1
|
Hassan D, Menges CW, Testa JR, Bellacosa A. AKT kinases as therapeutic targets. J Exp Clin Cancer Res 2024; 43:313. [PMID: 39614261 PMCID: PMC11606119 DOI: 10.1186/s13046-024-03207-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/03/2024] [Indexed: 12/01/2024] Open
Abstract
AKT, or protein kinase B, is a central node of the PI3K signaling pathway that is pivotal for a range of normal cellular physiologies that also underlie several pathological conditions, including inflammatory and autoimmune diseases, overgrowth syndromes, and neoplastic transformation. These pathologies, notably cancer, arise if either the activity of AKT or its positive or negative upstream or downstream regulators or effectors goes unchecked, superimposed on by its intersection with a slew of other pathways. Targeting the PI3K/AKT pathway is, therefore, a prudent countermeasure. AKT inhibitors have been tested in many clinical trials, primarily in combination with other drugs. While some have recently garnered attention for their favorable profile, concern over resistance and off-target effects have continued to hinder their widespread adoption in the clinic, mandating a discussion on alternative modes of targeting. In this review, we discuss isoform-centric targeting that may be more effective and less toxic than traditional pan-AKT inhibitors and its significance for disease prevention and treatment, including immunotherapy. We also touch on the emerging mutant- or allele-selective covalent allosteric AKT inhibitors (CAAIs), as well as indirect, novel AKT-targeting approaches, and end with a briefing on the ongoing quest for more reliable biomarkers predicting sensitivity and response to AKT inhibitors, and their current state of affairs.
Collapse
Affiliation(s)
- Dalal Hassan
- Nuclear Dynamics and Cancer Program, Cancer Epigenetics Institute, Institute for Cancer Research, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
- Thomas Jefferson University, 901 Walnut St, Philadelphia, PA, 19107, USA
| | - Craig W Menges
- Cancer Prevention and Control Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
| | - Joseph R Testa
- Cancer Prevention and Control Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
| | - Alfonso Bellacosa
- Nuclear Dynamics and Cancer Program, Cancer Epigenetics Institute, Institute for Cancer Research, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA.
| |
Collapse
|
2
|
Cai A, Chen Y, Wang LS, Cusick JK, Shi Y. Depicting Biomarkers for HER2-Inhibitor Resistance: Implication for Therapy in HER2-Positive Breast Cancer. Cancers (Basel) 2024; 16:2635. [PMID: 39123362 PMCID: PMC11311605 DOI: 10.3390/cancers16152635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024] Open
Abstract
HER2 (human epidermal growth factor receptor 2) is highly expressed in a variety of cancers, including breast, lung, gastric, and pancreatic cancers. Its amplification is linked to poor clinical outcomes. At the genetic level, HER2 is encoded by the ERBB2 gene (v-erb-b2 avian erythroblastic leukemia viral oncogene homolog 2), which is frequently mutated or amplified in cancers, thus spurring extensive research into HER2 modulation and inhibition as viable anti-cancer strategies. An impressive body of FDA-approved drugs, including anti-HER2 monoclonal antibodies (mAbs), antibody-drug conjugates (ADCs), and HER2-tyrosine kinase inhibitors (TKIs), have demonstrated success in enhancing overall survival (OS) and disease progression-free survival (PFS). Yet, drug resistance remains a persistent challenge and raises the risks of metastatic potential and tumor relapse. Research into alternative therapeutic options for HER2+ breast cancer therefore proves critical for adapting to this ever-evolving landscape. This review highlights current HER2-targeted therapies, discusses predictive biomarkers for drug resistance, and introduces promising emergent therapies-especially combination therapies-that are aimed at overcoming drug resistance in the context of HER2+ breast cancer.
Collapse
Affiliation(s)
- Alvan Cai
- College of Medicine, California Northstate University, Elk Grove, CA 95757, USA; (A.C.); (J.K.C.)
| | - Yuan Chen
- Section Pathology of the Institute of Forensic Medicine, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany;
| | - Lily S. Wang
- University of California, Berkeley, CA 94720, USA;
| | - John K. Cusick
- College of Medicine, California Northstate University, Elk Grove, CA 95757, USA; (A.C.); (J.K.C.)
| | - Yihui Shi
- College of Medicine, California Northstate University, Elk Grove, CA 95757, USA; (A.C.); (J.K.C.)
- California Pacific Medical Center Research Institute, Sutter Bay Hospitals, San Francisco, CA 94107, USA
| |
Collapse
|
3
|
Sun K, Yang L, Wang F, Liu Y, Xu N, Shi ZY, Chen WM, Li K, Qin YZ. PRAME promotes proliferation of multiple myeloma cells through CTMP/Akt/p21/CCND3 axis by ubiquitinating CTMP and p21. Heliyon 2024; 10:e34094. [PMID: 39071619 PMCID: PMC11283035 DOI: 10.1016/j.heliyon.2024.e34094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/30/2024] Open
Abstract
Multiple myeloma (MM) is a Ubiquitin Proteasome System (UPS)-dysfunction disease. We previously reported that high PRAME transcript levels associated with unfavorable progression free survival (PFS) in patients with no bortezomib therapy, and bortezomib-containing regimen significantly improved PFS in patients with high PRAME transcript levels, which indicated that PRAME expression was prognostic for MM patients, and was related to proteasome inhibitor treatment. However, molecular mechanisms underlying the above clinical performance remain unclear. In the present study, MM cell models with PRAME knockdown and overexpression were established, and PRAME was identified to play the role of promoting proliferation in MM cells. P-Akt signaling was found to be activated as PRAME overexpressed. As a substrate recognizing subunit (SRS) of the E3 ubiquitin ligase, PRAME targets substrate proteins and mediates their degradation. CTMP and p21 were found to be the novel targets of PRAME in the Cul2-dependent substrate recognition process. PRAME interacted with and mediated ubiquitination and degradation of CTMP and p21, which led to accumulation of p-Akt and CCND3 proteins, and thus promoted cell proliferation and increased bortezomib sensitivity in MM cells.
