1
|
Lee JH. Targeting the ATM pathway in cancer: Opportunities, challenges and personalized therapeutic strategies. Cancer Treat Rev 2024; 129:102808. [PMID: 39106770 DOI: 10.1016/j.ctrv.2024.102808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/09/2024]
Abstract
Ataxia telangiectasia mutated (ATM) kinase plays a pivotal role in orchestrating the DNA damage response, maintaining genomic stability, and regulating various cellular processes. This review provides a comprehensive analysis of ATM's structure, activation mechanisms, and various functions in cancer development, progression, and treatment. I discuss ATM's dual nature as both a tumor suppressor and potential promoter of cancer cell survival in certain contexts. The article explores the complex signaling pathways mediated by ATM, its interactions with other DNA repair mechanisms, and its influence on cell cycle checkpoints, apoptosis, and metabolism. I examine the clinical implications of ATM alterations, including their impact on cancer predisposition, prognosis, and treatment response. The review highlights recent advances in ATM-targeted therapies, discussing ongoing clinical trials of ATM inhibitors and their potential in combination with other treatment modalities. I also address the challenges in developing effective biomarkers for ATM activity and patient selection strategies for personalized cancer therapy. Finally, I outline future research directions, emphasizing the need for refined biomarker development, optimized combination therapies, and strategies to overcome potential resistance mechanisms. This comprehensive overview underscores the critical importance of ATM in cancer biology and its emerging potential as a therapeutic target in precision oncology.
Collapse
Affiliation(s)
- Ji-Hoon Lee
- Department of Biological Sciences, Research Center of Ecomimetics, Chonnam National University, Gwangju 61186, Republic of Korea.
| |
Collapse
|
2
|
Lashen A, Alqahtani S, Shoqafi A, Algethami M, Jeyapalan JN, Mongan NP, Rakha EA, Madhusudan S. Clinicopathological Significance of Cyclin-Dependent Kinase 2 (CDK2) in Ductal Carcinoma In Situ and Early-Stage Invasive Breast Cancers. Int J Mol Sci 2024; 25:5053. [PMID: 38732271 PMCID: PMC11084890 DOI: 10.3390/ijms25095053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/25/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024] Open
Abstract
Cyclin-dependent kinase 2 (CDK2) is a key cell cycle regulator, with essential roles during G1/S transition. The clinicopathological significance of CDK2 in ductal carcinomas in situ (DCIS) and early-stage invasive breast cancers (BCs) remains largely unknown. Here, we evaluated CDK2's protein expression in 479 BC samples and 216 DCIS specimens. Analysis of CDK2 transcripts was completed in the METABRIC cohort (n = 1980) and TCGA cohort (n = 1090), respectively. A high nuclear CDK2 protein expression was significantly associated with aggressive phenotypes, including a high tumour grade, lymph vascular invasion, a poor Nottingham prognostic index (all p-values < 0.0001), and shorter survival (p = 0.006), especially in luminal BC (p = 0.009). In p53-mutant BC, high nuclear CDK2 remained linked with worse survival (p = 0.01). In DCIS, high nuclear/low cytoplasmic co-expression showed significant association with a high tumour grade (p = 0.043), triple-negative and HER2-enriched molecular subtypes (p = 0.01), Comedo necrosis (p = 0.024), negative ER status (p = 0.004), negative PR status (p < 0.0001), and a high proliferation index (p < 0.0001). Tumours with high CDK2 transcripts were more likely to have higher expressions of genes involved in the cell cycle, homologous recombination, and p53 signaling. We provide compelling evidence that high CDK2 is a feature of aggressive breast cancers. The clinical evaluation of CDK2 inhibitors in early-stage BC patients will have a clinical impact.
Collapse
MESH Headings
- Humans
- Female
- Cyclin-Dependent Kinase 2/metabolism
- Cyclin-Dependent Kinase 2/genetics
- Breast Neoplasms/pathology
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/mortality
- Carcinoma, Intraductal, Noninfiltrating/pathology
- Carcinoma, Intraductal, Noninfiltrating/genetics
- Carcinoma, Intraductal, Noninfiltrating/metabolism
- Prognosis
- Middle Aged
- Biomarkers, Tumor/metabolism
- Biomarkers, Tumor/genetics
- Neoplasm Staging
- Carcinoma, Ductal, Breast/pathology
- Carcinoma, Ductal, Breast/metabolism
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/mortality
- Aged
- Gene Expression Regulation, Neoplastic
- Neoplasm Invasiveness
- Tumor Suppressor Protein p53/metabolism
- Tumor Suppressor Protein p53/genetics
Collapse
Affiliation(s)
- Ayat Lashen
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham NG7 3RD, UK; (A.L.); (S.A.); (A.S.); (M.A.); (J.N.J.); (N.P.M.); (E.A.R.)
- Department of Pathology, Nottingham University Hospital, City Campus, Nottingham NG5 1PB, UK
| | - Shatha Alqahtani
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham NG7 3RD, UK; (A.L.); (S.A.); (A.S.); (M.A.); (J.N.J.); (N.P.M.); (E.A.R.)
| | - Ahmed Shoqafi
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham NG7 3RD, UK; (A.L.); (S.A.); (A.S.); (M.A.); (J.N.J.); (N.P.M.); (E.A.R.)
| | - Mashael Algethami
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham NG7 3RD, UK; (A.L.); (S.A.); (A.S.); (M.A.); (J.N.J.); (N.P.M.); (E.A.R.)
| | - Jennie N. Jeyapalan
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham NG7 3RD, UK; (A.L.); (S.A.); (A.S.); (M.A.); (J.N.J.); (N.P.M.); (E.A.R.)
- Faculty of Medicine and Health Sciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington LE12 5RD, UK
| | - Nigel P. Mongan
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham NG7 3RD, UK; (A.L.); (S.A.); (A.S.); (M.A.); (J.N.J.); (N.P.M.); (E.A.R.)
- Faculty of Medicine and Health Sciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington LE12 5RD, UK
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Emad A. Rakha
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham NG7 3RD, UK; (A.L.); (S.A.); (A.S.); (M.A.); (J.N.J.); (N.P.M.); (E.A.R.)
- Department of Pathology, Nottingham University Hospital, City Campus, Nottingham NG5 1PB, UK
| | - Srinivasan Madhusudan
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham NG7 3RD, UK; (A.L.); (S.A.); (A.S.); (M.A.); (J.N.J.); (N.P.M.); (E.A.R.)
- Department of Oncology, Nottingham University Hospitals, Nottingham NG5 1PB, UK
| |
Collapse
|
3
|
Sahota JS, Guleria K, Sambyal V. XRCC1 Polymorphisms p.Arg194Trp, p.Arg280His, and p.Arg399Gln, Polycyclic Aromatic Hydrocarbons, and Infertility: A Case-Control and In Silico Study. Biochem Genet 2024:10.1007/s10528-024-10743-3. [PMID: 38514504 DOI: 10.1007/s10528-024-10743-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/14/2024] [Indexed: 03/23/2024]
Abstract
XRCC1 is involved in repair of single-strand breaks generated by mutagenic exposure. Polymorphisms within XRCC1 affect its ability to efficiently repair DNA damage. Polycyclic aromatic hydrocarbons or PAHs are genotoxic compounds which form bulky DNA adducts that are linked with infertility. Few reports suggest combined role of XRCC1 polymorphisms and PAHs in infertility. Present study investigates association of three XRCC1 polymorphisms (p.Arg194Trp, p.Arg280His, p.Arg399Gln) with male and female infertility in a North-West Indian population using case-control approach. Additionally, in silico approach has been used to predict whether XRCC1 polymorphisms effect interaction of XRCC1 with different PAHs. For case-control study, XRCC1 polymorphisms were screened in peripheral blood samples of age- and gender-matched 201 infertile cases (♂-100, ♀-101) and 201 fertile controls (♂-100, ♀-101) using PCR-RFLP method. For in silico study, AutoDock v4.2.6 was used for molecular docking of B[a]P, BPDE-I, ( ±)-anti-BPDE, DB[a,l]P, 1-N, 2-N, 1-OHP, 2-OHF with XRCC1 and assess effect of XRCC1 polymorphisms on their interaction. In case-control study, statistical analysis showed association of XRCC1 p.Arg280His GA genotype (p = 0.027), A allele (p = 0.019) with reduced risk of male infertility. XRCC1 p.Arg399Gln AA genotype (p = 0.021), A allele (p = 0.014) were associated with reduced risk for female primary infertility. XRCC1 p.Arg194Trp T allele was associated with increased risk for female infertility (p = 0.035). In silico analysis showed XRCC1-PAH interaction with non-significant effect of XRCC1 polymorphisms on predicted binding. Therefore, present study concludes that XRCC1 polymorphism-modified risk for male and female infertility in North-West Indians without significant effect on predicted XRCC1-PAH interactions. This is the first report on XRCC1 in female infertility.
Collapse
Affiliation(s)
- Jatinder Singh Sahota
- Cytogenetics Laboratory, Department of Human Genetics, Guru Nanak Dev University (GNDU), Amritsar, Punjab, 143005, India
| | - Kamlesh Guleria
- Cytogenetics Laboratory, Department of Human Genetics, Guru Nanak Dev University (GNDU), Amritsar, Punjab, 143005, India
| | - Vasudha Sambyal
- Cytogenetics Laboratory, Department of Human Genetics, Guru Nanak Dev University (GNDU), Amritsar, Punjab, 143005, India.
| |
Collapse
|
4
|
Algethami M, Toss MS, Woodcock CL, Jaipal C, Brownlie J, Shoqafi A, Alblihy A, Mesquita KA, Green AR, Mongan NP, Jeyapalan JN, Rakha EA, Madhusudan S. Unravelling the clinicopathological and functional significance of replication protein A (RPA) heterotrimeric complex in breast cancers. NPJ Breast Cancer 2023; 9:18. [PMID: 36997566 PMCID: PMC10063624 DOI: 10.1038/s41523-023-00524-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
Replication Protein A (RPA), a heterotrimeric complex consisting of RPA1, 2, and 3 subunits, is a single-stranded DNA (ssDNA)-binding protein that is critically involved in replication, checkpoint regulation and DNA repair. Here we have evaluated RPA in 776 pure ductal carcinomas in situ (DCIS), 239 DCIS that co-exist with invasive breast cancer (IBC), 50 normal breast tissue and 4221 IBC. Transcriptomic [METABRIC cohort (n = 1980)] and genomic [TCGA cohort (n = 1090)] evaluations were completed. Preclinically, RPA deficient cells were tested for cisplatin sensitivity and Olaparib induced synthetic lethality. Low RPA linked to aggressive DCIS, aggressive IBC, and shorter survival outcomes. At the transcriptomic level, low RPA tumours overexpress pseudogene/lncRNA as well as genes involved in chemical carcinogenesis, and drug metabolism. Low RPA remains linked with poor outcome. RPA deficient cells are sensitive to cisplatin and Olaparib induced synthetic lethality. We conclude that RPA directed precision oncology strategy is feasible in breast cancers.
Collapse
Affiliation(s)
- Mashael Algethami
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 3RD, UK
| | - Michael S Toss
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 3RD, UK
- Department of Pathology, Nottingham University Hospital, City Campus, Hucknall Road, Nottingham, NG51PB, UK
| | - Corinne L Woodcock
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 3RD, UK
- Faculty of Medicine and Health Sciences, Centre for Cancer Sciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Leicestershire, LE12 5RD, UK
| | - Chandar Jaipal
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 3RD, UK
| | - Juliette Brownlie
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 3RD, UK
| | - Ahmed Shoqafi
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 3RD, UK
| | - Adel Alblihy
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 3RD, UK
- Medical Center, King Fahad Security College (KFSC), Riyadh, 11461, Saudi Arabia
| | - Katia A Mesquita
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 3RD, UK
| | - Andrew R Green
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 3RD, UK
| | - Nigel P Mongan
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 3RD, UK
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Jennie N Jeyapalan
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 3RD, UK
- Department of Pathology, Nottingham University Hospital, City Campus, Hucknall Road, Nottingham, NG51PB, UK
| | - Emad A Rakha
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 3RD, UK
- Medical Center, King Fahad Security College (KFSC), Riyadh, 11461, Saudi Arabia
| | - Srinivasan Madhusudan
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 3RD, UK.
- Department of Oncology, Nottingham University Hospitals, Nottingham, NG51PB, UK.
| |
Collapse
|
5
|
Evolving DNA repair synthetic lethality targets in cancer. Biosci Rep 2022; 42:232162. [PMID: 36420962 PMCID: PMC9760629 DOI: 10.1042/bsr20221713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 11/25/2022] Open
Abstract
DNA damage signaling response and repair (DDR) is a critical defense mechanism against genomic instability. Impaired DNA repair capacity is an important risk factor for cancer development. On the other hand, up-regulation of DDR mechanisms is a feature of cancer chemotherapy and radiotherapy resistance. Advances in our understanding of DDR and its complex role in cancer has led to several translational DNA repair-targeted investigations culminating in clinically viable precision oncology strategy using poly(ADP-ribose) polymerase (PARP) inhibitors in breast, ovarian, pancreatic, and prostate cancers. While PARP directed synthetic lethality has improved outcomes for many patients, the lack of sustained clinical response and the development of resistance pose significant clinical challenges. Therefore, the search for additional DDR-directed drug targets and novel synthetic lethality approaches is highly desirable and is an area of intense preclinical and clinical investigation. Here, we provide an overview of the mammalian DNA repair pathways and then focus on current state of PARP inhibitors (PARPi) and other emerging DNA repair inhibitors for synthetic lethality in cancer.
Collapse
|
6
|
Schleicher EM, Moldovan GL. CRISPR screens guide the way for PARP and ATR inhibitor biomarker discovery. FEBS J 2022; 289:7854-7868. [PMID: 34601817 PMCID: PMC9003637 DOI: 10.1111/febs.16217] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/28/2021] [Accepted: 09/30/2021] [Indexed: 02/06/2023]
Abstract
DNA repair pathways are heavily studied for their role in cancer initiation and progression. Due to the large amount of inherent DNA damage in cancer cells, tumor cells profoundly rely on proper DNA repair for efficient cell cycle progression. Several current chemotherapeutics promote excessive DNA damage in cancer cells, thus leading to cell death during cell cycle progression. However, if the tumor has efficient DNA repair mechanisms, DNA-damaging therapeutics may not be as effective. Therefore, directly inhibiting DNA repair pathways alone and in combination with chemotherapeutics that cause DNA damage may result in improved clinical outcomes. Nevertheless, tumors can acquire resistance to DNA repair inhibitors. It is essential to understand the genetic mechanisms underlying this resistance. Genome-wide CRISPR screening has emerged as a powerful tool to identify biomarkers of resistance or sensitivity to DNA repair inhibitors. CRISPR knockout and CRISPR activation screens can be designed to investigate how the loss or overexpression of any human gene impacts resistance or sensitivity to specific inhibitors. This review will address the role of CRISPR screening in identifying biomarkers of resistance and sensitivity to DNA repair pathway inhibitors. We will focus on inhibitors targeting the PARP1 and ATR enzymes, and how the biomarkers identified from CRISPR screens can help inform the treatment plan for cancer patients.
