1
|
Albuquerque PBSD, Ramos LFS, Dantas MIJDS, Othmar FDS, Galúcio JM, Costa KSD, Costa MJF, Rodrigues NER, Lima LRAD, Sette-de-Souza PH. Combining in silico and in vitro approaches for understanding the mechanism of action of the galactomannan extracted from Cassia grandis seeds against colorectal cancer. Int J Biol Macromol 2025; 284:137909. [PMID: 39577517 DOI: 10.1016/j.ijbiomac.2024.137909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/10/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
This study aimed to investigate the antitumor activity of galactomannan extracted from Cassia grandis seeds (GCg) against colorectal cancer cells using both experimental and computational approaches. Galactomannan was extracted from C. grandis seeds and prepared into solutions with varying concentrations. The cytotoxicity of these solutions was tested on HT-29 and HCT-116 colorectal cancer cell lines using the MTT assay. Additionally, computational evaluations, including molecular docking and molecular dynamics simulations, were performed to explore the potential binding interactions of GCg with cyclin-dependent kinase 2 (CDK2). The experimental results demonstrated that GCg significantly inhibited the proliferation of HT-29 cells, especially at concentrations of 5 mg/mL. On the other hand, no concentration inhibited >30 % of HCT-116 cells. Computational analysis revealed that GCg could bind to the ATP-binding site of CDK2, promoting the inactive DFG-out conformation, similar to the known inhibitor K03861. This interaction suggests a mechanism through which GCg may exert its anticancer effects. GCg exhibits significant cytotoxic activity against HT-29 colorectal adenocarcinoma cells, likely through the inhibition of CDK2; however, its efficacy against HCT-116 cells is limited, possibly due to structural differences in the molecular targets. To the best of the authors' knowledge, no studies have explored the applications of GCg in cancers, particularly colorectal ones. Further studies are needed to explore the antimetastatic effects and potential clinical applications of GCg in colorectal cancer treatment.
Collapse
Affiliation(s)
- Priscilla Barbosa Sales de Albuquerque
- Programa de Pós-Graduação em Saúde e Desenvolvimento Socioambiental - Universidade de Pernambuco, Garanhuns, PE, Brasil; Programa de Pós-Graduação em Biologia Celular e Molecular Aplicada - UPE Santo Amaro, Brasil; Laboratório de Bioprospecção e Etnofarmacotoxicologia Aplicada (LABEA) - Universidade de Pernambuco, Garanhuns, PE, Brasil.
| | - Letícia Francine Silva Ramos
- Programa de Pós-Graduação em Saúde e Desenvolvimento Socioambiental - Universidade de Pernambuco, Garanhuns, PE, Brasil
| | | | - Filipe de Santana Othmar
- Laboratório de Bioprospecção e Etnofarmacotoxicologia Aplicada (LABEA) - Universidade de Pernambuco, Garanhuns, PE, Brasil
| | - João Marcos Galúcio
- Instituto de Biodiversidade e Florestas - Universidade Federal do Oeste do Pará, Brasil
| | - Kauê Santana da Costa
- Instituto de Biodiversidade e Florestas - Universidade Federal do Oeste do Pará, Brasil
| | - Moan Jéfter Fernandes Costa
- Programa de Pós-Graduação em Biologia Celular e Molecular Aplicada - UPE Santo Amaro, Brasil; Laboratório Multiusuário de Biotecnologia do Sertão Pernambucano (BIOSPE) - Universidade de Pernambuco, Arcoverde, PE, Brasil
| | | | - Luiza Rayanna Amorim de Lima
- Programa de Pós-Graduação em Saúde e Desenvolvimento Socioambiental - Universidade de Pernambuco, Garanhuns, PE, Brasil
| | - Pedro Henrique Sette-de-Souza
- Programa de Pós-Graduação em Saúde e Desenvolvimento Socioambiental - Universidade de Pernambuco, Garanhuns, PE, Brasil; Laboratório Multiusuário de Biotecnologia do Sertão Pernambucano (BIOSPE) - Universidade de Pernambuco, Arcoverde, PE, Brasil
| |
Collapse
|
2
|
Sankar R, Sharmila TM. Co, Cu, Ni, and Zn complexes of N-[(3-phenoxy phenyl)methylidene]-l-valine as α-glycosidase and α-amylase inhibitors: Synthesis, molecular docking & antimicrobial evaluation. Bioorg Chem 2024; 154:108010. [PMID: 39631113 DOI: 10.1016/j.bioorg.2024.108010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 11/23/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024]
Abstract
The ligand N-[(3-phenoxyphenyl)methylidene]-l-valine (HL) and its Co, Ni, Cu, and Zn derivatives (1-4) were synthesized and characterized. These compounds were tested for α-glucosidase and α-amylase inhibition activity, showing IC50 values of 10.51-51.36 µg/mL and 15.38-46.74 µg/mL, respectively, compared to Ascarbose. In silico molecular docking studies revealed strong binding affinities for α-glucosidase (-207.78 to -222.04 kcal/mol) and α-amylase (-159.5 to -161.82 kcal/mol), and potential anticancer activity against CDK2 (-119.6 to -126.53 kcal/mol). Antimicrobial assays against E. coli and C. albicans demonstrated significant activity, with inhibition zones of 12.5-16.8 mm and 13.5-20.05 mm, respectively. The results reveal a fascinating array of pharmacological properties of these compounds and suggest their potential for future drug development.
Collapse
Affiliation(s)
- Raji Sankar
- Department of Chemistry, Noorul Islaam Centre for Higher Education, Kumaracoil 629180, Kanyakumari District, Tamil Nadu, India.
| | - T M Sharmila
- Department of Chemistry, Noorul Islaam Centre for Higher Education, Kumaracoil 629180, Kanyakumari District, Tamil Nadu, India
| |
Collapse
|
3
|
Advani D, Kumar P. Uncovering Cell Cycle Dysregulations and Associated Mechanisms in Cancer and Neurodegenerative Disorders: A Glimpse of Hope for Repurposed Drugs. Mol Neurobiol 2024; 61:8600-8630. [PMID: 38532240 DOI: 10.1007/s12035-024-04130-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 03/19/2024] [Indexed: 03/28/2024]
Abstract
The cell cycle is the sequence of events orchestrated by a complex network of cell cycle proteins. Unlike normal cells, mature neurons subsist in a quiescent state of the cell cycle, and aberrant cell cycle activation triggers neuronal death accompanied by neurodegeneration. The periodicity of cell cycle events is choreographed by various mechanisms, including DNA damage repair, oxidative stress, neurotrophin activity, and ubiquitin-mediated degradation. Given the relevance of cell cycle processes in cancer and neurodegeneration, this review delineates the overlapping cell cycle events, signaling pathways, and mechanisms associated with cell cycle aberrations in cancer and the major neurodegenerative disorders. We suggest that dysregulation of some common fundamental signaling processes triggers anomalous cell cycle activation in cancer cells and neurons. We discussed the possible use of cell cycle inhibitors for neurodegenerative disorders and described the associated challenges. We propose that a greater understanding of the common mechanisms driving cell cycle aberrations in cancer and neurodegenerative disorders will open a new avenue for the development of repurposed drugs.
Collapse
Affiliation(s)
- Dia Advani
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), Shahbad Daulatpur, Bawana Road, New Delhi, Delhi, 110042, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), Shahbad Daulatpur, Bawana Road, New Delhi, Delhi, 110042, India.
| |
Collapse
|
4
|
Hu S, Tian G, Bai Y, Qu A, He Q, Chen L, Xu P. Alternative splicing dynamically regulates common carp embryogenesis under thermal stress. BMC Genomics 2024; 25:918. [PMID: 39358679 PMCID: PMC11448050 DOI: 10.1186/s12864-024-10838-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Thermal stress is a major environmental factor affecting fish development and survival. Common carp (Cyprinus carpio) are susceptible to heat stress in their embryonic and larval phases, but the thermal stress response of alternative splicing during common carp embryogenesis remains poorly understood. RESULTS Using RNA-seq data from eight developmental stages and four temperatures, we constructed a comprehensive profile of alternative splicing (AS) during the embryogenesis of common carp, and found that AS genes and events are widely distributed among all stages. A total of 5,835 developmental stage-specific AS (SAS) genes, 21,368 temperature-specific differentially expressed genes (TDEGs), and 2,652 temperature-specific differentially AS (TDAS) genes were identified. Hub TDAS genes in each developmental stage, such as taf2, hnrnpa1, and drg2, were identified through protein-protein interaction (PPI) network analysis. The early developmental stages may be more sensitive to temperature, with thermal stress leading to a massive increase in the number of expressed transcripts, TDEGs, and TDAS genes in the morula stage, followed by the gastrula stage. GO and KEGG analyses showed that from the morula stage to the neurula stage, TDAS genes were more involved in intracellular transport, protein modification, and localization processes, while from the optic vesicle stage to one day post-hatching, they participated more in biosynthetic processes. Further subgenomic analysis revealed that the number of AS genes and events in subgenome B was generally higher than that in subgenome A, and the homologous AS genes were significantly enriched in basic life activity pathways, such as mTOR signaling pathway, p53 signaling pathway, and MAPK signaling pathway. Additionally, lncRNAs can play a regulatory role in the response to thermal stress by targeting AS genes such as lmnl3, affecting biological processes such as apoptosis and axon guidance. CONCLUSIONS In short, thermal stress can affect alternative splicing regulation during common carp embryogenesis at multiple levels. Our work complemented some gaps in the study of alternative splicing at both levels of embryogenesis and thermal stress in C. carpio and contributed to the comprehension of environmental adaptation formation in polyploid fishes during embryogenesis.
Collapse
Affiliation(s)
- Shuimu Hu
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Guopeng Tian
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Yulin Bai
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Ang Qu
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Qian He
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Lin Chen
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China.
| | - Peng Xu
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China.
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
5
|
Royet C, Diot S, Onofre M, Lecki L, Pastore M, Reynes C, Lorcy F, Lacheretzszablewski V, Serre I, Morris MC. Multiplexed Profiling of CDK Kinase Activities in Tumor Biopsies with Fluorescent Peptide Biosensors. ACS Sens 2024; 9:2964-2978. [PMID: 38863434 DOI: 10.1021/acssensors.4c00139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Detection of disease biomarkers constitutes a major challenge for the development of personalized and predictive diagnostics as well as companion assays. Protein kinases (PKs) involved in the coordination of cell cycle progression and proliferation that are hyperactivated in human cancers constitute attractive pharmacological targets and relevant biomarkers. Although it is relatively straightforward to assess the relative abundance of PKs in a biological sample, there is not always a direct correlation with enzymatic activity, which is regulated by several posttranslational mechanisms. Studies of relative abundance therefore convey limited information, and the lack of selective, sensitive, and standardized tools together with the inherent complexity of biological samples makes it difficult to quantify PK activities in physio-pathological tissues. To address this challenge, we have developed a toolbox of fluorescent biosensors that report on CDK activities in a sensitive, selective, dose-dependent, and quantitative fashion, which we have implemented to profile CDK activity signatures in cancer cell lines and biopsies from human tumors. In this study, we report on a standardized and calibrated biosensing approach to quantify CDK1,2,4, and 6 activities simultaneously through a combination of four different biosensors in a panel of 40 lung adenocarcinoma and 40 follicular lymphoma samples. CDK activity profiling highlighted two major patterns which were further correlated with age, sex of patients, tumor size, grade, and genetic and immunohistochemical features of the biopsies. Multiplex CDKACT biosensing technology provides new and complementary information relative to current genetic and immunohistochemical characterization of tumor biopsies, which will be useful for diagnostic purposes, potentially guiding therapeutic decision. These fluorescent peptide biosensors offer promise for personalized diagnostics based on kinase activity profiling.
Collapse
Affiliation(s)
- Chloé Royet
- Institut des Biomolécules Max Mousseron, CNRS, UMR 5247, Montpellier University, 1919 Route de Mende, 34293 Montpellier, France
| | - Sébastien Diot
- Institut des Biomolécules Max Mousseron, CNRS, UMR 5247, Montpellier University, 1919 Route de Mende, 34293 Montpellier, France
| | - Mélanie Onofre
- Institut des Biomolécules Max Mousseron, CNRS, UMR 5247, Montpellier University, 1919 Route de Mende, 34293 Montpellier, France
| | - Lennard Lecki
- Institut des Biomolécules Max Mousseron, CNRS, UMR 5247, Montpellier University, 1919 Route de Mende, 34293 Montpellier, France
| | - Manuela Pastore
- StatABio Facility─Biocampus, UAR 3426 CNRS─US 09 INSERM, Montpellier University, 141 rue de la Cardonille, 34094 Montpellier Cedex 05, France
| | - Christelle Reynes
- StatABio Facility─Biocampus, UAR 3426 CNRS─US 09 INSERM, Montpellier University, 141 rue de la Cardonille, 34094 Montpellier Cedex 05, France
| | - Frederique Lorcy
- University Hospital Centre Montpellier, 80 Av. Augustin Fliche, 34295 Montpellier, France
| | | | - Isabelle Serre
- University Hospital Centre Montpellier, 80 Av. Augustin Fliche, 34295 Montpellier, France
| | - May C Morris
- Institut des Biomolécules Max Mousseron, CNRS, UMR 5247, Montpellier University, 1919 Route de Mende, 34293 Montpellier, France
| |
Collapse
|
6
|
He J, Zhao Y, Zhang Y, Zhang Z, Li D, Xu Q. FTO regulates osteoclast development by modulating the proliferation and apoptosis of osteoclast precursors in inflammatory conditions. Cell Signal 2024; 117:111098. [PMID: 38365111 DOI: 10.1016/j.cellsig.2024.111098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/07/2024] [Accepted: 02/11/2024] [Indexed: 02/18/2024]
Abstract
Periodontitis is an oral inflammatory disease that causes alveolar bone destruction by activating osteoclast. FTO, a crucial demethylase of N6-methyladenosine(m6A), exerts essential function in maintaining bone homeostasis. However, the effects of FTO on periodontitis-related bone destruction remain unknown. To investigate its role in inflammatory osteoclastogenesis, we overexpressed FTO in osteoclast precursor cells; RNA-seq revealed that differentially expressed genes were mainly enriched in cell cycle, DNA replication, DNA damage response and apoptosis in FTO overexpression cells during RANKL and LPS-stimulated osteoclast differentiation. FTO overexpression upregulated the expression of S phase-related proteins (Cyclin A2, CDK2), and decreased the expression of DNA damage related proteins in osteoclast precursor cells. FTO promoted cell proliferation demonstrated by EdU and CCK8 assay, and reduced apoptotic rate and the expression of apoptosis-related proteins in osteoclast precursor cell. Conversely, FTO inhibitor FB23-2 produced the reverse effect. Mechanistically, FTO overexpression promoted the stability of CyclinA2 and CDK2 mRNA. These results were consistent in m6A binding protein YTHDF2 knockdown cells. Moreover, FB23-2 suppressed osteoclast-related gene expression, osteoclast formation and bone resorption ability. Treatment of FB23-2 reduced the alveolar bone loss in mice of experimental periodontitis. Collectively, our findings revealed that FTO enhanced the mRNA stability and expression of Cyclin A2, CDK2 in a YTHDF2-dependent manner in osteoclast precursor cells, promoted cell proliferation and inhibited cell apoptosis. FB23-2 reduced the formation of osteoclasts, resulted in alleviating the bone destruction in periodontitis mice. These findings indicated that FTO might be the potential target of the treatment of bone loss in periodontitis.
