulatory Gene-Splicing Dysregulation in Tumorigenesis: Unmasking the Complexity. Molecules 2023; 28:5984. [PMID: 37630236 PMCID: PMC10458946 DOI: 10.3390/molecules28165984] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/05/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Cancer is a global health concern with rising incidence, morbidity, and mortality. The interaction between the tumor and immune cells within the tumor microenvironment is facilitated by signaling pathways driven by immunomodulatory proteins. Alternative splicing regulates the production of multiple immunomodulatory proteins with diverse functionality from a single mRNA transcript. Splicing factors are pivotal in modulating alternative splicing processes but are also subject to regulation. The dysregulation of alternative splicing may result from splicing factor (SF) abnormal expression levels and mutations in the cis and trans-acting elements and small nuclear RNA (snRNA) molecules. Aberrant splicing may generate abnormal mRNA transcripts encoding isoforms with altered functions that contribute to tumorigenesis or cancer progression. This review uncovers the complexity of immunomodulatory genes splicing dysregulation in oncogenesis. Identifying specific immunomodulatory splicing isoforms that contribute to cancer could be utilized to improve current immunotherapeutic drugs or develop novel therapeutic interventions for cancer.
Collapse
Affiliation(s)
| | - Thanyani Victor Mulaudzi
- Department of Surgery, Steve Biko Academic Hospital, University of Pretoria, Hatfield 0028, South Africa
| | - Madhavan Yasasve
- Department of Oral Medicine and Radiology, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India
| | - Zodwa Dlamini
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa
| | - Botle Precious Damane
- Department of Surgery, Steve Biko Academic Hospital, University of Pretoria, Hatfield 0028, South Africa
| |
Collapse
|
2
|
Li C, Yuan Q, Xu G, Yang Q, Hou J, Zheng L, Wu G. A seven-autophagy-related gene signature for predicting the prognosis of differentiated thyroid carcinoma. World J Surg Oncol 2022; 20:129. [PMID: 35459137 PMCID: PMC9034603 DOI: 10.1186/s12957-022-02590-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 04/07/2022] [Indexed: 12/20/2022] Open
Abstract
Background Numerous studies have implicated autophagy in the pathogenesis of thyroid carcinoma. This investigation aimed to establish an autophagy-related gene model and nomogram that can help predict the overall survival (OS) of patients with differentiated thyroid carcinoma (DTHCA). Methods Clinical characteristics and RNA-seq expression data from TCGA (The Cancer Genome Atlas) were used in the study. We also downloaded autophagy-related genes (ARGs) from the Gene Set Enrichment Analysis website and the Human Autophagy Database. First, we assigned patients into training and testing groups. R software was applied to identify differentially expressed ARGs for further construction of a protein-protein interaction (PPI) network for gene functional analyses. A risk score-based prognostic risk model was subsequently developed using univariate Cox regression and LASSO-penalized Cox regression analyses. The model’s performance was verified using Kaplan-Meier (KM) survival analysis and ROC curve. Finally, a nomogram was constructed for clinical application in evaluating the patients with DTHCA. Finally, a 7-gene prognostic risk model was developed based on gene set enrichment analysis. Results Overall, we identified 54 differentially expressed ARGs in patients with DTHCA. A new gene risk model based on 7-ARGs (CDKN2A, FGF7, CTSB, HAP1, DAPK2, DNAJB1, and ITPR1) was developed in the training group and validated in the testing group. The predictive accuracy of the model was reflected by the area under the ROC curve (AUC) values. Univariate and multivariate Cox regression analysis indicated that the model could independently predict the prognosis of patients with THCA. The constrained nomogram derived from the risk score and age also showed high prediction accuracy. Conclusions Here, we developed a 7-ARG prognostic risk model and nomogram for differentiated thyroid carcinoma patients that can guide clinical decisions and individualized therapy. Supplementary Information The online version contains supplementary material available at 10.1186/s12957-022-02590-6.
Collapse
Affiliation(s)
- Chengxin Li
- Department of Breast & Thyroid Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Qianqian Yuan
- Department of Breast & Thyroid Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Gaoran Xu
- Department of Breast & Thyroid Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Qian Yang
- Department of Breast & Thyroid Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Jinxuan Hou
- Department of Breast & Thyroid Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Lewei Zheng
- Department of Breast & Thyroid Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Gaosong Wu
- Department of Breast & Thyroid Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
3
|
Xu Y, Gao F, Zhang J, Cai P, Xu D. Fibroblast growth factor receptor 2 promotes the proliferation, migration, and invasion of ectopic stromal cells via activation of extracellular-signal-regulated kinase signaling pathway in endometriosis. Bioengineered 2022; 13:8360-8371. [PMID: 35311468 PMCID: PMC9161834 DOI: 10.1080/21655979.2022.2054207] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Endometriosis is defined as the presence of endometrial tissues with cancer-like features in extrauterine locations. Fibroblast growth factor receptor 2 (FGFR2) is a tyrosine kinase that is involved in cancer pathogenesis. This study aimed to determine the role of FGFR2 in endometriosis. A total of 29 pairs of ectopic and eutopic endometrial tissues were collected from women with endometriosis. Endometrial tissues from women with hysteromyomas were considered as normal controls. Primary ectopic stromal cells (ESCs) were isolated from the ectopic endometrium. The role of FGFR2 in ESCs was assessed using immunohistochemistry, polymerase chain reaction, cell counting kit-8 assay, EdU staining, flow cytometry, transwell assay, and western blotting. The following signaling pathways were detected using bioinformatic analysis and confirmed in vitro. By searching the GSE171154, GSE86543, and GSE77182 datasets, FGFR2 was identified as an upregulated overlapping gene in endometriosis. Compared to eutopic and normal endometria, FGFR2 was highly expressed in ectopic tissues. Transfection of primary ESCs with FGFR2 small interfering RNA (siRNA) repressed the viability and proliferation of cells and induced apoptosis. FGFR2 siRNA inhibited the migration, invasion, and transforming growth factor-β1-triggered epithelial-mesenchymal transition (EMT). Extracellular signal-regulated kinase (ERK) signaling was found to be a downstream signaling pathway for FGFR2. The ERK1/2 inhibitor PD98059 was found to reverse the promoting effects of FGFR2 on ESC proliferation and invasion. FGFR2 silencing effectively inhibited the growth, migration, invasion, and EMT of ESCs. The effects of FGFR2 on endometriosis might be mediated via the activation of ERK signaling.