Collapse
Affiliation(s)
- Emily M. Schleicher
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - George-Lucian Moldovan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
7
|
Baxter JS, Zatreanu D, Pettitt SJ, Lord CJ. Resistance to DNA repair inhibitors in cancer. Mol Oncol 2022; 16:3811-3827. [PMID: 35567571 PMCID: PMC9627783 DOI: 10.1002/1878-0261.13224] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/25/2022] [Accepted: 05/12/2022] [Indexed: 12/24/2022] Open
Abstract
The DNA damage response (DDR) represents a complex network of proteins which detect and repair DNA damage, thereby maintaining the integrity of the genome and preventing the transmission of mutations and rearranged chromosomes to daughter cells. Faults in the DDR are a known driver and hallmark of cancer. Furthermore, inhibition of DDR enzymes can be used to treat the disease. This is exemplified by PARP inhibitors (PARPi) used to treat cancers with defects in the homologous recombination DDR pathway. A series of novel DDR targets are now also under pre-clinical or clinical investigation, including inhibitors of ATR kinase, WRN helicase or the DNA polymerase/helicase Polθ (Pol-Theta). Drug resistance is a common phenomenon that impairs the overall effectiveness of cancer treatments and there is already some understanding of how resistance to PARPi occurs. Here, we discuss how an understanding of PARPi resistance could inform how resistance to new drugs targeting the DDR emerges. We also discuss potential strategies that could limit the impact of these therapy resistance mechanisms in cancer.
Collapse
Affiliation(s)
- Joseph S. Baxter
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research CentreThe Institute of Cancer ResearchLondonUK
| | - Diana Zatreanu
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research CentreThe Institute of Cancer ResearchLondonUK
| | - Stephen J. Pettitt
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research CentreThe Institute of Cancer ResearchLondonUK
| | - Christopher J. Lord
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research CentreThe Institute of Cancer ResearchLondonUK
| |
Collapse
|
8
|
Lee C, Lee S, Park E, Hong J, Shin DY, Byun JM, Yun H, Koh Y, Yoon SS. Transcriptional signatures of the BCL2 family for individualized acute myeloid leukaemia treatment. Genome Med 2022; 14:111. [PMID: 36171613 PMCID: PMC9520894 DOI: 10.1186/s13073-022-01115-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 09/20/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Although anti-apoptotic proteins of the B-cell lymphoma-2 (BCL2) family have been utilized as therapeutic targets in acute myeloid leukaemia (AML), their complicated regulatory networks make individualized therapy difficult. This study aimed to discover the transcriptional signatures of BCL2 family genes that reflect regulatory dynamics, which can guide individualized therapeutic strategies. METHODS From three AML RNA-seq cohorts (BeatAML, LeuceGene, and TCGA; n = 451, 437, and 179, respectively), we constructed the BCL2 family signatures (BFSigs) by applying an innovative gene-set selection method reflecting biological knowledge followed by non-negative matrix factorization (NMF). To demonstrate the significance of the BFSigs, we conducted modelling to predict response to BCL2 family inhibitors, clustering, and functional enrichment analysis. Cross-platform validity of BFSigs was also confirmed using NanoString technology in a separate cohort of 47 patients. RESULTS We established BFSigs labeled as the BCL2, MCL1/BCL2, and BFL1/MCL1 signatures that identify key anti-apoptotic proteins. Unsupervised clustering based on BFSig information consistently classified AML patients into three robust subtypes across different AML cohorts, implying the existence of biological entities revealed by the BFSig approach. Interestingly, each subtype has distinct enrichment patterns of major cancer pathways, including MAPK and mTORC1, which propose subtype-specific combination treatment with apoptosis modulating drugs. The BFSig-based classifier also predicted response to venetoclax with remarkable performance (area under the ROC curve, AUROC = 0.874), which was well-validated in an independent cohort (AUROC = 0.950). Lastly, we successfully confirmed the validity of BFSigs using NanoString technology. CONCLUSIONS This study proposes BFSigs as a biomarker for the effective selection of apoptosis targeting treatments and cancer pathways to co-target in AML.
Collapse
Affiliation(s)
- Chansub Lee
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Center for Medical Innovation, Seoul National University Hospital, Seoul, Republic of Korea
| | - Sungyoung Lee
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Center for Precision Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Eunchae Park
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Center for Medical Innovation, Seoul National University Hospital, Seoul, Republic of Korea
| | - Junshik Hong
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Center for Medical Innovation, Seoul National University Hospital, Seoul, Republic of Korea
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Dong-Yeop Shin
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Center for Medical Innovation, Seoul National University Hospital, Seoul, Republic of Korea
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Ja Min Byun
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Center for Medical Innovation, Seoul National University Hospital, Seoul, Republic of Korea
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hongseok Yun
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, Republic of Korea.
- Center for Precision Medicine, Seoul National University Hospital, Seoul, Republic of Korea.
| | - Youngil Koh
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Center for Medical Innovation, Seoul National University Hospital, Seoul, Republic of Korea.
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea.
| | - Sung-Soo Yoon
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Center for Medical Innovation, Seoul National University Hospital, Seoul, Republic of Korea.
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea.
| |
Collapse
|
9
|
Li CL, Moi SH, Lin HS, Hou MF, Chen FM, Shih SL, Kan JY, Kao CN, Wu YC, Kao LC, Chen YH, Lee YC, Chiang CP. Comprehensive Transcriptomic and Proteomic Analyses Identify a Candidate Gene Set in Cross-Resistance for Endocrine Therapy in Breast Cancer. Int J Mol Sci 2022; 23:ijms231810539. [PMID: 36142451 PMCID: PMC9501051 DOI: 10.3390/ijms231810539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Endocrine therapy (ET) of selective estrogen receptor modulators (SERMs), selective estrogen receptor downregulators (SERDs), and aromatase inhibitors (AIs) has been used as the gold standard treatment for hormone-receptor-positive (HR+) breast cancer. Despite its clinical benefits, approximately 30% of patients develop ET resistance, which remains a major clinical challenge in patients with HR+ breast cancer. The mechanisms of ET resistance mainly focus on mutations in the ER and related pathways; however, other targets still exist from ligand-independent ER reactivation. Moreover, mutations in the ER that confer resistance to SERMs or AIs seldom appear in SERDs. To date, little research has been conducted to identify a critical target that appears in both SERMs/SERDs and AIs. In this study, we conducted comprehensive transcriptomic and proteomic analyses from two cohorts of The Cancer Genome Atlas Breast Invasive Carcinoma (TCGA-BRCA) to identify the critical targets for both SERMs/SERDs and AIs of ET resistance. From a treatment response cohort with treatment response for the initial ET regimen and an endocrine therapy cohort with survival outcomes, we identified candidate gene sets that appeared in both SERMs/SERDs and AIs of ET resistance. The candidate gene sets successfully differentiated progress/resistant groups (PD) from complete response groups (CR) and were significantly correlated with survival outcomes in both cohorts. In summary, this study provides valuable clinical implications for the critical roles played by candidate gene sets in the diagnosis, mechanism, and therapeutic strategy for both SERMs/SERDs and AIs of ET resistance for the future.
Collapse
Affiliation(s)
- Chung-Liang Li
- Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Sin-Hua Moi
- Center of Cancer Program Development, E-Da Cancer Hospital, I-Shou University, Kaohsiung 82445, Taiwan
| | - Huei-Shan Lin
- Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Ming-Feng Hou
- Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Fang-Ming Chen
- Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Shen-Liang Shih
- Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Jung-Yu Kan
- Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Chieh-Ni Kao
- Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Yi-Chia Wu
- Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Department of Surgery, Division of Plastic Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Li-Chun Kao
- Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Ying-Hsuan Chen
- Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Yi-Chen Lee
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Chih-Po Chiang
- Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Department of Medical Laboratory Sciences and Biotechnology, Fooyin University, Kaohsiung 83102, Taiwan
- Correspondence: or ; Tel.: +886-7-312-1101 (ext. 2260)
| |
Collapse
|
10
|
Jiang J, Chen Y, Zhang L, Jin Q, Wang L, Xu S, Chen K, Li L, Zeng T, Fan X, Liu T, Li J, Wang J, Han C, Gao F, Yang Y, Wang Y. i-CRISPR: a personalized cancer therapy strategy through cutting cancer-specific mutations. Mol Cancer 2022; 21:164. [PMID: 35974394 PMCID: PMC9380384 DOI: 10.1186/s12943-022-01612-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 06/26/2022] [Indexed: 11/24/2022] Open
Abstract
Developing a strategy to specifically kill cancer cells without inducing obvious damage to normal cells may be of great clinical significance for cancer treatment. In the present study, we developed a new precise personalized strategy named "i-CRISPR" for cancer treatment through adding DNA damage repair inhibitors(i) and inducing cancer cell-specific DNA double strand breaks by CRISPR. Through in vitro and in vivo experiments, we confirmed the efficacy of this strategy in multiple cancer models and revealed the mechanism of cell death. Our strategy might provide a novel concept for precise cancer therapy.
Collapse
Affiliation(s)
- Junfeng Jiang
- Histology and Embryology Department, Naval Medical University, 800, Xiangyin Road, 200433, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Cell Engineering, Naval Medical University, 800, Xiangyin Road, 200433, Shanghai, People's Republic of China
| | - Yuanyuan Chen
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800, Xiangyin Road, 200433, Shanghai, People's Republic of China
| | - Li Zhang
- Department of Pathology, Faculty of Medical Imaging Laboratory of Medical Imaging, Naval Medical University, 800, Xiangyin Road, 200433, Shanghai, People's Republic of China
| | - Qishu Jin
- Department of Histology and Embryology, Harbin Medical University, Harbin, 150086, China
| | - Liujun Wang
- Histology and Embryology Department, Naval Medical University, 800, Xiangyin Road, 200433, Shanghai, People's Republic of China
| | - Sha Xu
- Histology and Embryology Department, Naval Medical University, 800, Xiangyin Road, 200433, Shanghai, People's Republic of China
| | - Kexin Chen
- Department of Plastic Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
| | - Li Li
- Histology and Embryology Department, Naval Medical University, 800, Xiangyin Road, 200433, Shanghai, People's Republic of China
| | - Tao Zeng
- Histology and Embryology Department, Naval Medical University, 800, Xiangyin Road, 200433, Shanghai, People's Republic of China.,The 901th Hospital of PLA Jiont Logistic Support Force, Hefei, 230031, China
| | - Xingfei Fan
- Histology and Embryology Department, Naval Medical University, 800, Xiangyin Road, 200433, Shanghai, People's Republic of China
| | - Tingting Liu
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800, Xiangyin Road, 200433, Shanghai, People's Republic of China
| | - Jiaxi Li
- Department of Oncology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Jinjiang Wang
- Department of Oncology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Chaofeng Han
- Histology and Embryology Department, Naval Medical University, 800, Xiangyin Road, 200433, Shanghai, People's Republic of China.
| | - Fu Gao
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800, Xiangyin Road, 200433, Shanghai, People's Republic of China.
| | - Yanyong Yang
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800, Xiangyin Road, 200433, Shanghai, People's Republic of China.
| | - Yue Wang
- Histology and Embryology Department, Naval Medical University, 800, Xiangyin Road, 200433, Shanghai, People's Republic of China. .,Shanghai Key Laboratory of Cell Engineering, Naval Medical University, 800, Xiangyin Road, 200433, Shanghai, People's Republic of China.
| |
Collapse
|
11
|
Alblihy A, Ali R, Algethami M, Shoqafi A, Toss MS, Brownlie J, Tatum NJ, Hickson I, Moran PO, Grabowska A, Jeyapalan JN, Mongan NP, Rakha EA, Madhusudan S. Targeting Mre11 overcomes platinum resistance and induces synthetic lethality in XRCC1 deficient epithelial ovarian cancers. NPJ Precis Oncol 2022; 6:51. [PMID: 35853939 PMCID: PMC9296550 DOI: 10.1038/s41698-022-00298-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 07/04/2022] [Indexed: 11/11/2022] Open
Abstract
Platinum resistance is a clinical challenge in ovarian cancer. Platinating agents induce DNA damage which activate Mre11 nuclease directed DNA damage signalling and response (DDR). Upregulation of DDR may promote chemotherapy resistance. Here we have comprehensively evaluated Mre11 in epithelial ovarian cancers. In clinical cohort that received platinum- based chemotherapy (n = 331), Mre11 protein overexpression was associated with aggressive phenotype and poor progression free survival (PFS) (p = 0.002). In the ovarian cancer genome atlas (TCGA) cohort (n = 498), Mre11 gene amplification was observed in a subset of serous tumours (5%) which correlated highly with Mre11 mRNA levels (p < 0.0001). Altered Mre11 levels was linked with genome wide alterations that can influence platinum sensitivity. At the transcriptomic level (n = 1259), Mre11 overexpression was associated with poor PFS (p = 0.003). ROC analysis showed an area under the curve (AUC) of 0.642 for response to platinum-based chemotherapy. Pre-clinically, Mre11 depletion by gene knock down or blockade by small molecule inhibitor (Mirin) reversed platinum resistance in ovarian cancer cells and in 3D spheroid models. Importantly, Mre11 inhibition was synthetically lethal in platinum sensitive XRCC1 deficient ovarian cancer cells and 3D-spheroids. Selective cytotoxicity was associated with DNA double strand break (DSB) accumulation, S-phase cell cycle arrest and increased apoptosis. We conclude that pharmaceutical development of Mre11 inhibitors is a viable clinical strategy for platinum sensitization and synthetic lethality in ovarian cancer.
