1
|
Huang M, Ding J, Wu X, Peng X, Wu G, Peng C, Zhang H, Mao C, Huang B. EZH2 affects malignant progression and DNA damage repair of lung adenocarcinoma cells by regulating RAI2 expression. Mutat Res 2022; 825:111792. [PMID: 35939884 DOI: 10.1016/j.mrfmmm.2022.111792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is featured in high morbidity and mortality. Aberrant activation of the histone methyltransferase EZH2 has close association with cancer progression. This research aimed to deeply dive into the role and possible molecular mechanisms of EZH2 and its downstream genes in malignant progression and DNA damage repair of LUAD cells. METHODS Expression of EZH2 in LUAD cells was analyzed by qRT-PCR, and the effects of EZH2 on proliferation, and apoptosis of LUAD cells were examined by CCK-8, colony formation and flow cytometry assays. The downstream targets of EZH2 were predicted by bioinformatics analysis. Then, the targeting relationship between EZH2 and RAI2 was examined by CHIP and luciferase reporter assays. Rescue assay were used to further validate the effect of EZH2/RAI2 on the malignant progression of LUAD cells. The expression levels of EZH2, RAI2 and p53 were examined by Western blot. RESULTS Upregulation of EZH2 was identified in LUAD tissues and cells. RAI2 was a downstream target gene of EZH2, and the two were negatively correlated. Silencing EZH2 suppressed proliferation of LUAD cells, promoted expression of p53, cell cycle arrest and apoptosis. While silencing RAI2 could reverse the above-mentioned effects caused by EZH2 silencing. CONCLUSION These results demonstrated that EZH2 promoted malignant progression and DNA damage repair of LUAD cells by targeting and negatively regulating RAI2.
Collapse
Affiliation(s)
- Mingjiang Huang
- Department of Cardiothoracic Surgery, Lishui People's Hospital, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Jianyang Ding
- Department of Cardiothoracic Surgery, Lishui People's Hospital, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Xuhui Wu
- Department of Cardiothoracic Surgery, Lishui People's Hospital, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Xuyang Peng
- Department of Cardiothoracic Surgery, Lishui People's Hospital, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Gongzhi Wu
- Department of Cardiothoracic Surgery, Lishui People's Hospital, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Congxiong Peng
- Department of Cardiothoracic Surgery, Lishui People's Hospital, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Huaizhong Zhang
- Department of Cardiothoracic Surgery, Lishui People's Hospital, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Chaofan Mao
- Department of Cardiothoracic Surgery, Lishui People's Hospital, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Bin Huang
- Department of Cardiothoracic Surgery, Lishui People's Hospital, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China.
| |
Collapse
|
2
|
George BP, Chandran R, Abrahamse H. Role of Phytochemicals in Cancer Chemoprevention: Insights. Antioxidants (Basel) 2021; 10:antiox10091455. [PMID: 34573087 PMCID: PMC8466984 DOI: 10.3390/antiox10091455] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 12/21/2022] Open
Abstract
Cancer is a condition where the body cells multiply in an uncontrollable manner. Chemoprevention of cancer is a broad term that describes the involvement of external agents to slow down or suppress cancer growth. Synthetic and natural compounds are found useful in cancer chemoprevention. The occurrence of global cancer type varies, depending on many factors such as environmental, lifestyle, genetic etc. Cancer is often preventable in developed countries with advanced treatment modalities, whereas it is a painful death sentence in developing and low-income countries due to the lack of modern therapies and awareness. One best practice to identify cancer control measures is to study the origin and risk factors associated with common types. Based on these factors and the health status of patients, stage, and severity of cancer, type of treatment is decided. Even though there are well-established therapies, cancer still stands as one of the major causes of death and a public health burden globally. Research shows that most cancers can be prevented, treated, or the incidence can be delayed. Phytochemicals from various medicinal plants were reported to reduce various risk factors associated with different types of cancer through their chemopreventive role. This review highlights the role of bioactive compounds or natural products from plants in the chemoprevention of cancer. There are many plant based dietary factors involved in the chemoprevention process. The review discusses the process of carcinogenesis and chemoprevention using plants and phytocompounds, with special reference to five major chemopreventive phytocompounds. The article also summarizes the important chemopreventive mechanisms and signaling molecules involved in the process. Since the role of antioxidants in chemoprevention is inevitable, an insight into plant-based antioxidant compounds that fight against this dreadful disease at various stages of carcinogenesis and disease progression is discussed. This will fill the research gap in search of chemopreventive natural compounds and encourage scientists in clinical trials of anticancer agents from plants.
Collapse
|
3
|
Gaidano V, Houshmand M, Vitale N, Carrà G, Morotti A, Tenace V, Rapelli S, Sainas S, Pippione AC, Giorgis M, Boschi D, Lolli ML, Cilloni D, Cignetti A, Saglio G, Circosta P. The Synergism between DHODH Inhibitors and Dipyridamole Leads to Metabolic Lethality in Acute Myeloid Leukemia. Cancers (Basel) 2021; 13:1003. [PMID: 33670894 PMCID: PMC7957697 DOI: 10.3390/cancers13051003] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/15/2021] [Accepted: 02/22/2021] [Indexed: 12/20/2022] Open
Abstract
Dihydroorotate Dehydrogenase (DHODH) is a key enzyme of the de novo pyrimidine biosynthesis, whose inhibition can induce differentiation and apoptosis in acute myeloid leukemia (AML). DHODH inhibitors had shown promising in vitro and in vivo activity on solid tumors, but their effectiveness was not confirmed in clinical trials, probably because cancer cells exploited the pyrimidine salvage pathway to survive. Here, we investigated the antileukemic activity of MEDS433, the DHODH inhibitor developed by our group, against AML. Learning from previous failures, we mimicked human conditions (performing experiments in the presence of physiological uridine plasma levels) and looked for synergic combinations to boost apoptosis, including classical antileukemic drugs and dipyridamole, a blocker of the pyrimidine salvage pathway. MEDS433 induced apoptosis in multiple AML cell lines, not only as a consequence of differentiation, but also directly. Its combination with antileukemic agents further increased the apoptotic rate, but when experiments were performed in the presence of physiological uridine concentrations, results were less impressive. Conversely, the combination of MEDS433 with dipyridamole induced metabolic lethality and differentiation in all AML cell lines; this extraordinary synergism was confirmed on AML primary cells with different genetic backgrounds and was unaffected by physiological uridine concentrations, predicting in human activity.