Collapse
Affiliation(s)
- Jinlin He
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China.
| | - Yiqing Zhao
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China.
| | - Yiwen Zhang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China.
| | - Zhanqi Zhang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China.
| | - Di Li
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China.
| | - Qiong Xu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China.
| |
Collapse
|
7
|
Liang K, Wang Q, Qiu L, Gong X, Chen Z, Zhang H, Ding K, Liu Y, Wei J, Lin S, Fu S, Du H. Combined Inhibition of UBE2C and PLK1 Reduce Cell Proliferation and Arrest Cell Cycle by Affecting ACLY in Pan-Cancer. Int J Mol Sci 2023; 24:15658. [PMID: 37958642 PMCID: PMC10650476 DOI: 10.3390/ijms242115658] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Various studies have shown that the cell-cycle-related regulatory proteins UBE2C, PLK1, and BIRC5 promote cell proliferation and migration in different types of cancer. However, there is a lack of in-depth and systematic research on the mechanism of these three as therapeutic targets. In this study, we found a positive correlation between the expression of UBE2C and PLK1/BIRC5 in the Cancer Genome Atlas (TCGA) database, revealing a potential combination therapy candidate for pan-cancer. Quantitative real-time PCR (qRT-PCR), Western blotting (WB), cell phenotype detection, and RNA-seq techniques were used to evidence the effectiveness of the combination candidate. We found that combined interference of UBE2C with PLK1 and UBE2C with BIRC5 affected metabolic pathways by significantly downregulating the mRNA expression of IDH1 and ACLY, which was related to the synthesis of acetyl-CoA. By combining the PLK1 inhibitor volasertib and the ACLY inhibitor bempedoic acid, it showed a higher synergistic inhibition of cell viability and higher synergy scores in seven cell lines, compared with those of other combination treatments. Our study reveals the potential mechanisms through which cell-cycle-related genes regulate metabolism and proposes a potential combined targeted therapy for patients with higher PLK1 and ACLY expression in pan-cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Hongli Du
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (K.L.); (Q.W.); (L.Q.); (X.G.); (Z.C.); (H.Z.); (K.D.); (Y.L.); (J.W.); (S.L.); (S.F.)
| |
Collapse
|
8
|
Li Y, Zhou X, Lyu Z. Analysis of two-gene signatures and related drugs in small-cell lung cancer by bioinformatics. Open Med (Wars) 2023; 18:20230806. [PMID: 37808164 PMCID: PMC10560035 DOI: 10.1515/med-2023-0806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 08/29/2023] [Accepted: 09/01/2023] [Indexed: 10/10/2023] Open
Abstract
Small-cell lung cancer (SCLC) has a poor prognosis and can be diagnosed with systemic metastases. Nevertheless, the molecular mechanisms underlying the development of SCLC are unclear, requiring further investigation. The current research aims to identify relevant biomarkers and available drugs to treat SCLC. The bioinformatics analysis comprised three Gene Expression Omnibus datasets (including GSE2149507, GSE6044, and GSE30219). Using the limma R package, we discovered differentially expressed genes (DEGs) in the current work. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were made by adopting the DAVID website. The DEG protein-protein interaction network was built based on the Search Tool for the Retrieval of Interacting Genes/Proteins website and visualized using the CytoHubba plugin in Cytoscape, aiming to screen the top ten hub genes. Quantitative real-time polymerase chain reaction was adopted for verifying the level of the top ten hub genes. Finally, the potential drugs were screened and identified using the QuartataWeb database. Totally 195 upregulated and 167 downregulated DEGs were determined. The ten hub genes were NCAPG, BUB1B, TOP2A, CCNA2, NUSAP1, UBE2C, AURKB, RRM2, CDK1, and KIF11. Ten FDA-approved drugs were screened. Finally, two genes and related drugs screened could be the prospective drug targets for SCLC treatment.
Collapse
Affiliation(s)
- Yi Li
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Xiwen Zhou
- Medical College, Shantou University, Shantou, China
| | - Zhi Lyu
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
- Department of Senior Cadres Ward, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
9
|
Zhuang Y, Wang L, Ji C, Sun Y, Shao F. Construction of a novel pyrotosis-related prognostic model of esophageal square cell carcinoma and determination of the anti-tumor effect of WFDC12. Funct Integr Genomics 2023; 23:177. [PMID: 37225895 DOI: 10.1007/s10142-023-01103-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/05/2023] [Accepted: 05/15/2023] [Indexed: 05/26/2023]
Abstract
Esophageal squamous cell carcinoma (ESCC) is a prevalent cancer type with a poor prognosis. As a form of programmed cell death, pyroptosis has been implicated in cancer growth, invasion, and metastasis. To investigate the relationship between pyroptosis and the prognosis of ESCC, we analyzed the expression profiles and clinical data of patients with ESCC, obtained from the Gene Expression Omnibus and The Cancer Genome Atlas databases, using bioinformatics analysis. Univariate Cox, multivariate Cox, and LASSO Cox regression analyses were conducted to develop a pyroptosis-related prognostic model (riskScore). CIBERSORT and MCPcounter algorithm evaluated the proportion of various immune infiltrating cells. Tissues from 16 patients were collected to verify the expression of key pyroptosis-related genes (PRGs) using real-time quantitative PCR (RT-qPCR), western blot, and immunohistochemical assays. Additionally, functional assays were performed in ESCC cell lines KYSE-150 and ECA-109 to examine the role of key PRGs. Among 25 pyroptosis-related regulators, 12 genes exhibited differential expression between tumor and normal tissues. Based on the differential expression of PRGs, we identified two subgroups with distinct clinical and molecular features. We further established a pyroptosis-related model with high prognostic value. In addition, we found a significant association of PRGs and riskScore with immune cell infiltration and the response rate of immunotherapy. Furthermore, we confirmed the low expression of WFDC12 in ESCC. Cellular assays demonstrated that the knockdown of WFDC12 in ESCC cell lines promoted cell proliferation and migration. Collectively, our findings highlight the critical role of PRGs in the development and prognosis of ESCC, while our riskScore could accurately predict the prognosis and immunogenicity of ESCC. Finally, our preliminary evidence suggests a protective role of WFDC12 in ESCC in vitro.
Collapse
Affiliation(s)
- Yu Zhuang
- Department of thoracic surgery, Nanjing Chest Hospital, Nanjing, China
- Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Lan Wang
- Digestive Endoscopy Center, Affiliated Hospital of Nanjing University of Chinese Medicine (Jiangsu Provincial Hospital of Chinese Medicine), Nanjing, 210029, China
| | - Chengjian Ji
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, 210029, China
| | - Yungang Sun
- Department of thoracic surgery, Nanjing Chest Hospital, Nanjing, China.
- Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China.
| | - Feng Shao
- Department of thoracic surgery, Nanjing Chest Hospital, Nanjing, China.
- Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
10
|
Ding C, Yang X, Li S, Zhang E, Fan X, Huang L, He Z, Sun J, Ma J, Zang L, Zheng M. Exploring the role of pyroptosis in shaping the tumor microenvironment of colorectal cancer by bulk and single-cell RNA sequencing. Cancer Cell Int 2023; 23:95. [PMID: 37198617 DOI: 10.1186/s12935-023-02897-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/12/2023] [Indexed: 05/19/2023] Open
Abstract
BACKGROUND Emerging studies have shown that pyroptosis plays a non-negligible role in the development and treatment of tumors. However, the mechanism of pyroptosis in colorectal cancer (CRC) remains still unclear. Therefore, this study investigated the role of pyroptosis in CRC. METHODS A pyroptosis-related risk model was developed using univariate Cox regression and LASSO Cox regression analyses. Based on this model, pyroptosis-related risk scores (PRS) of CRC samples with OS time > 0 from Gene Expression Omnibus (GEO) database and The Cancer Genome Atlas (TCGA) database were calculated. The abundance of immune cells in CRC tumor microenvironment (TME) was predicted by single-sample gene-set enrichment analysis (ssGSEA). Then, the responses to chemotherapy and immunotherapy were predicted by pRRophetic algorithm, the tumor immune dysfunction and exclusion (TIDE) and SubMap algorithms, respectively. Moreover, the Cancer Therapeutics Response Portal (CTRP) and PRISM Repurposing dataset (PRISM) were used to explore novel drug treatment strategies of CRC. Finally, we investigated pyroptosis-related genes in the level of single-cell and validated the expression levels of these genes between normal and CRC cell lines by RT-qPCR. RESULTS Survival analysis showed that CRC samples with low PRS had better overall survival (OS) and progression-free survival (PFS). CRC samples with low PRS had higher immune-related gene expression and immune cell infiltration than those with high PRS. Besides, CRC samples with low PRS were more likely to benefit from 5-fluorouracil based chemotherapy and anti-PD-1 immunotherapy. In novel drug prediction, some compounds such as C6-ceramide and noretynodrel, were inferred as potential drugs for CRC with different PRS. Single-cell analysis revealed pyroptosis-related genes were highly expressed in tumor cells. RT-qPCR also demonstrated different expression levels of these genes between normal and CRC cell lines. CONCLUSIONS Taken together, this study provides a comprehensive investigation of the role of pyroptosis in CRC at the bulk RNA sequencing (RNA-seq) and single-cell RNA sequencing (scRNA-seq) levels, advances our understanding of CRC characteristics, and guides more effective treatment regimens.
Collapse
Affiliation(s)
- Chengsheng Ding
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Xiao Yang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Shuchun Li
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Enkui Zhang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Xiaodong Fan
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Ling Huang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Zirui He
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Jing Sun
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China.
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200025, China.
| | - Junjun Ma
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China.
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200025, China.
| | - Lu Zang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China.
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200025, China.
| | - Minhua Zheng
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China.
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200025, China.
| |
Collapse
|
11
|
Dou W, Xie J, Chen J, Zhou J, Xu Z, Wang Z, Zhu Q. Overexpression of adrenomedullin (ADM) alleviates the senescence of human dental pulp stem cells by regulating the miR-152/CCNA2 pathway. Cell Cycle 2023; 22:565-579. [PMID: 36310381 PMCID: PMC9928452 DOI: 10.1080/15384101.2022.2135621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The limitation of human dental pulp stem cells (DPSCs), which have potential application value in regenerative medicine, is that they are prone to age in vitro. Studies have shown adrenomedullin (ADM) is believed to promote the proliferation of human DPSCs, but whether it can also affect aging remains to be investigated. A lentivirus vector was used to construct human DPSCs overexpressing ADM. Senescence tests were carried out on cells of the 7th and 15th passage. Transcriptome analysis was conducted to analyze microRNA expression regulation changes after human DPSCs overexpressed ADM. H2O2 induced the aging model of human DPSCs, and we examined the mechanism of recovery of aging through transfection experiments with miR-152 mimic, pCDH-CCNA2, and CCNA2 siRNA. Overexpression of ADM significantly upregulated the G2/M phase ratio of human DPSCs in natural passage culture (P = 0.001) and inhibited the expression of p53 (P = 0.014), P21 WAF1 (P = 0.015), and P16 INK4A (P = 0.001). Decreased ROS accumulation was observed in human DPSCs during long-term natural passage (P = 0.022). Transcriptome analysis showed that miR-152 was significantly upregulated during human DPSC senescence (P = 0.001) and could induce cell senescence by directly targeting CCNA2. Transfection with miR-152 mimic significantly reversed the inhibitory effect of ADM overexpression on p53 (P = 0.006), P21 WAF1 (P = 0.012), and P16 INK4A (P = 0.01) proteins in human DPSCs (H2O2-induced). In contrast, pCDH-CCNA2 weakened the effect of the miR-152 mimic, thus promoting cell proliferation and antiaging. ADM-overexpressing human DPSCs promote cell cycle progression and resist cellular senescence through CCNA2 expression promotion by inhibiting miR-152.
Collapse
Affiliation(s)
- Wenxue Dou
- Department of Stomatology, The First Affiliated Hospital of Naval Medical University: Changhai Hospital, Shanghai, China
| | - Jiaye Xie
- Department of Stomatology, Tongren Hospital Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jianan Chen
- Department of Stomatology, The First Affiliated Hospital of Naval Medical University: Changhai Hospital, Shanghai, China
| | - Jiajun Zhou
- Department of Stomatology, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Zunyue Xu
- Department of Stomatology, Shanghai Songjiang District Central Hospital, Shanghai, China
| | - Zheng Wang
- Department of Stomatology, Tongren Hospital Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qiang Zhu
- Department of Stomatology, The First Affiliated Hospital of Naval Medical University: Changhai Hospital, Shanghai, China,CONTACT Qiang Zhu Department of Stomatology, The First Affiliated Hospital of Naval Medical University: Changhai Hospital, Shanghai200433, China
| |
Collapse
|
12
|
Liu M, Zhang Y, Zhang A, Deng Y, Gao X, Wang J, Wang Y, Wang S, Liu J, Chen S, Yao W, Liu X. Compound K is a potential clinical anticancer agent in prostate cancer by arresting cell cycle. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 109:154584. [PMID: 36610114 DOI: 10.1016/j.phymed.2022.154584] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 11/25/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Ginsenosides, phenolic compounds, and polysaccharides are the bioactive constituents of Panax ginseng Meyer. Compound K (CK) is a secondary ginsenoside with better bioavailability. It is also a promising anticancer agent. PURPOSE We aimed to evaluate the effect of CK on prostate cancer (PCa) and its potential mechanisms. STUDY DESIGN The proliferation, migration and cell cycle of PCa cells after CK treatment were assessed in various PCa cell lines. Docetaxel was used as a positive control drug. Unlike other published studies, the potential mechanisms of CK (50 μM) were investigated by an unbiased global transcriptome sequencing in the current study. METHODS Key CK related genes (CRGs) with prognostic significance were identified and verified by bioinformatic methods using data from the TCGA dataset and GSE21034 dataset. The role of CDK1 in the effect of CK treatment on PCa cells was investigated by overexpression of CDK1. RESULTS CK inhibited the proliferation and migration of PCa cells at concentrations (less than 25 μM) without obvious cytotoxicity. Five key CRGs with prognostic significance were identified, including CCNA2, CCNB2, CCNE2, CDK1, and PKMYT1, which are involved in cell cycle pathways. CK inhibited the expression of these 5 genes and the cell cycle of PCa cells. According to the results of bioinformatic analysis, the expression of the five key CRGs was strongly associated with poor prognosis and advanced pathological stage and grade of PCa. In addition, CK could restore androgen sensitivity in castration-resistant PCa cells, probably by inhibiting the expression of CDK1. After CDK1 overexpression, the inhibition of proliferation and migration of PCa cells by CK was decreased. The inhibition on the phosphorylation of AKT by CK was also reduced. CONCLUSION CK can inhibit PCa cells, and the mechanisms may be associated with the inhibition of cell cycle pathways through CDK1. CK is also a potential clinical anticancer agent for treating PCa.
