1
|
Deng C, Li HD, Zhang LS, Liu Y, Li Y, Wang J. Identifying new cancer genes based on the integration of annotated gene sets via hypergraph neural networks. Bioinformatics 2024; 40:i511-i520. [PMID: 38940121 PMCID: PMC11211849 DOI: 10.1093/bioinformatics/btae257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024] Open
Abstract
MOTIVATION Identifying cancer genes remains a significant challenge in cancer genomics research. Annotated gene sets encode functional associations among multiple genes, and cancer genes have been shown to cluster in hallmark signaling pathways and biological processes. The knowledge of annotated gene sets is critical for discovering cancer genes but remains to be fully exploited. RESULTS Here, we present the DIsease-Specific Hypergraph neural network (DISHyper), a hypergraph-based computational method that integrates the knowledge from multiple types of annotated gene sets to predict cancer genes. First, our benchmark results demonstrate that DISHyper outperforms the existing state-of-the-art methods and highlight the advantages of employing hypergraphs for representing annotated gene sets. Second, we validate the accuracy of DISHyper-predicted cancer genes using functional validation results and multiple independent functional genomics data. Third, our model predicts 44 novel cancer genes, and subsequent analysis shows their significant associations with multiple types of cancers. Overall, our study provides a new perspective for discovering cancer genes and reveals previously undiscovered cancer genes. AVAILABILITY AND IMPLEMENTATION DISHyper is freely available for download at https://github.com/genemine/DISHyper.
Collapse
Affiliation(s)
- Chao Deng
- School of Computer Science and Engineering, Central South University, Changsha, 410083, China
- Hunan Provincial Key Lab on Bioinformatics, Central South University, Changsha, 410083, China
| | - Hong-Dong Li
- School of Computer Science and Engineering, Central South University, Changsha, 410083, China
- Hunan Provincial Key Lab on Bioinformatics, Central South University, Changsha, 410083, China
| | - Li-Shen Zhang
- School of Computer Science and Engineering, Central South University, Changsha, 410083, China
- Hunan Provincial Key Lab on Bioinformatics, Central South University, Changsha, 410083, China
| | - Yiwei Liu
- School of Computer Science and Engineering, Central South University, Changsha, 410083, China
- Hunan Provincial Key Lab on Bioinformatics, Central South University, Changsha, 410083, China
| | - Yaohang Li
- Department of Computer Science, Old Dominion University, Norfolk, VA 23529-0001, United States
| | - Jianxin Wang
- School of Computer Science and Engineering, Central South University, Changsha, 410083, China
- Hunan Provincial Key Lab on Bioinformatics, Central South University, Changsha, 410083, China
| |
Collapse
|
2
|
Wang L, Maharjan CK, Borcherding N, Master RP, Mo J, Tithi TI, Kim MC, Carelock ME, Master AP, Gibson-Corley KN, Kolb RH, Smith KA, Zhang W. Epithelial IL-2 is critical for NK cell-mediated cancer immunosurveillance in mammary glands. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.25.591178. [PMID: 38712046 PMCID: PMC11071474 DOI: 10.1101/2024.04.25.591178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Interleukin 2 (IL-2) is the first identified cytokine and its interaction with receptors has been known to shape the immune responses in many lymphoid or non-lymphoid tissues for more than four decades. Active T cells are the primary cellular source for IL-2 production and epithelial cells have never been considered the major cellular source of IL-2 under physiological conditions. It is, however, tempting to speculate that epithelial cells could potentially express IL-2 that regulates the intricate interactions between epithelial cells and lymphocytes. Datamining our recently published single-cell RNAseq in the mouse mammary gland identified IL-2 expression in mammary epithelial cells, which is induced by prolactin via the STAT5 signaling pathway. Furthermore, epithelial IL-2 plays a crucial role in maintaining the physiological functions of natural killer (NK) cells within the mammary glands. IL-2 deletion in the mammary epithelial cells leads to a significant reduction in the number and function of NK cells, which in turn results in defective immunosurveillance, expansion of luminal epithelial cells, and tumor development. Interestingly, T cells in the mammary glands are not changed, indicating the specific regulation of NK cells by epithelial IL-2 production. In agreement, we also found that human epithelial cells express IL-2 and NK cells express the highest level of IL2RB among all the immune cells. Here, we provide the first evidence that epithelial cells produce IL-2, which is critical for maintaining the physiological functions of NK cells in immunosurveillance.
Collapse
|
3
|
Trinh-Minh T, Chen CW, Tran Manh C, Li YN, Zhu H, Zhou X, Chakraborty D, Zhang Y, Rauber S, Dees C, Lin NY, Kah D, Gerum R, Bergmann C, Kreuter A, Reuter C, Groeber-Becker F, Eckes B, Distler O, Fabry B, Ramming A, Schambony A, Schett G, Distler JH. Noncanonical WNT5A controls the activation of latent TGF-β to drive fibroblast activation and tissue fibrosis. J Clin Invest 2024; 134:e159884. [PMID: 38747285 PMCID: PMC11093613 DOI: 10.1172/jci159884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 03/20/2024] [Indexed: 05/19/2024] Open
Abstract
Transforming growth factor β (TGF-β) signaling is a core pathway of fibrosis, but the molecular regulation of the activation of latent TGF-β remains incompletely understood. Here, we demonstrate a crucial role of WNT5A/JNK/ROCK signaling that rapidly coordinates the activation of latent TGF-β in fibrotic diseases. WNT5A was identified as a predominant noncanonical WNT ligand in fibrotic diseases such as systemic sclerosis, sclerodermatous chronic graft-versus-host disease, and idiopathic pulmonary fibrosis, stimulating fibroblast-to-myofibroblast transition and tissue fibrosis by activation of latent TGF-β. The activation of latent TGF-β requires rapid JNK- and ROCK-dependent cytoskeletal rearrangements and integrin αV (ITGAV). Conditional ablation of WNT5A or its downstream targets prevented activation of latent TGF-β, rebalanced TGF-β signaling, and ameliorated experimental fibrosis. We thus uncovered what we believe to be a novel mechanism for the aberrant activation of latent TGF-β in fibrotic diseases and provided evidence for targeting WNT5A/JNK/ROCK signaling in fibrotic diseases as a new therapeutic approach.
Collapse
Affiliation(s)
- Thuong Trinh-Minh
- Department of Rheumatology and
- Hiller Research Center, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University, Düsseldorf, North-Rhine-Westphalia, Germany
| | - Chih-Wei Chen
- Department of Internal Medicine 3 – Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Bavaria, Germany
- German Center for Immunotherapy, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University of Erlangen, Erlangen, Bavaria, Germany
| | - Cuong Tran Manh
- Department of Rheumatology and
- Hiller Research Center, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University, Düsseldorf, North-Rhine-Westphalia, Germany
| | - Yi-Nan Li
- Department of Rheumatology and
- Hiller Research Center, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University, Düsseldorf, North-Rhine-Westphalia, Germany
| | - Honglin Zhu
- Department of Internal Medicine 3 – Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Bavaria, Germany
- German Center for Immunotherapy, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University of Erlangen, Erlangen, Bavaria, Germany
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Xiang Zhou
- Department of Rheumatology and
- Hiller Research Center, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University, Düsseldorf, North-Rhine-Westphalia, Germany
| | - Debomita Chakraborty
- Department of Internal Medicine 3 – Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Bavaria, Germany
- German Center for Immunotherapy, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University of Erlangen, Erlangen, Bavaria, Germany
| | - Yun Zhang
- Department of Rheumatology and
- Hiller Research Center, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University, Düsseldorf, North-Rhine-Westphalia, Germany
| | - Simon Rauber
- Department of Internal Medicine 3 – Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Bavaria, Germany
- German Center for Immunotherapy, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University of Erlangen, Erlangen, Bavaria, Germany
| | - Clara Dees
- Department of Internal Medicine 3 – Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Bavaria, Germany
- German Center for Immunotherapy, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University of Erlangen, Erlangen, Bavaria, Germany
| | - Neng-Yu Lin
- Department of Internal Medicine 3 – Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Bavaria, Germany
- German Center for Immunotherapy, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University of Erlangen, Erlangen, Bavaria, Germany
- Graduate Institute of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Delf Kah
- Department of Physics, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Bavaria, Germany
| | - Richard Gerum
- Department of Physics, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Bavaria, Germany
| | - Christina Bergmann
- Department of Internal Medicine 3 – Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Bavaria, Germany
- German Center for Immunotherapy, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University of Erlangen, Erlangen, Bavaria, Germany
| | - Alexander Kreuter
- Clinic for Dermatology, Venereology and Allergology, HELIOS St. Elisabeth Clinic Oberhausen, North-Rhine-Westphalia, Germany
| | - Christiane Reuter
- Translational Center for Regenerative Therapies, Fraunhofer Institute for Silicate Research (ISC) Würzburg, Bavaria, Germany
| | - Florian Groeber-Becker
- Translational Center for Regenerative Therapies, Fraunhofer Institute for Silicate Research (ISC) Würzburg, Bavaria, Germany
| | - Beate Eckes
- Translational Matrix Biology, University of Cologne, Cologne, North-Rhine-Westphalia, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, North-Rhine-Westphalia, Germany
| | - Oliver Distler