Collapse
Affiliation(s)
- Valentina Gaidano
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, 10043 Turin, Italy; (M.H.); (G.C.); (A.M.); (D.C.); (G.S.); (P.C.)
- Division of Hematology, A.O. SS Antonio e Biagio e Cesare Arrigo, 15121 Alessandria, Italy
| | - Mohammad Houshmand
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, 10043 Turin, Italy; (M.H.); (G.C.); (A.M.); (D.C.); (G.S.); (P.C.)
- Molecular Biotechnology Center, University of Turin, 10126 Turin, Italy;
| | - Nicoletta Vitale
- Molecular Biotechnology Center, University of Turin, 10126 Turin, Italy;
- Department of Medical Sciences, University of Turin, 10124 Turin, Italy
| | - Giovanna Carrà
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, 10043 Turin, Italy; (M.H.); (G.C.); (A.M.); (D.C.); (G.S.); (P.C.)
- Molecular Biotechnology Center, University of Turin, 10126 Turin, Italy;
| | - Alessandro Morotti
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, 10043 Turin, Italy; (M.H.); (G.C.); (A.M.); (D.C.); (G.S.); (P.C.)
| | - Valerio Tenace
- Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT 84112, USA;
| | - Stefania Rapelli
- Department of Life Sciences and System Biology, University of Turin, 10124 Turin, Italy;
| | - Stefano Sainas
- Department of Drug Science and Technology, University of Turin, 10124 Turin, Italy; (S.S.); (A.C.P.); (M.G.); (D.B.); (M.L.L.)
| | - Agnese Chiara Pippione
- Department of Drug Science and Technology, University of Turin, 10124 Turin, Italy; (S.S.); (A.C.P.); (M.G.); (D.B.); (M.L.L.)
| | - Marta Giorgis
- Department of Drug Science and Technology, University of Turin, 10124 Turin, Italy; (S.S.); (A.C.P.); (M.G.); (D.B.); (M.L.L.)
| | - Donatella Boschi
- Department of Drug Science and Technology, University of Turin, 10124 Turin, Italy; (S.S.); (A.C.P.); (M.G.); (D.B.); (M.L.L.)
| | - Marco Lucio Lolli
- Department of Drug Science and Technology, University of Turin, 10124 Turin, Italy; (S.S.); (A.C.P.); (M.G.); (D.B.); (M.L.L.)
| | - Daniela Cilloni
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, 10043 Turin, Italy; (M.H.); (G.C.); (A.M.); (D.C.); (G.S.); (P.C.)
- University Division of Hematology and Cell Therapy, A.O. Ordine Mauriziano, University of Turin, 10128 Turin, Italy;
| | - Alessandro Cignetti
- University Division of Hematology and Cell Therapy, A.O. Ordine Mauriziano, University of Turin, 10128 Turin, Italy;
| | - Giuseppe Saglio
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, 10043 Turin, Italy; (M.H.); (G.C.); (A.M.); (D.C.); (G.S.); (P.C.)
- University Division of Hematology and Cell Therapy, A.O. Ordine Mauriziano, University of Turin, 10128 Turin, Italy;
| | - Paola Circosta
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, 10043 Turin, Italy; (M.H.); (G.C.); (A.M.); (D.C.); (G.S.); (P.C.)
- Molecular Biotechnology Center, University of Turin, 10126 Turin, Italy;
| |
Collapse
|
4
|
Dar KB, Bhat AH, Amin S, Anjum S, Reshi BA, Zargar MA, Masood A, Ganie SA. Exploring Proteomic Drug Targets, Therapeutic Strategies and Protein - Protein Interactions in Cancer: Mechanistic View. Curr Cancer Drug Targets 2020; 19:430-448. [PMID: 30073927 DOI: 10.2174/1568009618666180803104631] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 07/17/2018] [Accepted: 07/19/2018] [Indexed: 12/31/2022]
Abstract
Protein-Protein Interactions (PPIs) drive major signalling cascades and play critical role in cell proliferation, apoptosis, angiogenesis and trafficking. Deregulated PPIs are implicated in multiple malignancies and represent the critical targets for treating cancer. Herein, we discuss the key protein-protein interacting domains implicated in cancer notably PDZ, SH2, SH3, LIM, PTB, SAM and PH. These domains are present in numerous enzymes/kinases, growth factors, transcription factors, adaptor proteins, receptors and scaffolding proteins and thus represent essential sites for targeting cancer. This review explores the candidature of various proteins involved in cellular trafficking (small GTPases, molecular motors, matrix-degrading enzymes, integrin), transcription (p53, cMyc), signalling (membrane receptor proteins), angiogenesis (VEGFs) and apoptosis (BCL-2family), which could possibly serve as targets for developing effective anti-cancer regimen. Interactions between Ras/Raf; X-linked inhibitor of apoptosis protein (XIAP)/second mitochondria-derived activator of caspases (Smac/DIABLO); Frizzled (FRZ)/Dishevelled (DVL) protein; beta-catenin/T Cell Factor (TCF) have also been studied as prospective anticancer targets. Efficacy of diverse molecules/ drugs targeting such PPIs although evaluated in various animal models/cell lines, there is an essential need for human-based clinical trials. Therapeutic strategies like the use of biologicals, high throughput screening (HTS) and fragment-based technology could play an imperative role in designing cancer therapeutics. Moreover, bioinformatic/computational strategies based on genome sequence, protein sequence/structure and domain data could serve as competent tools for predicting PPIs. Exploring hot spots in proteomic networks represents another approach for developing targetspecific therapeutics. Overall, this review lays emphasis on a productive amalgamation of proteomics, genomics, biochemistry, and molecular dynamics for successful treatment of cancer.