Collapse
Affiliation(s)
- Adel Alblihy
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 3RD, UK
- Medical Center, King Fahad Security College (KFSC), Riyadh, 11461, Saudi Arabia
| | - Reem Ali
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 3RD, UK
| | - Mashael Algethami
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 3RD, UK
| | - Ahmed Shoqafi
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 3RD, UK
| | - Michael S Toss
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 3RD, UK
- Department of Pathology, Nottingham University Hospitals, City Hospital Campus, Nottingham, NG5 1PB, UK
| | - Juliette Brownlie
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 3RD, UK
| | - Natalie J Tatum
- Cancer Research UK Newcastle Drug Discovery Unit, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Ian Hickson
- Cancer Research UK Newcastle Drug Discovery Unit, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Paloma Ordonez Moran
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 3RD, UK
| | - Anna Grabowska
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 3RD, UK
| | - Jennie N Jeyapalan
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 3RD, UK
| | - Nigel P Mongan
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 3RD, UK
- Department of Pharmacology, Weill Cornell Medicine, New York, 10065, NY, USA
| | - Emad A Rakha
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 3RD, UK
- Department of Pathology, Nottingham University Hospitals, City Hospital Campus, Nottingham, NG5 1PB, UK
| | - Srinivasan Madhusudan
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 3RD, UK.
- Department of Oncology, Nottingham University Hospitals, Nottingham, NG51PB, UK.
| |
Collapse
|
12
|
Identifying Circulating Tumor DNA Mutations Associated with Neoadjuvant Chemotherapy Efficacy in Local Advanced Breast Cancer. Appl Biochem Biotechnol 2022; 194:3961-3973. [PMID: 35579744 DOI: 10.1007/s12010-022-03946-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Circulating tumor DNA (ctDNA) correlates with tumor burden and provides early detection of treatment response and tumor genetic alterations in breast cancer. Neoadjuvant chemotherapy (NACT) has become standard therapy for local advanced breast cancer (LABC). The aim of our study was to investigate plasma ctDNA as a prognostic marker for outcome in patients with LABC treated with NACT. A total of 56 patients with LABC were involved in this study. ctDNA mutations were investigated by using a 100 gene panel-target capture next-generation sequencing. The patients then received standard NACT therapy: adriamycin and cyclophosphamide and paclitaxel (AC-T) or AC-TH (AC-T+ Trastuzumab) regimen. The efficacy of NACT was evaluated by Miller-Payne grading system. A predictive and weight model was used to screen ctDNA point mutation biomarkers for NACT. The ctDNA mutational profile of LABC patients was identified. For nonsynonymous mutations, the top 5 mutated genes were MTHFR (51/56, 91.1%), XPC (50/56, 89.3%), ABCB1 (48/51, 94.1%), BRCA2 (38/56, 67.9%), and XRCC1 (38/56, 67.9%). In addition, the mutation frequencies of PIK3CA and TP53 were 32.1% (18/56) and 26.8% (15/56), respectively. The predictive model indicated that XRCC1 44055726 (TG>-) mutation (25/56, 44.6%) was significantly associated with Miller-Payne 4-5 and Miller-Payne 3-5 responses. While mTOR 11249132(G>C) mutation (23/56, 41.1%) was associated with Miller-Payne 1-4 or Miller-Payne 1-3 responses. Furthermore, XRCC1 44055726 (TG>-) accompanied by mTOR wild type predicted a good NACT efficacy in all response classification systems. The ROC curves to discriminate good neoadjuvant chemotherapy efficiency (Miller-Payne 4-5) and poor efficiency (Miller-Payne 1-3) were created, and AUC value was 0.77. Our results suggested that ctDNA mutation of XRCC1 44055726 (TG>-) might be a positive biomarker for NACT therapy in LABC, while mTOR 11249132(G>C) mutation was potentially associated with NACT resistance.
Collapse
|
13
|
Wright GM, Gassman NR. Glucose Increases STAT3 Activation, Promoting Sustained XRCC1 Expression and Increasing DNA Repair. Int J Mol Sci 2022; 23:ijms23084314. [PMID: 35457130 PMCID: PMC9029887 DOI: 10.3390/ijms23084314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/28/2022] [Accepted: 04/10/2022] [Indexed: 02/05/2023] Open
Abstract
Dysregulation of DNA repair is a hallmark of cancer, though few cancer-specific mechanisms that drive the overexpression of DNA repair proteins are known. We previously identified STAT3 as a novel transcriptional regulator of X-ray cross-complementing group 1 (XRCC1), an essential scaffold protein in base excision repair in triple-negative breast cancers. We also identified an inducible response to IL-6 and epidermal growth factor stimulation in the non-tumorigenic embryonic kidney cell line HEK293T. As IL-6 and EGF signaling are growth and inflammatory-inducible responses, we examined if glucose challenge can increase STAT3 activation, promoting adaptive changes in XRCC1 expression in different cell types. Acute high glucose exposure promoted XRCC1 expression through STAT3 activation, increasing the repair of methyl methanesulfonate-induced DNA damage in HEK293T cells and the osteosarcoma cell line U2OS. Sustained exposure to high glucose promoted the overexpression of XRCC1, which can be reversed upon glucose restriction and down-regulation of STAT3 activation. Thus, we have identified a novel link between XRCC1 expression and STAT3 activation following exogenous exposures, which could play a critical role in dictating a cancer cell’s response to DNA-damaging agents.
Collapse
Affiliation(s)
- Griffin M. Wright
- College of Medicine Depart of Physiology & Cell Biology, University of South Alabama, Mobile, AL 36688, USA;
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36607, USA
| | - Natalie R. Gassman
- Department of Pharmacology and Toxicology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Correspondence:
| |
Collapse
|
14
|
Krieger KL, Gohlke JH, Lee KJ, Piyarathna DWB, Castro PD, Jones JA, Ittmann MM, Gassman NR, Sreekumar A. Repair-Assisted Damage Detection Reveals Biological Disparities in Prostate Cancer between African Americans and European Americans. Cancers (Basel) 2022; 14:cancers14041012. [PMID: 35205762 PMCID: PMC8870190 DOI: 10.3390/cancers14041012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/07/2022] [Accepted: 02/14/2022] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Prostate cancer is the most diagnosed cancer among men in the United States. African American men are diagnosed with and succumb to prostate cancer at higher rates than other demographic groups. Previously published works described the biological differences in prostate tumors that may contribute to poorer outcomes in African American men compared to European American men. This study was designed to explore the DNA lesion profiles found in prostate tissues. Using tissue microarrays, we found that prostate tumors from African American patients have more uracil and pyrimidine damage, elevated UNG levels, and reduced XRCC1 levels than European American tumors, which may indicate defects in the base excision repair pathway. In addition, these men had higher UMP and lower expression of folate cycle metabolites, suggesting that metabolic rewiring may also contribute to the dysregulation of base excision repair. Abstract African Americans (AA) are two times more likely to be diagnosed with and succumb to prostate cancer (PCa) compared to European Americans (EA). There is mounting evidence that biological differences in these tumors contribute to disparities in patient outcomes. Our goal was to examine the differences in DNA damage in AA and EA prostate tissues. Tissue microarrays with matched tumor-benign adjacent pairs from 77 AA and EA PCa patients were analyzed for abasic sites, oxidative lesions, crosslinks, and uracil content using the Repair Assisted Damage Detection (RADD) assay. Our analysis revealed that AA PCa, overall, have more DNA damage than EA PCa. Increased uracil and pyrimidine lesions occurred in AA tumors, while EA tumors had more oxidative lesions. AA PCa have higher levels of UMP and folate cycle metabolites than their EA counterparts. AA PCa showed higher levels of UNG, the uracil-specific glycosylase, than EA, despite uracil lesions being retained within the genome. AA patients also had lower levels of the base excision repair protein XRCC1. These results indicate dysfunction in the base excision repair pathway in AA tumors. Further, these findings reveal how metabolic rewiring in AA PCa drives biological disparities and identifies a targetable axis for cancer therapeutics.
Collapse
Affiliation(s)
- Kimiko L. Krieger
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; (K.L.K.); (J.H.G.); (D.W.B.P.)
- Center for Translational Metabolism and Health Disparities (C-TMH), Baylor College of Medicine, Houston, TX 77030, USA
| | - Jie H. Gohlke
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; (K.L.K.); (J.H.G.); (D.W.B.P.)
- Center for Translational Metabolism and Health Disparities (C-TMH), Baylor College of Medicine, Houston, TX 77030, USA
| | - Kevin J. Lee
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA;
| | - Danthasinghe Waduge Badrajee Piyarathna
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; (K.L.K.); (J.H.G.); (D.W.B.P.)
- Center for Translational Metabolism and Health Disparities (C-TMH), Baylor College of Medicine, Houston, TX 77030, USA
| | - Patricia D. Castro
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA; (P.D.C.); (M.M.I.)
- Human Tissue Acquisition & Pathology Shared Resource, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jeffrey A. Jones
- Michael E. DeBakey Veteran Affairs Medical Center, Houston, TX 77030, USA;
- Department of Urology, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michael M. Ittmann
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA; (P.D.C.); (M.M.I.)
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Natalie R. Gassman
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Correspondence: (N.R.G.); (A.S.); Tel.: +1-205-975-1904 (N.R.G.); +1-713-798-3305 (A.S.)
| | - Arun Sreekumar
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; (K.L.K.); (J.H.G.); (D.W.B.P.)
- Center for Translational Metabolism and Health Disparities (C-TMH), Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Correspondence: (N.R.G.); (A.S.); Tel.: +1-205-975-1904 (N.R.G.); +1-713-798-3305 (A.S.)
| |
Collapse
|
15
|
Alblihy A, Shoqafi A, Toss MS, Algethami M, Harris AE, Jeyapalan JN, Abdel-Fatah T, Servante J, Chan SYT, Green A, Mongan NP, Rakha EA, Madhusudan S. Untangling the clinicopathological significance of MRE11-RAD50-NBS1 complex in sporadic breast cancers. NPJ Breast Cancer 2021; 7:143. [PMID: 34782604 PMCID: PMC8593132 DOI: 10.1038/s41523-021-00350-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 10/22/2021] [Indexed: 12/27/2022] Open
Abstract
The MRE11-RAD50-NBS1 (MRN) complex is critical for genomic stability. Although germline mutations in MRN may increase breast cancer susceptibility, such mutations are extremely rare. Here, we have conducted a comprehensive clinicopathological study of MRN in sporadic breast cancers. We have protein expression profiled for MRN and a panel of DNA repair factors involved in double-strand break repair (BRCA1, BRCA2, ATM, CHK2, ATR, Chk1, pChk1, RAD51, γH2AX, RPA1, RPA2, DNA-PKcs), RECQ DNA helicases (BLM, WRN, RECQ1, RECQL4, RECQ5), nucleotide excision repair (ERCC1) and base excision repair (SMUG1, APE1, FEN1, PARP1, XRCC1, Pol β) in 1650 clinical breast cancers. The prognostic significance of MRE11, RAD50 and NBS1 transcripts and their microRNA regulators (hsa-miR-494 and hsa-miR-99b) were evaluated in large clinical datasets. Expression of MRN components was analysed in The Cancer Genome Atlas breast cancer cohort. We show that low nuclear MRN is linked to aggressive histopathological phenotypes such as high tumour grade, high mitotic index, oestrogen receptor- and high-risk Nottingham Prognostic Index. In univariate analysis, low nuclear MRE11 and low nuclear RAD50 were associated with poor survival. In multivariate analysis, low nuclear RAD50 remained independently linked with adverse clinical outcomes. Low RAD50 transcripts were also linked with reduced survival. In contrast, overexpression of hsa-miR-494 and hsa-miR-99b microRNAs was associated with poor survival. We observed large-scale genome-wide alterations in MRN-deficient tumours contributing to aggressive behaviour. We conclude that MRN status may be a useful tool to stratify tumours for precision medicine strategies.
Collapse
Affiliation(s)
- Adel Alblihy
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 3RD, UK
- Medical Center, King Fahad Security College (KFSC), Riyadh, 11461, Saudi Arabia
| | - Ahmed Shoqafi
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 3RD, UK
| | - Michael S Toss
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 3RD, UK
- Department of Pathology, Nottingham University Hospitals, City Hospital Campus, Nottingham, NG5 1PB, UK
| | - Mashael Algethami
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 3RD, UK
| | - Anna E Harris
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 3RD, UK
| | - Jennie N Jeyapalan
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 3RD, UK
| | - Tarek Abdel-Fatah
- Department of Oncology, Nottingham University Hospitals, City Hospital Campus, Nottingham, NG5 1PB, UK
| | | | - Stephen Y T Chan
- Department of Oncology, Nottingham University Hospitals, City Hospital Campus, Nottingham, NG5 1PB, UK
| | - Andrew Green
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 3RD, UK
| | - Nigel P Mongan
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 3RD, UK
| | - Emad A Rakha
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 3RD, UK
- Department of Pathology, Nottingham University Hospitals, City Hospital Campus, Nottingham, NG5 1PB, UK
| | - Srinivasan Madhusudan
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 3RD, UK.