- Rheumaklinik, University Hospital Zurich, Zurich, Switzerland
| | - Ben Fabry
- Department of Physics, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Bavaria, Germany
| | - Andreas Ramming
- Department of Internal Medicine 3 – Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Bavaria, Germany
- German Center for Immunotherapy, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University of Erlangen, Erlangen, Bavaria, Germany
| | - Alexandra Schambony
- Division of Developmental Biology, Biology Department, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Bavaria, Germany
| | - Georg Schett
- Department of Internal Medicine 3 – Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Bavaria, Germany
- German Center for Immunotherapy, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University of Erlangen, Erlangen, Bavaria, Germany
| | - Jörg H.W. Distler
- Department of Rheumatology and
- Hiller Research Center, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University, Düsseldorf, North-Rhine-Westphalia, Germany
| |
Collapse
|
4
|
Rengganaten V, Huang CJ, Wang ML, Chien Y, Tsai PH, Lan YT, Ong HT, Chiou SH, Choo KB. Circular RNA ZNF800 (hsa_circ_0082096) regulates cancer stem cell properties and tumor growth in colorectal cancer. BMC Cancer 2023; 23:1088. [PMID: 37950151 PMCID: PMC10636831 DOI: 10.1186/s12885-023-11571-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 10/26/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Cancer stem cells form a rare cell population in tumors that contributes to metastasis, recurrence and chemoresistance in cancer patients. Circular RNAs (circRNAs) are post-transcriptional regulators of gene expression that sponge targeted microRNA (miRNAs) to affect a multitude of downstream cellular processes. We previously showed in an expression profiling study that circZNF800 (hsa_circ_0082096) was up-regulated in cancer stem cell-enriched spheroids derived from colorectal cancer (CRC) cell lines. METHODS Spheroids were generated in suspension spheroidal culture. The ZNF800 mRNA, pluripotency stem cell markers and circZNF800 levels were determined by quantitative RT-PCR. CircZNF800-miRNA interactions were shown in RNA pulldown assays and the miRNA levels determined by stem-loop qRT-PCR. The effects of circZNF800 on cell proliferation were tested by EdU staining followed by flowcytometry. Expression of stem cell markers CD44/CD133, Lgr5 and SOX9 was demonstrated in immunofluorescence microscopy. To manipulate the cellular levels of circZNF800, circZNF800 over-expression was achieved via transfection of in vitro synthesized and circularized circZNF800, and knockdown attained using a CRISPR-Cas13d-circZNF800 vector system. Xenografted nude mice were used to demonstrate effects of circZNF800 over-expression and knockdown on tumor growth in vivo. RESULTS CircZNF800 was shown to be over-expressed in late-stage tumor tissues of CRC patients. Data showed that circZNF800 impeded expression of miR-140-3p, miR-382-5p and miR-579-3p while promoted the mRNA levels of ALK/ACVR1C, FZD3 and WNT5A targeted by the miRNAs, as supported by alignments of seed sequences between the circZNF800-miRNA, and miRNA-mRNA paired interactions. Analysis in CRC cells and biopsied tissues showed that circZNF800 positively regulated the expression of intestinal stem cell, pluripotency and cancer stem cell markers, and promoted CRC cell proliferation, spheroid and colony formation in vitro, all of which are cancer stem cell properties. In xenografted mice, circZNF800 over-expression promoted tumor growth, while circZNF800 knockdown via administration of CRISPR Cas13d-circZNF800 viral particles at the CRC tumor sites impeded tumor growth. CONCLUSIONS CircZNF800 is an oncogenic factor that regulate cancer stem cell properties to lead colorectal tumorigenesis, and may be used as a predictive marker for tumor progression and the CRISPR Cas13d-circZNF800 knockdown strategy for therapeutic intervention of colorectal cancer.
Collapse
Affiliation(s)
- Vimalan Rengganaten
- Centre for Stem Cell Research, Universiti Tunku Abdul Rahman, 43000, Kajang, Selangor, Malaysia
- Postgraduate Program, M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, 43000, Kajang, Malaysia
- Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Chiu-Jung Huang
- Department of Animal Science & Graduate Institute of Biotechnology, Chinese Culture University, Taipei, 11221, Taiwan
| | - Mong-Lien Wang
- Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, 11221, Taiwan
- Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Yueh Chien
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, 11221, Taiwan
| | - Ping-Hsing Tsai
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, 11221, Taiwan
| | - Yuan-Tzu Lan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
- Division of Colon & Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, 11221, Taiwan
| | - Hooi Tin Ong
- Centre for Cancer Research, Universiti Tunku Abdul Rahman, 43000, Kajang, Selangor, Malaysia
- Department of Preclinical Sciences, M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Sg Long, 43000, Kajang, Selangor, Malaysia
| | - Shih-Hwa Chiou
- Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan.
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan.
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, 11221, Taiwan.
| | - Kong Bung Choo
- Centre for Stem Cell Research, Universiti Tunku Abdul Rahman, 43000, Kajang, Selangor, Malaysia.
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, 11221, Taiwan.
- Department of Preclinical Sciences, M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Sg Long, 43000, Kajang, Selangor, Malaysia.
| |
Collapse
|
5
|
ElGhazaly M, Collins MO, Ibler AEM, Humphreys D. Typhoid toxin hijacks Wnt5a to establish host senescence and Salmonella infection. Cell Rep 2023; 42:113181. [PMID: 37792529 DOI: 10.1016/j.celrep.2023.113181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 06/15/2023] [Accepted: 09/13/2023] [Indexed: 10/06/2023] Open
Abstract
Damage to our genome causes acute senescence in mammalian cells, which undergo growth arrest and release a senescence-associated secretory phenotype (SASP) that propagates the stress response to bystander cells. Thus, acute senescence is a powerful tumor suppressor. Salmonella enterica hijacks senescence through its typhoid toxin, which usurps unidentified factors in the stress secretome of senescent cells to mediate intracellular infections. Here, transcriptomics of toxin-induced senescent cells (TxSCs) and proteomics of their secretome identify the factors as Wnt5a, INHBA, and GDF15. Wnt5a establishes a positive feedback loop, driving INHBA and GDF15 expression. In fibroblasts, Wnt5a and INHBA mediate autocrine senescence in TxSCs and paracrine senescence in naive cells. Wnt5a synergizes with GDF15 to increase Salmonella invasion. Intestinal TxSCs undergo apoptosis without Wnt5a, which is required for establishing intestinal TxSCs. The study reveals how an innate defense against cancer is co-opted by a bacterial pathogen to cause widespread damage and mediate infections.
Collapse
Affiliation(s)
- Mohamed ElGhazaly
- School of Biosciences, University of Sheffield, Sheffield, South Yorkshire S10 2TN, UK
| | - Mark O Collins
- School of Biosciences, University of Sheffield, Sheffield, South Yorkshire S10 2TN, UK
| | - Angela E M Ibler
- School of Biosciences, University of Sheffield, Sheffield, South Yorkshire S10 2TN, UK
| | - Daniel Humphreys
- School of Biosciences, University of Sheffield, Sheffield, South Yorkshire S10 2TN, UK.
| |
Collapse
|
6
|
Gastélum-López MDLÁ, Aguilar-Medina M, García Mata C, López-Gutiérrez J, Romero-Quintana G, Bermúdez M, Avendaño-Felix M, López-Camarillo C, Pérez-Plascencia C, Beltrán AS, Ramos-Payán R. Organotypic 3D Cell-Architecture Impacts the Expression Pattern of miRNAs-mRNAs Network in Breast Cancer SKBR3 Cells. Noncoding RNA 2023; 9:66. [PMID: 37987362 PMCID: PMC10661268 DOI: 10.3390/ncrna9060066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/26/2023] [Accepted: 10/20/2023] [Indexed: 11/22/2023] Open
Abstract
BACKGROUND Currently, most of the research on breast cancer has been carried out in conventional two-dimensional (2D) cell cultures due to its practical benefits, however, the three-dimensional (3D) cell culture is becoming the model of choice in cancer research because it allows cell-cell and cell-extracellular matrix (ECM) interactions, mimicking the native microenvironment of tumors in vivo. METHODS In this work, we evaluated the effect of 3D cell organization on the expression pattern of miRNAs (by Small-RNAseq) and mRNAs (by microarrays) in the breast cancer SKBR3 cell line and analyzed the biological processes and signaling pathways regulated by the differentially expressed protein-coding genes (DE-mRNAs) and miRNAs (DE-microRNAs) found in the organoids. RESULTS We obtained well-defined cell-aggregated organoids with a grape cluster-like morphology with a size up to 9.2 × 105 μm3. The transcriptomic assays showed that cell growth in organoids significantly affected (all p < 0.01) the gene expression patterns of both miRNAs, and mRNAs, finding 20 upregulated and 19 downregulated DE-microRNAs, as well as 49 upregulated and 123 downregulated DE-mRNAs. In silico analysis showed that a subset of 11 upregulated DE-microRNAs target 70 downregulated DE-mRNAs. These genes are involved in 150 gene ontology (GO) biological processes such as regulation of cell morphogenesis, regulation of cell shape, regulation of canonical Wnt signaling pathway, morphogenesis of epithelium, regulation of cytoskeleton organization, as well as in the MAPK and AGE-RAGE signaling KEGG-pathways. Interestingly, hsa-mir-122-5p (Fold Change (FC) = 15.4), hsa-mir-369-3p (FC = 11.4), and hsa-mir-10b-5p (FC = 20.1) regulated up to 81% of the 70 downregulated DE-mRNAs. CONCLUSION The organotypic 3D cell-organization architecture of breast cancer SKBR3 cells impacts the expression pattern of the miRNAs-mRNAs network mainly through overexpression of hsa-mir-122-5p, hsa-mir-369-3p, and hsa-mir-10b-5p. All these findings suggest that the interaction between cell-cell and cell-ECM as well as the change in the culture architecture impacts gene expression, and, therefore, support the pertinence of migrating breast cancer research from conventional cultures to 3D models.