Collapse
Affiliation(s)
- Yuan Xu
- Traditional Chinese Medicine Department, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, P.R. China
| | - Feng Gao
- Biomedical Isotope Research Center, School of Basic Medical Sciences, Shandong University, Jinan, P.R. China
| | - Jingyong Zhang
- Vascular Surgery Department, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, P.R. China
| | - Pingping Cai
- Traditional Chinese Medicine Department, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, P.R. China
| | - Dongsheng Xu
- Department of Kidney Transplantation, The Second Hospital, Cheeloo College of Medicine, Shandong University, P.R. China
| |
Collapse
|
4
|
Epstein RJ, Tian LJ, Gu YF. 2b or Not 2b: How Opposing FGF Receptor Splice Variants Are Blocking Progress in Precision Oncology. JOURNAL OF ONCOLOGY 2021; 2021:9955456. [PMID: 34007277 PMCID: PMC8110382 DOI: 10.1155/2021/9955456] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 04/21/2021] [Indexed: 01/16/2023]
Abstract
More than ten thousand peer-reviewed studies have assessed the role of fibroblast growth factors (FGFs) and their receptors (FGFRs) in cancer, but few patients have yet benefited from drugs targeting this molecular family. Strategizing how best to use FGFR-targeted drugs is complicated by multiple variables, including RNA splicing events that alter the affinity of ligands for FGFRs and hence change the outcomes of stromal-epithelial interactions. The effects of splicing are most relevant to FGFR2; expression of the FGFR2b splice isoform can restore apoptotic sensitivity to cancer cells, whereas switching to FGFR2c may drive tumor progression by triggering epithelial-mesenchymal transition. The differentiating and regulatory actions of wild-type FGFR2b contrast with the proliferative actions of FGFR1 and FGFR3, and may be converted to mitogenicity either by splice switching or by silencing of tumor suppressor genes such as CDH1 or PTEN. Exclusive use of small-molecule pan-FGFR inhibitors may thus cause nonselective blockade of FGFR2 isoforms with opposing actions, undermining the rationale of FGFR2 drug targeting. This splice-dependent ability of FGFR2 to switch between tumor-suppressing and -driving functions highlights an unmet oncologic need for isoform-specific drug targeting, e.g., by antibody inhibition of ligand-FGFR2c binding, as well as for more nuanced molecular pathology prediction of FGFR2 actions in different stromal-tumor contexts.
Collapse
Affiliation(s)
- Richard J. Epstein
- New Hope Cancer Center, Beijing United Hospital, 9-11 Jiangtai West Rd, Chaoyang, Beijing 100015, China
- Garvan Institute of Medical Research and UNSW Clinical School, 84 Victoria St, Darlinghurst 2010 Sydney, Australia
| | - Li Jun Tian
- New Hope Cancer Center, Beijing United Hospital, 9-11 Jiangtai West Rd, Chaoyang, Beijing 100015, China
| | - Yan Fei Gu
- New Hope Cancer Center, Beijing United Hospital, 9-11 Jiangtai West Rd, Chaoyang, Beijing 100015, China
| |
Collapse
|
5
|
Zhou Z, Wu B, Tang X, Ke R, Zou Q. Comprehensive Analysis of Fibroblast Growth Factor Receptor (FGFR) Family Genes in Breast Cancer by Integrating Online Databases and Bioinformatics. Med Sci Monit 2020; 26:e923517. [PMID: 32381997 PMCID: PMC7236589 DOI: 10.12659/msm.923517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Fibroblast growth factor receptors (FGFRs) play vital roles in the development and progression of human cancers. This study aimed to comprehensively understand the prognostic performances of FGFR1-4 expression in breast cancer (BC) by mining databases. MATERIAL AND METHODS The levels of FGFR1-4 expression in BC were analyzed by online databases, GEPIA (Gene Expression Profiling Interactive Analysis) and UALCAN. Survival analysis of FGFR1-4 was carried out by Kaplan-Meier plotter. GSE74146 was downloaded from Gene Expression Omnibus (GEO) and analyzed by GEO2R to screen the differentially expressed genes (DEGs) between FGFR2-silenced BC cells and control. Over-presentation for DEGs were done by Enrichr tool. Networks of DEGs were obtained by using Search Tool for the Retrieval of Interacting Genes (STRING) and Cytoscape software. Hub genes were identified by cytoHubba Cytoscape plugin. RESULTS The online databases showed that FGFR1 was significantly downregulated whereas FGFR3 was upregulated in BC. Kaplan-Meier plotter demonstrated the upregulation of both FGFR1 and FGFR3 indicated favorable relapse free survival (RFS) whereas FGFR4 overexpression predicted unfavorable overall survival (OS) in BC patients. Importantly, our results showed FGFR2 overexpression robustly predicted favorable OS and RFS in BC. Further bioinformatics analysis of GSE74146 suggested FGFR2 mainly participated in regulating degradation and organization of the extracellular matrix and signaling of retinoic acid. Moreover, CXCL8, CD44, MMP9, and BMP7 were identified as crucial FGFR2-related hub genes. CONCLUSIONS Our study comprehensively analyzed the prognostic values of FGFR1-4 expression in BC and proposed FGFR2 might serve as a promising biomarker. However, the underlying mechanisms remain to be elucidated.