Collapse
Affiliation(s)
- Man Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yucong Zhang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - An Zhang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuxuan Deng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xintao Gao
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiaxin Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yi Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, Zhejiang, China
| | - Shaogang Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jihong Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shaoyong Chen
- Hematology-Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Weimin Yao
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaming Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
13
|
Striatal ZBTB16 Is Associated With Cognitive Deficits in Alzheimer Disease Mice. Int Neurourol J 2022; 26:S106-116. [PMID: 36503213 PMCID: PMC9767687 DOI: 10.5213/inj.2244254.127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/15/2022] [Indexed: 11/30/2022] Open
Abstract
PURPOSE In Alzheimer disease (AD), brain regions such as the cortex and the hippocampus show abundant amyloid load which correlates with cognitive function decline. Prior to the significant development of AD pathophysiology, patients report the manifestation of neuropsychiatric symptoms, indicating a functional interplay between basal ganglia structures and hippocampal regions. Zinc finger and BTB domain-containing protein 16 (ZBTB16) is a transcription factor that controls the expression of downstream genes and the involvement of ZBTB16 in the striatum undergoing pathological aging in AD and the resulting behavioral phenotypes has not yet been explored. METHODS To study molecular alterations in AD pathogenesis, we analyzed the brain from amyloid precursor protein (APP)/ presenilin 1 (PS1) transgenic mice. The molecular changes in the striatal region of the brain were analyzed via the immunoblotting, and the quantitative RNA sequencing. The cognitive impairments of APP/PS1 mice were assessed via 3 behavioral tests: 3-chamber test, Y-maze test, and noble object recognition test. And multielectrode array experiments for the analysis of the neuronal activity of the striatum in APP/PS1 mice was performed. RESULTS We found that the alteration in ZBTB16 levels that occurred in the early ages of the pathologically aging striatum coalesces with the disruption of transcriptional dysregulation while causing social memory deficits, anxiety-like behavior. The early ZBTB16 knockdown treatment in the striatum of APP/PS1 mice rescued cognition that continued into later age. CONCLUSION This study demonstrates that perturbation of transcriptional regulation of ZBTB16 during pathological aging may influence cognitive impairments and reveals a potent approach to targeting the transcriptional regulation of the striatum for the treatment of AD.
Collapse
|
14
|
Lu SY, Hua J, Liu J, Wei MY, Liang C, Meng QC, Zhang B, Yu XJ, Wang W, Xu J. Pyroptosis-related lncRNA pairs to estimate the molecular features and prognostic outcomes of pancreatic ductal adenocarcinoma. Transl Oncol 2022; 25:101524. [PMID: 36041293 PMCID: PMC9449668 DOI: 10.1016/j.tranon.2022.101524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/09/2022] [Accepted: 08/24/2022] [Indexed: 10/31/2022] Open
Abstract
Pyroptosis is a form of programmed cell death associated with inflammatory alterations. However, the intrinsic mechanisms and underlying correlation of pyroptosis-related lncRNAs (PRLs) in pancreatic ductal adenocarcinoma (PDAC) remain unclear. The objective of the current research was to identify pyroptosis-related lncRNAs and a prognostic model to predict the prognosis of patients. We extracted pyroptosis-related lncRNAs to construct a risk model and validated them at Fudan University Shanghai Cancer Center. Crosstalk between lncRNA SNHG10 and GSDMD was found to regulate pyroptosis levels. A new algorithm was used to establish a 0 or 1 PRL pair matrix and prognostic model. Six pyroptosis-related lncRNA pairs were identified and utilized to construct a risk model. The low-risk groups exhibited better prognoses than the high-risk groups. The area under the curve (AUC) indicated extremely high accuracy, reaching 0.810 at 1 year, 0.850 at 2 years, and 0.850 at 3 years in the training set. Patients with different risk scores exhibited distinct metabolic, inflammatory, and immune microenvironments as well as tumor mutation landscapes. Additionally, 9 commonly used chemotherapeutic drugs exhibited different sensitivities between the high- and low-risk groups. To conclude, we propose that pyroptosis exhibits a close correlation with PDAC. Our risk model based on PRL pairs may be beneficial for the accurate estimation of prognostic outcomes, the immune microenvironment, and drug sensitivity, bringing therapeutic hope for patients with PDAC.
Collapse
Affiliation(s)
- Si-Yuan Lu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, PR. China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, PR. China; Shanghai Pancreatic Cancer Institute, Shanghai, PR. China; Pancreatic Cancer Institute, Fudan University, Shanghai, PR. China
| | - Jie Hua
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, PR. China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, PR. China; Shanghai Pancreatic Cancer Institute, Shanghai, PR. China; Pancreatic Cancer Institute, Fudan University, Shanghai, PR. China
| | - Jiang Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, PR. China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, PR. China; Shanghai Pancreatic Cancer Institute, Shanghai, PR. China; Pancreatic Cancer Institute, Fudan University, Shanghai, PR. China
| | - Miao-Yan Wei
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, PR. China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, PR. China; Shanghai Pancreatic Cancer Institute, Shanghai, PR. China; Pancreatic Cancer Institute, Fudan University, Shanghai, PR. China
| | - Chen Liang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, PR. China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, PR. China; Shanghai Pancreatic Cancer Institute, Shanghai, PR. China; Pancreatic Cancer Institute, Fudan University, Shanghai, PR. China
| | - Qing-Cai Meng
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, PR. China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, PR. China; Shanghai Pancreatic Cancer Institute, Shanghai, PR. China; Pancreatic Cancer Institute, Fudan University, Shanghai, PR. China
| | - Bo Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, PR. China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, PR. China; Shanghai Pancreatic Cancer Institute, Shanghai, PR. China; Pancreatic Cancer Institute, Fudan University, Shanghai, PR. China
| | - Xian-Jun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, PR. China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, PR. China; Shanghai Pancreatic Cancer Institute, Shanghai, PR. China; Pancreatic Cancer Institute, Fudan University, Shanghai, PR. China
| | - Wei Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, PR. China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, PR. China; Shanghai Pancreatic Cancer Institute, Shanghai, PR. China; Pancreatic Cancer Institute, Fudan University, Shanghai, PR. China.
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, PR. China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, PR. China; Shanghai Pancreatic Cancer Institute, Shanghai, PR. China; Pancreatic Cancer Institute, Fudan University, Shanghai, PR. China.
| |
Collapse
|
15
|
Zhang J, Chen H. De Novo Molecule Design Using Molecular Generative Models Constrained by Ligand-Protein Interactions. J Chem Inf Model 2022; 62:3291-3306. [PMID: 35793555 DOI: 10.1021/acs.jcim.2c00177] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In recent years, molecular deep generative models have attracted much attention for its application in de novo drug design. The data-driven molecular deep generative model approximates the high dimensional distribution of the chemical space through learning from a large number of molecular structural data. So far, most of the molecular generative models rely on purely 2D ligand information in structure generation. Here, we propose a novel molecular deep generative model which adopts a recurrent neural network architecture coupled with a ligand-protein interaction fingerprint as constraints. The fingerprint was constructed on ligand docking poses and represents the 3D binding mode of ligands in the protein pocket. In the current work, generative models constrained with interaction fingerprints were trained and compared with normal RNN models. It has been shown that models trained with constraints of ligand-protein interaction fingerprint have a clear tendency to generating compounds maintaining similar binding modes. Our results demonstrate the potential application of the interaction fingerprint-constrained generative model for the targeted molecule generation and guided exploration on the drug-like chemical space.
Collapse
Affiliation(s)
- Jie Zhang
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou 510663, P. R. China.,State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, P. R. China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health─Guangdong Laboratory), Guangzhou 510530, P. R. China
| | - Hongming Chen
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health─Guangdong Laboratory), Guangzhou 510530, P. R. China.,Guangzhou International Bio Island, Guangzhou Laboratory, No. 9 XinDaoHuanBei Road, Guangzhou 510005, China
| |
Collapse
|
16
|
Anti-Proliferative and Cytoprotective Activity of Aryl Carbamate and Aryl Urea Derivatives with Alkyl Groups and Chlorine as Substituents. Molecules 2022; 27:molecules27113616. [PMID: 35684552 PMCID: PMC9182529 DOI: 10.3390/molecules27113616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/24/2022] [Accepted: 05/30/2022] [Indexed: 02/04/2023] Open
Abstract
Natural cytokinines are a promising group of cytoprotective and anti-tumor agents. In this research, we synthesized a set of aryl carbamate, pyridyl urea, and aryl urea cytokinine analogs with alkyl and chlorine substitutions and tested their antiproliferative activity in MDA-MB-231, A-375, and U-87 MG cell lines, and cytoprotective properties in H2O2 and CoCl2 models. Aryl carbamates with the oxamate moiety were selectively anti-proliferative for the cancer cell lines tested, while the aryl ureas were inactive. In the cytoprotection studies, the same aryl carbamates were able to counteract the CoCl2 cytotoxicity by 3–8%. The possible molecular targets of the aryl carbamates during the anti-proliferative action were the adenosine A2 receptor and CDK2. The obtained results are promising for the development of novel anti-cancer therapeutics.
Collapse
|
17
|
Liu X, Wu H, Liu Z. An Integrative Human Pan-Cancer Analysis of Cyclin-Dependent Kinase 1 (CDK1). Cancers (Basel) 2022; 14:cancers14112658. [PMID: 35681641 PMCID: PMC9179585 DOI: 10.3390/cancers14112658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/13/2022] [Accepted: 05/25/2022] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Cyclin-dependent kinase 1 (CDK1), one of the key regulators of the G2/M checkpoint, is expressed in many cells and plays an important role in cell cycle control. However, CDK1 expression is substantially increased in many tumors of diverse origins and is associated with tumorigenesis. Targeting CDK1 shows promising results for several tumors. However, a systematic and integrative analysis of CDK1 in cancer has not been conducted. The present study aims to use pan-cancer analysis to investigate the relationship, similarities, and differences in genetic and cellular changes associated with CDK1 in various tumors and tumor microenvironments. Our findings elucidate that CDK1 expression increases in more than 20 human tumors and is highly correlated with oncogenic signature gene sets, biological pathways, immune cell infiltration, tumor mutational burden, microsatellite instability, and lower survival rate across multiple tumors. Targeting CDK1 may provide a novel and effective strategy for cancer immunotherapy. Abstract Cyclin-dependent kinase 1 (CDK1) is essential for cell division by regulating the G2/M phase and mitosis. CDK1 overexpression can also promote the development and progression of a variety of cancers. However, the significance of CDK1 in the formation, progression, and prognosis of human pan-cancer remains unclear. In the present study, we used The Cancer Genome Atlas database, Clinical Proteomic Tumor Analysis Consortium, Human Protein Atlas, Genotype-Tissue Expression, and other well-established databases to comprehensively examine CDK1 genetic alterations and gene/protein expression in various cancers and their relationships with the prognosis, immune reactivities, and clinical outcomes for 33 tumor types. Gene set enrichment analysis was also conducted to examine the potential mechanisms of CDK1 in tumorigenesis. The data showed that CDK1 mutation was frequently present in multiple tumors. CDK1 expression was significantly increased in various types of tumors as compared with normal tissues and was associated with poor overall and disease-free survival. In addition, CDK1 expression was significantly correlated with oncogenic genes, proteins, cellular components, myeloid-derived suppressor cell infiltration, ESTMATEScore, and signaling pathways associated with tumor development and progression and tumor microenvironments. These data indicate that CDK1 could serve as a promising biomarker for predicting tumor prognosis and a potential target for cancer treatment.
Collapse
Affiliation(s)
- Xuanyou Liu
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO 65212, USA;
- Center for Precision Medicine and Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA;
| | - Hao Wu
- Center for Precision Medicine and Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA;
| | - Zhenguo Liu
- Center for Precision Medicine and Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA;
- Correspondence: ; Tel.: +573-884-3278
| |
Collapse
|
18
|
Witkiewicz AK, Kumarasamy V, Sanidas I, Knudsen ES. Cancer cell cycle dystopia: heterogeneity, plasticity, and therapy. Trends Cancer 2022; 8:711-725. [PMID: 35599231 PMCID: PMC9388619 DOI: 10.1016/j.trecan.2022.04.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 12/20/2022]
Abstract
The mammalian cell cycle has been extensively studied regarding cancer etiology, progression, and therapeutic intervention. The canonical cell cycle framework is supported by a plethora of data pointing to a relatively simple linear pathway in which mitogenic signals are integrated in a stepwise fashion to allow progression through G1/S with coordinate actions of cyclin-dependent kinases (CDK)4/6 and CDK2 on the RB tumor suppressor. Recent work on adaptive mechanisms and intrinsic heterogeneous dependencies indicates that G1/S control of the cell cycle is a variable signaling pathway rather than an invariant engine that drives cell division. These alterations can limit the effectiveness of pharmaceutical agents but provide new avenues for therapeutic interventions. These findings support a dystopian view of the cell cycle in cancer where the canonical utopian cell cycle is often not observed. However, recognizing the extent of cell cycle heterogeneity likely creates new opportunities for precision therapeutic approaches specifically targeting these states.
Collapse
Affiliation(s)
- Agnieszka K Witkiewicz
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA.
| | - Vishnu Kumarasamy
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
| | - Ioannis Sanidas
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
| | - Erik S Knudsen
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA.
| |
Collapse
|
19
|
Chen S, Zhao Z, Wang X, Zhang Q, Lyu L, Tang B. The Predictive Competing Endogenous RNA Regulatory Networks and Potential Prognostic and Immunological Roles of Cyclin A2 in Pan-Cancer Analysis. Front Mol Biosci 2022; 9:809509. [PMID: 35480884 PMCID: PMC9035520 DOI: 10.3389/fmolb.2022.809509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Although accumulating evidence has verified the relationship between CCNA2 and cancers, no pan-cancer analysis about the function and the upstream molecular mechanism of CCNA2 is available. For the first time, we analyzed potential oncogenic roles of CCNA2 in 33 cancer types via The Cancer Genome Atlas (TCGA) database. Overexpression of CCNA2 is widespread in almost all cancer types, and it is related to poor prognosis and advanced pathological stages in most cases. Moreover, we conducted upstream miRNAs and lncRNAs of CCNA2 to establish upstream regulatory networks in kidney renal clear cell carcinoma (LINC00997/miR-27b-3p/CCNA2), liver hepatocellular carcinoma (SNHG16, GUSBP11, FGD5-AS1, LINC00630, CD27-AS1, LINC00997/miR-22-3p/CCNA2, miR-29b-3p/CCNA2, miR-29c-3p/CCNA2, and miR-204-5p/CCNA2), and lung adenocarcinoma (miRNA-218-5p/CCNA2 and miR-204-5p/CCNA2) by expression analysis, survival analysis, and correlation analysis. The CCNA2 expression is positively correlated with Th2 cell infiltration and negatively correlated with CD4+ central memory and effector memory T-cell infiltration in different cancer types. Furthermore, CCNA2 is positively associated with expressions of immune checkpoints (CD274, CTLA4, HAVCR2, LAG3, PDCD1, and TIGIT) in most cancer types. Our first CCNA2 pan-cancer study contributes to understanding the prognostic and immunological roles and potential upstream molecular mechanisms of CCNA2 in different cancers.