Collapse
Affiliation(s)
- Khalid Bashir Dar
- Department of Clinical Biochemistry, School of Biological Sciences, University of Kashmir, Srinagar, India.,Department of Biochemistry, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Aashiq Hussain Bhat
- Department of Clinical Biochemistry, School of Biological Sciences, University of Kashmir, Srinagar, India.,Department of Biochemistry, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Shajrul Amin
- Department of Biochemistry, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Syed Anjum
- Amity Institute of Biotechnology, Amity University, Rajasthan, India
| | - Bilal Ahmad Reshi
- Department of Biotechnology, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Mohammad Afzal Zargar
- Department of Clinical Biochemistry, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Akbar Masood
- Department of Clinical Biochemistry, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Showkat Ahmad Ganie
- Department of Clinical Biochemistry, School of Biological Sciences, University of Kashmir, Srinagar, India
| |
Collapse
|
5
|
Wang Y, Wang H, Wang W, Liu W, Liu N, Liu S, Lu Y. Prognostic value of platelet recovery degree before and after achieving minimal residual disease negative complete remission in acute myeloid leukemia patients. BMC Cancer 2020; 20:732. [PMID: 32758189 PMCID: PMC7409648 DOI: 10.1186/s12885-020-07222-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 07/27/2020] [Indexed: 12/19/2022] Open
Abstract
Background Risk stratification and prognosis prediction of acute myeloid leukemia (AML) are largely dependent on pre-treatment information. However, post-treatment data also provides much useful information. In this retrospective study, we explored whether the level of blood count recovery before and after the first minimal residual disease (MRD) negative complete remission (CR) is relevant to clinical outcomes of AML patients. Methods For each included patient, peripheral platelet counts were measured on the day before initial treatment (PLTpre), whereas platelet peak values (PLTpeak) were recorded after marrow recovery following the chemotherapy course inducing the first MRD-negative CR. The difference (DPLT) between these two values (DPLT = PLTpeak−PLTpre) was calculated. X-tile software was utilized to establish the optimal cut-point for DPLT, which was expected to distinguish CR patients with different clinical outcomes. A cross validation analysis was conducted to confirm the robustness of the established cut-point. The results were further tested by a Cox multivariate analysis. Results The optimal cut-point of DPLT was determined as 212 × 109/L. Patients in high DPLT group were observed to have a significantly better PFS (p = 0.016) and a better OS (without statistical significance, p = 0.106). Cox multivariate analysis showed that higher DPLT was associated with longer PFS (HR = 2.894, 95% CI: 1.320–6.345, p = 0.008) and longer OS (HR = 3.077, 95% CI: 1.130–8.376, p = 0.028). Conclusion Platelet recovery degree before and after achieving MRD-negative CR (DPLT) is a potential predictor of clinical outcomes in CR patients. Higher DPLT value is associated with longer PFS and OS. Our findings may help to develop simple methods for AML prognosis evaluation.
Collapse
Affiliation(s)
- Yang Wang
- Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, 651 Dongfengdong Rd, Guangzhou, 510060, China.,State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Hua Wang
- Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, 651 Dongfengdong Rd, Guangzhou, 510060, China.,State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Weida Wang
- Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, 651 Dongfengdong Rd, Guangzhou, 510060, China.,State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Wenjian Liu
- Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, 651 Dongfengdong Rd, Guangzhou, 510060, China.,State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Nawei Liu
- Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, 651 Dongfengdong Rd, Guangzhou, 510060, China.,State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Shuang Liu
- Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, 651 Dongfengdong Rd, Guangzhou, 510060, China.,State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Yue Lu
- Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, 651 Dongfengdong Rd, Guangzhou, 510060, China. .,State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China.
| |
Collapse
|
6
|
Differentiation of leukemic blasts is not completely blocked in acute myeloid leukemia. Proc Natl Acad Sci U S A 2019; 116:24593-24599. [PMID: 31754026 DOI: 10.1073/pnas.1904091116] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Hematopoiesis, the formation of blood cells, involves the hierarchical differentiation of immature blast cells into mature, functional cell types and lineages of the immune system. Hematopoietic stem cells precisely regulate self-renewal versus differentiation to balance the production of blood cells and maintenance of the stem cell pool. The canonical view of acute myeloid leukemia (AML) is that it results from a combination of molecular events in a hematopoietic stem cell that block differentiation and drive proliferation. These events result in the accumulation of primitive hematopoietic blast cells in the blood and bone marrow. We used mathematical modeling to determine the impact of varying differentiation rates on myeloblastic accumulation. Our model shows that, instead of the commonly held belief that AML results from a complete block of differentiation of the hematopoietic stem cell, even a slight skewing of the fraction of cells that differentiate would produce an accumulation of blasts. We confirmed this model by interphase fluorescent in situ hybridization (FISH) and sequencing of purified cell populations from patients with AML, which showed that different leukemia-causing molecular abnormalities typically thought to block differentiation were consistently present in mature myeloid cells such as neutrophils and monocytes at similar levels to those in immature myeloid cells. These findings suggest reduced or skewed, rather than blocked, differentiation is responsible for the development of AML. Approaches that restore normal regulation of hematopoiesis could be effective treatment strategies.