Collapse
Affiliation(s)
- Zhaoping Zhou
- Department of Plastic and Reconstructive Surgery, Huashan Hospital, Fudan University, Shanghai, China (mainland)
| | - Baojin Wu
- Department of Plastic Surgery, Huashan Hospital, Fudan University, Shanghai, China (mainland)
| | - Xinjie Tang
- Department of Plastic and Reconstructive Surgery, Huashan Hospital, Fudan University, Shanghai, China (mainland)
| | - Ronghu Ke
- Department of Plastic Surgery, Huashan Hospital, Fudan University, Shanghai, China (mainland)
| | - Qiang Zou
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China (mainland)
| |
Collapse
|
6
|
Xu Q, Song A, Xie Q. The Integrated Analyses of Driver Genes Identify Key Biomarkers in Thyroid Cancer. Technol Cancer Res Treat 2020; 19:1533033820940440. [PMID: 32812852 PMCID: PMC7440732 DOI: 10.1177/1533033820940440] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 02/28/2020] [Accepted: 05/14/2020] [Indexed: 01/13/2023] Open
Abstract
AIM Thyroid cancer is the most common endocrine cancer, the incidence rate has continuously increased worldwide. However, there are still lack of effective molecular biomarkers for the diagnosis and treatment of the disease. The study was conducted to identify driver genes that may serve as potential biomarkers for the disease. METHODS The computational tools oncodriveCLUST, oncodriveFM, icages and drgap were used to detect driver genes in thyroid cancer using somatic mutations from The Cancer Genome Atlas database. Integrated analyses were performed on the driver genes using multiomics data from the TCGA database. RESULTS A set of 291 driver genes were identified in thyroid cancer. BRAF, NRAS, HRAS, OTUD4, EIF1AX were the top 5 frequently mutated genes in thyroid cancer. The weighted gene co-expression network analysis identified 4 coexpression modules. The modules 1-3 were significantly associated with patients' tumor size, residual tumor, cancer stage, distant metastasis and multifocality. SEC24B, MET and ITGAL were the hub genes in the modules 1-3 respectively. Hierarchical clustering analysis of the 20 driver genes with the most frequent copy number changes revealed 3 clusters of PRAD patients. Cluster 1 tumors exhibited significantly older age, tumor size, cancer stages, and poorer prognosis than cluster 2 and 3 tumors. 16 genes were significantly associated with number of lymph nodes, tumor size and pathologic stage, such as IL7 R, IRS1, PTK2B, MAP3K3 and FGFR2. CONCLUSIONS The set of cancer genes and subgroups of patients shed insight on the tumorigenesis of thyroid cancer and open up avenues for developing prognostic biomarkers and driver gene-targeted therapies in thyroid cancer.
Collapse
Affiliation(s)
- Qili Xu
- Department of General Surgery, Jiaozhou People’s Hospital, Jiaozhou, Shandong, China
| | - Aili Song
- Jiaozhou Emergency Center, Jiaozhou, Shandong, China
| | - Qigui Xie
- Department of Gynaecology and Obstetrics, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Hossain MA, Asa TA, Rahman MR, Moni MA. Network-based approach to identify key candidate genes and pathways shared by thyroid cancer and chronic kidney disease. INFORMATICS IN MEDICINE UNLOCKED 2019. [DOI: 10.1016/j.imu.2019.100240] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
8
|
Qi L, Song W, Li L, Cao L, Yu Y, Song C, Wang Y, Zhang F, Li Y, Zhang B, Cao W. FGF4 induces epithelial-mesenchymal transition by inducing store-operated calcium entry in lung adenocarcinoma. Oncotarget 2018; 7:74015-74030. [PMID: 27677589 PMCID: PMC5342032 DOI: 10.18632/oncotarget.12187] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 08/23/2016] [Indexed: 12/21/2022] Open
Abstract
Several fibroblast growth factor (FGF) isoforms act to stimulate epithelial-mesenchymal transition (EMT) during cancer progression. FGF4 and FGF7 are two ligands of FGF receptor 2 (FGFR2). Using two lung adenocarcinoma (ADC) cell lines, A549 and H1299, we showed that FGF4, but not FGF7, altered cell morphology, promoted EMT-associated protein expression, and enhanced cell proliferation, migration/invasion and colony initiation. In addition, FGF4 increased store-operated calcium entry (SOCE) and expression of the calcium signal-associated protein Orai1. The SOCE inhibitor 2,5-di-tert-butylhydroquinone (BHQ) or Orai1 knockdown reversed all of the EMT-promoting effects of FGF4. BHQ also inhibited FGF4-induced EMT in a mouse xenograft model. Finally, 60 human lung ADC samples and 21 sets of matched specimens (primary and metastatic foci in lymph nodes from one patient) were used to confirm the clinicopathologic significance of FGF4 and its correlation with E-cadherin, Vimentin and Orai1 expression. Our study thus shows that FGF4 induces EMT by elevating SOCE in lung ADC.