Collapse
Affiliation(s)
- María de los Ángeles Gastélum-López
- Faculty of Biological and Chemical Sciences, Autonomous University of Sinaloa, Josefa Ortiz de Domínguez s/n y Avenida de las Américas, Culiacan 80013, Sinaloa, Mexico (M.A.-M.); (G.R.-Q.); (M.A.-F.)
| | - Maribel Aguilar-Medina
- Faculty of Biological and Chemical Sciences, Autonomous University of Sinaloa, Josefa Ortiz de Domínguez s/n y Avenida de las Américas, Culiacan 80013, Sinaloa, Mexico (M.A.-M.); (G.R.-Q.); (M.A.-F.)
| | - Cristina García Mata
- Faculty of Biological and Chemical Sciences, Autonomous University of Sinaloa, Josefa Ortiz de Domínguez s/n y Avenida de las Américas, Culiacan 80013, Sinaloa, Mexico (M.A.-M.); (G.R.-Q.); (M.A.-F.)
| | - Jorge López-Gutiérrez
- Faculty of Biological and Chemical Sciences, Autonomous University of Sinaloa, Josefa Ortiz de Domínguez s/n y Avenida de las Américas, Culiacan 80013, Sinaloa, Mexico (M.A.-M.); (G.R.-Q.); (M.A.-F.)
| | - Geovanni Romero-Quintana
- Faculty of Biological and Chemical Sciences, Autonomous University of Sinaloa, Josefa Ortiz de Domínguez s/n y Avenida de las Américas, Culiacan 80013, Sinaloa, Mexico (M.A.-M.); (G.R.-Q.); (M.A.-F.)
| | - Mercedes Bermúdez
- Faculty of Dentistry, Autonomous University of Chihuahua, Av. Escorza No. 900, Centro, Chihuahua 31125, Chihuahua, Mexico;
| | - Mariana Avendaño-Felix
- Faculty of Biological and Chemical Sciences, Autonomous University of Sinaloa, Josefa Ortiz de Domínguez s/n y Avenida de las Américas, Culiacan 80013, Sinaloa, Mexico (M.A.-M.); (G.R.-Q.); (M.A.-F.)
| | - César López-Camarillo
- Postgraduate in Genomic Sciences, Autonomous University of Mexico City, San Lorenzo 290, Col del Valle, Mexico City 03100, Mexico;
| | - Carlos Pérez-Plascencia
- National Cancer Institute, Av. San Fernando 22, Belisario Domínguez Sec. 16, Tlalpan, Mexico City 14080, Mexico;
- FES Iztacala, National Autonomous University of Mexico, Av. de los Barrios S/N, Los Reyes Ixtacala, Tlalnepantla 54090, Estado de Mexico, Mexico
| | - Adriana S Beltrán
- Human Pluripotent Stem Cell Core, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Rosalío Ramos-Payán
- Faculty of Biological and Chemical Sciences, Autonomous University of Sinaloa, Josefa Ortiz de Domínguez s/n y Avenida de las Américas, Culiacan 80013, Sinaloa, Mexico (M.A.-M.); (G.R.-Q.); (M.A.-F.)
| |
Collapse
|
7
|
Ma F, Arai S, Wang K, Calagua C, Yuan AR, Poluben L, Gu Z, Russo JW, Einstein DJ, Ye H, He MX, Liu Y, Van Allen E, Sowalsky AG, Bhasin MK, Yuan X, Balk SP. Autocrine Canonical Wnt Signaling Primes Noncanonical Signaling through ROR1 in Metastatic Castration-Resistant Prostate Cancer. Cancer Res 2022; 82:1518-1533. [PMID: 35131873 PMCID: PMC9018564 DOI: 10.1158/0008-5472.can-21-1807] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 11/22/2021] [Accepted: 02/02/2022] [Indexed: 11/16/2022]
Abstract
Wnt signaling driven by genomic alterations in genes including APC and CTNNB, which encodes β-catenin, have been implicated in prostate cancer development and progression to metastatic castration-resistant prostate cancer (mCRPC). However, nongenomic drivers and downstream effectors of Wnt signaling in prostate cancer and the therapeutic potential of targeting this pathway in prostate cancer have not been fully established. Here we analyzed Wnt/β-catenin signaling in prostate cancer and identified effectors distinct from those found in other tissues, including aryl hydrocarbon receptor and RUNX1, which are linked to stem cell maintenance, and ROR1, a noncanonical Wnt5a coreceptor. Wnt/β-catenin signaling-mediated increases in ROR1 enhanced noncanonical responses to Wnt5a. Regarding upstream drivers, APC genomic loss, but not its epigenetic downregulation commonly observed in prostate cancer, was strongly associated with Wnt/β-catenin pathway activation in clinical samples. Tumor cell upregulation of the Wnt transporter Wntless (WLS) was strongly associated with Wnt/β-catenin pathway activity in primary prostate cancer but also associated with both canonical and noncanonical Wnt signaling in mCRPC. IHC confirmed tumor cell WLS expression in primary prostate cancer and mCRPC, and patient-derived prostate cancer xenografts expressing WLS were responsive to treatment with Wnt synthesis inhibitor ETC-1922159. These findings reveal that Wnt/β-catenin signaling in prostate cancer drives stem cell maintenance and invasion and primes for noncanonical Wnt signaling through ROR1. They further show that autocrine Wnt production is a nongenomic driver of canonical and noncanonical Wnt signaling in prostate cancer, which can be targeted with Wnt synthesis inhibitors to suppress tumor growth. SIGNIFICANCE This work provides fundamental insights into Wnt signaling and prostate cancer cell biology and indicates that a subset of prostate cancer driven by autocrine Wnt signaling is sensitive to Wnt synthesis inhibitors.
Collapse
Affiliation(s)
- Fen Ma
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center and Harvard Medical School; Boston, MA, 02215, USA
| | - Seiji Arai
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center and Harvard Medical School; Boston, MA, 02215, USA
- Department of Urology, Gunma University Hospital; Maebashi, Gunma, Japan
| | - Keshan Wang
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center and Harvard Medical School; Boston, MA, 02215, USA
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology; Wuhan, Hubei 430022, P.R. China
| | - Carla Calagua
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center and Harvard Medical School; Boston, MA, 02215, USA
| | - Amanda R. Yuan
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center and Harvard Medical School; Boston, MA, 02215, USA
| | - Larysa Poluben
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center and Harvard Medical School; Boston, MA, 02215, USA
| | - Zhongkai Gu
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center and Harvard Medical School; Boston, MA, 02215, USA
| | - Joshua W. Russo
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center and Harvard Medical School; Boston, MA, 02215, USA
| | - David J. Einstein
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center and Harvard Medical School; Boston, MA, 02215, USA
| | - Huihui Ye
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center and Harvard Medical School; Boston, MA, 02215, USA
- Department of Pathology, UCLA David Geffen School of Medicine; Los Angeles, CA 90095
| | - Meng Xiao He
- Harvard Graduate Program in Biophysics, Harvard Medical School; Boston, MA 02115, USA
- Department of Medical Oncology, Dana Farber Cancer Institute; Boston, MA 02115
- Broad Institute of Harvard and MIT; Cambridge, MA 02142, USA
| | - Yu Liu
- Program in System Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School; Worcester, MA 01605, USA
| | - Eliezer Van Allen
- Department of Medical Oncology, Dana Farber Cancer Institute; Boston, MA 02115
- Broad Institute of Harvard and MIT; Cambridge, MA 02142, USA
| | - Adam G. Sowalsky
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, National Institutes of Health; Bethesda, MD 20892, USA
| | - Manoj K. Bhasin
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center and Harvard Medical School; Boston, MA, 02215, USA
- Departments of Pediatrics and Biomedical Informatics, Emory School of Medicine; Atlanta, GA 30322, USA
| | - Xin Yuan
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center and Harvard Medical School; Boston, MA, 02215, USA
| | - Steven P. Balk
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center and Harvard Medical School; Boston, MA, 02215, USA
| |
Collapse
|
8
|
Maharjan CK, Mo J, Wang L, Kim MC, Wang S, Borcherding N, Vikas P, Zhang W. Natural and Synthetic Estrogens in Chronic Inflammation and Breast Cancer. Cancers (Basel) 2021; 14:cancers14010206. [PMID: 35008370 PMCID: PMC8744660 DOI: 10.3390/cancers14010206] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/17/2021] [Accepted: 12/19/2021] [Indexed: 12/17/2022] Open
Abstract
The oncogenic role of estrogen receptor (ER) signaling in breast cancer has long been established. Interaction of estrogen with estrogen receptor (ER) in the nucleus activates genomic pathways of estrogen signaling. In contrast, estrogen interaction with the cell membrane-bound G-protein-coupled estrogen receptor (GPER) activates the rapid receptor-mediated signaling transduction cascades. Aberrant estrogen signaling enhances mammary epithelial cell proliferation, survival, and angiogenesis, hence is an important step towards breast cancer initiation and progression. Meanwhile, a growing number of studies also provide evidence for estrogen's pro- or anti-inflammatory roles. As other articles in this issue cover classic ER and GPER signaling mediated by estrogen, this review will discuss the crucial mechanisms by which estrogen signaling influences chronic inflammation and how that is involved in breast cancer. Xenoestrogens acquired from plant diet or exposure to industrial products constantly interact with and alter innate estrogen signaling at various levels. As such, they can modulate chronic inflammation and breast cancer development. Natural xenoestrogens generally have anti-inflammatory properties, which is consistent with their chemoprotective role in breast cancer. In contrast, synthetic xenoestrogens are proinflammatory and carcinogenic compounds that can increase the risk of breast cancer. This article also highlights important xenoestrogens with a particular focus on their role in inflammation and breast cancer. Improved understanding of the complex relationship between estrogens, inflammation, and breast cancer will guide clinical research on agents that could advance breast cancer prevention and therapy.