Collapse
|
7
|
Böttcher MA, Dingli D, Werner B, Traulsen A. Replicative cellular age distributions in compartmentalized tissues. J R Soc Interface 2019; 15:rsif.2018.0272. [PMID: 30158183 PMCID: PMC6127166 DOI: 10.1098/rsif.2018.0272] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 08/07/2018] [Indexed: 12/25/2022] Open
Abstract
The cellular age distribution of hierarchically organized tissues can reveal important insights into the dynamics of cell differentiation and self-renewal and associated cancer risks. Here, we examine the effect of progenitor compartments with varying differentiation and self-renewal capacities on the resulting observable distributions of replicative cellular ages. We find that strongly amplifying progenitor compartments, i.e. compartments with high self-renewal capacities, substantially broaden the age distributions which become skewed towards younger cells with a long tail of few old cells. For several of these strongly amplifying compartments, the age distribution becomes virtually independent of the influx from the stem cell compartment. By contrast, if tissues are organized into many downstream compartments with low self-renewal capacity, the shape of the replicative cell distribution in more differentiated compartments is dominated by stem cell dynamics with little added variation. In the limiting case of a strict binary differentiation tree without self-renewal, the shape of the output distribution becomes indistinguishable from that of the input distribution. Our results suggest that a comparison of cellular age distributions between healthy and cancerous tissues may inform about dynamical changes within the hierarchical tissue structure, i.e. an acquired increased self-renewal capacity in certain tumours. Furthermore, we compare our theoretical results to telomere length distributions in granulocyte populations of 10 healthy individuals across different ages, highlighting that our theoretical expectations agree with experimental observations.
Collapse
Affiliation(s)
- Marvin A Böttcher
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - David Dingli
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Benjamin Werner
- Evolutionary Genomics & Modelling Lab, Centre for Evolution and Cancer, Institute of Cancer Research, London, UK
| | - Arne Traulsen
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plön, Germany
| |
Collapse
|
8
|
Yoshinari GH, Fassoni AC, Mello LF, Rego EM. Modeling dynamics and alternative treatment strategies in acute promyelocytic leukemia. PLoS One 2019; 14:e0221011. [PMID: 31415632 PMCID: PMC6695187 DOI: 10.1371/journal.pone.0221011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 07/30/2019] [Indexed: 11/18/2022] Open
Abstract
Acute Promyelocytic Leukemia (APL) is a rare and potentially lethal condition in which risk-based therapy often leads to better outcomes. Because of its rarity and relatively high overall survival rate, prospective randomized trials to investigate alternative APL treatment schedules are challenging. Mathematical models may provide useful information in this regard. We collected clinical data from 38 patients treated for APL under the International Consortium on Acute Leukemia (ICAL) protocol and laboratory data during induction therapy. We propose a mathematical model that represents the dynamics of leukocytes in peripheral blood and the effect of ICAL treatment on the disease’s dynamics. We observe that our cohort presents demographic characteristics and clinical outcomes similar to previous clinical trials on APL. Over a follow-up period of 41.8 months, the relapse-free survival and overall survival at two years are both found to be 78.7%. For two selected patients, the model produces a good fit to the clinical data. Information such as the response to treatment and risk of relapse can be derived from the model, and this may assist in clinical practice and the design of clinical trials.
Collapse
Affiliation(s)
- Gerson Hiroshi Yoshinari
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
- * E-mail: (GHY); (EMR)
| | - Artur César Fassoni
- Instituto de Matemática e Computação, Universidade Federal de Itajubá, Itajubá, MG, Brazil
| | - Luis Fernando Mello
- Instituto de Matemática e Computação, Universidade Federal de Itajubá, Itajubá, MG, Brazil
| | - Eduardo M. Rego
- Faculdade de Medicina da Universidade de São Paulo and Center for Cell Based Therapy, University of São Paulo, São Paulo, SP, Brazil
- Divisão de Hematologia, LIM31, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
- * E-mail: (GHY); (EMR)
| |
Collapse
|
9
|
Menendez-Gonzalez JB, Vukovic M, Abdelfattah A, Saleh L, Almotiri A, Thomas LA, Agirre-Lizaso A, Azevedo A, Menezes AC, Tornillo G, Edkins S, Kong K, Giles P, Anjos-Afonso F, Tonks A, Boyd AS, Kranc KR, Rodrigues NP. Gata2 as a Crucial Regulator of Stem Cells in Adult Hematopoiesis and Acute Myeloid Leukemia. Stem Cell Reports 2019; 13:291-306. [PMID: 31378673 PMCID: PMC6700503 DOI: 10.1016/j.stemcr.2019.07.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 07/05/2019] [Accepted: 07/05/2019] [Indexed: 12/12/2022] Open
Abstract
Subversion of transcription factor (TF) activity in hematopoietic stem/progenitor cells (HSPCs) leads to the development of therapy-resistant leukemic stem cells (LSCs) that drive fulminant acute myeloid leukemia (AML). Using a conditional mouse model where zinc-finger TF Gata2 was deleted specifically in hematopoietic cells, we show that knockout of Gata2 leads to rapid and complete cell-autonomous loss of adult hematopoietic stem cells. By using short hairpin RNAi to target GATA2, we also identify a requirement for GATA2 in human HSPCs. In Meis1a/Hoxa9-driven AML, deletion of Gata2 impedes maintenance and self-renewal of LSCs. Ablation of Gata2 enforces an LSC-specific program of enhanced apoptosis, exemplified by attenuation of anti-apoptotic factor BCL2, and re-instigation of myeloid differentiation--which is characteristically blocked in AML. Thus, GATA2 acts as a critical regulator of normal and leukemic stem cells and mediates transcriptional networks that may be exploited therapeutically to target key facets of LSC behavior in AML.