Collapse
Affiliation(s)
- Lisha Qi
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.,The Key Laboratory of Tianjin Cancer Prevention and Treatment, Tianjin 300060, China.,National Clinical Research Center for Cancer, Tianjin 300060, China
| | - Wangzhao Song
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.,Tianjin Medical University, Tianjin 300070, China.,The Key Laboratory of Tianjin Cancer Prevention and Treatment, Tianjin 300060, China.,National Clinical Research Center for Cancer, Tianjin 300060, China
| | - Lingmei Li
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.,The Key Laboratory of Tianjin Cancer Prevention and Treatment, Tianjin 300060, China.,National Clinical Research Center for Cancer, Tianjin 300060, China
| | - Lu Cao
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.,Tianjin Medical University, Tianjin 300070, China.,The Key Laboratory of Tianjin Cancer Prevention and Treatment, Tianjin 300060, China.,National Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yue Yu
- Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.,The Key Laboratory of Tianjin Cancer Prevention and Treatment, Tianjin 300060, China.,National Clinical Research Center for Cancer, Tianjin 300060, China
| | - Chunmin Song
- Department of Family Planning, Maternity & Child Care Center of Luoyang, Luoyang 471000, China
| | - Yalei Wang
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.,The Key Laboratory of Tianjin Cancer Prevention and Treatment, Tianjin 300060, China.,National Clinical Research Center for Cancer, Tianjin 300060, China
| | - Fei Zhang
- The Key Laboratory of Tianjin Cancer Prevention and Treatment, Tianjin 300060, China.,National Clinical Research Center for Cancer, Tianjin 300060, China.,Research Center of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Yang Li
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.,Tianjin Medical University, Tianjin 300070, China.,The Key Laboratory of Tianjin Cancer Prevention and Treatment, Tianjin 300060, China.,National Clinical Research Center for Cancer, Tianjin 300060, China
| | - Bin Zhang
- Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.,The Key Laboratory of Tianjin Cancer Prevention and Treatment, Tianjin 300060, China.,National Clinical Research Center for Cancer, Tianjin 300060, China
| | - Wenfeng Cao
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.,The Key Laboratory of Tianjin Cancer Prevention and Treatment, Tianjin 300060, China.,National Clinical Research Center for Cancer, Tianjin 300060, China
| |
Collapse
|
9
|
DNA methylation variations are required for epithelial-to-mesenchymal transition induced by cancer-associated fibroblasts in prostate cancer cells. Oncogene 2017; 36:5551-5566. [PMID: 28581528 DOI: 10.1038/onc.2017.159] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 04/08/2017] [Accepted: 04/14/2017] [Indexed: 12/26/2022]
Abstract
Widespread genome hypo-methylation and promoter hyper-methylation of epithelium-specific genes are hallmarks of stable epithelial-to-mesenchymal transition (EMT), which in prostate cancer (PCa) correlates with castration resistance, cancer stem cells generation, chemoresistance and worst prognosis. Exploiting our consolidated 'ex-vivo' system, we show that cancer-associated fibroblasts (CAFs) released factors have pivotal roles in inducing genome methylation changes required for EMT and stemness in EMT-prone PCa cells. By global DNA methylation analysis and RNA-Seq, we provide compelling evidence that conditioned media from CAFs explanted from two unrelated patients with advanced PCa, stimulates concurrent DNA hypo- and hyper-methylation required for EMT and stemness in PC3 and DU145, but not in LN-CaP and its derivative C4-2B, PCa cells. CpG island (CGI) hyper-methylation associates with repression of genes required for epithelial maintenance and invasion antagonism, whereas activation of EMT markers and stemness genes correlate with CGI hypo-methylation. Remarkably, methylation variations and EMT-regulated transcripts almost completely reverse qualitatively and quantitatively during MET. Unsupervised clustering analysis of the PRAD TCGA data set with the differentially expressed (DE) and methylated EMT signature, identified a gene cluster of DE genes defined by a CAF+ and AR- phenotype and worst diagnosis. This gene cluster includes the relevant factors for EMT and stemness, which display DNA methylation variations in regulatory regions inversely correlated to their expression changes, thus strongly sustaining the ex-vivo data. DNMT3A-dependent methylation is essential for silencing epithelial maintenance and EMT counteracting genes, such as CDH1 and GRHL2, that is, the direct repressor of ZEB1, the key transcriptional factor for EMT and stemness. Accordingly, DNMT3A knock-down prevents EMT entry. These results shed light on the mechanisms of establishment and maintenance of coexisting DNA hypo- and hyper-methylation patterns during cancer progression, the generation of EMT and cell stemness in advanced PCa, and may pave the way to new therapeutic implications.
Collapse
|
10
|
Moghadasi M, Ilghari D, Sirati-Sabet M, Amini A, Asghari H, Gheibi N. Structural characterization of recombinant human fibroblast growth factor receptor 2b kinase domain upon interaction with omega fatty acids. Chem Phys Lipids 2016; 202:21-27. [PMID: 27871884 DOI: 10.1016/j.chemphyslip.2016.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 11/09/2016] [Accepted: 11/17/2016] [Indexed: 12/31/2022]
Abstract
The mutated recombinant kinase domain of human fibroblast growth factor receptor 2b (hFGFR2b) is overexpressed and purified, and its structural changes upon the interaction with three unsaturated fatty acids (UFAs), oleic, linoleic and α-linolenic are studied. This interaction is investigated to find out about the folding and unfolding effect of unsaturated fatty acids on the kinase domain structure of hFGFR2b. Recombinant pLEICS-01 vectors, containing the mutated coding region of hFGFR2b, are expressed in the standard Escherichia coli BL21 (DE3) host cells and purified by Ni2+-NTA affinity chromatography. While polyacrylamide gel electrophoresis characterizes the functionality of recombinant protein, its structural changes are studied in the presence and absence of various concentrations of oleic, α-linolenic and linoleic acids using circular dichroism (CD) and fluorescence spectroscopy. Far ultraviolet CD results show that unsaturated fatty acids do not change the secondary structure of the recombinant kinase domain of hFGFR2b. However, chemical denaturation analysis confirms that all three UFAs destabilize the tertiary structure of recombinant protein. A decrease in the fluorescence intensity without any significant red or blue shift (336±1nm) reflects a variation in the tertiary structure of protein. The direct interaction of the studied UFAs with hFGFR2b reduces the conformational stability of their kinase domains. The structural changes in hFGFR2b in the presence of UFAs may be necessary for hFGFR2b to adjust the signal transduction and regulate the key cellular processes.