Collapse
Affiliation(s)
- Kai Sun
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, 100044, PR China
| | - Lu Yang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, 100044, PR China
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Feng Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, PR China
| | - Ying Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, PR China
| | - Nan Xu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, 100044, PR China
| | - Zong-Yan Shi
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, 100044, PR China
| | - Wen-Min Chen
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, 100044, PR China
| | - Ke Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, PR China
| | - Ya-Zhen Qin
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, 100044, PR China
| |
Collapse
|
4
|
Quek ZBR, Ng SH. Hybrid-Capture Target Enrichment in Human Pathogens: Identification, Evolution, Biosurveillance, and Genomic Epidemiology. Pathogens 2024; 13:275. [PMID: 38668230 PMCID: PMC11054155 DOI: 10.3390/pathogens13040275] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/11/2024] [Accepted: 03/18/2024] [Indexed: 04/29/2024] Open
Abstract
High-throughput sequencing (HTS) has revolutionised the field of pathogen genomics, enabling the direct recovery of pathogen genomes from clinical and environmental samples. However, pathogen nucleic acids are often overwhelmed by those of the host, requiring deep metagenomic sequencing to recover sufficient sequences for downstream analyses (e.g., identification and genome characterisation). To circumvent this, hybrid-capture target enrichment (HC) is able to enrich pathogen nucleic acids across multiple scales of divergences and taxa, depending on the panel used. In this review, we outline the applications of HC in human pathogens-bacteria, fungi, parasites and viruses-including identification, genomic epidemiology, antimicrobial resistance genotyping, and evolution. Importantly, we explored the applicability of HC to clinical metagenomics, which ultimately requires more work before it is a reliable and accurate tool for clinical diagnosis. Relatedly, the utility of HC was exemplified by COVID-19, which was used as a case study to illustrate the maturity of HC for recovering pathogen sequences. As we unravel the origins of COVID-19, zoonoses remain more relevant than ever. Therefore, the role of HC in biosurveillance studies is also highlighted in this review, which is critical in preparing us for the next pandemic. We also found that while HC is a popular tool to study viruses, it remains underutilised in parasites and fungi and, to a lesser extent, bacteria. Finally, weevaluated the future of HC with respect to bait design in the eukaryotic groups and the prospect of combining HC with long-read HTS.
Collapse
Affiliation(s)
- Z. B. Randolph Quek
- Defence Medical & Environmental Research Institute, DSO National Laboratories, Singapore 117510, Singapore
| | | |
Collapse
|
5
|
Lin CH, Lin WD, Huang YC, Chen YC, Loh ZJ, Ger LP, Lin FC, Li HY, Cheng HC, Lee KH, Hsiao M, Lu PJ. Carboxyl-terminal modulator protein facilitates tumor metastasis in triple-negative breast cancer. Cancer Gene Ther 2023; 30:404-413. [PMID: 36400965 PMCID: PMC10014580 DOI: 10.1038/s41417-022-00559-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/18/2022] [Accepted: 10/28/2022] [Indexed: 11/19/2022]
Abstract
Currently, the survival rate for breast cancer is more than 90%, but once the cancer cells metastasize to distal organs, the survival rate is dramatically reduced, to less than 30%. Triple-negative breast cancer accounts for 15-20% of all breast cancers. Triple-negative breast cancer (TNBC) is associated with poor prognostic and diagnostic outcomes due to the limiting therapeutic strategies, relative to non-TNBC breast cancers. Therefore, the development of targeted therapy for TNBC metastasis remains an urgent issue. In this study, high Carboxyl-terminal modulator protein (CTMP) is significantly associated with recurrence and disease-free survival rate in TNBC patients. Overexpression of CTMP promotes migration and invasion abilities in BT549 cells. Down-regulating of CTMP expression inhibits migration and invasion abilities in MDA-MB-231 cells. In vivo inoculation of high-CTMP cells enhances distant metastasis in mice. The metastasis incidence rate is decreased in mice injected with CTMP-downregulating MDA-MB-231 cells. Gene expression microarray analysis indicates the Akt-dependent pathway is significantly enhanced in CTMP overexpressing cells compared to the parental cells. Blocking Akt activation via Akt inhibitor treatment or co-expression of the dominant-negative form of Akt proteins successfully abolishes the CTMP mediating invasion in TNBC cells. Our findings suggest that CTMP is a potential diagnostic marker for recurrence and poor disease-free survival in TNBC patients. CTMP promotes TNBC metastasis via the Akt-activation-dependent pathway.
Collapse
Affiliation(s)
- Cheng-Han Lin
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, 70401, Taiwan
| | - Wen-Der Lin
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, 70401, Taiwan
| | - Yun-Chin Huang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, 70401, Taiwan
| | - Yu-Chia Chen
- Division of General Surgery, Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, 813414, Taiwan
| | - Zhu-Jun Loh
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 70401, Taiwan
| | - Luo-Ping Ger
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, 813414, Taiwan
| | - Forn-Chia Lin
- Department of Radiation Oncology, National Cheng Kung University Hospital, Tainan, 70401, Taiwan
| | - Hao-Yi Li
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, 70401, Taiwan
| | - Hui-Chuan Cheng
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, 70401, Taiwan
| | - Kuen-Haur Lee
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Pei-Jung Lu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, 70401, Taiwan. .,Department of Clinical Medicine Research, National Cheng Kung University Hospital, Tainan, 70401, Taiwan.
| |
Collapse
|
6
|
Prokofeva P, Höfer S, Hornisch M, Abele M, Kuster B, Médard G. Merits of Diazirine Photo-Immobilization for Target Profiling of Natural Products and Cofactors. ACS Chem Biol 2022; 17:3100-3109. [PMID: 36302507 PMCID: PMC9680877 DOI: 10.1021/acschembio.2c00500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/05/2022] [Indexed: 01/20/2023]
Abstract
Finding the targets of natural products is of key importance in both chemical biology and drug discovery, and deconvolution of cofactor interactomes contributes to the functional annotation of the proteome. Identifying the proteins that underlie natural compound activity in phenotypic screens helps to validate the respective targets and, potentially, expand the druggable proteome. Here, we present a generally applicable protocol for the photoactivated immobilization of unmodified and microgram quantities of natural products on diazirine-decorated beads and their use for systematic affinity-based proteome profiling. We show that among 31 molecules of very diverse reported activity and biosynthetic origin, 25 could indeed be immobilized. Dose-response competition binding experiments using lysates of human or bacterial cells followed by quantitative mass spectrometry recapitulated targets of 9 molecules with <100 μM affinity. Among them, immobilization of coenzyme A produced a tool to interrogate proteins containing a HotDog domain. Surprisingly, immobilization of the cofactor flavin adenine dinucleotide (FAD) led to the identification of nanomolar interactions with dozens of RNA-binding proteins.