Collapse
Affiliation(s)
- Chandra K. Maharjan
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA; (C.K.M.); (J.M.); (L.W.); (M.-C.K.)
| | - Jiao Mo
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA; (C.K.M.); (J.M.); (L.W.); (M.-C.K.)
| | - Lei Wang
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA; (C.K.M.); (J.M.); (L.W.); (M.-C.K.)
| | - Myung-Chul Kim
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA; (C.K.M.); (J.M.); (L.W.); (M.-C.K.)
| | - Sameul Wang
- Canyonoak Consulting LLC, San Diego, CA 92127, USA;
| | - Nicholas Borcherding
- Department of Pathology and Immunology, School of Medicine, Washington University, St. Louis, MO 63110, USA;
| | - Praveen Vikas
- Department of Internal Medicine, Carver College of Medicine, Iowa City, IA 52242, USA;
| | - Weizhou Zhang
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA; (C.K.M.); (J.M.); (L.W.); (M.-C.K.)
- Mechanism of Oncogenesis Program, University of Florida Health Cancer Center, University of Florida, Gainesville, FL 32610, USA
- Correspondence: to: ; Tel.: +1-352-273-6748
| |
Collapse
|
9
|
Perkins RS, Suthon S, Miranda-Carboni GA, Krum SA. WNT5B in cellular signaling pathways. Semin Cell Dev Biol 2021; 125:11-16. [PMID: 34635443 DOI: 10.1016/j.semcdb.2021.09.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 12/31/2022]
Abstract
The Wnt signaling ligand WNT5B is implicated in various developmental pathways, both in normal and pathological physiology. Most of the research on WNT5B has been associated with expression analysis and disease states, leaving the signaling pathways underexplored. Here, we review the current understandings of WNT5B's regulation of signal transduction, from receptors to downstream mediators and transcription factors. We also describe its roles in β-catenin-dependent and β-catenin-independent (Planar Cell Polarity and Wnt/Ca2+) Wnt signaling.
Collapse
Affiliation(s)
- Rachel S Perkins
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Sarocha Suthon
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Gustavo A Miranda-Carboni
- Department of Medicine, Division of Hematology and Oncology, University of Tennessee Health Science Center, Memphis, TN, USA; Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Susan A Krum
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis, TN, USA; Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
10
|
Li H, Tong F, Meng R, Peng L, Wang J, Zhang R, Dong X. E2F1-mediated repression of WNT5A expression promotes brain metastasis dependent on the ERK1/2 pathway in EGFR-mutant non-small cell lung cancer. Cell Mol Life Sci 2021; 78:2877-2891. [PMID: 33078208 PMCID: PMC11072416 DOI: 10.1007/s00018-020-03678-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/30/2020] [Accepted: 10/06/2020] [Indexed: 12/11/2022]
Abstract
Brain metastasis (BM) is associated with poor prognosis in patients with advanced non-small cell lung cancer (NSCLC). Epidermal growth factor receptor (EGFR) mutation reportedly enhances the development of BM. However, the exact mechanism of how EGFR-mutant NSCLC contributes to BM remains unknown. Herein, we found the protein WNT5A, was significantly downregulated in BM tissues and EGFR-mutant samples. In addition, the overexpression of WNT5A inhibited the growth, migration, and invasion of EGFR-mutant cells in vitro and retarded tumor growth and metastasis in vivo compared with the EGFR wide-type cells. We demonstrated a molecular mechanism whereby WNT5A be negatively regulated by transcription factor E2F1, and ERK1/2 inhibitor (U0126) suppressed E2F1's regulation of WNT5A expression in EGFR-mutant cells. Furthermore, WNT5A inhibited β-catenin activity and the transcriptional levels of its downstream genes in cancer progression. Our research revealed the role of WNT5A in NSCLC BM with EGFR mutation, and proved that E2F1-mediated repression of WNT5A was dependent on the ERK1/2 pathway, supporting the notion that targeting the ERK1/2-E2F1-WNT5A pathway could be an effective strategy for treating BM in EGFR-mutant NSCLC.
Collapse
Affiliation(s)
- Huanhuan Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, People's Republic of China
| | - Fan Tong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, People's Republic of China
| | - Rui Meng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, People's Republic of China
| | - Ling Peng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, People's Republic of China
| | - Jiaojiao Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, People's Republic of China
| | - Ruiguang Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, People's Republic of China
| | - Xiaorong Dong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, People's Republic of China.
| |
Collapse
|
11
|
Azbazdar Y, Karabicici M, Erdal E, Ozhan G. Regulation of Wnt Signaling Pathways at the Plasma Membrane and Their Misregulation in Cancer. Front Cell Dev Biol 2021; 9:631623. [PMID: 33585487 PMCID: PMC7873896 DOI: 10.3389/fcell.2021.631623] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/04/2021] [Indexed: 12/24/2022] Open
Abstract
Wnt signaling is one of the key signaling pathways that govern numerous physiological activities such as growth, differentiation and migration during development and homeostasis. As pathway misregulation has been extensively linked to pathological processes including malignant tumors, a thorough understanding of pathway regulation is essential for development of effective therapeutic approaches. A prominent feature of cancer cells is that they significantly differ from healthy cells with respect to their plasma membrane composition and lipid organization. Here, we review the key role of membrane composition and lipid order in activation of Wnt signaling pathway by tightly regulating formation and interactions of the Wnt-receptor complex. We also discuss in detail how plasma membrane components, in particular the ligands, (co)receptors and extracellular or membrane-bound modulators, of Wnt pathways are affected in lung, colorectal, liver and breast cancers that have been associated with abnormal activation of Wnt signaling. Wnt-receptor complex components and their modulators are frequently misexpressed in these cancers and this appears to correlate with metastasis and cancer progression. Thus, composition and organization of the plasma membrane can be exploited to develop new anticancer drugs that are targeted in a highly specific manner to the Wnt-receptor complex, rendering a more effective therapeutic outcome possible.
Collapse
Affiliation(s)
- Yagmur Azbazdar
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, İzmir, Turkey.,Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, İzmir, Turkey
| | - Mustafa Karabicici
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, İzmir, Turkey.,Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, İzmir, Turkey
| | - Esra Erdal
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, İzmir, Turkey.,Department of Medical Biology and Genetics, Faculty of Medicine, Dokuz Eylul University, İzmir, Turkey
| | - Gunes Ozhan
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, İzmir, Turkey.,Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, İzmir, Turkey
| |
Collapse
|
12
|
Xu X, Zhang M, Xu F, Jiang S. Wnt signaling in breast cancer: biological mechanisms, challenges and opportunities. Mol Cancer 2020; 19:165. [PMID: 33234169 PMCID: PMC7686704 DOI: 10.1186/s12943-020-01276-5] [Citation(s) in RCA: 293] [Impact Index Per Article: 58.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/22/2020] [Indexed: 02/07/2023] Open
Abstract
Wnt signaling is a highly conserved signaling pathway that plays a critical role in controlling embryonic and organ development, as well as cancer progression. Genome-wide sequencing and gene expression profile analyses have demonstrated that Wnt signaling is involved mainly in the processes of breast cancer proliferation and metastasis. The most recent studies have indicated that Wnt signaling is also crucial in breast cancer immune microenvironment regulation, stemness maintenance, therapeutic resistance, phenotype shaping, etc. Wnt/β-Catenin, Wnt-planar cell polarity (PCP), and Wnt-Ca2+ signaling are three well-established Wnt signaling pathways that share overlapping components and play different roles in breast cancer progression. In this review, we summarize the main findings concerning the relationship between Wnt signaling and breast cancer and provide an overview of existing mechanisms, challenges, and potential opportunities for advancing the therapy and diagnosis of breast cancer.
Collapse
Affiliation(s)
- Xiufang Xu
- School of Medical Imaging, Hangzhou Medical College, Hangzhou, 310053 Zhejiang China
| | - Miaofeng Zhang
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009 Zhejiang China
| | - Faying Xu
- School of Medical Imaging, Hangzhou Medical College, Hangzhou, 310053 Zhejiang China
| | - Shaojie Jiang
- School of Medical Imaging, Hangzhou Medical College, Hangzhou, 310053 Zhejiang China
| |
Collapse
|
13
|
Mapping a Circular RNA-microRNA-mRNA-Signaling Regulatory Axis That Modulates Stemness Properties of Cancer Stem Cell Populations in Colorectal Cancer Spheroid Cells. Int J Mol Sci 2020; 21:ijms21217864. [PMID: 33114016 PMCID: PMC7672619 DOI: 10.3390/ijms21217864] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 02/08/2023] Open
Abstract
Spheroidal cancer cell cultures have been used to enrich cancer stem cells (CSC), which are thought to contribute to important clinical features of tumors. This study aimed to map the regulatory networks driven by circular RNAs (circRNAs) in CSC-enriched colorectal cancer (CRC) spheroid cells. The spheroid cells established from two CRC cell lines acquired stemness properties in pluripotency gene expression and multi-lineage differentiation capacity. Genome-wide sequencing identified 1503 and 636 circRNAs specific to the CRC parental and spheroid cells, respectively. In the CRC spheroids, algorithmic analyses unveiled a core network of mRNAs involved in modulating stemness-associated signaling pathways, driven by a circRNA–microRNA (miRNA)–mRNA axis. The two major circRNAs, hsa_circ_0066631 and hsa_circ_0082096, in this network were significantly up-regulated in expression levels in the spheroid cells. The two circRNAs were predicted to target and were experimentally shown to down-regulate miR-140-3p, miR-224, miR-382, miR-548c-3p and miR-579, confirming circRNA sponging of the targeted miRNAs. Furthermore, the affected miRNAs were demonstrated to inhibit degradation of six mRNA targets, viz. ACVR1C/ALK7, FZD3, IL6ST/GP130, SKIL/SNON, SMAD2 and WNT5, in the CRC spheroid cells. These mRNAs encode proteins that are reported to variously regulate the GP130/Stat, Activin/Nodal, TGF-β/SMAD or Wnt/β-catenin signaling pathways in controlling various aspects of CSC stemness. Using the CRC spheroid cell model, the novel circRNA–miRNA–mRNA axis mapped in this work forms the foundation for the elucidation of the molecular mechanisms of the complex cellular and biochemical processes that determine CSC stemness properties of cancer cells, and possibly for designing therapeutic strategies for CRC treatment by targeting CSC.