Collapse
Affiliation(s)
- Shenyong Chen
- Department of Pathology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zhijia Zhao
- Department of Hematology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiaobo Wang
- Department of Hematology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qi Zhang
- Department of Hematology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Li Lyu
- Department of Pathology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Bo Tang
- Department of Hematology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
- *Correspondence: Bo Tang,
| |
Collapse
|
20
|
Wang H, Du D, Huang J, Wang S, He X, Yuan S, Xiao J. GPR27 Regulates Hepatocellular Carcinoma Progression via MAPK/ERK Pathway. Cancer Manag Res 2022; 14:1165-1177. [PMID: 35330739 PMCID: PMC8938170 DOI: 10.2147/cmar.s335749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 02/08/2022] [Indexed: 12/24/2022] Open
Abstract
Purpose Orphan GPCRs (GPRs) play important roles in the malignant progression of cancer and have the potential to develop into anti-tumor drug targets. However, the biological processes and molecular mechanisms of GPR27 have not been properly assessed in cancer. Our objective was to reveal the effect of GPR27 on the progression of hepatocellular carcinoma (HCC). Methods GPR27 levels were detected in HCC cell lines using quantitative reverse transcriptase-polymerase chain reaction and Western blot analysis. Next, the changes of phenotypes after GPR27 knockdown or overexpression were evaluated using in vitro methods. Finally, the mechanism of GPR27 in HCC was tested using RNA-seq and in vivo mouse xenograft model. Results In the present study, we reported that suppression of GPR27 expression inhibited proliferation, colony formation, cell viability, and induced cell S phase arrest of HCC cells, whereas GPR27 overexpression led to the opposite outcomes. Moreover, suppression of GPR27 expression resulted in blocking MAPK/ERK signal pathway which indicated the inhibition of HCC cells proliferation. Further study in vivo confirmed that GPR27 can affect the proliferation of HCC cells through the MAPK/ERK pathway. Conclusion Taken together, the findings of the present study uncover biological functions of GPR27 in HCC cells, and delineate preliminary molecular mechanisms of GPR27 in modulating HCC development and progression.
Collapse
Affiliation(s)
- Hongxv Wang
- Zhuhai Precision Medical Center, Zhuhai People’s Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, 519000, People’s Republic of China
| | - Danyu Du
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu, People’s Republic of China
| | - Jianwen Huang
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People’s Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, Guangdong, People’s Republic of China
| | - Shuai Wang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu, People’s Republic of China
| | - Xv He
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People’s Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, Guangdong, People’s Republic of China
| | - Shengtao Yuan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu, People’s Republic of China
| | - Jing Xiao
- Zhuhai Precision Medical Center, Zhuhai People’s Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, 519000, People’s Republic of China
| |
Collapse
|
21
|
Qi X, Li Q, Che X, Wang Q, Wu G. Application of Regulatory Cell Death in Cancer: Based on Targeted Therapy and Immunotherapy. Front Immunol 2022; 13:837293. [PMID: 35359956 PMCID: PMC8960167 DOI: 10.3389/fimmu.2022.837293] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/21/2022] [Indexed: 12/15/2022] Open
Abstract
The development of cancer treatment methods is constantly changing. For common cancers, our treatment methods are still based on conventional treatment methods, such as chemotherapy, radiotherapy, and targeted drug therapy. Nevertheless, the emergence of tumor resistance has a negative impact on treatment. Regulated cell death is a gene-regulated mode of programmed cell death. After receiving specific signal transduction, cells change their physical and chemical properties and the extracellular microenvironment, resulting in structural destruction and decomposition. As research accumulates, we now know that by precisely inducing specific cell death patterns, we can treat cancer with less collateral damage than other treatments. Many newly discovered types of RCD are thought to be useful for cancer treatment. However, some experimental results suggest that some RCDs are not sensitive to cancer cell death, and some may even promote cancer progression. This review summarizes the discovered types of RCDs, reviews their clinical efficacy in cancer treatment, explores their anticancer mechanisms, and discusses the feasibility of some newly discovered RCDs for cancer treatment in combination with the immune and tumor microenvironment.
Collapse
Affiliation(s)
| | | | | | - Qifei Wang
- *Correspondence: Guangzhen Wu, ; Qifei Wang,
| | | |
Collapse
|
22
|
Knudsen ES, Kumarasamy V, Nambiar R, Pearson JD, Vail P, Rosenheck H, Wang J, Eng K, Bremner R, Schramek D, Rubin SM, Welm AL, Witkiewicz AK. CDK/cyclin dependencies define extreme cancer cell-cycle heterogeneity and collateral vulnerabilities. Cell Rep 2022; 38:110448. [PMID: 35235778 PMCID: PMC9022184 DOI: 10.1016/j.celrep.2022.110448] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/11/2021] [Accepted: 02/04/2022] [Indexed: 12/24/2022] Open
Abstract
Progression through G1/S phase of the cell cycle is coordinated by cyclin-dependent kinase (CDK) activities. Here, we find that the requirement for different CDK activities and cyclins in driving cancer cell cycles is highly heterogeneous. The differential gene requirements associate with tumor origin and genetic alterations. We define multiple mechanisms for G1/S progression in RB-proficient models, which are CDK4/6 independent and elicit resistance to FDA-approved inhibitors. Conversely, RB-deficient models are intrinsically CDK4/6 independent, but exhibit differential requirements for cyclin E. These dependencies for CDK and cyclins associate with gene expression programs that denote intrinsically different cell-cycle states. Mining therapeutic sensitivities shows that there are reciprocal vulnerabilities associated with RB1 or CCND1 expression versus CCNE1 or CDKN2A. Together, these findings illustrate the complex nature of cancer cell cycles and the relevance for precision therapeutic intervention. Knudsen et al. find that there is extensive heterogeneity in the requirement for CDK and cyclins across cancer models. Multiple biochemically distinct mechanisms drive cell division. Divergent cell-cycle states harbor distinct genetic and pharmacological vulnerabilities, suggesting that cell-cycle diversity could be exploited for a precision approach to cancer therapy.
Collapse
Affiliation(s)
- Erik S Knudsen
- Department of Molecular and Cellular Biology, Roswell Park Cancer Center, Buffalo, NY 14203, USA.
| | - Vishnu Kumarasamy
- Department of Molecular and Cellular Biology, Roswell Park Cancer Center, Buffalo, NY 14203, USA; Department of Cancer Genetics and Genomics, Roswell Park Cancer Center, Buffalo, NY 14203, USA
| | - Ram Nambiar
- Department of Molecular and Cellular Biology, Roswell Park Cancer Center, Buffalo, NY 14203, USA; Department of Cancer Genetics and Genomics, Roswell Park Cancer Center, Buffalo, NY 14203, USA
| | - Joel D Pearson
- Lunenfeld Tanenbaum Research Institute, Toronto, ON M5G 1X5, Canada
| | - Paris Vail
- Department of Molecular and Cellular Biology, Roswell Park Cancer Center, Buffalo, NY 14203, USA; Department of Cancer Genetics and Genomics, Roswell Park Cancer Center, Buffalo, NY 14203, USA
| | - Hanna Rosenheck
- Department of Molecular and Cellular Biology, Roswell Park Cancer Center, Buffalo, NY 14203, USA; Department of Cancer Genetics and Genomics, Roswell Park Cancer Center, Buffalo, NY 14203, USA
| | - Jianxin Wang
- Department of Cancer Genetics and Genomics, Roswell Park Cancer Center, Buffalo, NY 14203, USA
| | - Kevin Eng
- Department of Cancer Genetics and Genomics, Roswell Park Cancer Center, Buffalo, NY 14203, USA
| | - Rod Bremner
- Lunenfeld Tanenbaum Research Institute, Toronto, ON M5G 1X5, Canada
| | - Daniel Schramek
- Lunenfeld Tanenbaum Research Institute, Toronto, ON M5G 1X5, Canada
| | - Seth M Rubin
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Alana L Welm
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Agnieszka K Witkiewicz
- Department of Cancer Genetics and Genomics, Roswell Park Cancer Center, Buffalo, NY 14203, USA; Department of Pathology, Roswell Park Cancer Center, Buffalo, NY 14203, USA.
| |
Collapse
|
23
|
Ke XG, Xiong YY, Yu B, Yuan C, Chen PY, Yang YF, Wu HZ. Mollugin induced oxidative DNA damage via up-regulating ROS that caused cell cycle arrest in hepatoma cells. Chem Biol Interact 2022; 353:109805. [PMID: 35007525 DOI: 10.1016/j.cbi.2022.109805] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/30/2021] [Accepted: 01/05/2022] [Indexed: 01/10/2023]
Abstract
Mollugin has been proven to have anti-tumor activity. However, its potential anti-tumor mechanism remains to be fully elaborated. Herein, we investigated the growth inhibition of HepG2 cells, as well as the anti-tumor effect of mollugin and its molecular mechanism on H22-tumor bearing mice. In vitro, mollugin was shown to have a strong inhibitory effect on HepG2 cells in a concentration-dependent manner. Mollugin induced S-phase arrest of HepG2 cells, and increased intracellular reactive oxygen species (ROS) levels. Comet assay demonstrated that mollugin induced DNA damage in HepG2 cells, as well as an increase in the expression of p-H2AX. In addition, mollugin induced changes in cyclin A2 and CDK2. However, the addition of antioxidant glutathione (GSH) was able to reverse the effect of mollugin. In vivo, mollugin significantly inhibited tumor growth and reduced the tendency of tumor volume growth in mice. The tumor cell density was found to be decreased in the administration group, and the content of ROS in the tumor tissue significantly increased. The expression of p-H2AX, cyclin A2 and CDK2 were consistent with in vitro results. Mollugin demonstrated anti-hepatocellular carcinoma activity in vitro and in vivo, and its anti-hepatocellular carcinoma activity was found to be related to DNA damage and cell cycle arrest induced by excessive ROS production in cells.
Collapse
Affiliation(s)
- Xin-Ge Ke
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Yi-Yi Xiong
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Bing Yu
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Chong Yuan
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Peng-Yu Chen
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Yan-Fang Yang
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China; Key Laboratory of Traditional Chinese Medicine Resources and Chemistry of Hubei Province, Wuhan, 430065, China.
| | - He-Zhen Wu
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China; Key Laboratory of Traditional Chinese Medicine Resources and Chemistry of Hubei Province, Wuhan, 430065, China.
| |
Collapse
|
24
|
Kakar MU, Mehboob MZ, Akram M, Shah M, Shakir Y, Ijaz HW, Aziz U, Ullah Z, Ahmad S, Ali S, Yin Y. Identification of Differentially Expressed Genes Associated with the Prognosis and Diagnosis of Hepatocellular Carcinoma by Integrated Bioinformatics Analysis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4237633. [PMID: 36317111 PMCID: PMC9617698 DOI: 10.1155/2022/4237633] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/29/2022] [Indexed: 02/05/2023]
Abstract
OBJECTIVE The goal of this study was to understand the possible core genes associated with hepatocellular carcinoma (HCC) pathogenesis and prognosis. METHODS GEO contains datasets of gene expression, miRNA, and methylation patterns of diseased and healthy/control patients. The GSE62232 dataset was selected by employing the server Gene Expression Omnibus. A total of 91 samples were collected, including 81 HCC and 10 healthy samples as control. GSE62232 was analysed through GEO2R, and Functional Enrichment Analysis was performed to extract rational information from a set of DEGs. The Protein-Protein Relationship Networking search method has been used for extracting the interacting genes. MCC method was used to calculate the top 10 genes according to their importance. Hub genes in the network were analysed using GEPIA to estimate the effect of their differential expression on cancer progression. RESULTS We identified the top 10 hub genes through CytoHubba plugin. These included BUB1, BUB1B, CCNB1, CCNA2, CCNB2, CDC20, CDK1 and MAD2L1, NCAPG, and NDC80. NCAPG and NDC80 reported for the first time in this study while the remaining from a recently reported literature. The pathogenesis of HCC may be directly linked with the aforementioned genes. In this analysis, we found critical genes for HCC that showed recommendations for future prognostic and predictive biomarkers studies that could promote selective molecular therapy for HCC.
Collapse
Affiliation(s)
- Mohib Ullah Kakar
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceutical, School of life Sciences, Beijing Institute of Technology (BIT), Beijing 100081, China
- Faculty of Marine Sciences, Lasbela University of Agriculture, Water and Marine Sciences (LUAWMS), Uthal, Balochistan, Pakistan
| | - Muhammad Zubair Mehboob
- CAS Centre for Excellence in Biotic Interaction, College of Life Sciences, University of Chinese Academy of Science, Beijing 100049, China
- Department of Biochemistry and Biotechnology, University of Gujrat, Gujrat 50700, Pakistan
| | - Muhammad Akram
- School of Science, Department of Life sciences, University of Management and Technology, Johar Town, Lahore 54770, Pakistan
| | - Muddaser Shah
- Department of Botany, Abdul Wali Khan University, Mardan 23200, Pakistan
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al-Mauz, P.O. Box 33, Nizwa 616, Oman
| | - Yasmeen Shakir
- Department of Biochemistry, Hazara University, Mansehra, Pakistan
| | - Hafza Wajeeha Ijaz
- CAS Centre for Excellence in Biotic Interaction, College of Life Sciences, University of Chinese Academy of Science, Beijing 100049, China
| | - Ubair Aziz
- Research Centre of Molecular Simulation, National University of Science and Technology, Islamabad, Pakistan
| | - Zahid Ullah
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Sajjad Ahmad
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture, Water and Marine Sciences, LUAWMS, Uthal, 90150 Balochistan, Pakistan
| | - Sikandar Ali
- Dow Institute for Advanced Biological and Animal Research, Dow University of Health Sciences, Ojha Campus, Karachi, Pakistan
| | - Yongxiang Yin
- Department of Pathology, Wuxi Maternity and Child Health Hospital Affiliated to Nanjing Medical University, Wuxi, China
| |
Collapse
|
25
|
Tsai TH, Lieu AS, Huang TY, Kwan AL, Lin CL, Hsu YC. Induction of Mitosis Delay and Apoptosis by CDDO-TFEA in Glioblastoma Multiforme. Front Pharmacol 2021; 12:756228. [PMID: 34858180 PMCID: PMC8630575 DOI: 10.3389/fphar.2021.756228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/25/2021] [Indexed: 12/02/2022] Open
Abstract
Background: Glioblastoma multiforme (GBM) is the vicious malignant brain tumor in adults. Despite advances multi-disciplinary treatment, GBM constinues to have a poor overall survival. CDDO-trifluoroethyl-amide (CDDO-TEFA), a trifluoroethylamidederivative of CDDO, is an Nrf2/ARE pathway activator. CDDO-TEFEA is used to inhibit proliferation and induce apoptosis in glioma cells. However, it not clear what effect it may have on tumorigenesis in GBM. Methods: This in vitro study evaluated the effects of CDDO-TFEA on GBM cells. To do this, we treated GBM8401 cell lines with CDDO-TFEA and assessed apoptosis, cell cycle. DNA content and induction of apoptosis were analyzed by flow cytometry and protein expression by Western blot analysis. Results: CDDO-TFEA significantly inhibited the cell viability and induced cell apoptosis on GBM 8401 cell line. The annexin-FITC/PI assay revealed significant changes in the percentage of apoptotic cells. Treatment with CDDO-TFEA led to a significant reduction in the GBM8401 cells' mitochondrial membrane potential. A significant rise in the percentage of caspase-3 activity was detected in the treated cells. In addition, treatment with CDDO-TFEA led to an accumulation of G2/M-phase cells. In addition, these results suggest that regarding increased protein synthesis during mitosis in the MPM-2 staining, indicative of a delay in the G2 checkpoint. An analysis of Cyclin B1, CDK1, Cyclin B1/CDK1 complex and CHK1 and CHK2 expression suggested that cell cycle progression seems also to be regulated by CDDO-TFEA. Therefore, CDDO-TFEA may not only induce cell cycle G2/M arrest, it may also exert apoptosis in established GBM cells. Conclusion: CDDO-TFEA can inhibit proliferation, cell cycle progression and induce apoptosis in GBM cells in vitro, possibly though its inhibition of Cyclin B1, CDK1 expression, and Cyclin B1/CDK1 association and the promotion of CHK1 and CHK2 expression.