Collapse
Affiliation(s)
- Polina Prokofeva
- Chair
of Proteomics and Bioanalytics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Stefanie Höfer
- Chair
of Proteomics and Bioanalytics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Maximilian Hornisch
- Chair
of Proteomics and Bioanalytics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Miriam Abele
- Chair
of Proteomics and Bioanalytics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
- Bavarian
Center for Biomolecular Mass Spectrometry (BayBioMS), Technical University of Munich, 85354 Freising, Germany
| | - Bernhard Kuster
- Chair
of Proteomics and Bioanalytics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
- Bavarian
Center for Biomolecular Mass Spectrometry (BayBioMS), Technical University of Munich, 85354 Freising, Germany
| | - Guillaume Médard
- Chair
of Proteomics and Bioanalytics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| |
Collapse
|
7
|
Niu F, Duan Y, Man Y, Liu W, Dai T, Zhang H, Li C, Wei D. Mitochondrial protein LETM1 and its-mediated CTMP are potential therapeutic targets for endometrial cancer. Anticancer Drugs 2022; 33:632-641. [PMID: 35324530 DOI: 10.1097/cad.0000000000001301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Leucine zipper/EF hand-containing transmembrane-1 (LETM1) is an important mitochondrial protein, while its function in endometrial cancer remains unknown. This study aimed to explore the function of LETM1 in endometrial cancer and reveal the underlying mechanisms involving carboxy-terminal modulator protein (CTMP). Immunohistochemistry was performed to detect the expression of LETM1 and CTMP in normal, atypical hyperplastic and endometrial cancer endometrial tissues. LETM1 and CTMP were silenced in two endometrial cancer cell lines (ISK and KLE), which were verified by western blot. Cell viability, colony number, migration and invasion were detected by cell counting kit-8, colony formation, wound healing and trans-well assays, respectively. A xenograft mouse model was established to determine the antitumor potential of LETM1/CTMP silencing in vivo . In addition, CTMP was overexpressed to evaluate its regulatory relationship with LETM1 in endometrial cancer cells. The expression of LETM1 and CTMP proteins were higher in endometrial cancer tissues than atypical hyperplastic tissues and were higher in atypical hyperplastic tissues than normal tissues. LETM1 and CTMP were also upregulated in ISK and KLE cells. Silencing of LETM1 or CTMP could decrease the viability, colony number, migration and invasion of endometrial cancer cells and the weight and volume of tumor xenografts. In addition, CTMP was downregulated by LETM1 silencing in KLE cells, and its overexpression enhanced the malignant characteristics of si-LETM1-transfected KLE cells. Silencing of LETM1 inhibits the malignant progression of endometrial cancer through downregulating CTMP.
Collapse
Affiliation(s)
- Feifei Niu
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan
- Department of Obstetrics and Gynecology, Shengli Oilfield Central Hospital, Dongying
| | - Yan Duan
- Department of Obstetrics and Gynecology, Shengli Oilfield Central Hospital, Dongying
| | - Ying Man
- Department of Stomatology, Shengli Oilfield Central Hospital, Dongying, Shandong, China
| | - Wei Liu
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan
| | - Tianyu Dai
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan
| | - Hui Zhang
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan
| | - Changzhong Li
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan
| | - Deying Wei
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan
| |
Collapse
|
8
|
Giuli MV, Mancusi A, Giuliani E, Screpanti I, Checquolo S. Notch signaling in female cancers: a multifaceted node to overcome drug resistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2022; 4:805-836. [PMID: 35582386 PMCID: PMC8992449 DOI: 10.20517/cdr.2021.53] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 12/24/2022]
Abstract
Drug resistance is one of the main challenges in cancer therapy, including in the treatment of female-specific malignancies, which account for more than 60% of cancer cases among women. Therefore, elucidating the underlying molecular mechanisms is an urgent need in gynecological cancers to foster novel therapeutic approaches. Notably, Notch signaling, including either receptors or ligands, has emerged as a promising candidate given its multifaceted role in almost all of the hallmarks of cancer. Concerning the connection between Notch pathway and drug resistance in the afore-mentioned tumor contexts, several studies focused on the Notch-dependent regulation of the cancer stem cell (CSC) subpopulation or the induction of the epithelial-to-mesenchymal transition (EMT), both features implicated in either intrinsic or acquired resistance. Indeed, the present review provides an up-to-date overview of the published results on Notch signaling and EMT- or CSC-driven drug resistance. Moreover, other drug resistance-related mechanisms are examined such as the involvement of the Notch pathway in drug efflux and tumor microenvironment. Collectively, there is a long way to go before every facet will be fully understood; nevertheless, some small pieces are falling neatly into place. Overall, the main aim of this review is to provide strong evidence in support of Notch signaling inhibition as an effective strategy to evade or reverse resistance in female-specific cancers.
Collapse
Affiliation(s)
- Maria V Giuli
- Laboratory of Molecular Pathology, Department of Molecular Medicine, Sapienza University, Rome 00161, Italy
| | - Angelica Mancusi
- Laboratory of Molecular Pathology, Department of Molecular Medicine, Sapienza University, Rome 00161, Italy
| | - Eugenia Giuliani
- Scientific Direction, San Gallicano Dermatological Institute IRCCS, Rome 00144, Italy
| | - Isabella Screpanti
- Laboratory of Molecular Pathology, Department of Molecular Medicine, Sapienza University, Rome 00161, Italy
| | - Saula Checquolo
- Department of Medico-Surgical Sciences and Biotechnology, Sapienza University, Latina 04100, Italy.,Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome 00161, Italy
| |
Collapse
|
9
|
Hua H, Zhang H, Chen J, Wang J, Liu J, Jiang Y. Targeting Akt in cancer for precision therapy. J Hematol Oncol 2021; 14:128. [PMID: 34419139 PMCID: PMC8379749 DOI: 10.1186/s13045-021-01137-8] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/03/2021] [Indexed: 02/08/2023] Open
Abstract
Biomarkers-guided precision therapeutics has revolutionized the clinical development and administration of molecular-targeted anticancer agents. Tailored precision cancer therapy exhibits better response rate compared to unselective treatment. Protein kinases have critical roles in cell signaling, metabolism, proliferation, survival and migration. Aberrant activation of protein kinases is critical for tumor growth and progression. Hence, protein kinases are key targets for molecular targeted cancer therapy. The serine/threonine kinase Akt is frequently activated in various types of cancer. Activation of Akt promotes tumor progression and drug resistance. Since the first Akt inhibitor was reported in 2000, many Akt inhibitors have been developed and evaluated in either early or late stage of clinical trials, which take advantage of liquid biopsy and genomic or molecular profiling to realize personalized cancer therapy. Two inhibitors, capivasertib and ipatasertib, are being tested in phase III clinical trials for cancer therapy. Here, we highlight recent progress of Akt signaling pathway, review the up-to-date data from clinical studies of Akt inhibitors and discuss the potential biomarkers that may help personalized treatment of cancer with Akt inhibitors. In addition, we also discuss how Akt may confer the vulnerability of cancer cells to some kinds of anticancer agents.