Collapse
|
14
|
Koni M, Pinnarò V, Brizzi MF. The Wnt Signalling Pathway: A Tailored Target in Cancer. Int J Mol Sci 2020; 21:E7697. [PMID: 33080952 PMCID: PMC7589708 DOI: 10.3390/ijms21207697] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer is one of the greatest public health challenges. According to the World Health Organization (WHO), 9.6 million cancer deaths have been reported in 2018. The most common cancers include lung, breast, colorectal, prostate, skin (non-melanoma) and stomach cancer. The unbalance of physiological signalling pathways due to the acquisition of mutations in tumour cells is considered the most common cancer driver. The Wingless-related integration site (Wnt)/β-catenin pathway is crucial for tissue development and homeostasis in all animal species and its dysregulation is one of the most relevant events linked to cancer development and dissemination. The canonical and the non-canonical Wnt/β-catenin pathways are known to control both physiological and pathological processes, including cancer. Herein, the impact of the Wnt/β-catenin cascade in driving cancers from different origin has been examined. Finally, based on the impact of Extracellular Vesicles (EVs) on tumour growth, invasion and chemoresistance, and their role as tumour diagnostic and prognostic tools, an overview of the current knowledge linking EVs to the Wnt/β-catenin pathway is also discussed.
Collapse
Affiliation(s)
| | | | - Maria Felice Brizzi
- Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126 Turin, Italy; (M.K.); (V.P.)
| |
Collapse
|
15
|
Sun Y, Wang W, Zhao C. Frizzled Receptors in Tumors, Focusing on Signaling, Roles, Modulation Mechanisms, and Targeted Therapies. Oncol Res 2020; 28:661-674. [PMID: 32998794 PMCID: PMC7962935 DOI: 10.3727/096504020x16014648664459] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Wnt molecules play crucial roles in development and adult homeostasis through their receptors Frizzled proteins (Fzds). Fzds mediate canonical β-catenin pathway and various noncanonical β-catenin-independent pathways. Aberrant Fzd signaling is involved in many diseases including cancer. Wnt/β-catenin is a well-established oncogenic pathway involved in almost every aspect of tumor development. However, Fzd-mediated noncanonical Wnt pathways function as both tumor promoters and tumor suppressors depending on cellular context. Fzd-targeted therapies have proven to be effective on cultured tumor cells, tumor cell xenografts, mouse tumor models, and patient-derived xenografts (PDX). Moreover, Fzd-targeted therapies synergize with chemotherapy in preclinical models. However, the occurrence of fragility fractures in patients treated with Fzd-targeted agents such as OMP-54F28 and OMP-18R5 limits the development of this combination. Along with new insights on signaling, roles, and modulation mechanisms of Fzds in human tumors, more Fzd-related therapeutic targets will be developed.
Collapse
Affiliation(s)
- Yu Sun
- Department of Pathophysiology, College of Basic Medical Science, China Medical UniversityShenyangP.R. China
| | - Wei Wang
- Department of Pathophysiology, College of Basic Medical Science, China Medical UniversityShenyangP.R. China
| | - Chenghai Zhao
- Department of Pathophysiology, College of Basic Medical Science, China Medical UniversityShenyangP.R. China
| |
Collapse
|
16
|
van Schie EH, van Amerongen R. Aberrant WNT/CTNNB1 Signaling as a Therapeutic Target in Human Breast Cancer: Weighing the Evidence. Front Cell Dev Biol 2020; 8:25. [PMID: 32083079 PMCID: PMC7005411 DOI: 10.3389/fcell.2020.00025] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/14/2020] [Indexed: 12/22/2022] Open
Abstract
WNT signaling is crucial for tissue morphogenesis during development in all multicellular animals. After birth, WNT/CTNNB1 responsive stem cells are responsible for tissue homeostasis in various organs and hyperactive WNT/CTNNB1 signaling is observed in many different human cancers. The first link between WNT signaling and breast cancer was established almost 40 years ago, when Wnt1 was identified as a proto-oncogene capable of driving mammary tumor formation in mice. Since that discovery, there has been a dedicated search for aberrant WNT signaling in human breast cancer. However, much debate and controversy persist regarding the importance of WNT signaling for the initiation, progression or maintenance of different breast cancer subtypes. As the first drugs designed to block functional WNT signaling have entered clinical trials, many questions about the role of aberrant WNT signaling in human breast cancer remain. Here, we discuss three major research gaps in this area. First, we still lack a basic understanding of the function of WNT signaling in normal human breast development and physiology. Second, the overall extent and precise effect of (epi)genetic changes affecting the WNT pathway in different breast cancer subtypes are still unknown. Which underlying molecular and cell biological mechanisms are disrupted as a result also awaits further scrutiny. Third, we survey the current status of targeted therapeutics that are aimed at interfering with the WNT pathway in breast cancer patients and highlight the importance and complexity of selecting the subset of patients that may benefit from treatment.
Collapse
Affiliation(s)
| | - Renée van Amerongen
- Section of Molecular Cytology and van Leeuwenhoek Centre for Advanced Microscopy, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
17
|
Chen M, Sun X, Wang Y, Ling K, Chen C, Cai X, Liang X, Liang Z. FAT1 inhibits the proliferation and metastasis of cervical cancer cells by binding β-catenin. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:3807-3818. [PMID: 31933769 PMCID: PMC6949748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 08/29/2019] [Indexed: 06/10/2023]
Abstract
FAT1 is a mutant gene found frequently in human cervical cancer (CC), but its expression and relevance in CC proliferation, invasion, and migration are still unknown. We aimed to explore the role and novel mechanism of FAT1 in CC progression. The expression of FAT1 in CC and adjacent normal tissues was analysed, and we investigated the proliferation, migration, and invasion of HeLa and C33A cells treated with wild-type FAT1 plasmid or FAT1 siRNA. Meanwhile, we evaluated the effect of FAT1 on the epithelial-mesenchymal transition (EMT) and the β-catenin-mediated transcription of target genes. Here, we showed that FAT1 expression was significantly lower in CC tissues than in adjacent tissues. FAT1 overexpression significantly dysregulated CC cell proliferation, invasion, and migration, whereas FAT1 knockdown had the opposite effect. FAT1 overexpression promoted the expression of phosphorylated β-catenin and E-cadherin protein and inhibited the expression of vimentin, TWIST, and several downstream targets of β-catenin, namely, c-MYC, TCF-4 and MMP14. In contrast, FAT1 silencing notably increased the expression c-MYC, TCF-4, and MMP14 and promoted the EMT in HeLa and C33A cells. Endogenous and exogenous FAT1 was confirmed to interact with β-catenin, and the overexpression of β-catenin could partially block the effect of FAT1 on the proliferation, migration, and invasion of HeLa and C33A cells. Conclusion: FAT1 acts as a tumor suppressor by inhibiting β-catenin-mediated transcription and might be used as a novel anti-metastatic agent in targeted CC therapy.
Collapse
Affiliation(s)
- Mengyue Chen
- Department of Obstetrics & Gynaecology, Southwest Hospital, Army Medical University Chongqing, China
| | - Xinwei Sun
- Department of Obstetrics & Gynaecology, Southwest Hospital, Army Medical University Chongqing, China
| | - Yanzhou Wang
- Department of Obstetrics & Gynaecology, Southwest Hospital, Army Medical University Chongqing, China
| | - Kaijian Ling
- Department of Obstetrics & Gynaecology, Southwest Hospital, Army Medical University Chongqing, China
| | - Cheng Chen
- Department of Obstetrics & Gynaecology, Southwest Hospital, Army Medical University Chongqing, China
| | - Xiongwei Cai
- Department of Obstetrics & Gynaecology, Southwest Hospital, Army Medical University Chongqing, China
| | - Xiaolong Liang
- Department of Obstetrics & Gynaecology, Southwest Hospital, Army Medical University Chongqing, China
| | - Zhiqing Liang
- Department of Obstetrics & Gynaecology, Southwest Hospital, Army Medical University Chongqing, China
| |
Collapse
|
18
|
Abstract
Despite the clinical development of novel adjuvant and neoadjuvant chemotherapeutic drugs, metastatic breast cancer is one of the leading causes of cancer-related death among women. The present review focuses on the relevance, mechanisms, and therapeutic potential of targeting WNT5A as a future anti-metastatic treatment strategy for breast cancer patients by restoring WNT5A signaling as an innovative therapeutic option. WNT5A is an auto- and paracrine β-catenin-independent ligand that has been shown to induce tumor suppression as well as oncogenic signaling, depending upon cancer type. In breast cancer patients, WNT5A protein expression has been observed to be significantly reduced in between 45 and 75% of the cases and associated with early relapse and reduced disease-free survival. WNT5A triggers various downstream signaling pathways in breast cancer that primarily affect tumor cell migration and invasion. The accumulated in vitro results reveal that treatment of WNT5A-negative breast cancer cells with recombinant WNT5A caused different tumor-suppressive responses and in particular it impaired migration and invasion. The anti-migratory/invasive and anti-metastatic effects of reconstituting WNT5A signaling by the small WNT5A mimicking peptide Foxy5 form the basis for two successful clinical phase 1-studies aiming at determining safety and pharmacokinetics as well as defining dose-level for a subsequent phase 2-study. We conclude that re-installation of WNT5A signaling is an attractive and promising anti-metastatic therapeutic approach for future treatment of WNT5A-negative breast cancer patients.