- Department of Oncology, Nottingham University Hospitals, City Hospital Campus, Nottingham, NG5 1PB, UK.
| |
Collapse
|
16
|
Zhang Y, Zhang X, Jin Z, Chen H, Zhang C, Wang W, Jing J, Pan W. Clinical Impact of X-Ray Repair Cross-Complementary 1 ( XRCC1) and the Immune Environment in Colorectal Adenoma-Carcinoma Pathway Progression. J Inflamm Res 2021; 14:5403-5417. [PMID: 34737598 PMCID: PMC8559027 DOI: 10.2147/jir.s331010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 10/08/2021] [Indexed: 12/03/2022] Open
Abstract
Purpose Colorectal cancer (CRC) can develop via a hypermutagenic pathway characterized by frequent somatic DNA base-pair mutations. Alternatively, the immunogenicity of tumor cells themselves may influence the anticancer activity of the immune effector cells. Impaired DNA repair mechanisms drive mutagenicity, which then increase the neoantigen load and immunogenicity. However, no studies have analyzed immune checkpoint protein expression, particularly programmed death-1 (PD-1)/programmed death-ligand 1 (PD-L1), in adenoma–carcinoma progression and its relationship with the emergence of other DNA repair gene mutation. Materials and Methods We investigated mutations of 10 genes involved in DNA repair function: XRCC1, TP53, MLH1, MSH, KRAS, GSTP, UMP, MTHF, DPYD, and ABCC2. We performed sequencing to determine mutations and immunohistochemistry of immune checkpoints in clinical samples and determined changes in XRCC1 expression during progression through the adenoma–carcinoma pathway. We further investigated the prognostic associations of gene XRCC1 according to the expression, mutational profile, and immune profile using The Cancer Genome Atlas-colon adenocarcinoma (TCGA-COAD) dataset. Results From clinical samples, XRCC1 mutation demonstrated the strongest association with adenomas with a mutation frequency of 56.2% in adenomas and 34% in CRCs (p =0.016). XRCC1 was abnormally expressed and altered by mutations contributing to adenoma carcinogenesis. High expression of XRCC1, CD4, FOXP3, and PD-1/PD-L1 showed an overall upward trend with increased lesion severity (all p < 0.01). PD-1/PD-L1 expression and CD4+ intraepithelial lymphocytes (IELs) correlated with cytological dysplasia progression, specifically in patients with wild-type XRCC1 (all p < 0.01), whereas FOXP3 expression was independently associated with adenoma–carcinoma progression. From TCGA-COAD analysis, XRCC1 expression was associated with patients survival, tumor-infiltrating lymphocytes and immune marker expression. Conclusion Increased IEL density and PD-1/PD-L1 expression correlate with cytological dysplasia progression and specifically with the XRCC1 mutation status in CRC. Our findings support a stepwise dysplasia-carcinoma sequence of adenoma carcinogenesis and an XRCC1 hypermutated phenotypic mechanism of lesions.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Clinical Medicine, Medical College of Soochow University, Suzhou, 215006, People's Republic of China.,Department of Gastroenterology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, People's Republic of China
| | - Xin Zhang
- Department of Pathology, Laboratory Medicine Center, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, People's Republic of China
| | - Zhuoyi Jin
- Department of Gastroenterology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, People's Republic of China
| | - Huiyan Chen
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Chenjing Zhang
- Department of Gastroenterology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, People's Republic of China
| | - Wangyue Wang
- Department of Gastroenterology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, People's Republic of China
| | - Jiyong Jing
- Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, People's Republic of China
| | - Wensheng Pan
- Department of Clinical Medicine, Medical College of Soochow University, Suzhou, 215006, People's Republic of China.,Department of Gastroenterology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, People's Republic of China
| |
Collapse
|
17
|
The scaffold protein XRCC1 stabilizes the formation of polβ/gap DNA and ligase IIIα/nick DNA complexes in base excision repair. J Biol Chem 2021; 297:101025. [PMID: 34339737 PMCID: PMC8405949 DOI: 10.1016/j.jbc.2021.101025] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/22/2021] [Accepted: 07/29/2021] [Indexed: 11/22/2022] Open
Abstract
The base excision repair (BER) pathway involves gap filling by DNA polymerase (pol) β and subsequent nick sealing by ligase IIIα. X-ray cross-complementing protein 1 (XRCC1), a nonenzymatic scaffold protein, assembles multiprotein complexes, although the mechanism by which XRCC1 orchestrates the final steps of coordinated BER remains incompletely defined. Here, using a combination of biochemical and biophysical approaches, we revealed that the polβ/XRCC1 complex increases the processivity of BER reactions after correct nucleotide insertion into gaps in DNA and enhances the handoff of nicked repair products to the final ligation step. Moreover, the mutagenic ligation of nicked repair intermediate following polβ 8-oxodGTP insertion is enhanced in the presence of XRCC1. Our results demonstrated a stabilizing effect of XRCC1 on the formation of polβ/dNTP/gap DNA and ligase IIIα/ATP/nick DNA catalytic ternary complexes. Real-time monitoring of protein–protein interactions and DNA-binding kinetics showed stronger binding of XRCC1 to polβ than to ligase IIIα or aprataxin, and higher affinity for nick DNA with undamaged or damaged ends than for one nucleotide gap repair intermediate. Finally, we demonstrated slight differences in stable polβ/XRCC1 complex formation, polβ and ligase IIIα protein interaction kinetics, and handoff process as a result of cancer-associated (P161L, R194W, R280H, R399Q, Y576S) and cerebellar ataxia-related (K431N) XRCC1 variants. Overall, our findings provide novel insights into the coordinating role of XRCC1 and the effect of its disease-associated variants on substrate-product channeling in multiprotein/DNA complexes for efficient BER.
Collapse
|
18
|
Wright G, Sonavane M, Gassman NR. Activated STAT3 Is a Novel Regulator of the XRCC1 Promoter and Selectively Increases XRCC1 Protein Levels in Triple Negative Breast Cancer. Int J Mol Sci 2021; 22:ijms22115475. [PMID: 34067421 PMCID: PMC8196947 DOI: 10.3390/ijms22115475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 02/07/2023] Open
Abstract
Base Excision Repair (BER) addresses base lesions and abasic sites induced by exogenous and endogenous stressors. X-ray cross complementing group 1 (XRCC1) functions as a scaffold protein in BER and single-strand break repair (SSBR), facilitating and coordinating repair through its interaction with a host of critical repair proteins. Alterations of XRCC1 protein and gene expression levels are observed in many cancers, including colorectal, ovarian, and breast cancer. While increases in the expression level of XRCC1 are reported, the transcription factors responsible for this up-regulation are not known. In this study, we identify the signal transducer and activator of transcription 3 (STAT3) as a novel regulator of XRCC1 through chromatin immunoprecipitation. Activation of STAT3 through phosphorylation at Y705 by cytokine (IL-6) signaling increases the expression of XRCC1 and the occupancy of STAT3 within the XRCC1 promoter. In triple negative breast cancer, the constitutive activation of STAT3 upregulates XRCC1 gene and protein expression levels. Increased expression of XRCC1 is associated with aggressiveness and resistance to DNA damaging chemotherapeutics. Thus, we propose that activated STAT3 regulates XRCC1 under stress and growth conditions, but constitutive activation in cancers results in dysregulation of XRCC1 and subsequently BER and SSBR.
Collapse
Affiliation(s)
- Griffin Wright
- Department of Physiology and Cell Biology, University of South Alabama College of Medicine, 307 N University Blvd, Mobile, AL 36688, USA; (G.W.); (M.S.)
- Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, AL 36604-1405, USA
| | - Manoj Sonavane
- Department of Physiology and Cell Biology, University of South Alabama College of Medicine, 307 N University Blvd, Mobile, AL 36688, USA; (G.W.); (M.S.)
- Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, AL 36604-1405, USA
| | - Natalie R. Gassman
- Department of Physiology and Cell Biology, University of South Alabama College of Medicine, 307 N University Blvd, Mobile, AL 36688, USA; (G.W.); (M.S.)
- Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, AL 36604-1405, USA
- Correspondence:
| |
Collapse
|
19
|
Cucchi D, Gibson A, Martin SA. The emerging relationship between metabolism and DNA repair. Cell Cycle 2021; 20:943-959. [PMID: 33874857 PMCID: PMC8172156 DOI: 10.1080/15384101.2021.1912889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 03/16/2021] [Accepted: 03/30/2021] [Indexed: 10/21/2022] Open
Abstract
The DNA damage response (DDR) consists of multiple specialized pathways that recognize different insults sustained by DNA and repairs them where possible to avoid the accumulation of mutations. While loss of activity of genes in the DDR has been extensively associated with cancer predisposition and progression, in recent years it has become evident that there is a relationship between the DDR and cellular metabolism. The activity of the metabolic pathways can influence the DDR by regulating the availability of substrates required for the repair process and the function of its players. Additionally, proteins of the DDR can regulate the metabolic flux through the major pathways such as glycolysis, tricarboxylic acid cycle (TCA) and pentose phosphate pathway (PPP) and the production of reactive oxygen species (ROS). This newly discovered connection bears great importance in the biology of cancer and represents a new therapeutic opportunity. Here we describe the nature of the relationship between DDR and metabolism and its potential application in the treatment of cancer. Keywords: DNA repair, metabolism, mitochondria.
Collapse
Affiliation(s)
- Danilo Cucchi
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Amy Gibson
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Sarah a Martin
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| |
Collapse
|
20
|
Ali R, Alblihy A, Toss MS, Algethami M, Al Sunni R, Green AR, Rakha EA, Madhusudan S. XRCC1 deficient triple negative breast cancers are sensitive to ATR, ATM and Wee1 inhibitor either alone or in combination with olaparib. Ther Adv Med Oncol 2020; 12:1758835920974201. [PMID: 33425022 PMCID: PMC7758562 DOI: 10.1177/1758835920974201] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/23/2020] [Indexed: 01/31/2023] Open
Abstract
Background: PARP inhibitor (PARPi) monotherapy is a new strategy in BRCA germ-line deficient triple negative breast cancer (TNBC). However, not all patients respond, and the development of resistance limits the use of PARPi monotherapy. Therefore, the development of alternative synthetic lethality strategy, including in sporadic TNBC, is a priority. XRCC1, a key player in base excision repair, single strand break repair, nucleotide excision repair and alternative non-homologous end joining, interacts with PARP1 and coordinates DNA repair. ATR, ATM and Wee1 have essential roles in DNA repair and cell cycle regulation. Methods: Highly selective inhibitors of ATR (AZD6738), ATM (AZ31) and Wee1 (AZD1775) either alone or in combination with olaparib were tested for synthetic lethality in XRCC1 deficient TNBC or HeLa cells. Clinicopathological significance of ATR, ATM or Wee1 co-expression in XRCC1 proficient or deficient tumours was evaluated in a large cohort of 1650 human breast cancers. Results: ATR (AZD6738), ATM (AZ31) or Wee1 (AZD1775) monotherapy was selectively toxic in XRCC1 deficient cells. Selective synergistic toxicity was evident when olaparib was combined with AZD6738, AZ31 or AZD1775. The most potent synergistic interaction was evident with the AZD6738 and olaparib combination therapy. In clinical cohorts, ATR, ATM or Wee1 overexpression in XRCC1 deficient breast cancer was associated with poor outcomes. Conclusion: XRCC1 stratified DNA repair targeted combinatorial approach is feasible and warrants further clinical evaluation in breast cancer.
Collapse
Affiliation(s)
- Reem Ali
- Nottingham Breast Cancer Research Centre, Translational Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham University Hospitals, Nottingham, UK
| | - Adel Alblihy
- Nottingham Breast Cancer Research Centre, Translational Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham University Hospitals, Nottingham, UK
| | - Michael S Toss
- Nottingham Breast Cancer Research Centre, Department of Pathology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK
| | - Mashael Algethami
- Nottingham Breast Cancer Research Centre, Translational Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham University Hospitals, Nottingham, UK
| | - Rabab Al Sunni
- Nottingham Breast Cancer Research Centre, Translational Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham University Hospitals, Nottingham, UK
| | - Andrew R Green
- Nottingham Breast Cancer Research Centre, Department of Pathology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK
| | - Emad A Rakha
- Nottingham Breast Cancer Research Centre, Department of Pathology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK
| | - Srinivasan Madhusudan
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, Nottingham Biodiscovery Institute, University of Nottingham, University Park, Nottingham NG7 3RD, UK
| |
Collapse
|
21
|
The diagnostic value of DNA repair gene in breast cancer metastasis. Sci Rep 2020; 10:19626. [PMID: 33184404 PMCID: PMC7661505 DOI: 10.1038/s41598-020-76577-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/30/2020] [Indexed: 12/24/2022] Open
Abstract
Breast cancer is the most common malignant tumor in China and even in the world. DNA repair genes can lead to tumor metastasis by affecting cancer cell resistance. Studies have preliminarily shown that DNA repair genes are related to breast cancer metastasis, but it is not clear whether they can be used as a prediction of the risk of breast cancer metastasis. Therefore, this study mainly discusses the predictive value of DNA repair genes in postoperative metastasis of breast cancer. The nested case–control method was used in patients with breast cancer metastasis after surgery (n = 103) and patients without metastasis after surgery (n = 103). The proteins and mRNA of DNA repair genes were detected by immunohistochemistry and Real-time PCR respectively. In protein expression, PARP1 (OR 1.147, 95% CI 1.067 ~ 1.233, P < 0.05), XRCC4 (OR 1.088, 95% CI 1.015 ~ 1.166, P < 0.05), XRCC1 (OR 1.114, 95% CI 1.021 ~ 1.215, P < 0.05), ERCC1 (OR 1.068, 95% CI 1.000 ~ 1.141, P < 0.10) were risk factors for postoperative metastasis of breast cancer. In addition, we used the ROC curve to study the optimal critical values of MSH2, MLH1, PARP1, XRCC1, XRCC4, 53BP1, ERCC1 and XPA combined with the Youden index, and the effects of MSH2, MLH1, PARP1, XRCC1, XRCC4, 53BP1, ERCC1 and XPA on breast cancer metastasis were verified again. Among them, the risk of metastasis in the PARP1 high expression group was 3.286 times that of the low expression group (OR 3.286, 95% CI 2.013 ~ 5.364, P < 0.05). The risk of metastasis in the XRCC4 high expression group was 1.779 times that of the low expression group (OR 1.779, 95% CI 1.071 ~ 2.954, P < 0.05). The risk of metastasis in patients with ERCC1 high expression group was 2.012 times that of the low expression group (OR 2.012, 95% CI 1.056 ~ 3.836, P < 0.05). So we can conclude that protein expression of PARP1 (cut-off value = 6, Se = 76.70%, Sp = 79.61%), XRCC4 (cut-off value = 6, Se = 78.64%0, Se = 79.61%), ERCC1 (cut-off value = 3, Se = 89.32%, Sp = 50.49%), suggesting that when the PARP1 score is higher than 6 or the XRCC4 score is higher than 6 or the ERCC1 score is higher than 3, the risk of metastasis will increases. Due to PARP1, XRCC4 and ERCC1 belong to a part of DNA repair gene system, and the three proteins are positively correlated by correlation analysis (rPARP1-XRCC4 = 0.343; rPAPR1-ERCC1 = 0.335; rXRCC4-ERCC1 = 0.388). The combined diagnosis of the PARR1, XRCC4 and ERCC1 have greater predictive value for the risk of metastasis of breast cancer (Se = 94.17%, Sp = 75.73%; OR 11.739, 95% CI 2.858 ~ 40.220, P < 0.05). The postoperative metastasis of breast cancer could be effectively predicted when the immunohistochemical scores met PARP1 (IHC score) > 6, XRCC4 (IHC score) > 6 and ERCC1 (IHC score) > 3. In addition, the combined diagnosis of PARP1, XRCC4 and ERCC1 has great predictive value for the risk of breast cancer metastasis.