Collapse
Affiliation(s)
- Hui Hua
- State Key Laboratory of Biotherapy, Laboratory of Stem Cell Biology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Hongying Zhang
- State Key Laboratory of Biotherapy, Laboratory of Oncogene, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jingzhu Chen
- State Key Laboratory of Biotherapy, Laboratory of Oncogene, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiao Wang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jieya Liu
- State Key Laboratory of Biotherapy, Laboratory of Oncogene, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yangfu Jiang
- State Key Laboratory of Biotherapy, Laboratory of Oncogene, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
10
|
Wang B, Xu X, Liu X, Wang D, Zhuang H, He X, Han T, Hong J. Enolase-phosphatase 1 acts as an oncogenic driver in glioma. J Cell Physiol 2020; 236:1184-1194. [PMID: 32654229 DOI: 10.1002/jcp.29926] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 07/01/2020] [Indexed: 12/15/2022]
Abstract
Enolase-phosphatase 1 (ENOPH1), a newly identified enzyme involved in l-methionine biosynthesis, is associated with anxiety and depression. In this study, ENOPH1 was found to play a crucial role in promoting the proliferation and migration of glioma cells. Among high-grade glioma patients, the overall survival of the group showing high ENOPH1 expression was shorter than that of the group showing low ENOPH1 expression. ENOPH1 knockdown inhibited glioma cell proliferation and migration. In parallel, ENOPH1 knockdown suppressed tumor growth capacity and prolonged survival in an orthotopic glioma model. Mechanistically, we found that ENOPH1 activates the PI3K/AKT/mTOR signaling pathway by regulating THEM4. In conclusion, ENOPH1 is an important mediator that promotes glioma cell proliferation and migration.
Collapse
Affiliation(s)
- Bo Wang
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative diseases, Tianjin Neurosurgical Institute, Tianjin, China.,State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Xin Xu
- Department of Neurosurgery, Xuanwu Hospital, International Neuroscience Institute, Capital Medical University, Beijing, China
| | - Xi Liu
- Department of Gastroenterology, Tianjin Nankai Hospital, Tianjin, China
| | - Dong Wang
- Department of Neurosurgery, Tianjin Medical University, General Hospital, Tianjin Key Laboratory of Injuries, Variations, and Regeneration of Nervous System, Tianjin Neurological Institute, Tianjin, China
| | - Hao Zhuang
- Department of Hepatic Biliary Pancreatic Surgery, Cancer Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Xin He
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia.,Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin
| | - Tong Han
- Department of Medical Imaging, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative diseases, Tianjin Neurosurgical Institute, Tianjin, China
| | - Jian Hong
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative diseases, Tianjin Neurosurgical Institute, Tianjin, China
| |
Collapse
|
11
|
Liu Q, Wang Z, Zhou X, Tang M, Tan W, Sun T, Wang Y, Deng Y. miR-485-5p/HSP90 axis blocks Akt1 phosphorylation to suppress osteosarcoma cell proliferation and migration via PI3K/AKT pathway. J Physiol Biochem 2020; 76:279-290. [PMID: 32100243 DOI: 10.1007/s13105-020-00730-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 02/06/2020] [Indexed: 02/07/2023]
Abstract
Osteosarcoma (OS) is closely related to the dysregulation of various intracellular signaling pathways, especially the PI3K/Akt signaling pathway. Reportedly, HSP90 was responsible for phospho-Akt stabilization, and both AKT1 and HSP90 were upregulated within osteosarcoma. Herein, we demonstrated that AKT1 and HSP90 mRNA and protein expression were upregulated within osteosarcoma tissues and cells; AKT1 knockdown significantly inhibited OS cell viability. HSP90 knockdown suppressed the phosphorylation of AKT1, decreased ki-67 and Vimentin protein levels, enhanced p21 and E-cadherin protein levels, and inhibited OS cell proliferation and migration; AKT1 overexpression exerted opposing effects and significantly attenuated the effects of HSP90 knockdown. miR-485-5p targeted AKT1 and HSP90 3'-UTR to inhibit AKT1 and HSP90 expression. miR-485-5p overexpression dramatically reduced AKT1, HSP90, and ki-67 proteins, increased E-cadherin protein levels, and inhibited OS cell proliferation and migration. In conclusion, HSP90 knockdown blocked the phosphorylation of AKT1 suppressing the proliferation and migration capacity of OS cells via the PI3K/AKT pathway; miR-485-5p binds to HSP90 and AKT1 in their 3'-UTR to inhibit HSP90 and AKT1 expression, therefore exerting a tumor suppressor function within osteosarcoma.
Collapse
Affiliation(s)
- Qing Liu
- Department of Spine Surgery, The Third Xiangya Hospital of Central South University, No. 138, Tongzipo Road, Changsha, Hunan, People's Republic of China.,Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Zhenting Wang
- Department of Spine Surgery, The Third Xiangya Hospital of Central South University, No. 138, Tongzipo Road, Changsha, Hunan, People's Republic of China.,Department of urology Surgery, Haikou People's Hospital/Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, 410011, Hainan, China
| | - Xiaohua Zhou
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Mingying Tang
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Wei Tan
- Department of Spine Surgery, The Third Xiangya Hospital of Central South University, No. 138, Tongzipo Road, Changsha, Hunan, People's Republic of China.,Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Tianshi Sun
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Yifang Wang
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Youwen Deng
- Department of Spine Surgery, The Third Xiangya Hospital of Central South University, No. 138, Tongzipo Road, Changsha, Hunan, People's Republic of China.
| |
Collapse
|
12
|
Ni FB, Lin Z, Fan XH, Shi KQ, Ao JY, Wang XD, Chen RC. A novel genomic-clinicopathologic nomogram to improve prognosis prediction of hepatocellular carcinoma. Clin Chim Acta 2020; 504:88-97. [PMID: 32032609 DOI: 10.1016/j.cca.2020.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 01/14/2020] [Accepted: 02/03/2020] [Indexed: 12/12/2022]
Abstract
There is a lack of precise and clinical accessible model to predict the prognosis of hepatocellular carcinoma (HCC) in clinic practice currently. Here, an inclusive nomogram was developed by integrating genomic markers and clinicopathologic factors for predicting the outcome of patients with HCC. A total of 365 samples of HCC were obtained from the Cancer Genome Atlas (TCGA) database. The LASSO analysis was carried out to identify HCC-related mRNAs, and the multivariate Cox regression analysis was used to construct a genomic-clinicopathologic nomogram. As results, 9 mRNAs were finally identified as prognostic indicators, including RGCC, CDH15, XRN2, RAB3IL1, THEM4, PIF1, MANBA, FKTN and GABARAPL1, and used to establish a 9-mRNA classifier. Additionally, an inclusive nomogram was built up by combining the 9-mRNA classifier (P < 0.001) and clinicopathologic factors including age (P = 0.006) and metastasis (P < 0.001) to predict the mortality of HCC patients. Time-dependent receiver operating characteristic, index of concordance and calibration analyses indicated favorable accuracy of the model. Decision curve analysis suggested that appropriate intervention according to the established nomogram will bring net benefit when threshold probability was above 25%. The genomic-clinicopathologic model could be a reliable tool for predicting the mortality, helping determining the individualized treatment and probably improving HCC survival.