Collapse
Affiliation(s)
- Masoumeh Moghadasi
- Department of Biotechnology, School of Para Medicine, Qazvin University of Medical Science, Qazvin, Iran
| | - Dariush Ilghari
- College of Pharmacy, University of Texas at Austin, Austin, TX 78712, USA
| | - Majid Sirati-Sabet
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Amini
- Centre for Infrastructure Engineering, Western Sydney University, Bld Y, Locked Bag 1797, NSW 2751, Australia; Department of Mechanical Engineering, Australian College of Kuwait, Mishrif, Kuwait City, Kuwait.
| | - Hamideh Asghari
- Department of Biotechnology, School of Para Medicine, Qazvin University of Medical Science, Qazvin, Iran
| | - Nematollah Gheibi
- Cellular and Molecular Research Center, Qazvin University of Medical Sciences, P.O. Box 34199-15315, Qazvin, Iran.
| |
Collapse
|
11
|
Huang J, Fan X, Wang X, Lu Y, Zhu H, Wang W, Zhang S, Wang Z. High ROR2 expression in tumor cells and stroma is correlated with poor prognosis in pancreatic ductal adenocarcinoma. Sci Rep 2015; 5:12991. [PMID: 26259918 PMCID: PMC4531333 DOI: 10.1038/srep12991] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 06/24/2015] [Indexed: 01/26/2023] Open
Abstract
RTK-like orphan receptor 2 (ROR2) is overexpressed in several cancers and has tumorigenic activity. However, the expression of ROR2 and its functional and prognostic significance have yet to be evaluated in pancreatic ductal adenocarcinoma (PDAC). Quantitative real-time polymerase chain reaction was used to characterize the expression of ROR2 mRNA in PDAC, corresponding peritumoral tissues, and PDAC cell lines. Immunohistochemical analysis with tissue microarrays was used to evaluate ROR2 expression in PDAC and to investigate the relationship of this expression to clinicopathological factors and prognosis. The expression of ROR2 mRNA and protein was significantly higher in PDAC than in normal pancreatic tissues. High cytoplasmic ROR2 expression in cancer cells was significantly associated with a primary tumor, distant metastasis, and TNM stage, and high stromal ROR2 expression was significantly associated with regional lymph node metastasis and TNM stage. The Kaplan–Meier method and Cox regression analyses showed that high ROR2 expression in tumor cytoplasm or stromal cells was significantly associated with malignant attributes and reduced survival in PDAC. We present strong evidence that ROR2 could be used as an indicator of poor prognosis and could represent a novel therapeutic target for PDAC.
Collapse
Affiliation(s)
- Jianfei Huang
- Department of Pathology, Nantong University Affiliated Hospital, Nantong, Jiangsu 226001, China
| | - Xiangjun Fan
- Department of General Surgery, Nantong University Affiliated Hospital, Nantong, Jiangsu 226001, China
| | - Xudong Wang
- Surgical Comprehensive Laboratory, Nantong University Affiliated Hospital, Nantong, Jiangsu 226001, China
| | - Yuhua Lu
- 1] Department of General Surgery, Nantong University Affiliated Hospital, Nantong, Jiangsu 226001, China [2] Surgical Comprehensive Laboratory, Nantong University Affiliated Hospital, Nantong, Jiangsu 226001, China
| | - Huijun Zhu
- Department of Pathology, Nantong University Affiliated Hospital, Nantong, Jiangsu 226001, China
| | - Wei Wang
- Department of Pathology, Nantong University Affiliated Hospital, Nantong, Jiangsu 226001, China
| | - Shu Zhang
- Department of Pathology, Nantong University Affiliated Hospital, Nantong, Jiangsu 226001, China
| | - Zhiwei Wang
- 1] Department of General Surgery, Nantong University Affiliated Hospital, Nantong, Jiangsu 226001, China [2] Surgical Comprehensive Laboratory, Nantong University Affiliated Hospital, Nantong, Jiangsu 226001, China
| |
Collapse
|
12
|
Medici M, Visser WE, Visser TJ, Peeters RP. Genetic determination of the hypothalamic-pituitary-thyroid axis: where do we stand? Endocr Rev 2015; 36:214-44. [PMID: 25751422 DOI: 10.1210/er.2014-1081] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
For a long time it has been known that both hypo- and hyperthyroidism are associated with an increased risk of morbidity and mortality. In recent years, it has also become clear that minor variations in thyroid function, including subclinical dysfunction and variation in thyroid function within the reference range, can have important effects on clinical endpoints, such as bone mineral density, depression, metabolic syndrome, and cardiovascular mortality. Serum thyroid parameters show substantial interindividual variability, whereas the intraindividual variability lies within a narrow range. This suggests that every individual has a unique hypothalamus-pituitary-thyroid axis setpoint that is mainly determined by genetic factors, and this heritability has been estimated to be 40-60%. Various mutations in thyroid hormone pathway genes have been identified in persons with thyroid dysfunction or altered thyroid function tests. Because these causes are rare, many candidate gene and linkage studies have been performed over the years to identify more common variants (polymorphisms) associated with thyroid (dys)function, but only a limited number of consistent associations have been found. However, in the past 5 years, advances in genetic research have led to the identification of a large number of new candidate genes. In this review, we provide an overview of the current knowledge about the polygenic basis of thyroid (dys)function. This includes new candidate genes identified by genome-wide approaches, what insights these genes provide into the genetic basis of thyroid (dys)function, and which new techniques will help to further decipher the genetic basis of thyroid (dys)function in the near future.