Collapse
|
22
|
Lee KJ, Mann E, Wright G, Piett CG, Nagel ZD, Gassman NR. Exploiting DNA repair defects in triple negative breast cancer to improve cell killing. Ther Adv Med Oncol 2020; 12:1758835920958354. [PMID: 32994807 PMCID: PMC7502856 DOI: 10.1177/1758835920958354] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/19/2020] [Indexed: 12/13/2022] Open
Abstract
Background: The lack of molecular targets for triple negative breast cancer (TNBC) has limited treatment options and reduced survivorship. Identifying new molecular targets may help improve patient survival and decrease recurrence and metastasis. As DNA repair defects are prevalent in breast cancer, we evaluated the expression and repair capacities of DNA repair proteins in preclinical models. Methods: DNA repair capacity was analyzed in four TNBC cell lines, MDA-MB-157 (MDA-157), MDA-MB-231 (MDA-231), MDA-MB-468 (MDA-468), and HCC1806, using fluorescence multiplex host cell reactivation (FM-HCR) assays. Expression of DNA repair genes was analyzed with RNA-seq, and protein expression was evaluated with immunoblot. Responses to the combination of DNA damage response inhibitors and primary chemotherapy drugs doxorubicin or carboplatin were evaluated in the cell lines. Results: Defects in base excision and nucleotide excision repair were observed in preclinical TNBC models. Gene expression analysis showed a limited correlation between these defects. Loss in protein expression was a better indicator of these DNA repair defects. Over-expression of PARP1, XRCC1, RPA, DDB1, and ERCC1 was observed in TNBC preclinical models, and likely contributed to altered sensitivity to chemotherapy and DNA damage response (DDR) inhibitors. Improved cell killing was achieved when primary therapy was combined with DDR inhibitors for ATM, ATR, or CHK1. Conclusion: Base excision and nucleotide excision repair pathways may offer new molecular targets for TNBC. The functional status of DNA repair pathways should be considered when evaluating new therapies and may improve the targeting for primary and combination therapies with DDR inhibitors.
Collapse
Affiliation(s)
- Kevin J Lee
- College of Medicine, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Elise Mann
- College of Medicine, University of South Alabama, Mobile, AL, USA
| | - Griffin Wright
- College of Medicine, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Cortt G Piett
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Zachary D Nagel
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Natalie R Gassman
- Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, AL 36607, USA
| |
Collapse
|
23
|
Gao A, Guo M. Epigenetic based synthetic lethal strategies in human cancers. Biomark Res 2020; 8:44. [PMID: 32974031 PMCID: PMC7493427 DOI: 10.1186/s40364-020-00224-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 09/04/2020] [Indexed: 02/08/2023] Open
Abstract
Over the past decades, it is recognized that loss of DNA damage repair (DDR) pathways is an early and frequent event in tumorigenesis, occurring in 40-50% of many cancer types. The basis of synthetic lethality in cancer therapy is DDR deficient cancers dependent on backup DNA repair pathways. In cancer, the concept of synthetic lethality has been extended to pairs of genes, in which inactivation of one by deletion or mutation and pharmacological inhibition of the other leads to death of cancer cells whereas normal cells are spared the effect of the drug. The paradigm study is to induce cell death by inhibiting PARP in BRCA1/2 defective cells. Since the successful application of PARP inhibitor, a growing number of developed DDR inhibitors are ongoing in preclinical and clinical testing, including ATM, ATR, CHK1/2 and WEE1 inhibitors. Combination of PARP inhibitors and other DDR inhibitors, or combination of multiple components of the same pathway may have great potential synthetic lethality efficiency. As epigenetics joins Knudson’s two hit theory, silencing of DDR genes by aberrant epigenetic changes provide new opportunities for synthetic lethal therapy in cancer. Understanding the causative epigenetic changes of loss-of-function has led to the development of novel therapeutic agents in cancer. DDR and related genes were found frequently methylated in human cancers, including BRCA1/2, MGMT, WRN, MLH1, CHFR, P16 and APC. Both genetic and epigenetic alterations may serve as synthetic lethal therapeutic markers.
Collapse
Affiliation(s)
- Aiai Gao
- Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, #28 Fuxing Road, Beijing, 100853 China
| | - Mingzhou Guo
- Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, #28 Fuxing Road, Beijing, 100853 China.,Henan Key Laboratory for Esophageal Cancer Research, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052 Henan China.,State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, #28 Fuxing Road, Beijing, 100853 China
| |
Collapse
|
24
|
Moreira DGL, Morais EFD, Santos HBDP, Freitas RDA. Immunohistochemical expression of DNA repair proteins in oral tongue and lower lip squamous cell carcinoma. Braz Oral Res 2020; 34:e101. [PMID: 32901726 DOI: 10.1590/1807-3107bor-2020.vol34.0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 06/15/2020] [Indexed: 05/30/2023] Open
Abstract
The DNA repair system involves genes and proteins that are essential for the maintenance of genome integrity and the consequent control of various cellular processes. Alterations in these genes and proteins play a role in tumor development and progression and might be associated with prognosis. The aims of this study were to analyze the immunoexpression of two DNA repair proteins, XPF and XRCC1, in lower lip squamous cell carcinoma (LLSCC) and oral tongue squamous cell carcinoma (OTSCC), and to investigate possible associations with clinical and histopathological parameters. The immunohistochemical expression of XPF and XRCC1 was analyzed semi-quantitatively in 40 cases each of LLSCC and OTSCC. The chi-squared test or Fisher's exact test, when appropriate, was used to investigate the association between expression of the proteins and clinicopathological characteristics. The cytoplasmic immunoexpression of XPF was high in OTSCC (95% of the cases analyzed) but low in LLSCC (52.5%). Among the clinicopathological parameters evaluated, a statistically significant association was observed between high nuclear expression of XRCC1 and the absence of regional lymph node metastasis in patients diagnosed with OTSCC (p=0.006). The high protein expression of XPF and XRCC1 in OTSCC and LLSCC suggests an important role in the development and progression of these tumors. Our study found an association between high nuclear expression of XRCC1 and the absence of loco-regional metastasis in cases diagnosed as OTSCC, suggesting a role of this protein in tumor progression.
Collapse
Affiliation(s)
- Deborah Gondim Lambert Moreira
- Universidade Federal do Rio Grande do Norte - UFRN, Centro de Ciênicas da Saúde, Department of Oral Pathology, Natal, RN, Brazil
| | - Everton Freitas de Morais
- Universidade Federal do Rio Grande do Norte - UFRN, Centro de Ciênicas da Saúde, Department of Oral Pathology, Natal, RN, Brazil
| | - Hellen Bandeira de Pontes Santos
- Universidade Federal do Rio Grande do Norte - UFRN, Centro de Ciênicas da Saúde, Department of Oral Pathology, Natal, RN, Brazil
| | - Roseana de Almeida Freitas
- Universidade Federal do Rio Grande do Norte - UFRN, Centro de Ciênicas da Saúde, Department of Oral Pathology, Natal, RN, Brazil
| |
Collapse
|
25
|
Distinct roles of XRCC1 in genome integrity in Xenopus egg extracts. Biochem J 2020; 476:3791-3804. [PMID: 31808793 DOI: 10.1042/bcj20190798] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/04/2019] [Accepted: 12/06/2019] [Indexed: 02/06/2023]
Abstract
Oxidative DNA damage represents one of the most abundant DNA lesions. It remains unclear how DNA repair and DNA damage response (DDR) pathways are co-ordinated and regulated following oxidative stress. While XRCC1 has been implicated in DNA repair, it remains unknown how exactly oxidative DNA damage is repaired and sensed by XRCC1. In this communication, we have demonstrated evidence that XRCC1 is dispensable for ATR-Chk1 DDR pathway following oxidative stress in Xenopus egg extracts. Whereas APE2 is essential for SSB repair, XRCC1 is not required for the repair of defined SSB and gapped plasmids with a 5'-OH or 5'-P terminus, suggesting that XRCC1 and APE2 may contribute to SSB repair via different mechanisms. Neither Polymerase beta nor Polymerase alpha is important for the repair of defined SSB structure. Nonetheless, XRCC1 is important for the repair of DNA damage following oxidative stress. Our observations suggest distinct roles of XRCC1 for genome integrity in oxidative stress in Xenopus egg extracts.
Collapse
|
26
|
DNA Repair and Ovarian Carcinogenesis: Impact on Risk, Prognosis and Therapy Outcome. Cancers (Basel) 2020; 12:cancers12071713. [PMID: 32605254 PMCID: PMC7408288 DOI: 10.3390/cancers12071713] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 06/24/2020] [Indexed: 12/13/2022] Open
Abstract
There is ample evidence for the essential involvement of DNA repair and DNA damage response in the onset of solid malignancies, including ovarian cancer. Indeed, high-penetrance germline mutations in DNA repair genes are important players in familial cancers: BRCA1, BRCA2 mutations or mismatch repair, and polymerase deficiency in colorectal, breast, and ovarian cancers. Recently, some molecular hallmarks (e.g., TP53, KRAS, BRAF, RAD51C/D or PTEN mutations) of ovarian carcinomas were identified. The manuscript overviews the role of DNA repair machinery in ovarian cancer, its risk, prognosis, and therapy outcome. We have attempted to expose molecular hallmarks of ovarian cancer with a focus on DNA repair system and scrutinized genetic, epigenetic, functional, and protein alterations in individual DNA repair pathways (homologous recombination, non-homologous end-joining, DNA mismatch repair, base- and nucleotide-excision repair, and direct repair). We suggest that lack of knowledge particularly in non-homologous end joining repair pathway and the interplay between DNA repair pathways needs to be confronted. The most important genes of the DNA repair system are emphasized and their targeting in ovarian cancer will deserve further attention. The function of those genes, as well as the functional status of the entire DNA repair pathways, should be investigated in detail in the near future.
Collapse
|
27
|
Rajagopal T, Seshachalam A, Rathnam KK, Jothi A, Viswanathan S, Talluri S, Dunna NR. DNA repair genes hOGG1, XRCC1 and ERCC2 polymorphisms and their molecular mapping in breast cancer patients from India. Mol Biol Rep 2020; 47:5081-5090. [PMID: 32519309 DOI: 10.1007/s11033-020-05577-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/05/2020] [Indexed: 11/29/2022]
Abstract
Identification of modifier genes predisposing to breast cancer (BC) phenotype remains a significant challenge and varies with ethnicity. The genetic variability observed in DNA repair genes may modulate the cell's ability to repair the damaged DNA and hence, evaluation of genetic variants in crucial DNA damage repair genes is of clinical importance. We performed the present study to evaluate the role of ERCC2-Lys751Gln, hOGG1-Ser326Cys, and XRCC1-Arg399Gln gene polymorphisms on the risk of BC development and its molecular profile in Indian women. Three non-synonymous variants (rs13181, rs1052133, and rs25487) were genotyped in 464 BC patients and 450 healthy controls. Logistic regression was employed to evaluate the association of genotypes with BC risk. Also, in silico analysis was carried out to map the Arg399Gln variant on the BRCT1 domain of XRCC1 protein. XRCC1 Gln/Gln genotype frequency was significantly elevated in BC patients [odd ratio (OR) = 1.73; 95% confidence interval (CI) = 1.13-2.65]. No significant association was observed between hOGG1-Ser326Cys and ERCC2-Lys751Gln variants and BC risk. Subgroup analysis revealed that ERCC2-Lys751Gln and XRCC1-Arg399Gln variants contributed towards tumor progression. A positive interaction between the investigated SNPs and BC was revealed by MDR analysis. Arg399Gln variant resulted in a change in the surface charge of XRCC1 protein. The rs25487 variant of XRCC1 might be associated with an elevated risk of BC. Furthermore, we demonstrated that high order gene-gene interaction plays a significant role in BC etiology. Hence, understanding the impact of low penetrant gene polymorphisms might enable a better understanding of the genetic background of breast cancer.
Collapse
Affiliation(s)
- Taruna Rajagopal
- Cancer Genomics Laboratory, Department of Biotechnology, School of Chemical and Biotechnology, SASTRA - Deemed University, Thanjavur, 613 401, India
| | - Arun Seshachalam
- Department of Medical and Paediatric Oncology, Dr. G.V.N Cancer Institute, Singarathope, Tiruchchirappalli, 620 008, India
| | - Krishna Kumar Rathnam
- Department of Hemato Oncology - Medical Oncology and Bone Marrow Transplantation, Meenakshi Mission Hospital & Research Centre, Madurai, 625 107, India
| | - Arunachalam Jothi
- Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA - Deemed University, Thanjavur, 613 401, India
| | - Swarna Viswanathan
- Cancer Genomics Laboratory, Department of Biotechnology, School of Chemical and Biotechnology, SASTRA - Deemed University, Thanjavur, 613 401, India
| | - Srikanth Talluri
- Dana Farber Cancer Institute, Boston, MA, 02215, USA.,Veterans Administration Boston Healthcare System, West Roxbury, MA, 02132, USA
| | - Nageswara Rao Dunna
- Cancer Genomics Laboratory, Department of Biotechnology, School of Chemical and Biotechnology, SASTRA - Deemed University, Thanjavur, 613 401, India.
| |
Collapse
|
28
|
Liu C, Zhao J, Lu W, Dai Y, Hockings J, Zhou Y, Nussinov R, Eng C, Cheng F. Individualized genetic network analysis reveals new therapeutic vulnerabilities in 6,700 cancer genomes. PLoS Comput Biol 2020; 16:e1007701. [PMID: 32101536 PMCID: PMC7062285 DOI: 10.1371/journal.pcbi.1007701] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 03/09/2020] [Accepted: 01/30/2020] [Indexed: 02/06/2023] Open
Abstract
Tumor-specific genomic alterations allow systematic identification of genetic interactions that promote tumorigenesis and tumor vulnerabilities, offering novel strategies for development of targeted therapies for individual patients. We develop an Individualized Network-based Co-Mutation (INCM) methodology by inspecting over 2.5 million nonsynonymous somatic mutations derived from 6,789 tumor exomes across 14 cancer types from The Cancer Genome Atlas. Our INCM analysis reveals a higher genetic interaction burden on the significantly mutated genes, experimentally validated cancer genes, chromosome regulatory factors, and DNA damage repair genes, as compared to human pan-cancer essential genes identified by CRISPR-Cas9 screenings on 324 cancer cell lines. We find that genes involved in the cancer type-specific genetic subnetworks identified by INCM are significantly enriched in established cancer pathways, and the INCM-inferred putative genetic interactions are correlated with patient survival. By analyzing drug pharmacogenomics profiles from the Genomics of Drug Sensitivity in Cancer database, we show that the network-predicted putative genetic interactions (e.g., BRCA2-TP53) are significantly correlated with sensitivity/resistance of multiple therapeutic agents. We experimentally validated that afatinib has the strongest cytotoxic activity on BT474 (IC50 = 55.5 nM, BRCA2 and TP53 co-mutant) compared to MCF7 (IC50 = 7.7 μM, both BRCA2 and TP53 wild type) and MDA-MB-231 (IC50 = 7.9 μM, BRCA2 wild type but TP53 mutant). Finally, drug-target network analysis reveals several potential druggable genetic interactions by targeting tumor vulnerabilities. This study offers a powerful network-based methodology for identification of candidate therapeutic pathways that target tumor vulnerabilities and prioritization of potential pharmacogenomics biomarkers for development of personalized cancer medicine. Recent efforts to map genetic interactions in tumor cells have suggested that tumor vulnerabilities can be exploited for development of novel targeted therapies. Tumor-specific genomic alterations derived from multi-center cancer genome projects allow identification of genetic interactions that promote tumor vulnerabilities, offering novel strategies for development of targeted cancer therapies. This study develops a novel Individualized Network-based Co-Mutation (termed INCM) methodology for quantifying the putative genetic interactions in cancer. Trained on over 2.5 million nonsynonymous somatic mutations derived from 6,789 tumor exomes across 14 cancer type, we found that genes identified in the cancer type-specific genetic subnetworks were significantly enriched in established cancer pathways. The network-predicted putative genetic interactions are correlated with patient survival. By analyzing drug pharmacogenomics profiles, we showed that the network-predicted putative genetic interactions (e.g., BRCA2-TP53) were significantly correlated with sensitivity/resistance of anticancer drugs (e.g., afatinib) and we experimentally validated it in breast cancer cell lines. Finally, drug-target network analysis reveals several potential druggable genetic interactions (e.g., PIK3CA-PTEN) by targeting tumor vulnerabilities. This study offers a generalizable network-based approach for comprehensive identification of candidate therapeutic pathways that target tumor vulnerabilities and prioritization of potential prognostic and pharmacogenomics biomarkers for development of personalized cancer medicine.