Collapse
|
19
|
Non‑canonical Wnt signaling contributes to ventilator‑induced lung injury through upregulation of WISP1 expression. Int J Mol Med 2019; 43:1217-1228. [PMID: 30664165 PMCID: PMC6365043 DOI: 10.3892/ijmm.2019.4067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 12/17/2018] [Indexed: 12/25/2022] Open
Abstract
Mechanical ventilation may cause ventilator-induced lung injury (VILI). Canonical Wnt signaling has been reported to serve an important role in the pathogenesis of VILI. Bioinformatics analysis revealed that canonical and non-canonical Wnt signaling pathways were activated in VILI. However, the role of non-canonical Wnt signaling in the pathogenesis of VILI remains unclear. The present study aimed to analyze the potential role of non-canonical Wnt signaling in VILI pathogenesis. Lung injury was assessed via Evans blue albumin permeability and histological scoring, as well as by inflammatory cytokine expression and total protein concentration in bronchoalveolar lavage fluid. The relative protein expression of canonical and non-canonical Wnt signaling pathway components were examined via western blotting and immunohistochemistry. The results demonstrated that 6 h of mechanical ventilation at low tidal volume (LTV; 6 ml/kg) or moderate tidal volume (MTV; 12 ml/kg) induced lung injury in sensitive A/J mice. Ventilation with MTV increased the protein levels of Wnt-induced secreted protein 1 (WISP1), Rho-associated protein kinase 1 (ROCK1), phosphorylated (p)-Ras homolog gene family, member A and p-C-Jun N-terminal kinase (JNK). Inhibition of ROCK1 by Y27632 and JNK by SP600125 attenuated MTV-induced lung injury and decreased the expression of proteins involved in non-canonical Wnt signaling, including WISP1. In conclusion, non-canonical Wnt signaling participates in VILI by modulating WISP1 expression, which has been previously noted as critical for VILI development. Therefore, the non-canonical Wnt signaling pathway may provide a preventive and therapeutic target in VILI.
Collapse
|
20
|
Thiele S, Zimmer A, Göbel A, Rachner TD, Rother S, Fuessel S, Froehner M, Wirth MP, Muders MH, Baretton GB, Jakob F, Rauner M, Hofbauer LC. Role of WNT5A receptors FZD5 and RYK in prostate cancer cells. Oncotarget 2018; 9:27293-27304. [PMID: 29930766 PMCID: PMC6007469 DOI: 10.18632/oncotarget.25551] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 05/11/2018] [Indexed: 01/08/2023] Open
Abstract
Prostate cancer is the most common malignancy in men and has a high propensity to metastasize to bone. WNT5A has recently been implicated in the progression of prostate cancer, however, the receptors that mediate its effects remain unknown. Here, we identified Wnt receptors that are highly expressed in prostate cancer and investigated which of these receptors mediate the anti-tumor effects of WNT5A in prostate cancer in vitro. Extensive in vitro analyses revealed that the WNT5A receptors FZD5 and RYK mediate the anti-tumor effects of WNT5A on prostate cancer cells. Knock-down of FZD5 completely abrogated the anti-proliferative effect of WNT5A in PC3 cells. In contrast, knock-down of RYK and FZD8 did not rescue the inhibition of proliferation after WNT5A overexpression. In contrast, RYK knock-down inhibited the pro-apoptotic effect of WNT5A in PC3 cells by 60%, whereas the knock-down of either FZD5 or FZD8 further stimulated apoptosis after WNT5A overexpression (by 33% and 234%, respectively). Surface plasmon resonance analysis indicated that WNT5A has a 30% stronger binding response to FZD5 than to RYK. Further investigations using a tissue microarray revealed that expression of RYK is increased in advanced prostate cancer tumor stages, but is not associated with survival of prostate cancer patients. In contrast, patients with low local FZD5 expression, in particular in combination with low WNT5A expression, showed a longer disease-specific survival. In conclusion, WNT5A/FZD5 and WNT5A/RYK signaling are both involved in mediating the pro-apoptotic and anti-proliferative effects of WNT5A in prostate cancer.
Collapse
Affiliation(s)
- Stefanie Thiele
- Division of Endocrinology and Metabolic Bone Diseases, Department of Medicine III, Dresden, Germany.,Center for Healthy Aging, Technische Universität Dresden Medical Center, Dresden, Germany
| | - Ariane Zimmer
- Division of Endocrinology and Metabolic Bone Diseases, Department of Medicine III, Dresden, Germany.,Center for Healthy Aging, Technische Universität Dresden Medical Center, Dresden, Germany
| | - Andy Göbel
- Division of Endocrinology and Metabolic Bone Diseases, Department of Medicine III, Dresden, Germany.,Center for Healthy Aging, Technische Universität Dresden Medical Center, Dresden, Germany
| | - Tilman D Rachner
- Division of Endocrinology and Metabolic Bone Diseases, Department of Medicine III, Dresden, Germany.,Center for Healthy Aging, Technische Universität Dresden Medical Center, Dresden, Germany
| | - Sandra Rother
- Institute of Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, Dresden, Germany
| | - Susanne Fuessel
- Department of Urology, Technische Universität Dresden, Dresden, Germany
| | - Michael Froehner
- Department of Urology, Technische Universität Dresden, Dresden, Germany
| | - Manfred P Wirth
- Department of Urology, Technische Universität Dresden, Dresden, Germany
| | - Michael H Muders
- Institute of Pathology, Technische Universität Dresden, Dresden, Germany
| | - Gustavo B Baretton
- Institute of Pathology, Technische Universität Dresden, Dresden, Germany
| | - Franz Jakob
- Orthopedic Center for Musculoskeletal Research, University of Würzburg, Würzburg, Germany
| | - Martina Rauner
- Division of Endocrinology and Metabolic Bone Diseases, Department of Medicine III, Dresden, Germany.,Center for Healthy Aging, Technische Universität Dresden Medical Center, Dresden, Germany
| | - Lorenz C Hofbauer
- Division of Endocrinology and Metabolic Bone Diseases, Department of Medicine III, Dresden, Germany.,Center for Healthy Aging, Technische Universität Dresden Medical Center, Dresden, Germany.,German Cancer Consortium (DKTK), partner site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
21
|
Roy JP, Halford MM, Stacker SA. The biochemistry, signalling and disease relevance of RYK and other WNT-binding receptor tyrosine kinases. Growth Factors 2018; 36:15-40. [PMID: 29806777 DOI: 10.1080/08977194.2018.1472089] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The receptor tyrosine kinases (RTKs) are a well-characterized family of growth factor receptors that have central roles in human disease and are frequently therapeutically targeted. The RYK, ROR, PTK7 and MuSK subfamilies make up an understudied subset of WNT-binding RTKs. Numerous developmental, stem cell and pathological roles of WNTs, in particular WNT5A, involve signalling via these WNT receptors. The WNT-binding RTKs have highly context-dependent signalling outputs and stimulate the β-catenin-dependent, planar cell polarity and/or WNT/Ca2+ pathways. RYK, ROR and PTK7 members have a pseudokinase domain in their intracellular regions. Alternative signalling mechanisms, including proteolytic cleavage and protein scaffolding functions, have been identified for these receptors. This review explores the structure, signalling, physiological and pathological roles of RYK, with particular attention paid to cancer and the possibility of therapeutically targeting RYK. The other WNT-binding RTKs are compared with RYK throughout to highlight the similarities and differences within this subset of WNT receptors.
Collapse
Affiliation(s)
- James P Roy
- a Tumour Angiogenesis and Microenvironment Program , Peter MacCallum Cancer Centre , Melbourne , Australia
- b Sir Peter MacCallum Department of Oncology , The University of Melbourne , Parkville , Australia
| | - Michael M Halford
- a Tumour Angiogenesis and Microenvironment Program , Peter MacCallum Cancer Centre , Melbourne , Australia
| | - Steven A Stacker
- a Tumour Angiogenesis and Microenvironment Program , Peter MacCallum Cancer Centre , Melbourne , Australia
- b Sir Peter MacCallum Department of Oncology , The University of Melbourne , Parkville , Australia
| |
Collapse
|
22
|
Yang M, Wang M, Li X, Xie Y, Xia X, Tian J, Zhang K, Tang A. Wnt signaling in cervical cancer? J Cancer 2018; 9:1277-1286. [PMID: 29675109 PMCID: PMC5907676 DOI: 10.7150/jca.22005] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 12/11/2017] [Indexed: 12/20/2022] Open
Abstract
Cervical cancer (CC) is the second most common malignant cancer in women. CC is difficult to diagnose, has a high recurrence rate, and is resistant to systemic therapies; as a result, CC patients have a relatively poor prognosis. One potential link to CC is the Wnt signaling pathway and its downstream effectors, which regulate cell differentiation, proliferation, migration, and fate. The aberrant activation of Wnt signaling is associated with various cancers, including CC. Recent studies have shown that activating or inhibiting the intracellular signal transduction in this pathway can regulate cancer cell growth and viability. This review will summarize the experimental evidence supporting the significance of the Wnt signaling pathway in CC, and will also discuss the current clinical role of Wnt signaling in CC diagnosis, therapy, and prognosis.