Collapse
Affiliation(s)
- Fu-Biao Ni
- The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, Wenzhou, Zhejiang 325000, China
| | - Zhuo Lin
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Hepatology Institute of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Xu-Hui Fan
- First School of Clinical Medicine, Wenzhou Medical University, Zhejiang, China
| | - Ke-Qing Shi
- Precision Medical Center Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jian-Yang Ao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiao-Dong Wang
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Hepatology Institute of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| | - Rui-Cong Chen
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Hepatology Institute of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
13
|
Chi Y, Xue J, Huang S, Xiu B, Su Y, Wang W, Guo R, Wang L, Li L, Shao Z, Jin W, Wu Z, Wu J. CapG promotes resistance to paclitaxel in breast cancer through transactivation of PIK3R1/P50. Theranostics 2019; 9:6840-6855. [PMID: 31660072 PMCID: PMC6815964 DOI: 10.7150/thno.36338] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 08/03/2019] [Indexed: 12/14/2022] Open
Abstract
Background: Chemotherapy resistance is a major problem in breast cancer treatment and a leading cause of mortality in breast cancer patients. Biomarkers for chemotherapy resistance is under investigation. Methods: Paclitaxel resistant cells were established and subjected to RNA sequencing. Analysis combined with two additional RNA-seq datasets was conducted. CapG expression in patients with adjuvant chemotherapy was studied in breast cancer resection specimens using IHC and related to pathological response and disease-free survival. Paclitaxel resistance was assessed by half-maximal inhibitory concentrations (IC50) and a mouse xenograft model. Results: Increased expression of actin-binding protein CapG strongly correlated with the resistance to paclitaxel chemotherapy and decreased probability to achieve pathological complete response in breast cancer patients. Overexpressing CapG significantly enhanced paclitaxel resistance in breast cancer cells and xenograft tumors. High CapG level also significantly correlated with shorter relapse-free survival as well as hyper-activation of PI3K/Akt signaling in breast cancer patients. Mechanistically, CapG enhanced PIK3R1 expression which led to increased PI3K/Akt activation. Unexpectedly, CapG was found to bind to the variant-specific promoter of PIK3R1/P50 and directly enhance its transcription. We also identified p300/CBP as a transcriptional coregulator of CapG, which is recruited to PIK3R1 promoter through interaction with CapG, thereby increasing PIK3R1/P50 transcription by enhancing histone H3K27 acetylation. Consistently, inhibiting p300/CBP substantially decreased CapG-dependent upregulation of PIK3R1/P50 and subsequent PI3K/Akt activation, resulting in increased sensitivity to paclitaxel treatment in breast cancer cells. Conclusion: High CapG levels may predict poor paclitaxel response in breast cancer patients. Targeting CapG-mediated hyperactivation of PI3K/Akt pathway may mitigate resistance to chemotherapy in breast cancer.
Collapse
|
14
|
Rajapakse VN, Luna A, Yamade M, Loman L, Varma S, Sunshine M, Iorio F, Sousa FG, Elloumi F, Aladjem MI, Thomas A, Sander C, Kohn KW, Benes CH, Garnett M, Reinhold WC, Pommier Y. CellMinerCDB for Integrative Cross-Database Genomics and Pharmacogenomics Analyses of Cancer Cell Lines. iScience 2018; 10:247-264. [PMID: 30553813 PMCID: PMC6302245 DOI: 10.1016/j.isci.2018.11.029] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 10/11/2018] [Accepted: 11/15/2018] [Indexed: 12/13/2022] Open
Abstract
CellMinerCDB provides a web-based resource (https://discover.nci.nih.gov/cellminercdb/) for integrating multiple forms of pharmacological and genomic analyses, and unifying the richest cancer cell line datasets (the NCI-60, NCI-SCLC, Sanger/MGH GDSC, and Broad CCLE/CTRP). CellMinerCDB enables data queries for genomics and gene regulatory network analyses, and exploration of pharmacogenomic determinants and drug signatures. It leverages overlaps of cell lines and drugs across databases to examine reproducibility and expand pathway analyses. We illustrate the value of CellMinerCDB for elucidating gene expression determinants, such as DNA methylation and copy number variations, and highlight complexities in assessing mutational burden. We demonstrate the value of CellMinerCDB in selecting drugs with reproducible activity, expand on the dominant role of SLFN11 for drug response, and present novel response determinants and genomic signatures for topoisomerase inhibitors and schweinfurthins. We also introduce LIX1L as a gene associated with mesenchymal signature and regulation of cellular migration and invasiveness.
Collapse
Affiliation(s)
- Vinodh N Rajapakse
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| | - Augustin Luna
- cBio Center, Dana-Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston, MA 02215, USA.