Collapse
MESH Headings
- Animals
- Apoptosis
- Cell Self Renewal
- Disease Models, Animal
- GATA2 Transcription Factor/antagonists & inhibitors
- GATA2 Transcription Factor/genetics
- GATA2 Transcription Factor/metabolism
- Hematopoiesis
- Hematopoietic Stem Cell Transplantation
- Hematopoietic Stem Cells/cytology
- Hematopoietic Stem Cells/metabolism
- Humans
- Kaplan-Meier Estimate
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/therapy
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Neoplastic Stem Cells/cytology
- Neoplastic Stem Cells/metabolism
- Proto-Oncogene Proteins c-bcl-2/metabolism
- RNA Interference
- RNA, Small Interfering/metabolism
Collapse
Affiliation(s)
| | - Milica Vukovic
- Centre for Hemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Ali Abdelfattah
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff CF24 4HQ, UK
| | - Lubaid Saleh
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff CF24 4HQ, UK
| | - Alhomidi Almotiri
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff CF24 4HQ, UK
| | - Leigh-Anne Thomas
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff CF24 4HQ, UK
| | - Aloña Agirre-Lizaso
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff CF24 4HQ, UK
| | - Aleksandra Azevedo
- Department of Hematology, Division of Cancer and Genetics, Cardiff University, School of Medicine, Cardiff CF14 4XW, UK
| | - Ana Catarina Menezes
- Department of Hematology, Division of Cancer and Genetics, Cardiff University, School of Medicine, Cardiff CF14 4XW, UK
| | - Giusy Tornillo
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff CF24 4HQ, UK
| | - Sarah Edkins
- Wales Gene Park and Wales Cancer Research Centre, Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff CF10 3XQ, UK
| | - Kay Kong
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Peter Giles
- Wales Gene Park and Wales Cancer Research Centre, Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff CF10 3XQ, UK
| | - Fernando Anjos-Afonso
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff CF24 4HQ, UK
| | - Alex Tonks
- Department of Hematology, Division of Cancer and Genetics, Cardiff University, School of Medicine, Cardiff CF14 4XW, UK
| | - Ashleigh S Boyd
- Department of Surgical Biotechnology, Division of Surgery and Interventional Science, Royal Free Hospital, University College London, London NW3 2PF, UK; Institute of Immunity and Transplantation, University College London, London NW3 2QG, UK
| | - Kamil R Kranc
- Centre for Hemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK; MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Neil P Rodrigues
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff CF24 4HQ, UK.
| |
Collapse
|
10
|
Zhou D, Luo Y, Dingli D, Traulsen A. The invasion of de-differentiating cancer cells into hierarchical tissues. PLoS Comput Biol 2019; 15:e1007167. [PMID: 31260442 PMCID: PMC6625723 DOI: 10.1371/journal.pcbi.1007167] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 07/12/2019] [Accepted: 06/07/2019] [Indexed: 12/16/2022] Open
Abstract
Many fast renewing tissues are characterized by a hierarchical cellular architecture, with tissue specific stem cells at the root of the cellular hierarchy, differentiating into a whole range of specialized cells. There is increasing evidence that tumors are structured in a very similar way, mirroring the hierarchical structure of the host tissue. In some tissues, differentiated cells can also revert to the stem cell phenotype, which increases the risk that mutant cells lead to long lasting clones in the tissue. However, it is unclear under which circumstances de-differentiating cells will invade a tissue. To address this, we developed mathematical models to investigate how de-differentiation is selected as an adaptive mechanism in the context of cellular hierarchies. We derive thresholds for which de-differentiation is expected to emerge, and it is shown that the selection of de-differentiation is a result of the combination of the properties of cellular hierarchy and de-differentiation patterns. Our results suggest that de-differentiation is most likely to be favored provided stem cells having the largest effective self-renewal rate. Moreover, jumpwise de-differentiation provides a wider range of favorable conditions than stepwise de-differentiation. Finally, the effect of de-differentiation on the redistribution of self-renewal and differentiation probabilities also greatly influences the selection for de-differentiation. How can a tissue such as the blood system or the skin, which constantly produces a huge number of cells, avoids that errors accumulate in the cells over time? Such tissues are typically organized in cellular hierarchies, which induce a directional relation between different stages of cellular differentiation, minimizing the risk of retention of mutations. However, recent evidence also shows that some differentiated cells can de-differentiate into the stem cell phenotype. Why does de-differentiation arise in some tumors, but not in others? We developed a mathematical model to study the growth competition between de-differentiating mutant cell populations and non de-differentiating resident cell population. Our results suggest that the invasion of de-differentiation is jointly influenced by the cellular hierarchy (e.g. number of cell compartments, inherent cell division pattern) and the de-differentiation pattern, i.e. how exactly cells acquire their stem-cell like properties.