Collapse
Affiliation(s)
- Min Yang
- Department of Laboratory Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Min Wang
- Department of Laboratory Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Xianping Li
- Department of Laboratory Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Yixin Xie
- Department of Laboratory Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Xiaomeng Xia
- Department of Obstetrics and Gynecology, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Jingjing Tian
- Department of Laboratory Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Kan Zhang
- Department of Laboratory Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Aiguo Tang
- Department of Laboratory Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
23
|
Jia W, Jiang X, Liu W, Wang L, Zhu B, Zhu H, Liu X, Zhong M, Xie D, Huang W, Jia W, Li S, Liu X, Zuo X, Cheng D, Dai J, Ren C. Effects of three-dimensional collagen scaffolds on the expression profiles and biological functions of glioma cells. Int J Oncol 2018; 52:1787-1800. [PMID: 29568859 PMCID: PMC5919708 DOI: 10.3892/ijo.2018.4330] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 03/12/2018] [Indexed: 12/16/2022] Open
Abstract
Three-dimensional (3D) culture has been increasingly used to investigate tumor cell biology for improved simulation of the natural developing environment. However, the way in which 3D culture affects the gene expression and biological functions of glioma cells remains to be fully elucidated. In the present study, 3D culture environments were established using collagen scaffolds with different pore sizes, followed by the comparison of gene expression profiles and associated biological functions of glioma cells, including the U87, U251 and HS683 cell lines, in 3D collagen scaffolds with conventional two-dimensional (2D) cultured cells. Finally, the possible signaling pathways regulating these differences were investigated. It was found that the 3D collagen scaffold culture upregulated the expression of genes associated with stemness, cell cycle, apoptosis, epithelia-mesenchymal transition, migration, invasion and glioma malignancy, and induced the corresponding functional changes. Apoptotic pathways, the Wnt pathway, Sonic Hedgehog pathway and Notch pathway, may be involved in the regulation of these changes. The aperture size of the collagen-scaffold did not appear to affect the gene expression or functions of the glioma cells. The results of the study suggested that the 3D collagen scaffold enhanced the malignancy of glioma cells and may be a promising in vitro platform for investigations of glioma.
Collapse
Affiliation(s)
- Wei Jia
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Xingjun Jiang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Weidong Liu
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Lei Wang
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Bin Zhu
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Hecheng Zhu
- Changsha Kexin Cancer Hospital, Changsha, Hunan 410205, P.R. China
| | - Xingdong Liu
- Changsha Kexin Cancer Hospital, Changsha, Hunan 410205, P.R. China
| | - Meizuo Zhong
- Changsha Kexin Cancer Hospital, Changsha, Hunan 410205, P.R. China
| | - Dan Xie
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 51006, P.R. China
| | - Wei Huang
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Wenting Jia
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Shasha Li
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Xuxu Liu
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Xiang Zuo
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Damei Cheng
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Jianwu Dai
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Caiping Ren
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
24
|
Curto J, Del Valle-Pérez B, Villarroel A, Fuertes G, Vinyoles M, Peña R, García de Herreros A, Duñach M. CK1ε and p120-catenin control Ror2 function in noncanonical Wnt signaling. Mol Oncol 2018; 12:611-629. [PMID: 29465811 PMCID: PMC5928365 DOI: 10.1002/1878-0261.12184] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 02/02/2018] [Accepted: 02/02/2018] [Indexed: 12/31/2022] Open
Abstract
Canonical and noncanonical Wnt pathways share some common elements but differ in the responses they evoke. Similar to Wnt ligands acting through the canonical pathway, Wnts that activate the noncanonical signaling, such as Wnt5a, promote Disheveled (Dvl) phosphorylation and its binding to the Frizzled (Fz) Wnt receptor complex. The protein kinase CK1ε is required for Dvl/Fz association in both canonical and noncanonical signaling. Here we show that differently to its binding to canonical Wnt receptor complex, CK1ε does not require p120‐catenin for the association with the Wnt5a co‐receptor Ror2. Wnt5a promotes the formation of the Ror2–Fz complex and enables the activation of Ror2‐bound CK1ε by Fz‐associated protein phosphatase 2A. Moreover, CK1ε also regulates Ror2 protein levels; CK1ε association stabilizes Ror2, which undergoes lysosomal‐dependent degradation in the absence of this kinase. Although p120‐catenin is not required for CK1ε association with Ror2, it also participates in this signaling pathway as p120‐catenin binds and maintains Ror2 at the plasma membrane; in p120‐depleted cells, Ror2 is rapidly internalized through a clathrin‐dependent mechanism. Accordingly, downregulation of p120‐catenin or CK1ε affects late responses to Wnt5a that are also sensitive to Ror2, such as SIAH2 transcription, cell invasion, or cortical actin polarization. Our results explain how CK1ε is activated by noncanonical Wnt and identify p120‐catenin and CK1ε as two critical factors controlling Ror2 function.
Collapse
Affiliation(s)
- Josué Curto
- Departament de Bioquímica i Biologia Molecular, CEB, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Beatriz Del Valle-Pérez
- Departament de Bioquímica i Biologia Molecular, CEB, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Aida Villarroel
- Departament de Bioquímica i Biologia Molecular, CEB, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Guillem Fuertes
- Departament de Bioquímica i Biologia Molecular, CEB, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Meritxell Vinyoles
- Departament de Bioquímica i Biologia Molecular, CEB, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain.,Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Raúl Peña
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Antonio García de Herreros
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain.,Departament de Ciències, Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Mireia Duñach
- Departament de Bioquímica i Biologia Molecular, CEB, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
25
|
Skronska-Wasek W, Gosens R, Königshoff M, Baarsma HA. WNT receptor signalling in lung physiology and pathology. Pharmacol Ther 2018; 187:150-166. [PMID: 29458107 DOI: 10.1016/j.pharmthera.2018.02.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The WNT signalling cascades have emerged as critical regulators of a wide variety of biological aspects involved in lung development as well as in physiological and pathophysiological processes in the adult lung. WNTs (secreted glycoproteins) interact with various transmembrane receptors and co-receptors to activate signalling pathways that regulate transcriptional as well as non-transcriptional responses within cells. In physiological conditions, the majority of WNT receptors and co-receptors can be detected in the adult lung. However, dysregulation of WNT signalling pathways contributes to the development and progression of chronic lung pathologies, including idiopathic pulmonary fibrosis (IPF), chronic obstructive pulmonary disease (COPD), asthma and lung cancer. The interaction between a WNT and the (co-)receptor(s) present at the cell surface is the initial step in transducing an extracellular signal into an intracellular response. This proximal event in WNT signal transduction with (cell-specific) ligand-receptor interactions is of great interest as a potential target for pharmacological intervention. In this review we highlight the diverse expression of various WNT receptors and co-receptors in the aforementioned chronic lung diseases and discuss the currently available biologicals and pharmacological tools to modify proximal WNT signalling.
Collapse
Affiliation(s)
- Wioletta Skronska-Wasek
- Comprehensive Pneumology Center, Research Unit Lung Repair and Regeneration, Helmholtz Center Munich, Member of the German Center for Lung Research, Ludwig Maximilians University Munich, University Hospital Grosshadern, Munich, Germany
| | - Reinoud Gosens
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands; GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Melanie Königshoff
- Comprehensive Pneumology Center, Research Unit Lung Repair and Regeneration, Helmholtz Center Munich, Member of the German Center for Lung Research, Ludwig Maximilians University Munich, University Hospital Grosshadern, Munich, Germany; Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA.
| | - Hoeke Abele Baarsma
- Comprehensive Pneumology Center, Research Unit Lung Repair and Regeneration, Helmholtz Center Munich, Member of the German Center for Lung Research, Ludwig Maximilians University Munich, University Hospital Grosshadern, Munich, Germany; GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
26
|
Shao Y, Zheng Q, Wang W, Xin N, Song X, Zhao C. Biological functions of macrophage-derived Wnt5a, and its roles in human diseases. Oncotarget 2018; 7:67674-67684. [PMID: 27608847 PMCID: PMC5341904 DOI: 10.18632/oncotarget.11874] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 08/27/2016] [Indexed: 12/31/2022] Open
Abstract
Wnt5a is implicated in development and tissue homeostasis by activating β-catenin-independent pathway. Excessive production of Wnt5a is related to some human diseases. Macrophage recruitment is a character of inflammation and cancer, therefore macrophage-derived Wnt5a is supposed to be a player in these conditions. Actually, macrophage-derived Wnt5a maintains macrophage immune function, stimulates pro-inflammatory cytokine release, and induces angiogenesis and lymphangiogenesis. Furthermore, macrophage-derived Wnt5a is involved in insulin resistance, atherosclerosis and cancer. These findings indicate that macrophage-derived Wnt5a may be a target in the treatment of these diseases. Notably, unlike macrophages, the exact role of macrophage-derived Wnt5a in bacterial infection remains largely unknown.