Collapse
Affiliation(s)
- Marco Medici
- Rotterdam Thyroid Center, Department of Internal Medicine, Erasmus Medical Center, 3015 GE Rotterdam, The Netherlands
| | | | | | | |
Collapse
|
13
|
Reciprocal interaction between carcinoma-associated fibroblasts and squamous carcinoma cells through interleukin-1α induces cancer progression. Neoplasia 2014; 16:928-38. [PMID: 25425967 PMCID: PMC4240921 DOI: 10.1016/j.neo.2014.09.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 09/03/2014] [Accepted: 09/04/2014] [Indexed: 01/01/2023] Open
Abstract
Crosstalk between cancer cells and carcinoma-associated fibroblasts (CAFs) has earned recognition as an interaction that plays a pivotal role in carcinogenesis. Thus, we attempted to clarify whether increase in the level of CAFs promotes cancer progression by proportionally enhancing the interaction between cancer cells and CAFs. We first analyzed clinical correlation between the levels of fibroblasts and cancer progression and found that the level of CAFs made a noticeable difference on the prognosis of patients with oral squamous cell carcinoma (OSCC). In vivo animal study also demonstrated that tumor volume depended on the dose of CAFs that was co-injected with OSCC cells. The same tendency was observed in an in vitro study. We also found that interleukin-1α (IL-1α) secreted from OSCC cells had dual effects on CAFs: IL-1α not only promoted the proliferation of CAFs but also upregulated the secretion of cytokines in CAFs such as CCL7, CXCL1, and IL-8. The induction activity of cytokine secretion by IL-1α surpassed that of proliferation in OSCC cells. In summary, we unraveled an important interactive mechanism of carcinogenesis: IL-1α released from carcinoma stimulates the proliferation of CAFs and the simultaneous increase in cytokine secretion from CAFs promotes cancer progression in human OSCC. On the basis of these findings, we propose that the level of CAFs is eligible for being selected as a prognostic factor that will be useful in routine diagnosis. We also propose that blockage of reciprocal interaction between cancer cells and CAFs will provide an insight for developing novel chemotherapeutic strategy.
Collapse
|
14
|
Cassol CA, Winer D, Liu W, Guo M, Ezzat S, Asa SL. Tyrosine kinase receptors as molecular targets in pheochromocytomas and paragangliomas. Mod Pathol 2014; 27:1050-62. [PMID: 24390213 PMCID: PMC4977182 DOI: 10.1038/modpathol.2013.233] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 10/15/2013] [Accepted: 10/16/2013] [Indexed: 12/17/2022]
Abstract
Pheochromocytomas and paragangliomas are neuroendocrine tumors shown to be responsive to multitargeted tyrosine kinase inhibitor (TKI) treatment. Despite growing knowledge regarding their genetic basis, the ability to predict behavior in these tumors remains challenging. There is also limited knowledge of their tyrosine kinase receptor expression and whether the clinical response observed to the TKI sunitinib relates only to its anti-angiogenic properties or also due to a direct effect on tumor cells. To answer these questions, an in vitro model of sunitinib treatment of a pheochromocytoma cell line was created. Sunitinib targets (VEGFRs, PDGFRs, and C-KIT), FGFRs, and cell cycle regulatory proteins were investigated in human tissue microarrays. SDHB immunohistochemistry was used as a surrogate marker for the presence of succinate dehydrogenase mutations. The FGFR4 G388R single nucleotide polymorphism was also investigated. Sunitinib treatment in vitro decreases cell proliferation mainly by targeting cell cycle, DNA metabolism, and cell organization genes. FGFR1, -2, and -4, VEGFR2, PDGFRα, and p16 were overexpressed in primary human pheochromocytomas and paragangliomas. Discordant results were observed for VEGFR1, p27, and p21 overexpressed in paragangliomas but underexpressed in pheochromocytomas; PDGFRβ, Rb, and Cyclin D1 overexpressed in paragangliomas only; and FGFR3 overexpressed in pheochromocytomas and underexpressed in paragangliomas. Low expression of C-KIT, p53, and Aurora kinase A and B was observed. Nuclear FGFR2 expression was associated with increased risk of metastasis (odds ratio (OR)=7.61, P=0.008), as was membranous PDGFRα (OR=13.71, P=0.015), membranous VEGFR1 (OR=8.01, P=0.037), nuclear MIB1 (OR=1.26, P=0.008), and cytoplasmic p27 (OR=1.037, P=0.030). FGFR3, VEGFR2, and C-KIT levels were associated with decreased risk of metastasis. We provide new insights into the mechanistic actions of sunitinib in pheochromocytomas and paragangliomas, and support current evidence that multitargeted TKIs might be a suitable treatment alternative for these tumors.