Collapse
Affiliation(s)
- Tai-Hsin Tsai
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institutes of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ann-Shung Lieu
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institutes of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tzuu-Yuan Huang
- Department of Neurosurgery, Changhua Christian Hospital, Changhua, Taiwan
| | - Aij-Lie Kwan
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institutes of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Lung Lin
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institutes of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Chiang Hsu
- School of Medicine, I‐Shou University, Kaohsiung, Taiwan
| |
Collapse
|
26
|
Al Mamun A, Mimi AA, Aziz MA, Zaeem M, Ahmed T, Munir F, Xiao J. Role of pyroptosis in cancer and its therapeutic regulation. Eur J Pharmacol 2021; 910:174444. [PMID: 34453928 DOI: 10.1016/j.ejphar.2021.174444] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/26/2021] [Accepted: 08/24/2021] [Indexed: 02/07/2023]
Abstract
Pyroptosis is mainly considered a gasdermin-regulated cell death mechanism characterized by cellular lysis and the release of several pro-inflammatory factors. Nowadays, pyroptosis has notably been gained extensive attention from clinicians and researchers. However, current studies report that downregulation of pyroptosis-mediated cell death plays a significant role in developing multiple cancers. Increasing studies also suggest that pyroptosis can impact all stages of carcinogenesis. Inducing pyroptotic cellular death could be a promising therapeutic option for managing and regulating multiple cancers in the near future. Our current review highlights the molecular and morphological features of pyroptosis and its potential roles in various cancers. In addition, we have also highlighted the biological characteristics and significances of GSDMD and GSDME and their critical functions in cancer progression, management and regulation.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, China.
| | - Anjuman Ara Mimi
- Department of Pharmacy, Daffodil International University, Dhanmondi-27, Dhaka, 1209, Bangladesh
| | - Md Abdul Aziz
- Department of Pharmacy, Faculty of Science, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh; Laboratory of Pharmacogenomics and Molecular Biology, Department of Pharmacy, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Muhammad Zaeem
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, China
| | - Tanvir Ahmed
- Department of Nutrition, Chung Shan Medical University, 110, Section 1, Jianguo North Road, Taichung, 40201, Taiwan
| | - Fahad Munir
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Jian Xiao
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, China; Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, China.
| |
Collapse
|
27
|
Qiu S, Hu Y, Dong S. Pan-cancer analysis reveals the expression, genetic alteration and prognosis of pyroptosis key gene GSDMD. Int Immunopharmacol 2021; 101:108270. [PMID: 34700129 DOI: 10.1016/j.intimp.2021.108270] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/23/2021] [Accepted: 09/08/2021] [Indexed: 01/17/2023]
Abstract
BACKGROUND Gasdermins (GSDMs)-mediated pyroptosis is widely involved in activating anti-tumor immunity and suppressing tumor growth. However, whether gasdermin D (GSDMD)-mediated pyroptosis affects patient prognosis in pan-cancer remains unknown. METHODS We performed analyses of the RNA expression, genetic alteration, prognosis and immune infiltration of GSDMD in pan-cancer. In order to explore the relationship between pyroptosis and tumors, we calculated the correlation between GSDMD and pyroptosis key genes in pan-cancer. We also investigated the enrichment pathway of GSDMD-related genes. RESULTS GSDMD was differentially expressed in the vast majority of cancer, and could be used as a prognostic marker in adrenocortical carcinoma (ACC), kidney renal clear cell carcinoma (KIRC), brain lower grade glioma (LGG), liver hepatocellular carcinoma (LIHC), skin cutaneous melanoma (SKCM) and rectum adenocarcinoma (READ). Strong evidence indicated the significant correlation of GSDMD with almost all immune checkpoints and immune cells. Pyroptosis-related genes strongly associated with GSDMD in ACC, KIRC, LGG, LIHC and SKCM, suggesting that GSDMD-mediated pyroptosis might play a critical role in the five cancers. CONCLUSION All the evidence supported the potential role of GSDMD-mediated pyroptosis in cancer. Our results provided new insights into GSDMD as a prognostic marker and potential therapeutic target for cancer.
Collapse
Affiliation(s)
- Shizheng Qiu
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Yang Hu
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China.
| | - Siqing Dong
- Beidahuang Industry Group General Hospital, Harbin, China
| |
Collapse
|
28
|
Wang YC, Tian ZB, Tang XQ. Bioinformatics screening of biomarkers related to liver cancer. BMC Bioinformatics 2021; 22:521. [PMID: 34696748 PMCID: PMC8543826 DOI: 10.1186/s12859-021-04411-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 11/10/2022] Open
Abstract
Background Liver cancer is a common malignant tumor in China, with high mortality. Its occurrence and development were thoroughly studied by high-throughput expression microarray, which produced abundant data on gene expression, mRNA quantification and the clinical data of liver cancer. However, the hub genes, which can be served as biomarkers for diagnosis and treatment of early liver cancer, are not well screened. Results Here we present a new method for getting 6 key genes, aiming to diagnose and treat the early liver cancer. We firstly analyzed the different expression microarrays based on TCGA database, and a total of 1564 differentially expressed genes were obtained, of which 1400 were up-regulated and 164 were down-regulated. Furthermore, these differentially expressed genes were studied by using GO and KEGG enrichment analysis, a PPI network was constructed based on the STRING database, and 15 hub genes were obtained. Finally, 15 hub genes were verified by applying the survival analysis method on Oncomine database, and 6 key genes were ultimately identified, including PLK1, CDC20, CCNB2, BUB1, MAD2L1 and CCNA2. The robustness analysis of four independent data sets verifies the accuracy of the key gene’s classification of the data set. Conclusions Although there are complicated differences between cancer and normal cells in gene functions, cancer cells could be differentiated in case that a group of special genes expresses abnormally. Here we presented a new method to identify the 6 key genes for diagnosis and treatment of early liver cancer, and these key genes can help us understand the pathogenesis of liver cancer more deeply.
Collapse
Affiliation(s)
- Ye-Cheng Wang
- School of Science, Jiangnan University, Wuxi, 214122, China
| | - Zhen-Bo Tian
- School of Science, Jiangnan University, Wuxi, 214122, China
| | - Xu-Qing Tang
- School of Science, Jiangnan University, Wuxi, 214122, China. .,Wuxi Engineering Research Center for Biocomputing, Wuxi, 214122, China.
| |
Collapse
|
29
|
Wu C, Qi X, Qiu Z, Deng G, Zhong L. Low expression of KIF20A suppresses cell proliferation, promotes chemosensitivity and is associated with better prognosis in HCC. Aging (Albany NY) 2021; 13:22148-22163. [PMID: 34491228 PMCID: PMC8507281 DOI: 10.18632/aging.203494] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 06/18/2021] [Indexed: 12/29/2022]
Abstract
This study analysed the microarray datasets from Gene Expression Omnibus (GEO) database, and aimed to identify novel potential hub genes associated with the progression of HCC via bioinformatics analysis and experimental validation. The common differentially expressed genes (DEGs) from five GEO datasets were screened using GEO2R tool. The expression and survival analysis of hub genes in HCC were performed using Gene Expression Profiling Interactive Analysis, UALCAN and Kaplan-Meier plotter tools. In vitro functional assays were used to determine the caspase-3, -9, cell proliferation and chemo-sensitivity of HCC cells. A total of 177 common DEGs were identified between normal liver and HCC tissues among these datasets. Functional enrichment and PPI network analysis identified 22 hub genes from the common DEGs. The mRNA expression of 22 hub genes was all significantly up-regulated in HCC tissues compared to that in normal liver tissues. Further survival analysis showed that 10 hub genes predicted poor prognosis of patients with HCC. More importantly, the in vitro functional studies demonstrated that KIF20A knockdown suppressed the HCC cell proliferation and promoted the chemosensitivity of HCC cells to cisplatin and sorafenib. In conclusion, the present study identified a total of 177 common DEGs among 5 GEO microarray datasets and found that 10 hub genes could predict the poor prognosis of patients with HCC using the comprehensive bioinformatics analysis. Furthermore, KIF20A silence suppressed cell proliferation and enhanced chemosensitivity in HCC cells. Further studies may be required to determine the mechanistic role of these hub genes in HCC progression.
Collapse
Affiliation(s)
- Chuanxing Wu
- Department of General Surgery, Shanghai General Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Xiaosheng Qi
- Department of General Surgery, Shanghai General Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Zhengjun Qiu
- Department of General Surgery, Shanghai General Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Guilong Deng
- Department of General Surgery, Shanghai General Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Lin Zhong
- Department of General Surgery, Shanghai General Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
30
|
Self assembly of a novel Cu(II) complex, (C6H9N2)2[CuCl4]: experimental, computational, and molecular docking survey. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2021. [DOI: 10.1007/s13738-021-02195-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
31
|
Valeri A, Chiricosta L, Calcaterra V, Biasin M, Cappelletti G, Carelli S, Zuccotti GV, Bramanti P, Pelizzo G, Mazzon E, Gugliandolo A. Transcriptomic Analysis of HCN-2 Cells Suggests Connection among Oxidative Stress, Senescence, and Neuron Death after SARS-CoV-2 Infection. Cells 2021; 10:cells10092189. [PMID: 34571838 PMCID: PMC8472605 DOI: 10.3390/cells10092189] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 02/07/2023] Open
Abstract
According to the neurological symptoms of SARS-CoV-2 infection, it is known that the nervous system is influenced by the virus. We used pediatric human cerebral cortical cell line HCN-2 as a neuronal model of SARS-CoV-2 infection, and, through transcriptomic analysis, our aim was to evaluate the effect of SARS-CoV-2 in this type of cells. Transcriptome analyses revealed impairment in TXN gene, resulting in deregulation of its antioxidant functions, as well as a decrease in the DNA-repairing mechanism, as indicated by the decrease in KAT5. Western blot analyses of SOD1 and iNOS confirmed the impairment of reduction mechanisms and an increase in oxidative stress. Upregulation of CDKN2A and a decrease in CDK4 and CDK6 point to the blocking of the cell cycle that, according to the deregulation of repairing mechanism, has apoptosis as the outcome. A high level of proapoptotic gene PMAIP1 is indeed coherent with neuronal death, as also supported by increased levels of caspase 3. The upregulation of cell-cycle-blocking genes and apoptosis suggests a sufferance state of neurons after SARS-CoV-2 infection, followed by their inevitable death, which can explain the neurological symptoms reported. Further analyses are required to deeply explain the mechanisms and find potential treatments to protect neurons from oxidative stress and prevent their death.
Collapse
Affiliation(s)
- Andrea Valeri
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (A.V.); (L.C.); (P.B.); (A.G.)
| | - Luigi Chiricosta
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (A.V.); (L.C.); (P.B.); (A.G.)
| | - Valeria Calcaterra
- Department of Paediatrics, Ospedale dei Bambini “Vittore Buzzi”, 20154 Milano, Italy; (V.C.); (G.V.Z.)
- Paediatrics and Adolescentology Unit, Department of Internal Medicine, University of Pavia, 27100 Pavia, Italy
| | - Mara Biasin
- Department of Biomedical and Clinical Sciences-L. Sacco, University of Milan, 20157 Milan, Italy; (M.B.); (G.C.); (G.P.)
| | - Gioia Cappelletti
- Department of Biomedical and Clinical Sciences-L. Sacco, University of Milan, 20157 Milan, Italy; (M.B.); (G.C.); (G.P.)
| | - Stephana Carelli
- Paediatric Clinical Research Center Fondazione Romeo ed Enrica Invernizzi, University of Milan, 20157 Milan, Italy;
| | - Gian Vincenzo Zuccotti
- Department of Paediatrics, Ospedale dei Bambini “Vittore Buzzi”, 20154 Milano, Italy; (V.C.); (G.V.Z.)
- Department of Biomedical and Clinical Sciences-L. Sacco, University of Milan, 20157 Milan, Italy; (M.B.); (G.C.); (G.P.)
| | - Placido Bramanti
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (A.V.); (L.C.); (P.B.); (A.G.)
| | - Gloria Pelizzo
- Department of Biomedical and Clinical Sciences-L. Sacco, University of Milan, 20157 Milan, Italy; (M.B.); (G.C.); (G.P.)
- Paediatric Surgery Unit, Ospedale dei Bambini “Vittore Buzzi”, 20154 Milano, Italy
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (A.V.); (L.C.); (P.B.); (A.G.)