| | - Mihoko Yamade
- First Department of Medicine, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Lisa Loman
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Sudhir Varma
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Margot Sunshine
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA; General Dynamics Information Technology Inc., 3211 Jermantown Road, Fairfax, VA 22030, USA
| | - Francesco Iorio
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Fabricio G Sousa
- Centro De Estudos Em Células Tronco, Terapia Celular E Genética Toxicológica, Programa De Pós-Graduação Em Farmácia, Universidade Federal De Mato Grosso Do Sul, Campo Grande, MS 79070-900, Brazil
| | - Fathi Elloumi
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA; General Dynamics Information Technology Inc., 3211 Jermantown Road, Fairfax, VA 22030, USA
| | - Mirit I Aladjem
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Anish Thomas
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Chris Sander
- cBio Center, Dana-Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston, MA 02215, USA
| | - Kurt W Kohn
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Cyril H Benes
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Charlestown, MA 02129, USA
| | - Mathew Garnett
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - William C Reinhold
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Yves Pommier
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
15
|
Liu X, Yang Q, Zhu LH, Liu J, Deng KQ, Zhu XY, Liu Y, Gong J, Zhang P, Li S, Xia H, She ZG. Carboxyl-Terminal Modulator Protein Ameliorates Pathological Cardiac Hypertrophy by Suppressing the Protein Kinase B Signaling Pathway. J Am Heart Assoc 2018; 7:JAHA.118.008654. [PMID: 29945911 PMCID: PMC6064906 DOI: 10.1161/jaha.118.008654] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background Carboxyl‐terminal modulator protein (CTMP) has been implicated in cancer, brain injury, and obesity. However, the role of CTMP in pathological cardiac hypertrophy has not been identified. Methods and Results In this study, decreased expression of CTMP was observed in both human failing hearts and murine hypertrophied hearts. To further explore the potential involvement of CTMP in pathological cardiac hypertrophy, cardiac‐specific CTMP knockout and overexpression mice were generated. In vivo experiments revealed that CTMP deficiency exacerbated the cardiac hypertrophy, fibrosis, and function induced by pressure overload, whereas CTMP overexpression alleviated the response to hypertrophic stimuli. Consistent with the in vivo results, adenovirus‐mediated gain‐of‐function or loss‐of‐function experiments showed that CTMP also exerted a protective effect against hypertrophic responses to angiotensin II in vitro. Mechanistically, CTMP ameliorated pathological cardiac hypertrophy through the blockade of the protein kinase B signaling pathway. Moreover, inhibition of protein kinase B activation with LY294002 rescued the deteriorated effect in aortic banding–treated cardiac‐specific CTMP knockout mice. Conclusions Taken together, these findings imply, for the first time, that increasing the cardiac expression of CTMP may be a novel therapeutic strategy for pathological cardiac hypertrophy.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Cells, Cultured
- Disease Models, Animal
- Fibrosis
- Humans
- Hypertrophy, Left Ventricular/enzymology
- Hypertrophy, Left Ventricular/pathology
- Hypertrophy, Left Ventricular/physiopathology
- Hypertrophy, Left Ventricular/prevention & control
- Male
- Membrane Proteins/metabolism
- Mice, Knockout
- Myocytes, Cardiac/enzymology
- Myocytes, Cardiac/pathology
- Palmitoyl-CoA Hydrolase
- Proto-Oncogene Proteins c-akt/metabolism
- Rats, Sprague-Dawley
- Signal Transduction
- Thiolester Hydrolases/metabolism
- Ventricular Function, Left
- Ventricular Remodeling
Collapse
Affiliation(s)
- Xiaoxiong Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Qin Yang
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Institute of Model Animals of Wuhan University, Wuhan, China
- Basic Medical School, Wuhan University, Wuhan, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Li-Hua Zhu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jia Liu
- Department of Cardiology, First Hospital of Jilin University, Changchun, China
| | - Ke-Qiong Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Institute of Model Animals of Wuhan University, Wuhan, China
- Basic Medical School, Wuhan University, Wuhan, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Xue-Yong Zhu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Institute of Model Animals of Wuhan University, Wuhan, China
- Basic Medical School, Wuhan University, Wuhan, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Ye Liu
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Institute of Model Animals of Wuhan University, Wuhan, China
- Basic Medical School, Wuhan University, Wuhan, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Jun Gong
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Institute of Model Animals of Wuhan University, Wuhan, China
- Basic Medical School, Wuhan University, Wuhan, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Peng Zhang
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Institute of Model Animals of Wuhan University, Wuhan, China
- Basic Medical School, Wuhan University, Wuhan, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Shuyan Li
- Department of Cardiology, First Hospital of Jilin University, Changchun, China
| | - Hao Xia
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Zhi-Gang She
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Institute of Model Animals of Wuhan University, Wuhan, China
- Basic Medical School, Wuhan University, Wuhan, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| |
Collapse
|
16
|
Chen YC, Li HY, Liang JL, Ger LP, Chang HT, Hsiao M, Calkins MJ, Cheng HC, Chuang JH, Lu PJ. CTMP, a predictive biomarker for trastuzumab resistance in HER2-enriched breast cancer patient. Oncotarget 2018; 8:29699-29710. [PMID: 27447863 PMCID: PMC5444696 DOI: 10.18632/oncotarget.10719] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 05/28/2016] [Indexed: 01/05/2023] Open
Abstract
Trastuzumab is regarded as the primary therapy for patients with HER2-enriched breast cancer, but the pathological complete response for advanced cases is less than 30%. The underlying mechanism of trastuzumab resistance remains unclear and there are currently no conclusive biomarkers for patient response to trastuzumab. Identifying predictive biomarkers for trastuzumab response may allow treatments to be individually tailored and optimized multi-target therapies may be developed. CTMP activates AKT signaling in breast cancer and over-activation of AKT has been reported to contribute to trastuzumab resistance. In this study, we examined samples from 369 patients to investigate the correlation between CTMP expression level and patient outcome. Elevated CTMP expression was correlated with adverse outcomes in HER2-enriched patients including overall and disease-free survival as well as trastuzumab resistance. Ectopic expression of varying levels of CTMP in SkBR3 cells dose-dependently attenuated trastuzumab-mediated growth inhibition through AKT activation. In addition, inhibition of AKT signaling by AKT inhibitor IV and Rapamycin reversed CTMP-mediated trastuzumab resistance. In clinical samples, the high expression of CTMP was showed in trastuzumab non-responders and positively correlated with AKT activity. Taken together, we demonstrated that CTMP promotes AKT activation resulting in trastuzumab resistance in patients with HER2-enriched breast cancer. High CTMP expression not only predicted poor prognosis, but may also predict resistance to trastuzumab in HER2-enriched patients. Therefore, CTMP expression may be considered as a prognostic biomarker in HER2-enriched breast cancer and high expression may indicate a utility for AKT-inhibition in these patients.
Collapse
Affiliation(s)
- Yu-Chia Chen
- Graduate Institute of Clinical Medical Sciences, Medical College, Chang-Gung University, Tao-Yuan, Taiwan.,Division of General Surgery, Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Hao-Yi Li
- Institute of Clinical Medicine, Medical College, National Cheng Kung University, Tainan, Taiwan
| | - Jui-Lin Liang
- Institute of Clinical Medicine, Medical College, National Cheng Kung University, Tainan, Taiwan.,Department of General Surgery, Chi-Mei Medical Center, Liouying, Tainan, Taiwan
| | - Luo-Ping Ger
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Hong-Tai Chang
- Division of General Surgery, Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Marcus J Calkins
- Institute of Clinical Medicine, Medical College, National Cheng Kung University, Tainan, Taiwan
| | - Hui-Chuan Cheng
- Institute of Clinical Medicine, Medical College, National Cheng Kung University, Tainan, Taiwan
| | - Jiin-Haur Chuang
- Graduate Institute of Clinical Medical Sciences, Medical College, Chang-Gung University, Tao-Yuan, Taiwan.,The Division of Pediatric Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Pei-Jung Lu
- Institute of Clinical Medicine, Medical College, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
17
|
Sun X, Kellner M, Desai AA, Wang T, Lu Q, Kangath A, Qu N, Klinger C, Fratz S, Yuan JXJ, Jacobson JR, Garcia JGN, Rafikov R, Fineman JR, Black SM. Asymmetric Dimethylarginine Stimulates Akt1 Phosphorylation via Heat Shock Protein 70-Facilitated Carboxyl-Terminal Modulator Protein Degradation in Pulmonary Arterial Endothelial Cells. Am J Respir Cell Mol Biol 2017; 55:275-87. [PMID: 26959555 DOI: 10.1165/rcmb.2015-0185oc] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Asymmetric dimethylarginine (ADMA) induces the mitochondrial translocation of endothelial nitric oxide synthase (eNOS) through the nitration-mediated activation of Akt1. However, it is recognized that the activation of Akt1 requires phosphorylation events at threonine (T) 308 and serine (S) 473. Thus, the current study was performed to elucidate the potential effect of ADMA on Akt1 phosphorylation and the mechanisms that are involved. Exposure of pulmonary arterial endothelial cells to ADMA enhanced Akt1 phosphorylation at both threonine 308 and Ser473 without altering Akt1 protein levels, phosphatase and tensin homolog activity, or membrane Akt1 levels. Heat shock protein (Hsp) 90 plays a pivotal role in maintaining Akt1 activity, and our results demonstrate that ADMA decreased Hsp90-Akt1 interactions, but, surprisingly, overexpression of a dominant-negative Hsp90 mutant increased Akt1 phosphorylation. ADMA exposure or overexpression of dominant-negative Hsp90 increased Hsp70 levels, and depletion of Hsp70 abolished ADMA-induced Akt1 phosphorylation. ADMA decreased the interaction of Akt1 with its endogenous inhibitor, carboxyl-terminal modulator protein (CTMP). This was mediated by the proteasomal-dependent degradation of CTMP. The overexpression of CTMP attenuated ADMA-induced Akt1 phosphorylation at Ser473, eNOS phosphorylation at Ser617, and eNOS mitochondrial translocation. Finally, we found that the mitochondrial translocation of eNOS in our lamb model of pulmonary hypertension is associated with increased Akt1 and eNOS phosphorylation and reduced Akt1-CTMP protein interactions. In conclusion, our data suggest that CTMP is directly involved in ADMA-induced Akt1 phosphorylation in vitro and in vivo, and that increasing CTMP levels may be an avenue to treat pulmonary hypertension.