Collapse
Affiliation(s)
- Clarissa A. Cassol
- Department of Pathology, University Health Network, Toronto, Ontario, Canada
| | - Daniel Winer
- Department of Pathology, University Health Network, Toronto, Ontario, Canada
| | - Wei Liu
- Ontario Cancer Institute, University Health Network, Toronto, Ontario, Canada
| | - Miao Guo
- Ontario Cancer Institute, University Health Network, Toronto, Ontario, Canada
| | - Shereen Ezzat
- Department of Internal Medicine, University Health Network, Toronto, Ontario, Canada,Ontario Cancer Institute, University Health Network, Toronto, Ontario, Canada
| | - Sylvia L. Asa
- Department of Pathology, University Health Network, Toronto, Ontario, Canada,Ontario Cancer Institute, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
15
|
Phosphorylation of RSK2 at Tyr529 by FGFR2-p38 enhances human mammary epithelial cells migration. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:2461-70. [PMID: 25014166 DOI: 10.1016/j.bbamcr.2014.06.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 06/29/2014] [Accepted: 06/30/2014] [Indexed: 01/08/2023]
Abstract
The members of p90 ribosomal S6 kinase (RSK) family of Ser/Thr kinases are downstream effectors of MAPK/ERK pathway that regulate diverse cellular processes including cell growth, proliferation and survival. In carcinogenesis, RSKs are thought to modulate cell motility, invasion and metastasis. Herein, we have studied an involvement of RSKs in FGF2/FGFR2-driven behaviours of mammary epithelial and breast cancer cells. We found that both silencing and inhibiting of FGFR2 attenuated phosphorylation of RSKs, whereas FGFR2 overexpression and/or its stimulation with FGF2 enhanced RSKs activity. Moreover, treatment with ERK, Src and p38 inhibitors revealed that p38 kinase acts as an upstream RSK2 regulator. We demonstrate for the first time that in FGF2/FGFR2 signalling, p38 but not MEK/ERK, indirectly activated RSK2 at Tyr529, which facilitated phosphorylation of its other residues (Thr359/Ser363, Thr573 and Ser380). In contrast to FGF2-triggered signalling, inhibition of p38 in the EGF pathway affected only RSK2-Tyr529, without any impact on the remaining RSK phosphorylation sites. p38-mediated phosphorylation of RSK2-Tyr529 was crucial for the transactivation of residues located at kinase C-terminal domain and linker-region, specifically, in the FGF2/FGFR2 signalling pathway. Furthermore, we show that FGF2 promoted anchorage-independent cell proliferation, formation of focal adhesions and cell migration, which was effectively abolished by treatment with RSKs inhibitor (FMK). These indicate that RSK2 activity is indispensable for FGF2/FGFR2-mediated cellular effects. Our findings identified a new FGF2/FGFR2-p38-RSK2 pathway, which may play a significant role in the pathogenesis and progression of breast cancer and, hence, may present a novel therapeutic target in the treatment of FGFR2-expressing tumours.
Collapse
|
16
|
Fang W, Ye L, Shen L, Cai J, Huang F, Wei Q, Fei X, Chen X, Guan H, Wang W, Li X, Ning G. Tumor-associated macrophages promote the metastatic potential of thyroid papillary cancer by releasing CXCL8. Carcinogenesis 2014; 35:1780-7. [DOI: 10.1093/carcin/bgu060] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
17
|
Qian Z, Qingshan C, Chun J, Huijun Z, Feng L, Qiang W, Qiang X, Min Z. High expression of TNFSF13 in tumor cells and fibroblasts is associated with poor prognosis in non-small cell lung cancer. Am J Clin Pathol 2014; 141:226-33. [PMID: 24436270 DOI: 10.1309/ajcp4jp8bzomheaw] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVES To examine high expression of tumor necrosis factor ligand superfamily member 13 (TNFSF13), which is correlated with several malignancies. METHODS TNFSF13 messenger RNA expression in tumor cells and fibroblasts in a cohort of patients with non-small cell lung cancer (NSCLC) was analyzed by quantitative real-time polymerase chain reaction and immunohistochemistry using a tissue microarray. RESULTS TNFSF13 expression was significantly higher in lung adenocarcinomas compared with squamous cell carcinomas (P = .022). High TNFSF13 expression in NSCLC stroma was related with low differentiation (P = .045) and sex (male > female, P = .005). Cox proportional hazards regression univariate and multivariable analysis revealed TNFSF13 expression in NSCLC tumor cells (P = .007) or fibroblasts (P = .027) as an independent prognostic factor in the 5-year overall survival rate. CONCLUSIONS Our findings indicate TNFSF13 is a prognostic factor in NSCLC and suggest TNFSF13 may be a novel therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Zhao Qian
- Hospital of Integrated Traditional Chinese and Western Medicine of Zhejiang Province, Tuberculosis Diagnosis and Treatment Center of Zhejiang Province, China
| | - Cai Qingshan
- Hospital of Integrated Traditional Chinese and Western Medicine of Zhejiang Province, Tuberculosis Diagnosis and Treatment Center of Zhejiang Province, China
| | - Jin Chun
- Hospital of Integrated Traditional Chinese and Western Medicine of Zhejiang Province, Tuberculosis Diagnosis and Treatment Center of Zhejiang Province, China
| | - Zhu Huijun
- Department of Pathology, Nantong University Affiliated Hospital, Nantong, Jiangsu Province, China
| | - Li Feng
- Hospital of Integrated Traditional Chinese and Western Medicine of Zhejiang Province, Tuberculosis Diagnosis and Treatment Center of Zhejiang Province, China
| | - Wei Qiang
- Hospital of Integrated Traditional Chinese and Western Medicine of Zhejiang Province, Tuberculosis Diagnosis and Treatment Center of Zhejiang Province, China
| | - Xia Qiang
- Hospital of Integrated Traditional Chinese and Western Medicine of Zhejiang Province, Tuberculosis Diagnosis and Treatment Center of Zhejiang Province, China
| | - Zhu Min
- Hospital of Integrated Traditional Chinese and Western Medicine of Zhejiang Province, Tuberculosis Diagnosis and Treatment Center of Zhejiang Province, China
| |
Collapse
|
18
|
Zane M, Catalano V, Scavo E, Bonanno M, Pelizzo MR, Todaro M, Stassi G. Estrogens and stem cells in thyroid cancer. Front Endocrinol (Lausanne) 2014; 5:124. [PMID: 25120531 PMCID: PMC4110518 DOI: 10.3389/fendo.2014.00124] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 07/11/2014] [Indexed: 01/10/2023] Open
Abstract
Recent discoveries highlight the emerging role of estrogens in the initiation and progression of different malignancies through their interaction with stem cell (SC) compartment. Estrogens play a relevant role especially for those tumors bearing a gender disparity in incidence and aggressiveness, as occurs for most thyroid diseases. Although several experimental lines suggest that estrogens promote thyroid cell proliferation and invasion, their precise contribution in SC compartment still remains unclear. This review underlines the interplay between hormones and thyroid function, which could help to complete the puzzle of gender discrepancy in thyroid malignancies. Defining the association between estrogen receptors' status and signaling pathways by which estrogens exert their effects on thyroid cells is a potential tool that provides important insights in pathogenetic mechanisms of thyroid tumors.