Collapse
Affiliation(s)
- Da Zhou
- School of Mathematical Sciences and Fujian Provincial Key Laboratory of Mathematical Modeling and High-Performance Scientific Computation, Xiamen University, Xiamen, People’s Republic of China
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plön, Germany
- * E-mail: (DZ); (AT)
| | - Yue Luo
- School of Mathematical Sciences and Fujian Provincial Key Laboratory of Mathematical Modeling and High-Performance Scientific Computation, Xiamen University, Xiamen, People’s Republic of China
| | - David Dingli
- Division of Hematology and Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Arne Traulsen
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plön, Germany
- * E-mail: (DZ); (AT)
| |
Collapse
|
11
|
Bunaciu RP, MacDonald RJ, Jensen HA, Gao F, Wang X, Johnson L, Varner JD, Yen A. Retinoic acid and 6-formylindolo(3,2-b)carbazole (FICZ) combination therapy reveals putative targets for enhancing response in non-APL AML. Leuk Lymphoma 2018; 60:1697-1708. [PMID: 30570341 DOI: 10.1080/10428194.2018.1543880] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In non-acute promyelotic leukemia (APL)- non myelocytic leukemia (AML), identification of a signaling signature would predict potentially actionable targets to enhance differentiation effects of all-trans-retinoic acid (RA) and make combination differentiation therapy realizable. Components of such a signaling machine/signalsome found to drive RA-induced differentiation discerned in a FAB M2 cell line/model (HL-60) were further characterized and then compared against AML patient expression profiles. FICZ, known to enhance RA-induced differentiation, was used to experimentally augment signaling for analysis. FRET revealed novel signalsome protein associations: CD38 with pS376SLP76 and caveolin-1 with CD38 and AhR. The signaling molecules driving differentiation in HL-60 cluster in non-APL AML de novo samples, too. Pearson correlation coefficients for this molecular ensemble are nearer 1 in the FAB M2 subtype than in non-APL AML. SLP76 correlation to RXRα and p47phox were conserved in FAB M2 model and patient subtype but not in general non-APL AML. The signalsome ergo identifies potential actionable targets in AML.
Collapse
Affiliation(s)
- Rodica P Bunaciu
- a Department of Biomedical Sciences , Cornell University , Ithaca , NY , USA
| | - Robert J MacDonald
- a Department of Biomedical Sciences , Cornell University , Ithaca , NY , USA
| | - Holly A Jensen
- a Department of Biomedical Sciences , Cornell University , Ithaca , NY , USA.,b Robert Frederick Smith School of Chemical and Biomolecular Engineering , Cornell University , Ithaca , NY , USA
| | - Feng Gao
- a Department of Biomedical Sciences , Cornell University , Ithaca , NY , USA.,c Department of Biomedical Sciences , City University of Hong Kong , Hong Kong , China
| | - Xin Wang
- c Department of Biomedical Sciences , City University of Hong Kong , Hong Kong , China
| | - Lynn Johnson
- d Cornell Statistical Unit , Cornell University , Ithaca , NY , USA
| | - Jeffrey D Varner
- b Robert Frederick Smith School of Chemical and Biomolecular Engineering , Cornell University , Ithaca , NY , USA
| | - Andrew Yen
- a Department of Biomedical Sciences , Cornell University , Ithaca , NY , USA
| |
Collapse
|
12
|
A stochastic model of myeloid cell lineages in hematopoiesis and pathway mutations in acute myeloid leukemia. PLoS One 2018; 13:e0204393. [PMID: 30273383 PMCID: PMC6166954 DOI: 10.1371/journal.pone.0204393] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/07/2018] [Indexed: 01/13/2023] Open
Abstract
A model for hematopoiesis is presented that explicitly includes the erythrocyte, granulocyte, and thrombocyte lineages and their common precursors. A small number of stem cells proliferate and differentiate through different compartments to produce the vast number of blood cells needed every day. Growth factors regulate the proliferation of cells dependent on the current demand. We provide a steady state analysis of the model and rough parameter estimates. Furthermore, we extend the model to include mutations that alter the replicative capacity of cells and introduce differentiation blocks. With these mutations the model develops signs of acute myeloid leukemia.
Collapse
|
13
|
Emerging functional markers for cancer stem cell-based therapies: Understanding signaling networks for targeting metastasis. Semin Cancer Biol 2018; 53:90-109. [PMID: 29966677 DOI: 10.1016/j.semcancer.2018.06.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/20/2018] [Accepted: 06/28/2018] [Indexed: 12/18/2022]
Abstract
Metastasis is one of the most challenging issues in cancer patient management, and effective therapies to specifically target disease progression are missing, emphasizing the urgent need for developing novel anti-metastatic therapeutics. Cancer stem cells (CSCs) gained fast attention as a minor population of highly malignant cells within liquid and solid tumors that are responsible for tumor onset, self-renewal, resistance to radio- and chemotherapies, and evasion of immune surveillance accelerating recurrence and metastasis. Recent progress in the identification of their phenotypic and molecular characteristics and interactions with the tumor microenvironment provides great potential for the development of CSC-based targeted therapies and radical improvement in metastasis prevention and cancer patient prognosis. Here, we report on newly uncovered signaling mechanisms controlling CSC's aggressiveness and treatment resistance, and CSC-specific agents and molecular therapeutics, some of which are currently under investigation in clinical trials, gearing towards decisive functional CSC intrinsic or surface markers. One special research focus rests upon subverted regulatory pathways such as insulin-like growth factor 1 receptor signaling and its interactors in metastasis-initiating cell populations directly related to the gain of stem cell- and EMT-associated properties, as well as key components of the E2F transcription factor network regulating metastatic progression, microenvironmental changes, and chemoresistance. In addition, the study provides insight into systems biology tools to establish complex molecular relationships behind the emergence of aggressive phenotypes from high-throughput data that rely on network-based analysis and their use to investigate immune escape mechanisms or predict clinical outcome-relevant CSC receptor signaling signatures. We further propose that customized vector technologies could drastically enhance systemic drug delivery to target sites, and summarize recent progress and remaining challenges. This review integrates available knowledge on CSC biology, computational modeling approaches, molecular targeting strategies, and delivery techniques to envision future clinical therapies designed to conquer metastasis-initiating cells.