Collapse
Affiliation(s)
- Xutong Sun
- 1 Department of Medicine, Division of Translational and Regenerative Medicine, The University of Arizona, Tucson, Arizona
| | - Manuela Kellner
- 1 Department of Medicine, Division of Translational and Regenerative Medicine, The University of Arizona, Tucson, Arizona
| | - Ankit A Desai
- 1 Department of Medicine, Division of Translational and Regenerative Medicine, The University of Arizona, Tucson, Arizona
| | - Ting Wang
- 1 Department of Medicine, Division of Translational and Regenerative Medicine, The University of Arizona, Tucson, Arizona
| | - Qing Lu
- 2 Department of Neuroscience and Regenerative Medicine, Georgia Regents University, Augusta, Georgia
| | - Archana Kangath
- 1 Department of Medicine, Division of Translational and Regenerative Medicine, The University of Arizona, Tucson, Arizona
| | - Ning Qu
- 1 Department of Medicine, Division of Translational and Regenerative Medicine, The University of Arizona, Tucson, Arizona
| | - Christina Klinger
- 1 Department of Medicine, Division of Translational and Regenerative Medicine, The University of Arizona, Tucson, Arizona
| | - Sohrab Fratz
- 3 Pediatric Cardiology and Congenital Heart Disease, German Heart Center at the Technical University of Munich, Munich, Germany
| | - Jason X-J Yuan
- 1 Department of Medicine, Division of Translational and Regenerative Medicine, The University of Arizona, Tucson, Arizona
| | - Jeffrey R Jacobson
- 4 Department of Medicine, University of Illinois Chicago, Chicago, Illinois; and
| | - Joe G N Garcia
- 1 Department of Medicine, Division of Translational and Regenerative Medicine, The University of Arizona, Tucson, Arizona
| | - Ruslan Rafikov
- 1 Department of Medicine, Division of Translational and Regenerative Medicine, The University of Arizona, Tucson, Arizona
| | - Jeffrey R Fineman
- 5 Department of Pediatrics and.,6 Cardiovascular Research Institute, University of California San Francisco, San Francisco, California
| | - Stephen M Black
- 1 Department of Medicine, Division of Translational and Regenerative Medicine, The University of Arizona, Tucson, Arizona
| |
Collapse
|
18
|
Yang CJ, Liu YP, Dai HY, Shiue YL, Tsai CJ, Huang MS, Yeh YT. Nuclear HDAC6 inhibits invasion by suppressing NF-κB/MMP2 and is inversely correlated with metastasis of non-small cell lung cancer. Oncotarget 2016; 6:30263-76. [PMID: 26388610 PMCID: PMC4745796 DOI: 10.18632/oncotarget.4749] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 09/04/2015] [Indexed: 11/25/2022] Open
Abstract
Histone deacetylase 6 (HDAC6) is a unique member of the histone deacetylase family. Although HDAC6 is mainly localized in the cytoplasm, it can regulate the activities of the transcription factors in the nucleus. However, a correlation of intracellular distribution of HDAC6 with tumor progression is lacking. In this study, we found that a low frequency of nuclear HDAC6-positive cells in tumors was associated with distant metastasis and a worse overall survival in 134 patients with non-small cell lung cancer (NSCLC). Ectopic expression of wild-type HDAC6 promoted migration and invasion of A549 and H661 cells. However, the enforced expression of nuclear export signal-deleted HDAC6 inhibited the invasion but not the migration of both cell lines. The inhibitory effect of nuclear HDAC6 on invasion was mediated by the deacetylation of the p65 subunit of nuclear factor-κB, which decreased its DNA-binding activity to the MMP2 promoter, leading to the downregulation of MMP2 expression. Our findings indicated that the loss of nuclear HDAC6 may be a potential biomarker for predicting metastasis in patients with NSCLC.
Collapse
Affiliation(s)
- Chih-Jen Yang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Peng Liu
- Department of Genome Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hong-Ying Dai
- Department of Medical Laboratory Sciences and Biotechnology, Fooyin University, Kaohsiung, Taiwan
| | - Yow-Ling Shiue
- Institute of Biomedical Science, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Chia-Jung Tsai
- Institute of Biomedical Science, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Ming-Shyan Huang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yao-Tsung Yeh
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Medical Laboratory Sciences and Biotechnology, Fooyin University, Kaohsiung, Taiwan
| |
Collapse
|
19
|
Chang JW, Jung SN, Kim JH, Shim GA, Park HS, Liu L, Kim JM, Park J, Koo BS. Carboxyl-Terminal Modulator Protein Positively Acts as an Oncogenic Driver in Head and Neck Squamous Cell Carcinoma via Regulating Akt phosphorylation. Sci Rep 2016; 6:28503. [PMID: 27328758 PMCID: PMC4916413 DOI: 10.1038/srep28503] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 06/02/2016] [Indexed: 01/10/2023] Open
Abstract
The exact regulatory mechanisms of carboxyl-terminal modulator protein (CTMP) and its downstream pathways in cancer have been controversial and are not completely understood. Here, we report a new mechanism of regulation of Akt serine/threonine kinase, one of the most important dysregulated signals in head and neck squamous cell carcinoma (HNSCC) by the CTMP pathway and its clinical implications. We find that HNSCC tumor tissues and cell lines had relatively high levels of CTMP expression. Clinical data indicate that CTMP expression was significantly associated with positive lymph node metastasis (OR = 3.8, P = 0.033) and correlated with poor prognosis in patients with HNSCC. CTMP was also positively correlated with Akt/GSK-3β phosphorylation, Snail up-regulation and E-cadherin down-regulation, which lead to increased proliferation and epithelial-to-mesenchymal transition, suggesting that CTMP expression results in enhanced tumorigenic and metastatic properties of HNSCC cells. Moreover, CTMP suppression restores sensitivity to cisplatin chemotherapy. Intriguingly, all the molecular responses to CTMP regulation are identical regardless of p53 status in HNSCC cells. We conclude that CTMP promotes Akt phosphorylation and functions as an oncogenic driver and prognostic marker in HNSCC irrespective of p53.