Collapse
Affiliation(s)
- Chuang Liu
- Alibaba Research Center for Complexity Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Junfei Zhao
- Department of Systems Biology, Columbia University, New York, New York, United States of America
- Department of Biomedical Informatics, Columbia University, New York, New York, United States of America
| | - Weiqiang Lu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yao Dai
- Alibaba Research Center for Complexity Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Jennifer Hockings
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Yadi Zhou
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Feixiong Cheng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
29
|
DNA damage repair functions and targeted treatment in breast cancer. Breast Cancer 2020; 27:355-362. [PMID: 31898156 DOI: 10.1007/s12282-019-01038-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 12/19/2019] [Indexed: 12/14/2022]
Abstract
Cell DNA is continuously attacked by endogenous and exogenous agents, which causes DNA damage. During long-term evolution, complex defense systems for DNA damage repair are formed by cells to maintain genome stability. Defects in the DNA damage repair process may lead to various diseases, including tumors. Therefore, DNA damage repair systems have become a new anti-tumor drug target. To date, a number of inhibitors related to DNA damage repair systems have been developed, particularly for tumors with BRCA1 and BRCA2 mutations. Poly (ADP-ribose) polymerase inhibitors developed by synthetic lethality are widely used in individualized tumor therapy. In this review, we briefly introduce the mechanisms underlying DNA damage repair, particularly in breast cancer, and mainly focus on new treatments targeting the DNA damage repair pathway in breast cancer.
Collapse
|
30
|
Lee KJ, Piett CG, Andrews JF, Mann E, Nagel ZD, Gassman NR. Defective base excision repair in the response to DNA damaging agents in triple negative breast cancer. PLoS One 2019; 14:e0223725. [PMID: 31596905 PMCID: PMC6785058 DOI: 10.1371/journal.pone.0223725] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 09/26/2019] [Indexed: 01/08/2023] Open
Abstract
DNA repair defects have been increasingly focused on as therapeutic targets. In hormone-positive breast cancer, XRCC1-deficient tumors have been identified and proposed as targets for combination therapies that damage DNA and inhibit DNA repair pathways. XRCC1 is a scaffold protein that functions in base excision repair (BER) by mediating essential interactions between DNA glycosylases, AP endonuclease, poly(ADP-ribose) polymerase 1, DNA polymerase β (POL β), and DNA ligases. Loss of XRCC1 confers BER defects and hypersensitivity to DNA damaging agents. BER defects have not been evaluated in triple negative breast cancers (TNBC), for which new therapeutic targets and therapies are needed. To evaluate the potential of XRCC1 as an indicator of BER defects in TNBC, we examined XRCC1 expression in the TCGA database and its expression and localization in TNBC cell lines. The TCGA database revealed high XRCC1 expression in TNBC tumors and TNBC cell lines show variable, but mostly high expression of XRCC1. XRCC1 localized outside of the nucleus in some TNBC cell lines, altering their ability to repair base lesions and single-strand breaks. Subcellular localization of POL β also varied and did not correlate with XRCC1 localization. Basal levels of DNA damage correlated with observed changes in XRCC1 expression, localization, and measure repair capacity. The results confirmed that XRCC1 expression changes indicate DNA repair capacity changes but emphasize that basal DNA damage levels along with protein localization are better indicators of DNA repair defects. Given the observed over-expression of XRCC1 in TNBC preclinical models and tumors, XRCC1 expression levels should be assessed when evaluating treatment responses of TNBC preclinical model cells.
Collapse
Affiliation(s)
- Kevin J. Lee
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, United States of America
- University of South Alabama College of Medicine, Mobile, AL, United States of America
| | - Cortt G. Piett
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, United States of America
| | - Joel F. Andrews
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, United States of America
- University of South Alabama College of Medicine, Mobile, AL, United States of America
| | - Elise Mann
- University of South Alabama College of Medicine, Mobile, AL, United States of America
| | - Zachary D. Nagel
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, United States of America
| | - Natalie R. Gassman
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, United States of America
- University of South Alabama College of Medicine, Mobile, AL, United States of America
- * E-mail:
| |
Collapse
|
31
|
Aktas BY, Guner G, Guven DC, Arslan C, Dizdar O. Exploiting DNA repair defects in breast cancer: from chemotherapy to immunotherapy. Expert Rev Anticancer Ther 2019; 19:589-601. [PMID: 31181965 DOI: 10.1080/14737140.2019.1631162] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Impaired DNA damage response (DDR) and subsequent genomic instability are associated with the carcinogenic process itself, but it also results in sensitivity of tumor cells to certain drugs and can be exploited to treat cancer by inducing deadly mutations or mitotic catastrophe. Exploiting DDR defects in breast cancer cells has been one of the main strategies in both conventional chemotherapy, targeted therapies, or immunotherapies. Areas covered: In this review, the authors first discuss DDR mechanisms in healthy cells and DDR defects in breast cancer, then focus on current therapies and developments in the treatment of DDR-deficient breast cancer. Expert opinion: Among conventional chemotherapeutics, platinum-based regimens, in particular, seem to be effective in DDR-deficient patients. PARP inhibitors represent one of the successful models of translational research in this area and clinical data showed high efficacy and reasonable toxicity with these agents in patients with breast cancer and BRCA mutation. Recent studies have underlined that some subtypes of breast cancer are highly immunogenic. Promising activity has been shown with immunotherapeutic agents, particularly in DDR-deficient breast cancers. Chemotherapeutics, DNA-repair pathway inhibitors, and immunotherapies might result in further improved outcomes in certain subsets of patients with breast cancer and DDR.
Collapse
Affiliation(s)
- Burak Yasin Aktas
- a Department of Medical Oncology , Hacettepe University Cancer Institute , Ankara , Turkey
| | - Gurkan Guner
- a Department of Medical Oncology , Hacettepe University Cancer Institute , Ankara , Turkey
| | - Deniz Can Guven
- a Department of Medical Oncology , Hacettepe University Cancer Institute , Ankara , Turkey
| | - Cagatay Arslan
- b Bahcesehir University , Faculty of Medicine, Department of Internal Medicine and Medical Oncology , Istanbul , Turkey
| | - Omer Dizdar
- a Department of Medical Oncology , Hacettepe University Cancer Institute , Ankara , Turkey
| |
Collapse
|
32
|
Mok MCY, Campalans A, Pillon MC, Guarné A, Radicella JP, Junop MS. Identification of an XRCC1 DNA binding activity essential for retention at sites of DNA damage. Sci Rep 2019; 9:3095. [PMID: 30816207 PMCID: PMC6395731 DOI: 10.1038/s41598-019-39543-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 01/14/2019] [Indexed: 01/21/2023] Open
Abstract
Repair of two major forms of DNA damage, single strand breaks and base modifications, are dependent on XRCC1. XRCC1 orchestrates these repair processes by temporally and spatially coordinating interactions between several other repair proteins. Here we show that XRCC1 contains a central DNA binding domain (CDB, residues 219–415) encompassing its first BRCT domain. In contrast to the N-terminal domain of XRCC1, which has been reported to mediate damage sensing in vitro, we demonstrate that the DNA binding module identified here lacks binding specificity towards DNA containing nicks or gaps. Alanine substitution of residues within the CDB of XRCC1 disrupt DNA binding in vitro and lead to a significant reduction in XRCC1 retention at DNA damage sites without affecting initial recruitment. Interestingly, reduced retention at sites of DNA damage is associated with an increased rate of repair. These findings suggest that DNA binding activity of XRCC1 plays a significant role in retention at sites of damage and the rate at which damage is repaired.
Collapse
Affiliation(s)
- Mac C Y Mok
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, L8S4K1, Canada
| | - Anna Campalans
- Institute of Cellular and Molecular Radiobiology, CEA, UMR967 INSERM, F-92265, Fontenay aux Roses, France
| | - Monica C Pillon
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, L8S4K1, Canada
| | - Alba Guarné
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, L8S4K1, Canada
| | - J Pablo Radicella
- Institute of Cellular and Molecular Radiobiology, CEA, UMR967 INSERM, F-92265, Fontenay aux Roses, France
| | - Murray S Junop
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, L8S4K1, Canada. .,Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, N6A5C1, Canada. .,Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, N6A5C1, Canada.
| |
Collapse
|
33
|
Alblihy A, Mesquita KA, Sadiq MT, Madhusudan S. Development and implementation of precision therapies targeting base-excision DNA repair in BRCA1-associated tumors. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2019. [DOI: 10.1080/23808993.2019.1567266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Adel Alblihy
- Translational Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham University Hospitals, Nottingham, UK
| | - Katia A. Mesquita
- Translational Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham University Hospitals, Nottingham, UK
| | - Maaz T. Sadiq
- Department of Oncology, Nottingham University Hospitals, City Hospital Campus, Nottingham, UK
| | - Srinivasan Madhusudan
- Translational Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham University Hospitals, Nottingham, UK
- Department of Oncology, Nottingham University Hospitals, City Hospital Campus, Nottingham, UK
| |
Collapse
|
34
|
Kantidze OL, Velichko AK, Luzhin AV, Petrova NV, Razin SV. Synthetically Lethal Interactions of ATM, ATR, and DNA-PKcs. Trends Cancer 2018; 4:755-768. [PMID: 30352678 DOI: 10.1016/j.trecan.2018.09.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 09/10/2018] [Accepted: 09/18/2018] [Indexed: 12/12/2022]
Abstract
Synthetic lethality occurs when simultaneous perturbations of two genes or molecular processes result in a loss of cell viability. The number of known synthetically lethal interactions is growing steadily. We review here synthetically lethal interactions of ataxia-telangiectasia mutated (ATM), ATM- and Rad3-related (ATR), and DNA-dependent protein kinase catalytic subunit (DNA-PKcs). These kinases are appropriate for synthetic lethal therapies because their genes are frequently mutated in cancer, and specific inhibitors are currently in clinical trials. Understanding synthetically lethal interactions of a particular gene or gene family can facilitate predicting new synthetically lethal interactions, therapy toxicity, and mechanisms of resistance, as well as defining the spectrum of tumors amenable to these therapeutic approaches.
Collapse
Affiliation(s)
- Omar L Kantidze
- Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia; LFR2O, Institute Gustave Roussy, Villejuif, France.
| | - Artem K Velichko
- Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia; Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Artem V Luzhin
- Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia
| | | | - Sergey V Razin
- Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia; LFR2O, Institute Gustave Roussy, Villejuif, France; Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
35
|
Ali R, Al-Kawaz A, Toss MS, Green AR, Miligy IM, Mesquita KA, Seedhouse C, Mirza S, Band V, Rakha EA, Madhusudan S. Targeting PARP1 in XRCC1-Deficient Sporadic Invasive Breast Cancer or Preinvasive Ductal Carcinoma In Situ Induces Synthetic Lethality and Chemoprevention. Cancer Res 2018; 78:6818-6827. [PMID: 30297533 DOI: 10.1158/0008-5472.can-18-0633] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 07/03/2018] [Accepted: 09/26/2018] [Indexed: 11/16/2022]
Abstract
: Targeting PARP1 for synthetic lethality is a new strategy for breast cancers harboring germline mutations in BRCA. However, these mutations are rare, and reactivation of BRCA-mediated pathways may result in eventual resistance to PARP1 inhibitor therapy. Alternative synthetic lethality approaches targeting more common sporadic breast cancers and preinvasive ductal carcinoma in situ (DCIS) are desirable. Here we show that downregulation of XRCC1, which interacts with PARP1 and coordinates base excision repair, is an early event in human breast cancer pathogenesis. XRCC1-deficient DCIS were aggressive and associated with increased risk of local recurrence. Human invasive breast cancers deficient in XRCC1 and expressing high PARP1 levels also manifested aggressive features and poor outcome. The PARP1 inhibitor olaparib was synthetically lethal in XRCC1-deficient DCIS and invasive breast cancer cells. We conclude that targeting PARP1 is an attractive strategy for synthetic lethality and chemoprevention in XRCC1-deficient breast cancers, including preinvasive DCIS. SIGNIFICANCE: These findings show that loss of XRCC1, which is associated with more malignant DCIS, can be exploited by PARP inhibition, suggesting its application as a promising therapeutic and chemoprevention strategy in XRCC1-deficient tumor cells.