Collapse
|
14
|
Arsenic trioxide promoting ETosis in acute promyelocytic leukemia through mTOR-regulated autophagy. Cell Death Dis 2018; 9:75. [PMID: 29362482 PMCID: PMC5833714 DOI: 10.1038/s41419-017-0018-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 09/24/2017] [Accepted: 10/02/2017] [Indexed: 12/13/2022]
Abstract
Despite the high efficacy and safety of arsenic trioxide (ATO) in treating acute promyelocytic leukemia (APL) and eradicating APL leukemia-initiating cells (LICs), the mechanism underlying its selective cytotoxicity remains elusive. We have recently demonstrated that APL cells undergo a novel cell death program, termed ETosis, through autophagy. However, the role of ETosis in ATO-induced APL LIC eradication remains unclear. For this study, we evaluated the effects of ATO on ETosis and the contributions of drug-induced ETosis to APL LIC eradication. In NB4 cells, ATO primarily increased ETosis at moderate concentrations (0.5–0.75 μM) and stimulated apoptosis at higher doses (1.0–2.0 μM). Furthermore, ATO induced ETosis through mammalian target of rapamycin (mTOR)-dependent autophagy, which was partially regulated by reactive oxygen species. Additionally, rapamycin-enhanced ATO-induced ETosis in NB4 cells and APL cells from newly diagnosed and relapsed patients. In contrast, rapamycin had no effect on apoptosis in these cells. We also noted that PML/RARA oncoprotein was effectively cleared with this combination. Intriguingly, activation of autophagy with rapamycin-enhanced APL LIC eradication clearance by ATO in vitro and in a xenograft APL model, while inhibition of autophagy spared clonogenic cells. Our current results show that ATO exerts antileukemic effects at least partially through ETosis and targets LICs primarily through ETosis. Addition of drugs that target the ETotic pathway could be a promising therapeutic strategy to further eradicate LICs and reduce relapse.
Collapse
|
15
|
Werner B, Scott JG, Sottoriva A, Anderson ARA, Traulsen A, Altrock PM. The Cancer Stem Cell Fraction in Hierarchically Organized Tumors Can Be Estimated Using Mathematical Modeling and Patient-Specific Treatment Trajectories. Cancer Res 2016; 76:1705-13. [PMID: 26833122 PMCID: PMC4900896 DOI: 10.1158/0008-5472.can-15-2069] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 01/17/2016] [Indexed: 12/18/2022]
Abstract
Many tumors are hierarchically organized and driven by a subpopulation of tumor-initiating cells (TIC), or cancer stem cells. TICs are uniquely capable of recapitulating the tumor and are thought to be highly resistant to radio- and chemotherapy. Macroscopic patterns of tumor expansion before treatment and tumor regression during treatment are tied to the dynamics of TICs. Until now, the quantitative information about the fraction of TICs from macroscopic tumor burden trajectories could not be inferred. In this study, we generated a quantitative method based on a mathematical model that describes hierarchically organized tumor dynamics and patient-derived tumor burden information. The method identifies two characteristic equilibrium TIC regimes during expansion and regression. We show that tumor expansion and regression curves can be leveraged to infer estimates of the TIC fraction in individual patients at detection and after continued therapy. Furthermore, our method is parameter-free; it solely requires the knowledge of a patient's tumor burden over multiple time points to reveal microscopic properties of the malignancy. We demonstrate proof of concept in the case of chronic myeloid leukemia (CML), wherein our model recapitulated the clinical history of the disease in two independent patient cohorts. On the basis of patient-specific treatment responses in CML, we predict that after one year of targeted treatment, the fraction of TICs increases 100-fold and continues to increase up to 1,000-fold after 5 years of treatment. Our novel framework may significantly influence the implementation of personalized treatment strategies and has the potential for rapid translation into the clinic. Cancer Res; 76(7); 1705-13. ©2016 AACR.
Collapse
Affiliation(s)
- Benjamin Werner
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, United Kingdom. Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Jacob G Scott
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida. Wolfson Centre for Mathematical Biology, University of Oxford, Oxford, United Kingdom
| | - Andrea Sottoriva
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, United Kingdom
| | - Alexander R A Anderson
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Arne Traulsen
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Philipp M Altrock
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts. Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts. Program for Evolutionary Dynamics, Harvard University, Cambridge, Massachusetts.
| |
Collapse
|
16
|
Ellis HP, Greenslade M, Powell B, Spiteri I, Sottoriva A, Kurian KM. Current Challenges in Glioblastoma: Intratumour Heterogeneity, Residual Disease, and Models to Predict Disease Recurrence. Front Oncol 2015; 5:251. [PMID: 26636033 PMCID: PMC4644939 DOI: 10.3389/fonc.2015.00251] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 10/29/2015] [Indexed: 12/27/2022] Open
Abstract
Glioblastoma (GB) is the most common primary malignant brain tumor, and despite the availability of chemotherapy and radiotherapy to combat the disease, overall survival remains low with a high incidence of tumor recurrence. Technological advances are continually improving our understanding of the disease, and in particular, our knowledge of clonal evolution, intratumor heterogeneity, and possible reservoirs of residual disease. These may inform how we approach clinical treatment and recurrence in GB. Mathematical modeling (including neural networks) and strategies such as multiple sampling during tumor resection and genetic analysis of circulating cancer cells, may be of great future benefit to help predict the nature of residual disease and resistance to standard and molecular therapies in GB.