Collapse
Affiliation(s)
- Jae Won Chang
- Department of Otolaryngology-Head and Neck Surgery, Research Institute for Medical Science, Chungnam National University, Daejeon, Republic of Korea
| | - Seung-Nam Jung
- Department of Otolaryngology-Head and Neck Surgery, Research Institute for Medical Science, Chungnam National University, Daejeon, Republic of Korea
| | - Ju-Hee Kim
- Department of Otolaryngology-Head and Neck Surgery, Research Institute for Medical Science, Chungnam National University, Daejeon, Republic of Korea
| | - Geun-Ae Shim
- Department of Otolaryngology-Head and Neck Surgery, Research Institute for Medical Science, Chungnam National University, Daejeon, Republic of Korea
| | - Hee Sung Park
- Department of Otolaryngology-Head and Neck Surgery, Research Institute for Medical Science, Chungnam National University, Daejeon, Republic of Korea
| | - Lihua Liu
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Jin Man Kim
- Research Institute for Medical Sciences and Pathology, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Jongsun Park
- Department of Pharmacology, Metabolic Diseases and Cell Signaling Laboratory, Research Institute for Medical Sciences, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Bon Seok Koo
- Department of Otolaryngology-Head and Neck Surgery, Research Institute for Medical Science, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
20
|
Stanca SE, Matthäus C, Neugebauer U, Nietzsche S, Fritzsche W, Dellith J, Heintzmann R, Weber K, Deckert V, Krafft C, Popp J. Chemo-spectroscopic sensor for carboxyl terminus overexpressed in carcinoma cell membrane. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:1831-9. [DOI: 10.1016/j.nano.2015.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 03/23/2015] [Accepted: 04/04/2015] [Indexed: 10/23/2022]
|
21
|
Stanca SE, Müller R, Dellith J, Nietzsche S, Stöckel S, Biskup C, Deckert V, Krafft C, Popp J, Fritzsche W. Magnetic apatite for structural insights on the plasma membrane. NANOTECHNOLOGY 2015; 26:035601. [PMID: 25548936 DOI: 10.1088/0957-4484/26/3/035601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The iron oxide-hydroxyapatite (FeOxHA) nanoparticles reported here differ from those reported before by their advantage of homogeneity and simple preparation; moreover, the presence of carboxymethyldextran (CMD), together with hydroxyapatite (HA), allows access to the cellular membrane, which makes our magnetic apatite unique. These nanoparticles combine magnetic behavior, Raman label ability and the property of interaction with the cellular membrane; they therefore represent an interesting material for structural differentiation of the cell membrane. It was observed by Raman spectroscopy, scanning electron microscopy (SEM) and fluorescence microscopy that FeOxHA adheres to the plasma membrane and does not penetrate the membrane. These insights make the nanoparticles a promising material for magnetic cell sorting, e.g. in microfluidic device applications.
Collapse
Affiliation(s)
- Sarmiza E Stanca
- Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, 07745 Jena, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Wang Z, Xu D, Ding HF, Kim J, Zhang J, Hai T, Yan C. Loss of ATF3 promotes Akt activation and prostate cancer development in a Pten knockout mouse model. Oncogene 2014; 34:4975-84. [PMID: 25531328 PMCID: PMC4476969 DOI: 10.1038/onc.2014.426] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 10/08/2014] [Accepted: 10/24/2014] [Indexed: 12/12/2022]
Abstract
Activating transcription factor 3 (ATF3) responds to diverse cellular stresses, and regulates oncogenic activities (for example, proliferation, survival and migration) through direct transcriptional regulation or protein-protein interactions. Although aberrant ATF3 expression is frequently found in human cancers, the role of ATF3 in tumorigenesis is poorly understood. Here, we demonstrate that ATF3 suppresses the development of prostate cancer induced by knockout of the tumor suppressor Pten in mouse prostates. Whereas the oncogenic stress elicited by Pten loss induced ATF3 expression in prostate epithelium, we found that ATF3 deficiency increased cell proliferation and promoted cell survival, leading to early onset of mouse prostatic intraepithelial neoplasia and the progression of prostate lesions to invasive adenocarcinoma. Importantly, the loss of ATF3 promoted activation of the oncogenic AKT signaling evidenced by high levels of phosphorylated AKT and S6 proteins in ATF3-null prostate lesions. In line with these in vivo results, knockdown of ATF3 expression in human prostate cancer cells by single guided RNA-mediated targeting activated AKT and increased matrix metalloproteinase-9 expression. Our results thus link ATF3 to the AKT signaling, and suggest that ATF3 is a tumor suppressor for the major subset of prostate cancers harboring dysfunctional Pten.
Collapse
Affiliation(s)
- Z Wang
- GRU Cancer Center, Georgia Regents University, Augusta, GA, USA.,Center for Cell Biology and Cancer Research, Albany Medical College, Albany, NY, USA
| | - D Xu
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, NY, USA
| | - H-F Ding
- GRU Cancer Center, Georgia Regents University, Augusta, GA, USA.,Department of Pathology, Georgia Regents University, Augusta, GA, USA
| | - J Kim
- Department of Biostatistics & Epidemiology, Georgia Regents University, Augusta, GA, USA
| | - J Zhang
- Department of Radiation Oncology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - T Hai
- Department of Molecular and Cellular Biochemistry, Ohio State University, Columbus, OH, USA
| | - C Yan
- GRU Cancer Center, Georgia Regents University, Augusta, GA, USA.,Center for Cell Biology and Cancer Research, Albany Medical College, Albany, NY, USA.,Department of Biochemistry and Molecular Biology, Georgia Regents University, Augusta, GA, USA
| |
Collapse
|