Collapse
Affiliation(s)
- Reem Ali
- Translational Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham University Hospitals, Nottingham, United Kingdom
| | - Abdulbaqi Al-Kawaz
- Department of Pathology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Michael S Toss
- Department of Pathology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Andrew R Green
- Department of Pathology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Islam M Miligy
- Department of Pathology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Katia A Mesquita
- Translational Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham University Hospitals, Nottingham, United Kingdom
| | - Claire Seedhouse
- Academic Haematology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham University Hospitals, Nottingham, United Kingdom
| | - Sameer Mirza
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Centre, Nebraska Medical Centre, Omaha, Nebraska
| | - Vimla Band
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Centre, Nebraska Medical Centre, Omaha, Nebraska
| | - Emad A Rakha
- Department of Pathology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, United Kingdom.
| | - Srinivasan Madhusudan
- Translational Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham University Hospitals, Nottingham, United Kingdom. .,Department of Oncology, Nottingham University Hospitals, City Hospital Campus, Nottingham, United Kingdom
| |
Collapse
|
36
|
Visnes T, Grube M, Hanna BMF, Benitez-Buelga C, Cázares-Körner A, Helleday T. Targeting BER enzymes in cancer therapy. DNA Repair (Amst) 2018; 71:118-126. [PMID: 30228084 DOI: 10.1016/j.dnarep.2018.08.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Base excision repair (BER) repairs mutagenic or genotoxic DNA base lesions, thought to be important for both the etiology and treatment of cancer. Cancer phenotypic stress induces oxidative lesions, and deamination products are responsible for one of the most prevalent mutational signatures in cancer. Chemotherapeutic agents induce genotoxic DNA base damage that are substrates for BER, while synthetic lethal approaches targeting BER-related factors are making their way into the clinic. Thus, there are three strategies by which BER is envisioned to be relevant in cancer chemotherapy: (i) to maintain cellular growth in the presence of endogenous DNA damage in stressed cancer cells, (ii) to maintain viability after exogenous DNA damage is introduced by therapeutic intervention, or (iii) to confer synthetic lethality in cancer cells that have lost one or more additional DNA repair pathways. Here, we discuss the potential treatment strategies, and briefly summarize the progress that has been made in developing inhibitors to core BER-proteins and related factors.
Collapse
Affiliation(s)
- Torkild Visnes
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden; Department of Biotechnology and Nanomedicine, SINTEF Industry, N-7034 Trondheim, Norway
| | - Maurice Grube
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Bishoy Magdy Fekry Hanna
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Carlos Benitez-Buelga
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Armando Cázares-Körner
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Thomas Helleday
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden; Sheffield Cancer Centre, Department of Oncology and Metabolism, University of Sheffield, Sheffield S10 2RX, UK.
| |
Collapse
|
37
|
DNA damage repair in ovarian cancer: unlocking the heterogeneity. J Ovarian Res 2018; 11:50. [PMID: 29925418 PMCID: PMC6011341 DOI: 10.1186/s13048-018-0424-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 06/08/2018] [Indexed: 01/13/2023] Open
Abstract
Treatment for advanced ovarian cancer is rarely curative; three quarters of patients with advanced disease relapse and ultimately die with resistant disease. Improving patient outcomes will require the introduction of new treatments and better patient selection. Abrogations in the DNA damage response (DDR) may allow such stratifications. A defective DNA-damage response (DDR) is a defining hallmark of high grade serous ovarian cancer (HGSOC). Indeed, current evidence indicates that all HGSOCs harbour a defect in at least one major DDR pathway. However, defective DDR is not mediated through a single mechanism but rather results from a variety of (epi)genetic lesions affecting one or more of the five major DNA repair pathways. Understanding the relationship between these pathways and how these are abrogated will be necessary in order to facilitate appropriate selection of both existing and novel agents. Here we review the current understanding of the DDR with regard to ovarian, and particularly high grade serous, cancer, with reference to existing and emerging treatments as appropriate.
Collapse
|
38
|
Gee ME, Faraahi Z, McCormick A, Edmondson RJ. DNA damage repair in ovarian cancer: unlocking the heterogeneity. J Ovarian Res 2018. [PMID: 29925418 DOI: 10.1186/s13048-018-0424-x] [] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Treatment for advanced ovarian cancer is rarely curative; three quarters of patients with advanced disease relapse and ultimately die with resistant disease. Improving patient outcomes will require the introduction of new treatments and better patient selection. Abrogations in the DNA damage response (DDR) may allow such stratifications.A defective DNA-damage response (DDR) is a defining hallmark of high grade serous ovarian cancer (HGSOC). Indeed, current evidence indicates that all HGSOCs harbour a defect in at least one major DDR pathway. However, defective DDR is not mediated through a single mechanism but rather results from a variety of (epi)genetic lesions affecting one or more of the five major DNA repair pathways. Understanding the relationship between these pathways and how these are abrogated will be necessary in order to facilitate appropriate selection of both existing and novel agents.Here we review the current understanding of the DDR with regard to ovarian, and particularly high grade serous, cancer, with reference to existing and emerging treatments as appropriate.
Collapse
Affiliation(s)
- Mary Ellen Gee
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, St Mary's Hospital, Manchester, UK.,Department of Obstetrics and Gynaecology, Manchester Academic Health Science Centre, St Mary's Hospital, Central Manchester NHS Foundation Trust, Manchester Academic Health Science Centre, Level 5, Research, Oxford Road, Manchester, UK
| | - Zahra Faraahi
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, St Mary's Hospital, Manchester, UK
| | - Aiste McCormick
- Northern Institute for Cancer Research, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4AD, UK
| | - Richard J Edmondson
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, St Mary's Hospital, Manchester, UK. .,Department of Obstetrics and Gynaecology, Manchester Academic Health Science Centre, St Mary's Hospital, Central Manchester NHS Foundation Trust, Manchester Academic Health Science Centre, Level 5, Research, Oxford Road, Manchester, UK.
| |
Collapse
|
39
|
Gee ME, Faraahi Z, McCormick A, Edmondson RJ. DNA damage repair in ovarian cancer: unlocking the heterogeneity. J Ovarian Res 2018. [PMID: 29925418 DOI: 10.1186/s13048-018-0424-x]+[] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Treatment for advanced ovarian cancer is rarely curative; three quarters of patients with advanced disease relapse and ultimately die with resistant disease. Improving patient outcomes will require the introduction of new treatments and better patient selection. Abrogations in the DNA damage response (DDR) may allow such stratifications.A defective DNA-damage response (DDR) is a defining hallmark of high grade serous ovarian cancer (HGSOC). Indeed, current evidence indicates that all HGSOCs harbour a defect in at least one major DDR pathway. However, defective DDR is not mediated through a single mechanism but rather results from a variety of (epi)genetic lesions affecting one or more of the five major DNA repair pathways. Understanding the relationship between these pathways and how these are abrogated will be necessary in order to facilitate appropriate selection of both existing and novel agents.Here we review the current understanding of the DDR with regard to ovarian, and particularly high grade serous, cancer, with reference to existing and emerging treatments as appropriate.
Collapse
Affiliation(s)
- Mary Ellen Gee
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, St Mary's Hospital, Manchester, UK.,Department of Obstetrics and Gynaecology, Manchester Academic Health Science Centre, St Mary's Hospital, Central Manchester NHS Foundation Trust, Manchester Academic Health Science Centre, Level 5, Research, Oxford Road, Manchester, UK
| | - Zahra Faraahi
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, St Mary's Hospital, Manchester, UK
| | - Aiste McCormick
- Northern Institute for Cancer Research, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4AD, UK
| | - Richard J Edmondson
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, St Mary's Hospital, Manchester, UK. .,Department of Obstetrics and Gynaecology, Manchester Academic Health Science Centre, St Mary's Hospital, Central Manchester NHS Foundation Trust, Manchester Academic Health Science Centre, Level 5, Research, Oxford Road, Manchester, UK.
| |
Collapse
|
40
|
Legrand AJ, Poletto M, Pankova D, Clementi E, Moore J, Castro-Giner F, Ryan AJ, O’Neill E, Markkanen E, Dianov GL. Persistent DNA strand breaks induce a CAF-like phenotype in normal fibroblasts. Oncotarget 2018; 9:13666-13681. [PMID: 29568385 PMCID: PMC5862606 DOI: 10.18632/oncotarget.24446] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 01/30/2018] [Indexed: 02/03/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs) are an emerging target for cancer therapy as they promote tumour growth and metastatic potential. However, CAF targeting is complicated by the lack of knowledge-based strategies aiming to selectively eliminate these cells. There is a growing body of evidence suggesting that a pro-inflammatory microenvironment (e.g. ROS and cytokines) promotes CAF formation during tumorigenesis, although the exact mechanisms involved remain unclear. In this study, we reveal that a prolonged pro-inflammatory stimulation causes a de facto deficiency in base excision repair, generating unrepaired DNA strand breaks and thereby triggering an ATF4-dependent reprogramming of normal fibroblasts into CAF-like cells. Based on the phenotype of in vitro-generated CAFs, we demonstrate that midostaurin, a clinically relevant compound, selectively eliminates CAF-like cells deficient in base excision repair and prevents their stimulatory role in cancer cell growth and migration.
Collapse
Affiliation(s)
- Arnaud J. Legrand
- CRUK & MRC Oxford Institute for Radiation Oncology, University of Oxford, Department of Oncology, Old Road Campus Research Building, OX37DQ Oxford, UK
| | - Mattia Poletto
- CRUK & MRC Oxford Institute for Radiation Oncology, University of Oxford, Department of Oncology, Old Road Campus Research Building, OX37DQ Oxford, UK
| | - Daniela Pankova
- CRUK & MRC Oxford Institute for Radiation Oncology, University of Oxford, Department of Oncology, Old Road Campus Research Building, OX37DQ Oxford, UK
| | - Elena Clementi
- Institute of Pharmacology and Toxicology, Vetsuisse Faculty, University of Zürich, Zürich 8057, Switzerland
| | - John Moore
- CRUK & MRC Oxford Institute for Radiation Oncology, University of Oxford, Department of Oncology, Old Road Campus Research Building, OX37DQ Oxford, UK
| | | | - Anderson J. Ryan
- CRUK & MRC Oxford Institute for Radiation Oncology, University of Oxford, Department of Oncology, Old Road Campus Research Building, OX37DQ Oxford, UK
| | - Eric O’Neill
- CRUK & MRC Oxford Institute for Radiation Oncology, University of Oxford, Department of Oncology, Old Road Campus Research Building, OX37DQ Oxford, UK
| | - Enni Markkanen
- Institute of Pharmacology and Toxicology, Vetsuisse Faculty, University of Zürich, Zürich 8057, Switzerland
| | - Grigory L. Dianov
- CRUK & MRC Oxford Institute for Radiation Oncology, University of Oxford, Department of Oncology, Old Road Campus Research Building, OX37DQ Oxford, UK
- Institute of Cytology and Genetics, Russian Academy of Sciences, Novosibirsk 630090, Russian Federation
- Novosibirsk State University, Novosibirsk 630090, Russian Federation
| |
Collapse
|
41
|
Al-Subhi N, Ali R, Abdel-Fatah T, Moseley PM, Chan SYT, Green AR, Ellis IO, Rakha EA, Madhusudan S. Targeting ataxia telangiectasia-mutated- and Rad3-related kinase (ATR) in PTEN-deficient breast cancers for personalized therapy. Breast Cancer Res Treat 2018; 169:277-286. [PMID: 29396668 PMCID: PMC5945733 DOI: 10.1007/s10549-018-4683-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 01/18/2018] [Indexed: 11/05/2022]
Abstract
Purpose Phosphate and tensin homolog (PTEN), a negative regulator of PI3K signaling, is involved in DNA repair. ATR is a key sensor of DNA damage and replication stress. We evaluated whether ATR signaling has clinical significance and could be targeted by synthetic lethality in PTEN-deficient triple-negative breast cancer (TNBC). Methods PTEN, ATR and pCHK1Ser345 protein level was evaluated in 1650 human breast cancers. ATR blockade by VE-821 was investigated in PTEN-proficient- (MDA-MB-231) and PTEN-deficient (BT-549, MDA-MB-468) TNBC cell lines. Functional studies included DNA repair expression profiling, MTS cell-proliferation assay, FACS (cell cycle progression & γH2AX accumulation) and FITC-annexin V flow cytometry analysis. Results Low nuclear PTEN was associated with higher grade, pleomorphism, de-differentiation, higher mitotic index, larger tumour size, ER negativity, and shorter survival (p values < 0.05). In tumours with low nuclear PTEN, high ATR and/or high pCHK1ser345 level was also linked to higher grade, larger tumour size and poor survival (all p values < 0.05). VE-821 was selectively toxic in PTEN-deficient TNBC cells and resulted in accumulation of double-strand DNA breaks, cell cycle arrest, and increased apoptosis. Conclusion ATR signalling adversely impact survival in PTEN-deficient breast cancers. ATR inhibition is synthetically lethal in PTEN-deficient TNBC cells. Electronic supplementary material The online version of this article (10.1007/s10549-018-4683-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nouf Al-Subhi
- Translational Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham University Hospitals, Nottingham, NG5 1PB, UK
| | - Reem Ali
- Translational Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham University Hospitals, Nottingham, NG5 1PB, UK
| | - Tarek Abdel-Fatah
- Department of Oncology, Nottingham University Hospitals, Nottingham, NG5 1PB, UK
| | - Paul M Moseley
- Department of Oncology, Nottingham University Hospitals, Nottingham, NG5 1PB, UK
| | - Stephen Y T Chan
- Department of Oncology, Nottingham University Hospitals, Nottingham, NG5 1PB, UK
| | - Andrew R Green
- Department of Pathology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham University Hospitals, Nottingham, NG5 1PB, UK
| | - Ian O Ellis
- Department of Pathology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham University Hospitals, Nottingham, NG5 1PB, UK
| | - Emad A Rakha
- Department of Pathology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham University Hospitals, Nottingham, NG5 1PB, UK.
| | - Srinivasan Madhusudan
- Translational Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham University Hospitals, Nottingham, NG5 1PB, UK. .,Department of Oncology, Nottingham University Hospitals, Nottingham, NG5 1PB, UK.
| |
Collapse
|
42
|
Jiang Y, Liu Y, Hu H. Studies on DNA Damage Repair and Precision Radiotherapy for Breast Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1026:105-123. [PMID: 29282681 DOI: 10.1007/978-981-10-6020-5_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Radiotherapy acts as an important component of breast cancer management, which significantly decreases local recurrence in patients treated with conservative surgery or with radical mastectomy. On the foundation of technological innovation of radiotherapy setting, precision radiotherapy of cancer has been widely applied in recent years. DNA damage and its repair mechanism are the vital factors which lead to the formation of tumor. Moreover, the status of DNA damage repair in cancer cells has been shown to influence patient response to the therapy, including radiotherapy. Some genes can affect the radiosensitivity of tumor cell by regulating the DNA damage repair pathway. This chapter will describe the potential application of DNA damage repair in precision radiotherapy of breast cancer.