Collapse
Affiliation(s)
- Hayley P Ellis
- Brain Tumour Research Group, Institute of Clinical Neurosciences, University of Bristol , Bristol , UK
| | - Mark Greenslade
- Bristol Genetics Laboratory, North Bristol NHS Trust , Bristol , UK
| | - Ben Powell
- School of Mathematics, University of Bristol , Bristol , UK
| | - Inmaculada Spiteri
- Centre for Evolution and Cancer, The Institute of Cancer Research , London , UK
| | - Andrea Sottoriva
- Centre for Evolution and Cancer, The Institute of Cancer Research , London , UK
| | - Kathreena M Kurian
- Brain Tumour Research Group, Institute of Clinical Neurosciences, University of Bristol , Bristol , UK
| |
Collapse
|
17
|
Bunaciu RP, Jensen HA, MacDonald RJ, LaTocha DH, Varner JD, Yen A. 6-Formylindolo(3,2-b)Carbazole (FICZ) Modulates the Signalsome Responsible for RA-Induced Differentiation of HL-60 Myeloblastic Leukemia Cells. PLoS One 2015; 10:e0135668. [PMID: 26287494 PMCID: PMC4545789 DOI: 10.1371/journal.pone.0135668] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 07/24/2015] [Indexed: 12/20/2022] Open
Abstract
6-Formylindolo(3,2-b)carbazole (FICZ) is a photoproduct of tryptophan and an endogenous high affinity ligand for aryl hydrocarbon receptor (AhR). It was previously reported that, in patient-derived HL-60 myeloblastic leukemia cells, retinoic acid (RA)-induced differentiation is driven by a signalsome containing c-Cbl and AhR. FICZ enhances RA-induced differentiation, assessed by expression of the membrane differentiation markers CD38 and CD11b, cell cycle arrest and the functional differentiation marker, inducible oxidative metabolism. Moreover, FICZ augments the expression of a number of the members of the RA-induced signalsome, such as c-Cbl, Vav1, Slp76, PI3K, and the Src family kinases Fgr and Lyn. Pursuing the molecular signaling responsible for RA-induced differentiation, we characterized, using FRET and clustering analysis, associations of key molecules thought to drive differentiation. Here we report that, assayed by FRET, AhR interacts with c-Cbl upon FICZ plus RA-induced differentiation, whereas AhR constitutively interacts with Cbl-b. Moreover, correlation analysis based on the flow cytometric assessment of differentiation markers and western blot detection of signaling factors reveal that Cbl-b, p-p38α and pT390-GSK3β, are not correlated with other known RA-induced signaling components or with a phenotypic outcome. We note that FICZ plus RA elicited signaling responses that were not typical of RA alone, but may represent alternative differentiation-driving pathways. In clusters of signaling molecules seminal to cell differentiation, FICZ co-administered with RA augments type and intensity of the dynamic changes induced by RA. Our data suggest relevance for FICZ in differentiation-induction therapy. The mechanism of action includes modulation of a SFK and MAPK centered signalsome and c-Cbl-AhR association.
Collapse
Affiliation(s)
- Rodica P. Bunaciu
- Department of Biomedical Sciences, Cornell University, Ithaca, New York, 14853, United States of America
| | - Holly A. Jensen
- Department of Biomedical Sciences, Cornell University, Ithaca, New York, 14853, United States of America
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, 14853, United States of America
| | - Robert J. MacDonald
- Department of Biomedical Sciences, Cornell University, Ithaca, New York, 14853, United States of America
| | - Dorian H. LaTocha
- Flow Cytometry Core Facility, Cornell University, Ithaca, New York, 14853, United States of America
| | - Jeffrey D. Varner
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, 14853, United States of America
| | - Andrew Yen
- Department of Biomedical Sciences, Cornell University, Ithaca, New York, 14853, United States of America
- Flow Cytometry Core Facility, Cornell University, Ithaca, New York, 14853, United States of America
- * E-mail:
| |
Collapse
|
18
|
Testa U, Lo-Coco F. Targeting of leukemia-initiating cells in acute promyelocytic leukemia. Stem Cell Investig 2015; 2:8. [PMID: 27358876 DOI: 10.3978/j.issn.2306-9759.2015.04.03] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 03/31/2015] [Indexed: 12/26/2022]
Abstract
Acute promyelocytic leukemia (APL) is a subtype of acute myeloid leukemia (AML) with peculiar molecular, phenotypic and clinical features and unique therapeutic response to specific treatments. The disease is characterized by a single, pathognomonic molecular event, consisting of the translocation t(15;17) which gives rise to the PML/retinoic acid receptor α (RARα) hybrid protein. The development of this leukemia is mainly related to the fusion oncoprotein PML/RARα, acting as an altered RAR mediating abnormal signalling and repression of myeloid differentiation, with consequent accumulation of undifferentiated promyelocytes. The prognosis of APL has dramatically been improved with the introduction in therapy of all-trans retinoic acid (ATRA) and arsenic trioxide (ATO). The main effect of these two drugs is linked to the targeting of either RAR moiety of the PML/RARα molecule and induction of cell differentiation (ATRA) or of the PML moiety of the fusion protein and induction of leukemic cell apoptosis, including leukemic progenitors (mostly induced by ATO). These two drugs exhibited excellent synergism and determine a very high rate of durable remissions in low/intermediate-risk APLs, when administered in the absence of any chemotherapeutic drug. The strong synergism and the marked clinical efficacy of these two agents when administered together seem to be related to their capacity to induce PML/RARα degradation and complete eradication of leukemia stem cells.
Collapse
Affiliation(s)
- Ugo Testa
- 1 Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy ; 2 Department of Biomedicine and Prevention, University of Rome "Tor Vergata" and Fondazione Santa Lucia, Rome, Italy
| | - Francesco Lo-Coco
- 1 Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy ; 2 Department of Biomedicine and Prevention, University of Rome "Tor Vergata" and Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
19
|
Abstract
Acute promyelocytic leukemia (APL) is a treatment success story. From a highly deadly disease it was turned into a highly curable disease by the introduction of differentiation-induction therapy with all-trans retinoic acid (ATRA) in the 1990's. During the last quarter of century, ATRA and other retinoids were used for the treatment and prevention of other cancers and even other diseases. The results were less spectacular, but nevertheless important. Progress has been made toward understanding the mechanism of action of retinoids in different physiological and pathological contexts. For some diseases, specific genetic backgrounds were found to confer responsiveness to retinoid therapy. Therapies that include retinoids and other modalities are very diverse and used both for combined targeting of multiple pathways and for diminishing toxicity.
Collapse
|