- Correspondence:
| | - Agnese Gugliandolo
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (A.V.); (L.C.); (P.B.); (A.G.)
| |
Collapse
|
32
|
Lu Y, Su F, Yang H, Xiao Y, Zhang X, Su H, Zhang T, Bai Y, Ling X. E2F1 transcriptionally regulates CCNA2 expression to promote triple negative breast cancer tumorigenicity. Cancer Biomark 2021; 33:57-70. [PMID: 34366326 DOI: 10.3233/cbm-210149] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is a highly malignant breast cancer subtype with a poor prognosis. The cell cycle regulator cyclin A2 (CCNA2) plays a role in tumor development. Herein, we explored the role of CCNA2 in TNBC. METHODS We analyzed CCNA2 expression in 15 pairs of TNBC and adjacent tissues and assessed the relationship between CCNA2 expression using the tissue microarray cohort. Furthermore, we used two TNBC cohort datasets to analyze the correlation between CCNA2 and E2F transcription factor 1 (E2F1) and a luciferase reporter to explore their association. Through rescue experiments, we analyzed the effects of E2F1 knockdown on CCNA2 expression and cellular behavior. RESULTS We found that CCNA2 expression in TNBC was significantly higher than that in adjacent tissues with similar observations in MDA-MB-231 and MDA-MB-468 cells. E2F1 was highly correlated with CCNA2 as observed through bioinformatics analysis (R= 0.80, P< 0.001) and through TNBC tissue verification analysis (R= 0.53, P< 0.001). We determined that E2F1 binds the +677 position within the CCNA2 promoter. Moreover, CCNA2 overexpression increased cell proliferation, invasion, and migration owing to E2F1 upregulation in TNBC. CONCLUSION Our data indicate that E2F1 promotes TNBC proliferation and invasion by upregulating CCNA2 expression. E2F1 and CCNA2 are potential candidates that may be targeted for effective TNBC treatment.
Collapse
Affiliation(s)
- Yongbin Lu
- Scientific Development and Planing Department, The First Hospital of Lanzhou University, Lanzhou, Gansu, China.,College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, Gansu, China.,Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, Gansu, China.,Scientific Development and Planing Department, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Fei Su
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, Gansu, China.,Scientific Development and Planing Department, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Hui Yang
- International Medical Department Area B, Gansu Provincial Maternity and Child-care Hospital, Lanzhou, Gansu, China.,Scientific Development and Planing Department, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yi Xiao
- Breast surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Xiaobin Zhang
- Breast surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Hongxin Su
- Department of Radiotherapy, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Tao Zhang
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yana Bai
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, Gansu, China.,School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Xiaoling Ling
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
33
|
Feng X, Ding W, Ma J, Liu B, Yuan H. Targeted Therapies in Lung Cancers: Current Landscape and Future Prospects. Recent Pat Anticancer Drug Discov 2021; 16:540-551. [PMID: 34132185 DOI: 10.2174/1574892816666210615161501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/09/2021] [Accepted: 03/31/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Lung cancer is the most common and malignant cancer worldwide. Targeted therapies have emerged as a promising treatment strategy for lung cancers. OBJECTIVE The objective of this study is to evaluate the current landscape of targets and finding promising targets for future new drug discovery for lung cancers by identifying the science-technology-clinical development pattern and mapping the interaction network of targets. METHODS Targets for cancers were classified into 3 groups based on a paper published in Nature. We search for scientific literature, patent documents and clinical trials of targets in Group 1 and Group 2 for lung cancers. Then, a target-target interaction network of Group 1 was constructed, and the science-technology-clinical(S-T-C) development patterns of targets in Group 1 were identified. Finally, based on the cluster distribution and the development pattern of targets in Group 1, interactions between the targets were employed to predict potential targets in Group 2 on drug development. RESULTS The target-target interaction(TTI)network of group 1 resulted in 3 clusters with different developmental stages. The potential targets in Group 2 are divided into 3 ranks. Level-1 is the first priority and level-3 is the last. Level-1 includes 16 targets, such as STAT3, CRKL, and PTPN11, that are mostly involved in signaling transduction pathways. Level-2 and level-3 contain 8 and 6 targets related to various biological functions. CONCLUSION This study will provide references for drug development in lung cancers, emphasizing that priorities should be given to targets in Level-1, whose mechanisms are worth further exploration.
Collapse
Affiliation(s)
- Xin Feng
- School of Business Administration, Shenyang Pharmaceutical University, Shenyang, China
| | - Wenqing Ding
- School of Business Administration, Shenyang Pharmaceutical University, Shenyang, China
| | - Junhong Ma
- School of Business Administration, Shenyang Pharmaceutical University, Shenyang, China
| | - Baijun Liu
- School of Business Administration, Shenyang Pharmaceutical University, Shenyang, China
| | - Hongmei Yuan
- School of Business Administration, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
34
|
Suski JM, Braun M, Strmiska V, Sicinski P. Targeting cell-cycle machinery in cancer. Cancer Cell 2021; 39:759-778. [PMID: 33891890 PMCID: PMC8206013 DOI: 10.1016/j.ccell.2021.03.010] [Citation(s) in RCA: 251] [Impact Index Per Article: 62.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/09/2021] [Accepted: 03/26/2021] [Indexed: 12/19/2022]
Abstract
Abnormal activity of the core cell-cycle machinery is seen in essentially all tumor types and represents a driving force of tumorigenesis. Recent studies revealed that cell-cycle proteins regulate a wide range of cellular functions, in addition to promoting cell division. With the clinical success of CDK4/6 inhibitors, it is becoming increasingly clear that targeting individual cell-cycle components may represent an effective anti-cancer strategy. Here, we discuss the potential of inhibiting different cell-cycle proteins for cancer therapy.
Collapse
Affiliation(s)
- Jan M Suski
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Marcin Braun
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Pathology, Chair of Oncology, Medical University of Lodz, 92-213 Lodz, Poland
| | - Vladislav Strmiska
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Piotr Sicinski
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
35
|
Lu XQ, Zhang JQ, Zhang SX, Qiao J, Qiu MT, Liu XR, Chen XX, Gao C, Zhang HH. Identification of novel hub genes associated with gastric cancer using integrated bioinformatics analysis. BMC Cancer 2021; 21:697. [PMID: 34126961 PMCID: PMC8201699 DOI: 10.1186/s12885-021-08358-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 05/13/2021] [Indexed: 02/07/2023] Open
Abstract
Background Gastric cancer (GC) is one of the most common solid malignant tumors worldwide with a high-recurrence-rate. Identifying the molecular signatures and specific biomarkers of GC might provide novel clues for GC prognosis and targeted therapy. Methods Gene expression profiles were obtained from the ArrayExpress and Gene Expression Omnibus database. Differentially expressed genes (DEGs) were picked out by R software. The hub genes were screened by cytohubba plugin. Their prognostic values were assessed by Kaplan–Meier survival analyses and the gene expression profiling interactive analysis (GEPIA). Finally, qRT-PCR in GC tissue samples was established to validate these DEGs. Results Total of 295 DEGs were identified between GC and their corresponding normal adjacent tissue samples in E-MTAB-1440, GSE79973, GSE19826, GSE13911, GSE27342, GSE33335 and GSE56807 datasets, including 117 up-regulated and 178 down-regulated genes. Among them, 7 vital upregulated genes (HMMR, SPP1, FN1, CCNB1, CXCL8, MAD2L1 and CCNA2) were selected. Most of them had a significantly worse prognosis except SPP1. Using qRT-PCR, we validated that their transcriptions in our GC tumor tissue were upregulated except SPP1 and FN1, which correlated with tumor relapse and predicts poorer prognosis in GC patients. Conclusions We have identified 5 upregulated DEGs (HMMR, CCNB1, CXCL8, MAD2L1, and CCNA2) in GC patients with poor prognosis using integrated bioinformatical methods, which could be potential biomarkers and therapeutic targets for GC treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08358-7.
Collapse
Affiliation(s)
- Xiao-Qing Lu
- Department of Breast Surgery, Shanxi Cancer Hospital, Taiyuan, Shanxi, China
| | - Jia-Qian Zhang
- Department of Rheumatology, the Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Sheng-Xiao Zhang
- Department of Rheumatology, the Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jun Qiao
- Department of Rheumatology, the Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Meng-Ting Qiu
- Department of Rheumatology, the Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiang-Rong Liu
- Department of Breast Surgery, Shanxi Cancer Hospital, Taiyuan, Shanxi, China
| | - Xiao-Xia Chen
- Department of Breast Surgery, Shanxi Cancer Hospital, Taiyuan, Shanxi, China
| | - Chong Gao
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Huan-Hu Zhang
- Department of Gastroenterology, Shanxi Cancer Hospital, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
36
|
Luan T, Zhang TY, Lv ZH, Guan BX, Xu JY, Li J, Li MX, Hu SL. The lncRNA ALMS1-IT1 may promote malignant progression of lung adenocarcinoma via AVL9-mediated activation of the cyclin-dependent kinase pathway. FEBS Open Bio 2021; 11:1504-1515. [PMID: 33683834 PMCID: PMC8091588 DOI: 10.1002/2211-5463.13140] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/23/2021] [Accepted: 03/05/2021] [Indexed: 12/21/2022] Open
Abstract
Lung adenocarcinoma (LUAD) is the primary epithelial tumor of the lung. The lack of clinical symptoms and specific molecular diagnostic indicators during the early stages of LUAD mean that the disease may not be detected until late stages, and the 5‐year survival rate is only approximately 15%. Long non‐coding RNA ALMS1 intronic script 1 (ALMS1‐IT1) was previously reported to be correlated with the poor prognosis of head and neck squamous cell carcinoma patients. Here, we investigated whether ALMS1‐IT1 has prognostic potential for LUAD. Bioinformatics analyses were performed to examine the expression and prognostic value of ALMS1 and AVL9 (for which gene expression is positively correlated with ALMS1‐IT1 expression in LUAD) in LUAD based on TCGA and Oncomine databases. We report that ALMS1‐IT1 and AVL9 were both highly expressed in LUAD and correlated with poor outcomes in LUAD patients. Of note, the prognosis of LUAD patients with low expression of both ALMS1‐IT1 and AVL9 was superior to that of other patients. Furthermore, the proliferation, migration and invasion of LUAD cells were decreased in cells lacking ALMS1‐IT1, and this decrease could be almost completely reversed through overexpression of AVL9. Gene set enrichment analysis revealed that expression of genes related to the cell cycle pathway is closely related to both the high expression of ALMS1‐IT1 and AVL9 in LUAD. Finally, up‐regulation of ALMS1‐IT1 can activate the cyclin‐dependent kinase pathway, whereas absence of AVL9 can reverse this activation, as shown by western blotting. In summary, ALMS1‐IT1/AVL9 may promote the malignant progression of LUAD, at least in part by regulating the cyclin‐dependent kinase pathway.
Collapse
Affiliation(s)
- Tian Luan
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Tian-Ye Zhang
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Zhong-Hua Lv
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Bi-Xi Guan
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jian-Yu Xu
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jian Li
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Ming-Xu Li
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Song-Liu Hu
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
37
|
Chen Q, Shen P, Ge WL, Yang TY, Wang WJ, Meng LD, Huang XM, Zhang YH, Cao SJ, Miao Y, Jiang KR, Zhang JJ. Roundabout homolog 1 inhibits proliferation via the YY1-ROBO1-CCNA2-CDK2 axis in human pancreatic cancer. Oncogene 2021; 40:2772-2784. [PMID: 33714986 DOI: 10.1038/s41388-021-01741-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 02/18/2021] [Accepted: 02/26/2021] [Indexed: 01/31/2023]
Abstract
Pancreatic cancer (PC) is highly malignant and has a high mortality with a 5-year survival rate of less than 8%. As a member of the roundabout immunoglobulin superfamily of proteins, ROBO1 plays an important role in embryogenesis and organogenesis and also inhibits metastasis in PC. Our study was designed to explore whether ROBO1 has effects on the proliferation of PC and its specific mechanism. The expression of ROBO1 was higher in cancer tissues than in matched adjacent tissues by immunohistochemistry (IHC) and qRT-PCR. Low ROBO1 expression is associated with PC progression and poor prognosis. Overexpression of ROBO1 can inhibit the proliferation of PC cells in vitro, and the S phase fraction can also be induced. Further subcutaneous tumor formation in nude mice showed that ROBO1 overexpression can significantly inhibit tumor growth. YY1 was found to directly bind to the promoter region of ROBO1 to promote transcription by a luciferase reporter gene assay, a chromatin immunoprecipitation (ChIP) and an electrophoretic mobility shift assay (EMSA). Mechanistic studies showed that YY1 can inhibit the development of PC by directly regulating ROBO1 via the CCNA2/CDK2 axis. Taken together, our results suggest that ROBO1 may be involved in the development and progression of PC by regulating cell proliferation and shows that ROBO1 may be a novel and promising therapeutic target for PC.
Collapse
Affiliation(s)
- Qun Chen
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Pancreas Institute, Nanjing Medical University, Nanjing, China
| | - Peng Shen
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Pancreas Institute, Nanjing Medical University, Nanjing, China
| | - Wan-Li Ge
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Pancreas Institute, Nanjing Medical University, Nanjing, China
| | - Tao-Yue Yang
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Pancreas Institute, Nanjing Medical University, Nanjing, China
| | - Wu-Jun Wang
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Ling-Dong Meng
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Pancreas Institute, Nanjing Medical University, Nanjing, China
| | - Xu-Min Huang
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Pancreas Institute, Nanjing Medical University, Nanjing, China
| | - Yi-Han Zhang
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Pancreas Institute, Nanjing Medical University, Nanjing, China
| | - Shou-Ji Cao
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Pancreas Institute, Nanjing Medical University, Nanjing, China
| | - Yi Miao
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Pancreas Institute, Nanjing Medical University, Nanjing, China
| | - Kui-Rong Jiang
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
- Pancreas Institute, Nanjing Medical University, Nanjing, China.
| | - Jing-Jing Zhang
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
- Pancreas Institute, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
38
|
Tian L, Chen T, Lu J, Yan J, Zhang Y, Qin P, Ding S, Zhou Y. Integrated Protein-Protein Interaction and Weighted Gene Co-expression Network Analysis Uncover Three Key Genes in Hepatoblastoma. Front Cell Dev Biol 2021; 9:631982. [PMID: 33718368 PMCID: PMC7953069 DOI: 10.3389/fcell.2021.631982] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 02/08/2021] [Indexed: 11/13/2022] Open
Abstract
Hepatoblastoma (HB) is the most common liver tumor in the pediatric population, with typically poor outcomes for advanced-stage or chemotherapy-refractory HB patients. The objective of this study was to identify genes involved in HB pathogenesis via microarray analysis and subsequent experimental validation. We identified 856 differentially expressed genes (DEGs) between HB and normal liver tissue based on two publicly available microarray datasets (GSE131329 and GSE75271) after data merging and batch effect correction. Protein–protein interaction (PPI) analysis and weighted gene co-expression network analysis (WGCNA) were conducted to explore HB-related critical modules and hub genes. Subsequently, Gene Ontology (GO) analysis was used to reveal critical biological functions in the initiation and progression of HB. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that genes involved in cell cycle phase transition and the PI3K/AKT signaling were associated with HB. The intersection of hub genes identified by both PPI and WGCNA analyses revealed five potential candidate genes. Based on receiver operating characteristic (ROC) curve analysis and reports in the literature, we selected CCNA2, CDK1, and CDC20 as key genes of interest to validate experimentally. CCNA2, CDK1, or CDC20 small interfering RNA (siRNA) knockdown inhibited aggressive biological properties of both HepG2 and HuH-6 cell lines in vitro. In conclusion, we identified CCNA2, CDK1, and CDC20 as new potential therapeutic biomarkers for HB, providing novel insights into important and viable targets in future HB treatment.