Collapse
Affiliation(s)
- Yanhui Jiang
- Department of Radiotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yimin Liu
- Department of Radiotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Hai Hu
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
| |
Collapse
|
43
|
Ferrara R, Simionato F, Ciccarese C, Grego E, Cingarlini S, Iacovelli R, Bria E, Tortora G, Melisi D. The development of PARP as a successful target for cancer therapy. Expert Rev Anticancer Ther 2017; 18:161-175. [DOI: 10.1080/14737140.2018.1419870] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Roberto Ferrara
- Section of Oncology, Department of Medicine, Università degli Studi di Verona, Verona, Italy
- Medical Oncology Unit, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
- Medical Oncology Department, Gustave Roussy, Villejuif, France
| | - Francesca Simionato
- Section of Oncology, Department of Medicine, Università degli Studi di Verona, Verona, Italy
- Medical Oncology Unit, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Chiara Ciccarese
- Section of Oncology, Department of Medicine, Università degli Studi di Verona, Verona, Italy
- Medical Oncology Unit, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Elisabetta Grego
- Section of Oncology, Department of Medicine, Università degli Studi di Verona, Verona, Italy
- Medical Oncology Unit, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Sara Cingarlini
- Medical Oncology Unit, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Roberto Iacovelli
- Medical Oncology Unit, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Emilio Bria
- Section of Oncology, Department of Medicine, Università degli Studi di Verona, Verona, Italy
- Medical Oncology Unit, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Giampaolo Tortora
- Section of Oncology, Department of Medicine, Università degli Studi di Verona, Verona, Italy
- Medical Oncology Unit, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Davide Melisi
- Section of Oncology, Department of Medicine, Università degli Studi di Verona, Verona, Italy
- Medical Oncology Unit, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| |
Collapse
|
44
|
Curcumin sensitizes lymphoma cells to DNA damage agents through regulating Rad51-dependent homologous recombination. Biomed Pharmacother 2017; 97:115-119. [PMID: 29080451 DOI: 10.1016/j.biopha.2017.09.078] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 09/13/2017] [Accepted: 09/18/2017] [Indexed: 12/21/2022] Open
Abstract
Curcumin is a natural compound isolated from the rhizome of Curcuma longa. It possesses anti-tumor activity through arresting cell cycles and promoting cell apoptosis. However, the effect of curcumin on DNA damage is not well defined. In this study, we investigated the effect of curcumin on inducing DNA damage and on sensitizing lymphoma cells to anti-tumoral DNA damage drugs. Western blot showed curcumin induced γ-H2AX foci in CH12F3 lymphoma cells, which suggests curcumin induces DNA breaks. In addition, curcumin decreased the expression of Rad51, which suggests curcumin induces DNA damage through regulating Rad51-dependant homologous recombination. Rad51-dependant homologous recombination is a vital DNA repair pathway for cancer cells to resist anti-tumoral DNA damage drugs, therefore, we studied the effect of curcumin on the sensitizing lymphoma cells to various chemotherapeutic drugs. We found low level of curcumin (5μM) sensitized lymphoma cells to anti-tumoral DNA damage agents including cisplatin, methyl methanesulfonate, hydroxyurea and camptothecin. We also found curcumin sensitized CH12F3 lymphoma cells to DNA-PK and PARP inhibitors. Flow cytometry analysis showed curcumin promoted apoptosis and western blot analysis confirmed curcumin activated caspase3-dependent apoptosis. Taken together, these results demonstrate that curcumin induces DNA damage through regulating Rad51-dependant homologous recombination and triggers caspase3-dependent apoptosis, more importantly, curcumin sensitizes lymphoma cells to various DNA damage drugs. Consequently, curcumin would be a potent agent for sensitizing lymphoma cells to anti-tumoral chemotherapeutic agents.
Collapse
|
45
|
Markkanen E. Not breathing is not an option: How to deal with oxidative DNA damage. DNA Repair (Amst) 2017; 59:82-105. [PMID: 28963982 DOI: 10.1016/j.dnarep.2017.09.007] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 09/20/2017] [Indexed: 02/07/2023]
Abstract
Oxidative DNA damage constitutes a major threat to genetic integrity, and has thus been implicated in the pathogenesis of a wide variety of diseases, including cancer and neurodegeneration. 7,8-dihydro-8oxo-deoxyGuanine (8-oxo-G) is one of the best characterised oxidative DNA lesions, and it can give rise to point mutations due to its miscoding potential that instructs most DNA polymerases (Pols) to preferentially insert Adenine (A) opposite 8-oxo-G instead of the correct Cytosine (C). If uncorrected, A:8-oxo-G mispairs can give rise to C:G→A:T transversion mutations. Cells have evolved a variety of pathways to mitigate the mutational potential of 8-oxo-G that include i) mechanisms to avoid incorporation of oxidized nucleotides into DNA through nucleotide pool sanitisation enzymes (by MTH1, MTH2, MTH3 and NUDT5), ii) base excision repair (BER) of 8-oxo-G in DNA (involving MUTYH, OGG1, Pol λ, and other components of the BER machinery), and iii) faithful bypass of 8-oxo-G lesions during replication (using a switch between replicative Pols and Pol λ). In the following, the fate of 8-oxo-G in mammalian cells is reviewed in detail. The differential origins of 8-oxo-G in DNA and its consequences for genetic stability will be covered. This will be followed by a thorough discussion of the different mechanisms in place to cope with 8-oxo-G with an emphasis on Pol λ-mediated correct bypass of 8-oxo-G during MUTYH-initiated BER as well as replication across 8-oxo-G. Furthermore, the multitude of mechanisms in place to regulate key proteins involved in 8-oxo-G repair will be reviewed. Novel functions of 8-oxo-G as an epigenetic-like regulator and insights into the repair of 8-oxo-G within the cellular context will be touched upon. Finally, a discussion will outline the relevance of 8-oxo-G and the proteins involved in dealing with 8-oxo-G to human diseases with a special emphasis on cancer.
Collapse
Affiliation(s)
- Enni Markkanen
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zürich, Winterthurerstr. 260, 8057 Zürich, Switzerland.
| |
Collapse
|
46
|
Carrassa L, Damia G. DNA damage response inhibitors: Mechanisms and potential applications in cancer therapy. Cancer Treat Rev 2017; 60:139-151. [PMID: 28961555 DOI: 10.1016/j.ctrv.2017.08.013] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 07/26/2017] [Accepted: 08/01/2017] [Indexed: 02/06/2023]
Abstract
Over the last decade the unravelling of the molecular mechanisms of the DNA damage response pathways and of the genomic landscape of human tumors have paved the road to new therapeutic approaches in oncology. It is now clear that tumors harbour defects in different DNA damage response steps, mainly signalling and repair, rendering them more dependent on the remaining pathways. We here focus on the proteins ATM, ATR, CHK1 and WEE1, reviewing their roles in the DNA damage response and as targets in cancer therapy. In the last decade specific inhibitors of these proteins have been designed, and their potential antineoplastic activity has been explored both in monotherapy strategies against tumors with specific defects (synthetic lethality approach) and in combination with radiotherapy or chemotherapeutic or molecular targeted agents. The preclinical and clinical evidence of antitumor activity of these inhibitors emanating from these research efforts will be critically reviewed. Lastly, the potential therapeutic feasibility of combining together such inhibitors with the aim to target particular subsets of tumors will be also discussed.
Collapse
Affiliation(s)
- Laura Carrassa
- Laboratory of Molecular Pharmacology, Department of Oncology, IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Milan, Italy.
| | - Giovanna Damia
- Laboratory of Molecular Pharmacology, Department of Oncology, IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Milan, Italy.
| |
Collapse
|
47
|
Green AR, Aleskandarany MA, Ali R, Hodgson EG, Atabani S, De Souza K, Rakha EA, Ellis IO, Madhusudan S. Clinical Impact of Tumor DNA Repair Expression and T-cell Infiltration in Breast Cancers. Cancer Immunol Res 2017; 5:292-299. [PMID: 28254786 DOI: 10.1158/2326-6066.cir-16-0195] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 09/22/2016] [Accepted: 02/20/2017] [Indexed: 11/16/2022]
Abstract
Impaired DNA repair drives mutagenicity, which increases neoantigen load and immunogenicity. We investigated the expression of proteins involved in the DNA damage response (ATM, Chk2), double-strand break repair (BRCA1, BLM, WRN, RECQL4, RECQL5, TOPO2A, DNA-PKcs, Ku70/Ku80), nucleotide excision repair (ERCC1), base excision repair (XRCC1, pol β, FEN1, PARP1), and immune responses (CD8, PD-1, PD-L1, FOXP3) in 1,269 breast cancers and validated our findings in an independent estrogen receptor-negative (ER-) cohort (n = 279). Patients with tumors that expressed low XRCC1, low ATM, and low BRCA1 were not only associated with high numbers of CD8+ tumor-infiltrating lymphocytes, but were also linked to higher grades, high proliferation indexes, presence of dedifferentiated cells, ER- cells, and poor survival (all P ≤ 0.01). PD-1+ or PD-L1+ breast cancers with low XRCC1 were also linked to an aggressive phenotype that was high grade, had high proliferation indexes, contained dedifferentiated cells and ER- (all with P values ≤ 0.01), and poor survival (P = 0.00021 and P = 0.00022, for PD-1+ and PD-L1+ cancers, respectively) including in an independent ER- validation cohort (P = 0.007 and P = 0.047, respectively). We conclude that the interplay between DNA repair, CD8, PD-L1, and PD-1 can promote aggressive tumor phenotypes. XRCC1-directed personalization of immune checkpoint inhibitor therapy may be feasible and warrants further investigation in breast cancer. Cancer Immunol Res; 5(4); 292-9. ©2017 AACR.
Collapse
Affiliation(s)
- Andrew R Green
- Department of Pathology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Mohammed A Aleskandarany
- Department of Pathology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Reem Ali
- Academic Unit of Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Eleanor Grace Hodgson
- Department of Pathology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Suha Atabani
- Department of Pathology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Karen De Souza
- Department of Oncology, Nottingham University Hospitals, Nottingham, United Kingdom
| | - Emad A Rakha
- Department of Pathology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Ian O Ellis
- Department of Pathology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Srinivasan Madhusudan
- Academic Unit of Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, United Kingdom. .,Department of Oncology, Nottingham University Hospitals, Nottingham, United Kingdom
| |
Collapse
|
48
|
DNA damage repair in breast cancer and its therapeutic implications. Pathology 2016; 49:156-165. [PMID: 28034453 DOI: 10.1016/j.pathol.2016.11.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 10/06/2016] [Accepted: 11/02/2016] [Indexed: 11/23/2022]
Abstract
The DNA damage response (DDR) involves the activation of numerous cellular activities that repair DNA lesions and maintain genomic integrity, and is critical in preventing tumorigenesis. Inherited or acquired mutations in specific genes involved in the DNA damage response, for example the breast cancer susceptibility genes 1/2 (BRCA1/2), phosphatase and tensin homolog (PTEN) and P53 are associated with various subtypes of breast cancer. Such changes can render breast cancer cells particularly sensitive to specific DNA damage response inhibitors, for example BRCA1/2 germline mutated cells are sensitive to poly (ADP-ribose) polymerase (PARP) inhibitors. The aims of this review are to discuss specific DNA damage response defects in breast cancer and to present the current stage of development of various DDR inhibitors (namely PARP, ATM/ATR, DNA-PK, PARG, RECQL5, FEN1 and APE1) for breast cancer mono- and combination therapy.
Collapse
|
49
|
Murata S, Zhang C, Finch N, Zhang K, Campo L, Breuer EK. Predictors and Modulators of Synthetic Lethality: An Update on PARP Inhibitors and Personalized Medicine. BIOMED RESEARCH INTERNATIONAL 2016; 2016:2346585. [PMID: 27642590 PMCID: PMC5013223 DOI: 10.1155/2016/2346585] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 07/28/2016] [Indexed: 12/18/2022]
Abstract
Poly(ADP-ribose) polymerase (PARP) inhibitors have proven to be successful agents in inducing synthetic lethality in several malignancies. Several PARP inhibitors have reached clinical trial testing for treatment in different cancers, and, recently, Olaparib (AZD2281) has gained both United States Food and Drug Administration (USFDA) and the European Commission (EC) approval for use in BRCA-mutated advanced ovarian cancer treatment. The need to identify biomarkers, their interactions in DNA damage repair pathways, and their potential utility in identifying patients who are candidates for PARP inhibitor treatment is well recognized. In this review, we detail many of the biomarkers that have been investigated for their ability to predict both PARP inhibitor sensitivity and resistance in preclinical studies as well as the results of several clinical trials that have tested the safety and efficacy of different PARP inhibitor agents in BRCA and non-BRCA-mutated cancers.
Collapse
Affiliation(s)
- Stephen Murata
- Department of Radiation Oncology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | - Catherine Zhang
- Department of Radiation Oncology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | - Nathan Finch
- Department of Radiation Oncology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | - Kevin Zhang
- Department of Otorhinolaryngology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Loredana Campo
- Department of Radiation Oncology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | - Eun-Kyoung Breuer
- Department of Radiation Oncology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| |
Collapse
|
50
|
Gui Y, Xu S, Yang X, Gu L, Zhang Z, Luo X, Chen L. A meta-analysis of biomarkers for the prognosis of triple-negative breast cancer patients. Biomark Med 2016; 10:771-90. [PMID: 27339713 DOI: 10.2217/bmm-2015-0064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Identification of biomarkers that has the ability to predict triple-negative breast cancer (TNBC) prognosis especially in patients undergoing chemotherapy is very important. Methods: The cohort studies that reported association between chemotherapy biomarker expression and survival outcome in TNBC patients were included in our analysis. Results: The promising markers that emerged for the prediction of disease-free survival and overall survival included Ki67, BRCA1 methylation and LC3B. Furthermore, Ki67 appeared to be also significantly associated with worse disease-free survival in TNBC patients who received anthracycline-based chemotherapy. Conclusion: This meta-analysis demonstrated that in TNBC patients receiving chemotherapy, Ki67 is a predictor for poor prognosis, BRCA1 methylation and LC3B are also potential prognostic markers. In addition, the TNBC patients with high Ki67 expression seems to display resistance to anthracycline-based chemotherapy.
Collapse
Affiliation(s)
- Yu Gui
- Breast Disease Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Shuman Xu
- Breast Disease Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Xi Yang
- Breast Disease Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Lu Gu
- Burn Research Institute, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
- National Key Laboratory of Trauma & Burns, Chongqing Key Lab. of Disease Proteomics, Chongqing, China
| | - Ze Zhang
- Burn Research Institute, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
- National Key Laboratory of Trauma & Burns, Chongqing Key Lab. of Disease Proteomics, Chongqing, China
| | - Xiangdong Luo
- Burn Research Institute, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
- National Key Laboratory of Trauma & Burns, Chongqing Key Lab. of Disease Proteomics, Chongqing, China
| | - Li Chen
- Breast Disease Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
- National Key Laboratory of Trauma & Burns, Chongqing Key Lab. of Disease Proteomics, Chongqing, China
| |
Collapse
|