Collapse
Affiliation(s)
- Mariangela Zane
- Department of Surgical and Oncological Sciences, University of Palermo, Palermo, Italy
- Department of Surgical, Oncological and Gastroenterological Sciences, University of Padua, Padua, Italy
| | - Veronica Catalano
- Department of Surgical and Oncological Sciences, University of Palermo, Palermo, Italy
| | - Emanuela Scavo
- Department of Surgical and Oncological Sciences, University of Palermo, Palermo, Italy
| | - Marco Bonanno
- Department of Surgical and Oncological Sciences, University of Palermo, Palermo, Italy
| | - Maria Rosa Pelizzo
- Department of Surgical, Oncological and Gastroenterological Sciences, University of Padua, Padua, Italy
| | - Matilde Todaro
- Department of Surgical and Oncological Sciences, University of Palermo, Palermo, Italy
| | - Giorgio Stassi
- Department of Surgical and Oncological Sciences, University of Palermo, Palermo, Italy
- *Correspondence: Giorgio Stassi, Laboratory of Cellular and Molecular Pathophysiology, Department of Surgical and Oncological Sciences, University of Palermo, Via Liborio Giuffrè 5, Palermo 90127, Italy e-mail:
| |
Collapse
|
19
|
Juárez-Méndez S, Zentella-Dehesa A, Villegas-Ruíz V, Pérez-González OA, Salcedo M, López-Romero R, Román-Basaure E, Lazos-Ochoa M, Montes de Oca-Fuentes VE, Vázquez-Ortiz G, Moreno J. Splice variants of zinc finger protein 695 mRNA associated to ovarian cancer. J Ovarian Res 2013; 6:61. [PMID: 24007497 PMCID: PMC3847372 DOI: 10.1186/1757-2215-6-61] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 08/24/2013] [Indexed: 12/22/2022] Open
Abstract
Background Studies of alternative mRNA splicing (AS) in health and disease have yet to yield the complete picture of protein diversity and its role in physiology and pathology. Some forms of cancer appear to be associated to certain alternative mRNA splice variants, but their role in the cancer development and outcome is unclear. Methods We examined AS profiles by means of whole genome exon expression microarrays (Affymetrix GeneChip 1.0) in ovarian tumors and ovarian cancer-derived cell lines, compared to healthy ovarian tissue. Alternatively spliced genes expressed predominantly in ovarian tumors and cell lines were confirmed by RT-PCR. Results Among several significantly overexpressed AS genes in malignant ovarian tumors and ovarian cancer cell lines, the most significant one was that of the zinc finger protein ZNF695, with two previously unknown mRNA splice variants identified in ovarian tumors and cell lines. The identity of ZNF695 AS variants was confirmed by cloning and sequencing of the amplicons obtained from ovarian cancer tissue and cell lines. Conclusions Alternative ZNF695 mRNA splicing could be a marker of ovarian cancer with possible implications on its pathogenesis.
Collapse
|
20
|
Abstract
Thyroid cancer is a common endocrine malignancy. There has been exciting progress in understanding its molecular pathogenesis in recent years, as best exemplified by the elucidation of the fundamental role of several major signalling pathways and related molecular derangements. Central to these mechanisms are the genetic and epigenetic alterations in these pathways, such as mutation, gene copy-number gain and aberrant gene methylation. Many of these molecular alterations represent novel diagnostic and prognostic molecular markers and therapeutic targets for thyroid cancer, which provide unprecedented opportunities for further research and clinical development of novel treatment strategies for this cancer.
Collapse
Affiliation(s)
- Mingzhao Xing
- Laboratory for Cellular and Molecular Thyroid Research, Division of Endocrinology and Metabolism, Johns Hopkins University School of Medicine, 1830 East Monument Street, Suite 333, Baltimore, Maryland 21287, USA.
| |
Collapse
|
21
|
The RNA-binding protein Rbfox2: an essential regulator of EMT-driven alternative splicing and a mediator of cellular invasion. Oncogene 2013; 33:1082-92. [PMID: 23435423 DOI: 10.1038/onc.2013.50] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 01/18/2013] [Accepted: 01/21/2013] [Indexed: 12/15/2022]
Abstract
The epithelial-mesenchymal transition (EMT), a prerequisite for cancer progression and metastasis formation, is regulated not only at the transcriptional but also at the post-transcriptional level, including at the level of alternative pre-mRNA splicing. Several recent studies have highlighted the involvement of splicing factors, including epithelial splicing regulatory proteins (Esrps) and RNA-binding Fox protein 2 (Rbfox2), in this process. Esrps regulate epithelial-specific splicing, and their expression is downregulated during EMT. By contrast, the role of Rbfox2 is controversial because Rbfox2 regulates epithelial as well as mesenchymal splicing events. Here, we have used several established cell culture models to investigate the functions of Rbfox2 during EMT. We demonstrate that induction of an EMT upregulates the expression of Rbfox2, which correlates with an increase in Rbfox2-regulated splicing events in the cortactin (Cttn), Pard3 and dynamin 2 (Dnm2) transcripts. At the same time, however, the epithelial-specific ability to splice the Enah, Slk and Tsc2 transcripts is either reduced or lost completely by Rbfox2, which might be due, in part, to downregulation of the expression of the Esrps cooperative factors. Depletion of Rbfox2 during EMT did not prevent the activation of transforming growth factor-β signaling, the upregulation of mesenchymal markers or changes in cell morphology toward a mesenchymal phenotype. In addition, this depletion did not influence cell migration. However, depletion of Rbfox2 in cells that have completed an EMT significantly reduced their invasive potential. Taken together, our results suggest that during an EMT, Rbfox2-regulated splicing shifts from epithelial-to mesenchymal-specific events, leading to a higher degree of tissue invasiveness.
Collapse
|