Collapse
Affiliation(s)
- Linlin Tian
- Department of Microbiology, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin, China.,Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tong Chen
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of General Surgery, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jiaju Lu
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jianguo Yan
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, China
| | - Yuting Zhang
- Department of Microbiology, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin, China
| | - Peifang Qin
- Department of Microbiology, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin, China
| | - Sentai Ding
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yali Zhou
- Department of Microbiology, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin, China.,Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, China
| |
Collapse
|
39
|
Gao B, Liu X, Li Z, Zhao L, Pan Y. Overexpression of EZH2/NSD2 Histone Methyltransferase Axis Predicts Poor Prognosis and Accelerates Tumor Progression in Triple-Negative Breast Cancer. Front Oncol 2021; 10:600514. [PMID: 33665162 PMCID: PMC7921704 DOI: 10.3389/fonc.2020.600514] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 12/29/2020] [Indexed: 12/12/2022] Open
Abstract
Two histone methyltransferases, enhancer of zeste homolog 2 (EZH2) and nuclear SET domain-containing 2 (NSD2), are aberrantly expressed in several types of human cancers. However, the regulatory relationship between EZH2 and NSD2 and their prognostic values in breast cancer (BC) have not been fully elucidated. In this study, we demonstrated that EZH2 and NSD2 were overexpressed in BC compared with benign lesions and normal tissues using tissue microarray, immunohistochemistry, and bioinformatic databases. Both EZH2 and NSD2 expression were associated with pathological grade of tumor and lymph node metastasis. A comprehensive survival analysis using Kaplan-Meier Plotter database indicated that EZH2 expression was negatively correlated with relapse-free survival (RFS), overall survival (OS), distant metastasis-free survival (DMFS), and postprogression survival (PPS) in 3951 BC patients, and NSD2 expression was negatively correlated with RFS and DMFS. Notably, EZH2 and NSD2 expression were coordinately higher in triple-negative breast cancer (TNBC) than that in other subtypes. Stable knockdown of EZH2 using lentiviral shRNA vector significantly reduced the proliferation, migration and invasion abilities of TNBC cell line MDA-MB-231 and MDA-MB-468, and downregulated NSD2 expression as well as the levels of H3K27me3 and H3K36me2, two histone methylation markers catalyzed by EZH2 and NSD2, respectively. By contrast, overexpression of EZH2 using adenovirus vector displayed an inverse phenotype. Furthermore, knockdown of NSD2 in EZH2-overexpressing cells could dramatically attenuate EZH2-mediated oncogenic effects. Bioinformatic analysis further revealed the function and pathway enrichments of co-expressed genes and interactive genes of EZH2/NSD2 axis, suggesting that EZH2/NSD2 axis was associated with cell division, mitotic nuclear division and transition of mitotic cell cycle in TNBC. Taken together, EZH2/NSD2 axis may act as a predictive marker for poor prognosis and accelerate the progression of TNBC.
Collapse
Affiliation(s)
- Bo Gao
- Department of Pathology, First Affiliated Hospital of Dali University, Dali, China
| | - Xiumin Liu
- Department of Pathology, First Affiliated Hospital of Dali University, Dali, China
| | - Zhengjin Li
- Department of Pathology, First Affiliated Hospital of Dali University, Dali, China
| | - Lixian Zhao
- Department of Pathology, First Affiliated Hospital of Dali University, Dali, China
| | - Yun Pan
- Department of Pathology, First Affiliated Hospital of Dali University, Dali, China
| |
Collapse
|
40
|
Guo Y, Gabola M, Lattanzio R, Paul C, Pinet V, Tang R, Turali H, Bremond J, Longobardi C, Maurizy C, Da Costa Q, Finetti P, Boissière-Michot F, Rivière B, Lemmers C, Garnier S, Bertucci F, Zlobec I, Chebli K, Tazi J, Azar R, Blanchard JM, Sicinski P, Mamessier E, Lemmers B, Hahne M. Cyclin A2 maintains colon homeostasis and is a prognostic factor in colorectal cancer. J Clin Invest 2021; 131:131517. [PMID: 33332285 DOI: 10.1172/jci131517] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 12/09/2020] [Indexed: 12/19/2022] Open
Abstract
To clarify the function of cyclin A2 in colon homeostasis and colorectal cancer (CRC), we generated mice deficient for cyclin A2 in colonic epithelial cells (CECs). Colons of these mice displayed architectural changes in the mucosa and signs of inflammation, as well as increased proliferation of CECs associated with the appearance of low- and high-grade dysplasias. The main initial events triggering those alterations in cyclin A2-deficient CECs appeared to be abnormal mitoses and DNA damage. Cyclin A2 deletion in CECs promoted the development of dysplasia and adenocarcinomas in a murine colitis-associated cancer model. We next explored the status of cyclin A2 expression in clinical CRC samples at the mRNA and protein levels and found higher expression in tumors of patients with stage 1 or 2 CRC compared with those of patients with stage 3 or 4 CRC. A meta-analysis of 11 transcriptome data sets comprising 2239 primary CRC tumors revealed different expression levels of CCNA2 (the mRNA coding for cyclin A2) among the CRC tumor subtypes, with the highest expression detected in consensus molecular subtype 1 (CMS1) and the lowest in CMS4 tumors. Moreover, we found high expression of CCNA2 to be a new, independent prognosis factor for CRC tumors.
Collapse
Affiliation(s)
- Yuchen Guo
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
| | - Monica Gabola
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
| | - Rossano Lattanzio
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University, Chieti, Italy.,Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, Chieti, Italy
| | - Conception Paul
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
| | - Valérie Pinet
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
| | - Ruizhi Tang
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
| | - Hulya Turali
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
| | - Julie Bremond
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
| | - Ciro Longobardi
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
| | - Chloé Maurizy
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
| | - Quentin Da Costa
- Predictive Oncology Laboratory, Cancer Research Center of Marseille (CRCM), INSERM, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix Marseille Université, Marseille, France
| | - Pascal Finetti
- Predictive Oncology Laboratory, Cancer Research Center of Marseille (CRCM), INSERM, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix Marseille Université, Marseille, France
| | - Florence Boissière-Michot
- Translationnal Research Unit, Montpellier Cancer Institute, Montpellier, France - Université de Montpellier, Montpellier, France
| | - Benjamin Rivière
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
| | - Céline Lemmers
- PVM, Biocampus, Université de Montpellier, CNRS, Montpellier, France
| | - Séverine Garnier
- Predictive Oncology Laboratory, Cancer Research Center of Marseille (CRCM), INSERM, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix Marseille Université, Marseille, France
| | - François Bertucci
- Predictive Oncology Laboratory, Cancer Research Center of Marseille (CRCM), INSERM, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix Marseille Université, Marseille, France.,Department of Medical Oncology, Institut Paoli-Calmettes, Marseille, France
| | - Inti Zlobec
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Karim Chebli
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
| | - Jamal Tazi
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
| | - Rania Azar
- Faculty of Pharmacy, Lebanese University, Hadath, Lebanon
| | - Jean-Marie Blanchard
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
| | | | - Emilie Mamessier
- Predictive Oncology Laboratory, Cancer Research Center of Marseille (CRCM), INSERM, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix Marseille Université, Marseille, France
| | - Bénédicte Lemmers
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
| | - Michael Hahne
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
| |
Collapse
|
41
|
Fu H, Zhang Y, Chen Y, Chen J, Chen P. CSN1 facilitates proliferation and migration of hepatocellular carcinoma cells by upregulating cyclin A2 expression. Mol Med Rep 2021; 23:46. [PMID: 33200803 PMCID: PMC7705997 DOI: 10.3892/mmr.2020.11684] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 10/14/2020] [Indexed: 12/24/2022] Open
Abstract
Constitutive photomorphogenesis 9 signalosome subunit 1 (CSN1) plays an important role in the ubiquitin-proteasome pathway and regulates various cellular processes, such as the cell cycle and DNA repair. The CSN complex consists of eight subunits (CSN1 to CSN8) and regulates the tumorigenesis of a variety of tumor types. However, the exact role of CSN1 in hepatocellular carcinoma (HCC) remains unclear. The present study evaluated the expression and biological effects of CSN1 in HCC tissue samples and cell lines. CSN1 was significantly overexpressed in HCC tissue and cell lines, compared with their normal counterparts. In patients with HCC, elevated CSN1 levels correlated with tumor size, tumor metastasis and tumor stage. Loss‑of‑function assays indicated that CSN1 knockdown inhibited the proliferation and migration HCC cells. In addition, CSN1 promoted the expression of cyclin A2 in a ubiquitination‑independent manner. Lastly, xenograft experiments indicated that CSN1 promoted HCC tumor growth in vivo. The present study suggested that CSN1 inhibition could represent a potential approach for the prevention of HCC progression and metastasis.
Collapse
Affiliation(s)
- Hangwei Fu
- Department of Hepatobiliary Surgery, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
| | - Yida Zhang
- Department of Hepatobiliary Surgery, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
| | - Yin Chen
- Department of Hepatobiliary Surgery, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
- Department of Gynecology and Obstetrics, The 958th Hospital, Southwest Hospital, Army Medical University, Chongqing 400020, P.R. China
| | - Junying Chen
- Department of Hepatobiliary Surgery, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
| | - Ping Chen
- Department of Hepatobiliary Surgery, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
| |
Collapse
|
42
|
Wang Z, Qi Y, Wang R, Wu W, Li Z, Wang M, Liu R, Zhang C, Li W, Wang S. IGFBP6 regulates vascular smooth muscle cell proliferation and morphology via cyclin E-CDK2. J Cell Physiol 2020; 235:9538-9556. [PMID: 32529639 DOI: 10.1002/jcp.29762] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 03/22/2020] [Accepted: 04/17/2020] [Indexed: 12/18/2022]
Abstract
Despite the high prevalence of varicose veins, the underlying pathogenesis of this disease remains unclear. The present study aims to explore the role of insulin-like growth factor binding protein 6 (IGFBP6) in vascular smooth muscle cells (VSMCs). Using a protein array approach, we identified several differentially expressed proteins between varicose great saphenous veins and normal great saphenous veins. Bioinformatic analysis showed that IGFBP6 was closely related to cell proliferation. Further validation confirmed that IGFBP6 was one of the most highly expressed proteins in varicose vein tissue. Knocking down IGFBP6 in VSMCs significantly attenuated cell proliferation and induced the S phase arrest during the cell cycle. Further experiments demonstrated that IGFBP6 knockdown increased cyclin E ubiquitination, which reduced expression of cyclin E and phosphorylation of CDK2. Furthermore, IGFBP6 knockdown arrested centrosome replication, which subsequently influenced VSMC morphology. Ultimately, IGFBP6 was validated to be involved in VSMC proliferation in varicose vein tissues. The present study reveals that IGFBP6 is closely correlated with VSMC biological function and provides unprecedented insights into the underlying pathogenesis of varicose veins.
Collapse
Affiliation(s)
- Zhecun Wang
- Division of Vascular Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yunling Qi
- Division of Vascular Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Rui Wang
- Division of Vascular Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Weibin Wu
- Division of Vascular Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zilun Li
- Division of Vascular Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mian Wang
- Division of Vascular Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ruiming Liu
- Laboratory of General Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chunxiang Zhang
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama
| | - Wen Li
- Laboratory of General Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shenming Wang
- Division of Vascular Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
43
|
Dewhurst MR, Ow JR, Zafer G, van Hul NKM, Wollmann H, Bisteau X, Brough D, Choi H, Kaldis P. Loss of hepatocyte cell division leads to liver inflammation and fibrosis. PLoS Genet 2020; 16:e1009084. [PMID: 33147210 PMCID: PMC7641358 DOI: 10.1371/journal.pgen.1009084] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/26/2020] [Indexed: 12/12/2022] Open
Abstract
The liver possesses a remarkable regenerative capacity based partly on the ability of hepatocytes to re-enter the cell cycle and divide to replace damaged cells. This capability is substantially reduced upon chronic damage, but it is not clear if this is a cause or consequence of liver disease. Here, we investigate whether blocking hepatocyte division using two different mouse models affects physiology as well as clinical liver manifestations like fibrosis and inflammation. We find that in P14 Cdk1Liv-/- mice, where the division of hepatocytes is abolished, polyploidy, DNA damage, and increased p53 signaling are prevalent. Cdk1Liv-/- mice display classical markers of liver damage two weeks after birth, including elevated ALT, ALP, and bilirubin levels, despite the lack of exogenous liver injury. Inflammation was further studied using cytokine arrays, unveiling elevated levels of CCL2, TIMP1, CXCL10, and IL1-Rn in Cdk1Liv-/- liver, which resulted in increased numbers of monocytes. Ablation of CDK2-dependent DNA re-replication and polyploidy in Cdk1Liv-/- mice reversed most of these phenotypes. Overall, our data indicate that blocking hepatocyte division induces biological processes driving the onset of the disease phenotype. It suggests that the decrease in hepatocyte division observed in liver disease may not only be a consequence of fibrosis and inflammation, but also a pathological cue.
Collapse
Affiliation(s)
- Matthew R. Dewhurst
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore
- Lydia Becker Institute of Immunology and Inflammation; and Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Jin Rong Ow
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore
| | - Gözde Zafer
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore
- Department of Biochemistry, National University of Singapore (NUS), Singapore
| | - Noémi K. M. van Hul
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore
| | - Heike Wollmann
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore
| | - Xavier Bisteau
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore
| | - David Brough
- Lydia Becker Institute of Immunology and Inflammation; and Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Hyungwon Choi
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Philipp Kaldis
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore
- Department of Biochemistry, National University of Singapore (NUS), Singapore
- Department of Clinical Sciences, Lund University, Clinical Research Centre (CRC), Sweden
- * E-mail:
| |
Collapse
|
44
|
Liu H, Liu K, Dong Z. Targeting CDK12 for Cancer Therapy: Function, Mechanism, and Drug Discovery. Cancer Res 2020; 81:18-26. [PMID: 32958547 DOI: 10.1158/0008-5472.can-20-2245] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/23/2020] [Accepted: 09/16/2020] [Indexed: 11/16/2022]
Abstract
Cyclin-dependent kinase 12 (CDK12) is a member of the CDK family of proteins (CDK) and is critical for cancer development. Years of study into CDK12 have generated much information regarding the intricacy of its function and mechanism as well as inhibitors against it for oncological research. However, there remains a lack of understanding regarding the role of CDK12 in carcinogenesis and cancer prevention. An exhaustive comprehension of CDK12 will highly stimulate the development of new strategies for treating and preventing cancer. Here, we review the literature of CDK12, with a focus on its function, its role in signaling, and how to use it as a target for discovery of novel drugs for cancer prevention and therapy.
Collapse
Affiliation(s)
- Hui Liu
- Department of Pathophysiology, School of Basic Medical Sciences, The Academy of Medical Science, College of Medical, Zhengzhou University, Zhengzhou, Henan, China
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, The Academy of Medical Science, College of Medical, Zhengzhou University, Zhengzhou, Henan, China.,China-US (Henan) Hormel Cancer Institute, Jinshui District, Zhengzhou, Henan, China
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, The Academy of Medical Science, College of Medical, Zhengzhou University, Zhengzhou, Henan, China. .,China-US (Henan) Hormel Cancer Institute, Jinshui District, Zhengzhou, Henan, China
| |
Collapse
|
45
|
Chen C, Zhang R, Ma L, Li Q, Zhao YL, Zhang GJ, Zhang D, Li WZ, Cao S, Wang L, Geng ZM. Neuropilin-1 is up-regulated by cancer-associated fibroblast-secreted IL-8 and associated with cell proliferation of gallbladder cancer. J Cell Mol Med 2020; 24:12608-12618. [PMID: 32951327 PMCID: PMC7686964 DOI: 10.1111/jcmm.15825] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/22/2020] [Accepted: 08/13/2020] [Indexed: 01/04/2023] Open
Abstract
We previously demonstrated that cancer‐associated fibroblasts (CAFs) promoted the proliferation of gallbladder cancer (GBC) cells, but the mechanism is not clear. Neuropilin‐1 (NRP‐1) plays an important role in various malignancies as transmembrane glycoprotein. Our goal was to reveal the relationship between CAFs and NRP‐1 and their potential functions in GBC. In this study, we found NRP‐1 was overexpressed in GBC tissue, associated with poor survival and was up‐regulated by CAFs. The cytokine array cluster analysis revealed IL‐8 secreted by CAFs facilitated the up‐regulation of NRP‐1 in tumour cells. NRP‐1 knockdown suppressed tumour growth in vivo. Gene expression microarray analysis showed 581 differentially regulated genes under NRP‐1 knockdown conditions. Ingenuity pathway analysis demonstrated that NRP‐1 knockdown may inhibit tumour progression by affecting cell proliferation. We then confirmed that NRP‐1 knockdown in NOZ and GBC‐SD cells significantly inhibited cell proliferation. Additionally, the IL‐8 mediated MDM2 and CCNA2 expression were affected by NRP‐1 knockdown. Our findings suggested that NRP‐1 was up‐regulated by CAF‐secreted IL‐8, which subsequently promoted GBC cell proliferation, and these molecules may serve as useful prognostic biomarkers and therapeutic targets for GBC.
Collapse
Affiliation(s)
- Chen Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Rui Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Li Ma
- Department of Emergency, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Qi Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Ya-Ling Zhao
- Department of of Epidemiology and Biostatistics, School of Public Health, Xi'an Jiaotong University, Health Science Center, Xi'an, Shaanxi Province, China
| | - Guan-Jun Zhang
- Department of Pathology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Dong Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Wen-Zhi Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Sheng Cao
- Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Lin Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Zhi-Min Geng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| |
Collapse
|
46
|
Jamshed L, Raez-Villanueva S, Perono GA, Thomas PJ, Holloway AC. The effects of a technical mixture of naphthenic acids on placental trophoblast cell function. Reprod Toxicol 2020; 96:413-423. [PMID: 32871178 DOI: 10.1016/j.reprotox.2020.08.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/06/2020] [Accepted: 08/22/2020] [Indexed: 10/25/2022]
Abstract
There is considerable concern that naphthenic acids (NA) related to oil extraction can negatively impact reproduction in mammals, yet the mechanisms are unknown. Since placental dysfunction is central to many adverse pregnancy outcomes, the goal of this study was to determine the effects of NA exposure on placental trophoblast cell function. HTR-8/SVneo cells were exposed to a commercial technical NA mixture for 24 hours to assess transcriptional regulation of placentation-related pathways and functional assessment of migration, invasion, and angiogenesis. Pathway analysis suggests that NA treatment resulted in increased epithelial-to-mesenchymal transition. However, there was reduced migration and invasive potential. NA treatment increased angiogenesis-related pathways with a concomitant increase in tube formation. Since decreased trophoblast invasion/migration and aberrant angiogenesis have been associated with placental dysfunction, these findings suggest that it is biologically plausible that exposure to NA may result in altered placental development and/or function.
Collapse
Affiliation(s)
- Laiba Jamshed
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON., L8S 4K1, Canada
| | - Sergio Raez-Villanueva
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON., L8S 4K1, Canada
| | - Genevieve A Perono
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON., L8S 4K1, Canada
| | - Philippe J Thomas
- Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa ON., Canada
| | - Alison C Holloway
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON., L8S 4K1, Canada.
| |
Collapse
|
47
|
Valles GJ, Bezsonova I, Woodgate R, Ashton NW. USP7 Is a Master Regulator of Genome Stability. Front Cell Dev Biol 2020; 8:717. [PMID: 32850836 PMCID: PMC7419626 DOI: 10.3389/fcell.2020.00717] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/13/2020] [Indexed: 12/25/2022] Open
Abstract
Genetic alterations, including DNA mutations and chromosomal abnormalities, are primary drivers of tumor formation and cancer progression. These alterations can endow cells with a selective growth advantage, enabling cancers to evade cell death, proliferation limits, and immune checkpoints, to metastasize throughout the body. Genetic alterations occur due to failures of the genome stability pathways. In many cancers, the rate of alteration is further accelerated by the deregulation of these processes. The deubiquitinating enzyme ubiquitin specific protease 7 (USP7) has recently emerged as a key regulator of ubiquitination in the genome stability pathways. USP7 is also deregulated in many cancer types, where deviances in USP7 protein levels are correlated with cancer progression. In this work, we review the increasingly evident role of USP7 in maintaining genome stability, the links between USP7 deregulation and cancer progression, as well as the rationale of targeting USP7 in cancer therapy.
Collapse
Affiliation(s)
- Gabrielle J Valles
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, United States
| | - Irina Bezsonova
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, United States
| | - Roger Woodgate
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Nicholas W Ashton
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
48
|
Liu B, Xiao Y, Li H, Zhang AL, Meng LB, Feng L, Zhao ZH, Ni XC, Fan B, Zhang XY, Zhao SB, Liu YB. Identification and Verification of Biomarker in Clear Cell Renal Cell Carcinoma via Bioinformatics and Neural Network Model. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6954793. [PMID: 32626756 PMCID: PMC7317307 DOI: 10.1155/2020/6954793] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/10/2020] [Accepted: 05/22/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC) is the most common subtype of kidney cancer, which represents the 9th most frequently diagnosed cancer. However, the molecular mechanism of occurrence and development of ccRCC is indistinct. Therefore, the research aims to identify the hub biomarkers of ccRCC using numerous bioinformatics tools and functional experiments. METHODS The public data was downloaded from the Gene Expression Omnibus (GEO) database, and the differently expressed genes (DEGs) between ccRCC and normal renal tissues were identified with GEO2R. Protein-protein interaction (PPI) network of the DEGs was constructed, and hub genes were screened with cytoHubba. Then, ten ccRCC tumor samples and ten normal kidney tissues were obtained to verify the expression of hub genes with the RT-qPCR. Finally, the neural network model was constructed to verify the relationship among the genes. RESULTS A total of 251 DEGs and ten hub genes were identified. AURKB, CCNA2, TPX2, and NCAPG were highly expressed in ccRCC compared with renal tissue. With the increasing expression of AURKB, CCNA2, TPX2, and NCAPG, the pathological stage of ccRCC increased gradually (P < 0.05). Patients with high expression of AURKB, CCNA2, TPX2, and NCAPG have a poor overall survival. After the verification of RT-qPCR, the expression of hub genes was same as the public data. And there were strong correlations between the AURKB, CCNA2, TPX2, and NCAPG with the verification of the neural network model. CONCLUSION After the identification and verification, AURKB, CCNA2, TPX2, and NCAPG might be related to the occurrence and malignant progression of ccRCC.
Collapse
Affiliation(s)
- Bin Liu
- Department of Urinary Surgery, The Fourth Hospital of Hebei Medical University, No. 12 Jiankang Road, 050000, China
| | - Yu Xiao
- School of Basic Medicine, Peking University, No. 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Hao Li
- Department of Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Ai-li Zhang
- Department of Urinary Surgery, The Fourth Hospital of Hebei Medical University, No. 12 Jiankang Road, 050000, China
| | - Ling-bing Meng
- School of Basic Medical Sciences, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Lu Feng
- MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Zhi-hong Zhao
- Department of Urinary Surgery, The Fourth Hospital of Hebei Medical University, No. 12 Jiankang Road, 050000, China
| | - Xiao-chen Ni
- Department of Urinary Surgery, The Fourth Hospital of Hebei Medical University, No. 12 Jiankang Road, 050000, China
| | - Bo Fan
- Department of Urinary Surgery, The Fourth Hospital of Hebei Medical University, No. 12 Jiankang Road, 050000, China
| | - Xiao-yu Zhang
- Department of Urinary Surgery, The Fourth Hospital of Hebei Medical University, No. 12 Jiankang Road, 050000, China
| | - Shi-bin Zhao
- Department of Reproductive Medicine, The Fourth Hospital of Hebei Medical University, No. 12 Jiankang Road, 050000, China
| | - Yi-bo Liu
- Department of Urinary Surgery, The Fourth Hospital of Hebei Medical University, No. 12 Jiankang Road, 050000, China
| |
Collapse
|
49
|
Hégarat N, Crncec A, Suarez Peredo Rodriguez MF, Echegaray Iturra F, Gu Y, Busby O, Lang PF, Barr AR, Bakal C, Kanemaki MT, Lamond AI, Novak B, Ly T, Hochegger H. Cyclin A triggers Mitosis either via the Greatwall kinase pathway or Cyclin B. EMBO J 2020; 39:e104419. [PMID: 32350921 PMCID: PMC7265243 DOI: 10.15252/embj.2020104419] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/09/2020] [Accepted: 03/25/2020] [Indexed: 01/23/2023] Open
Abstract
Two mitotic cyclin types, cyclin A and B, exist in higher eukaryotes, but their specialised functions in mitosis are incompletely understood. Using degron tags for rapid inducible protein removal, we analyse how acute depletion of these proteins affects mitosis. Loss of cyclin A in G2-phase prevents mitotic entry. Cells lacking cyclin B can enter mitosis and phosphorylate most mitotic proteins, because of parallel PP2A:B55 phosphatase inactivation by Greatwall kinase. The final barrier to mitotic establishment corresponds to nuclear envelope breakdown, which requires a decisive shift in the balance of cyclin-dependent kinase Cdk1 and PP2A:B55 activity. Beyond this point, cyclin B/Cdk1 is essential for phosphorylation of a distinct subset of mitotic Cdk1 substrates that are essential to complete cell division. Our results identify how cyclin A, cyclin B and Greatwall kinase coordinate mitotic progression by increasing levels of Cdk1-dependent substrate phosphorylation.
Collapse
Affiliation(s)
- Nadia Hégarat
- Genome Damage and Stability CentreSchool of Life SciencesUniversity of SussexBrightonUK
| | - Adrijana Crncec
- Genome Damage and Stability CentreSchool of Life SciencesUniversity of SussexBrightonUK
| | | | | | - Yan Gu
- Genome Damage and Stability CentreSchool of Life SciencesUniversity of SussexBrightonUK
| | - Oliver Busby
- Genome Damage and Stability CentreSchool of Life SciencesUniversity of SussexBrightonUK
| | - Paul F Lang
- Department of BiochemistryUniversity of OxfordOxfordUK
| | - Alexis R Barr
- MRC London Institute of Medical ScienceImperial CollegeLondonUK
- Institute of Clinical SciencesFaculty of MedicineImperial CollegeLondonUK
| | - Chris Bakal
- Institute for Cancer ResearchChester Beatty LaboratoriesLondonUK
| | - Masato T Kanemaki
- National Institute of GeneticsResearch Organization of Information and Systems (ROIS)MishimaJapan
- Department of GeneticsSOKENDAI (The Graduate University of Advanced Studies)MishimaJapan
| | - Angus I Lamond
- Centre for Gene Regulation and ExpressionSchool of Life SciencesUniversity of DundeeDundeeUK
| | - Bela Novak
- Department of BiochemistryUniversity of OxfordOxfordUK
| | - Tony Ly
- Wellcome Trust Centre for Cell BiologyUniversity of EdinburghEdinburghUK
| | - Helfrid Hochegger
- Genome Damage and Stability CentreSchool of Life SciencesUniversity of SussexBrightonUK
| |
Collapse
|
50
|
Guo F, Zhang K, Li M, Cui L, Liu G, Yan Y, Tian W, Teng F, Zhang Y, Gao C, Gao J, Wang Y, Xue F. miR‑508‑3p suppresses the development of ovarian carcinoma by targeting CCNA2 and MMP7. Int J Oncol 2020; 57:264-276. [PMID: 32377701 PMCID: PMC7252466 DOI: 10.3892/ijo.2020.5055] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 04/09/2020] [Indexed: 12/13/2022] Open
Abstract
Ovarian cancer is the most lethal gynecological tumor, and the 5‑year survival rate is only ~40%. The poor survival rate is due to cancer diagnosis at an advanced stage, when the tumor has metastasized. A better understanding of the molecular pathogenesis of tumor growth and metastasis is needed to improve patient prognosis. MicroRNAs (miRs) regulate carcinogenesis and development of cancers. However, the role of miR‑508‑3p in ovarian cancer remains largely unknown. Thus, the present study aimed to investigate the possible functions of miR‑508‑3p in the modulation of development of ovarian cancer. The results of the present study demonstrated that miR‑508‑3p mimics inhibited ovarian cancer cell proliferation, migration and invasion. Reporter gene assay results demonstrated that miR‑508‑3p suppressed cancer cell proliferation by directly targeting the 3'‑untranslated region (UTR) of cyclin A2 (CCNA2) and suppressed migration and invasion by directly targeting the 3'‑UTR of matrix metalloproteinase 7 (MMP7). In addition, high CCNA2 and MMP7 expression levels were associated with low miR‑508‑3p expression in ovarian cancer tissues. Furthermore, miR‑508‑3p and CCNA2 were independent predictors for overall survival in patients with ovarian cancer. To the best of our knowledge, this is the first study to demonstrated that miR‑508‑3p suppressed ovarian cancer development by directly targeting CCNA2 and MMP7. The results of this study suggested the potential value of miR‑508‑3p and CCNA2 as prognostic indicators and therapeutics for ovarian cancer.
Collapse
Affiliation(s)
- Fei Guo
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Kai Zhang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Meiyue Li
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Lei Cui
- Department of Gynecology and Obstetrics, Tianjin First Central Hospital, Tianjin 300192, P.R. China
| | - Guoyan Liu
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Ye Yan
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Wenyan Tian
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Fei Teng
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yanfang Zhang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Chao Gao
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Jinping Gao
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yingmei Wang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Fengxia Xue
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| |
Collapse
|