Collapse
Affiliation(s)
- Yue Shao
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Qianqian Zheng
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Wei Wang
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Na Xin
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Xiaowen Song
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Chenghai Zhao
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China
| |
Collapse
|
27
|
Jin L, Han B, Siegel E, Cui Y, Giuliano A, Cui X. Breast cancer lung metastasis: Molecular biology and therapeutic implications. Cancer Biol Ther 2018; 19:858-868. [PMID: 29580128 PMCID: PMC6300341 DOI: 10.1080/15384047.2018.1456599] [Citation(s) in RCA: 186] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 03/18/2018] [Accepted: 03/19/2018] [Indexed: 02/05/2023] Open
Abstract
Distant metastasis accounts for the vast majority of deaths in patients with cancer. Breast cancer exhibits a distinct metastatic pattern commonly involving bone, liver, lung, and brain. Breast cancer can be divided into different subtypes based on gene expression profiles, and different breast cancer subtypes show preference to distinct organ sites of metastasis. Luminal breast tumors tend to metastasize to bone while basal-like breast cancer (BLBC) displays a lung tropism of metastasis. However, the mechanisms underlying this organ-specific pattern of metastasis still remain to be elucidated. In this review, we will summarize the recent advances regarding the molecular signaling pathways as well as the therapeutic strategies for treating breast cancer lung metastasis.
Collapse
Affiliation(s)
- Liting Jin
- Department of Breast Surgery, Hubei Cancer Hospital, Wuhan, China
| | - Bingchen Han
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Emily Siegel
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yukun Cui
- Laboratory for Breast Cancer Diagnosis and Treatment, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Armando Giuliano
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Xiaojiang Cui
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- CONTACT Xiaojiang Cui Cedars-Sinai Medical Center, 8700 Beverly Blvd, Davis Building 2065, Los Angeles, CA 90048
| |
Collapse
|
28
|
Bravo B, Argüello JM, Gortazar AR, Forriol F, Vaquero J. Modulation of Gene Expression in Infrapatellar Fat Pad-Derived Mesenchymal Stem Cells in Osteoarthritis. Cartilage 2018; 9:55-62. [PMID: 29156945 PMCID: PMC5724676 DOI: 10.1177/1947603516686144] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Aim In the osteoarthritis (OA) disease, all structures of the joint are involved. The infrapatellar Hoffa fat pad is rich in macrophages and granulocytes, which also represents a source of adipose mesenchymal progenitor cells (ASC) cells. In our study, we analyze how OA affects the ability of ASC-derived from Hoffa's fat pad to differentiate into chondrocytes. Material and methodology We took knee Hoffa's pad samples and adipose tissue from the proximal thigh from 6 patients diagnosed with severe OA and from another 6 patients with an anterior cruciate ligament (ACL) rupture without OA. From all the patients, we took subcutaneous adipose tissue from the thigh, as the control group. Samples of synovial fluid (SF) were also extracted. The gene expression was analyzed by real-time quantitative polymerase chain reaction. Results PTH1R and MMP13 expression during chondrogenic differentiation were similar between OA and ACL groups, while the expression of OPG, FGF2, TGFβ, MMP3 were significantly lower in the OA group. Exposure of differentiated ASC to OA SF induced an increase in the expression of OPG, PTH1R, and MMP13 and a decrease in the expression of FGF2 in cell culture of the ACL group. However, expression of none of these factors was altered by the OA synovial fluid in ASC cells of the OA group. Conclusion OA of the knee also affects the mesenchymal stem cells of Hoffa fat, suggesting that Hoffa fat is a new actor in the OA degenerative process that can contribute to the origin, onset, and progression of the disease.
Collapse
Affiliation(s)
- Beatriz Bravo
- CEU-San Pablo University School of Medicine, IMMA, Boadilla del Monte, Madrid, Spain
| | | | - Arancha R. Gortazar
- CEU-San Pablo University School of Medicine, IMMA, Boadilla del Monte, Madrid, Spain
| | - Francisco Forriol
- CEU-San Pablo University School of Medicine, IMMA, Boadilla del Monte, Madrid, Spain,Francisco Forriol, CEU-San Pablo University School of Medicine, Campus Montepríncipe, Boadilla del Monte, Madrid 28668, Spain.
| | - Javier Vaquero
- Department of Orthopaedic Surgery, Hospital Universitario Gregorio Marañón, Madrid, Spain
| |
Collapse
|
29
|
Abstract
Cellular heterogeneity is a common feature in breast cancer, yet an understanding of the coexistence and regulation of various tumor cell subpopulations remains a significant challenge in cancer biology. In the current study, we approached tumor cell heterogeneity from the perspective of Wnt pathway biology to address how different modes of Wnt signaling shape the behaviors of diverse cell populations within a heterogeneous tumor landscape. Using a syngeneic TP53-null mouse model of breast cancer, we identified distinctions in the topology of canonical Wnt β-catenin-dependent signaling activity and non-canonical β-catenin-independent Ror2-mediated Wnt signaling across subtypes and within tumor cell subpopulations in vivo. We further discovered an antagonistic role for Ror2 in regulating canonical Wnt/β-catenin activity in vivo, where lentiviral shRNA depletion of Ror2 expression augmented canonical Wnt/β-catenin signaling activity across multiple basal-like models. Depletion of Ror2 expression yielded distinct phenotypic outcomes and divergent alterations in gene expression programs among different tumors, despite all sharing basal-like features. Notably, we uncovered cell state plasticity and adhesion dynamics regulated by Ror2, which influenced Ras Homology Family Member A (RhoA) and Rho-Associated Coiled-Coil Kinase 1 (ROCK1) activity downstream of Dishevelled-2 (Dvl2). Collectively, these studies illustrate the integration and collaboration of Wnt pathways in basal-like breast cancer, where Ror2 provides a spatiotemporal function to regulate the balance of Wnt signaling and cellular heterogeneity during tumor progression.
Collapse
|
30
|
Wnt5a Signaling in Normal and Cancer Stem Cells. Stem Cells Int 2017; 2017:5295286. [PMID: 28491097 PMCID: PMC5405594 DOI: 10.1155/2017/5295286] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 03/07/2017] [Indexed: 01/31/2023] Open
Abstract
Wnt5a is involved in activating several noncanonical Wnt signaling pathways, which can inhibit or activate canonical Wnt/β-catenin signaling pathway in a receptor context-dependent manner. Wnt5a signaling is critical for regulating normal developmental processes, including stem cell self-renewal, proliferation, differentiation, migration, adhesion, and polarity. Moreover, the aberrant activation or inhibition of Wnt5a signaling is emerging as an important event in cancer progression, exerting both oncogenic and tumor suppressive effects. Recent studies show the involvement of Wnt5a signaling in regulating normal and cancer stem cell self-renewal, cancer cell proliferation, migration, and invasion. In this article, we review recent findings regarding the molecular mechanisms and roles of Wnt5a signaling in stem cells in embryogenesis and in the normal or neoplastic breast or ovary, highlighting that Wnt5a may have different effects on target cells depending on the surface receptors expressed by the target cell.
Collapse
|
31
|
Diverse regulation of mammary epithelial growth and branching morphogenesis through noncanonical Wnt signaling. Proc Natl Acad Sci U S A 2017; 114:3121-3126. [PMID: 28270600 DOI: 10.1073/pnas.1701464114] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The mammary gland consists of an adipose tissue that, in a process called branching morphogenesis, is invaded by a ductal epithelial network comprising basal and luminal epithelial cells. Stem and progenitor cells drive mammary growth, and their proliferation is regulated by multiple extracellular cues. One of the key regulatory pathways for these cells is the β-catenin-dependent, canonical wingless-type MMTV integration site family (WNT) signaling pathway; however, the role of noncanonical WNT signaling within the mammary stem/progenitor system remains elusive. Here, we focused on the noncanonical WNT receptors receptor tyrosine kinase-like orphan receptor 2 (ROR2) and receptor-like tyrosine kinase (RYK) and their activation by WNT5A, one of the hallmark noncanonical WNT ligands, during mammary epithelial growth and branching morphogenesis. We found that WNT5A inhibits mammary branching morphogenesis in vitro and in vivo through the receptor tyrosine kinase ROR2. Unexpectedly, WNT5A was able to enhance mammary epithelial growth, which is in contrast to its next closest relative WNT5B, which potently inhibits mammary stem/progenitor proliferation. We found that RYK, but not ROR2, is necessary for WNT5A-mediated promotion of mammary growth. These findings provide important insight into the biology of noncanonical WNT signaling in adult stem/progenitor cell regulation and development. Future research will determine how these interactions go awry in diseases such as breast cancer.
Collapse
|
32
|
Yu L, Di Y, Xin L, Ren Y, Liu X, Sun X, Zhang W, Yao Z, Yang J. SND1 acts as a novel gene transcription activator recognizing the conserved Motif domains of Smad promoters, inducing TGFβ1 response and breast cancer metastasis. Oncogene 2017; 36:3903-3914. [DOI: 10.1038/onc.2017.30] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 12/29/2016] [Accepted: 12/30/2016] [Indexed: 02/06/2023]
|
33
|
Zeng R, Huang J, Zhong MZ, Li L, Yang G, Liu L, Wu Y, Yao X, Shi J, Wu Z. Multiple Roles of WNT5A in Breast Cancer. Med Sci Monit 2016; 22:5058-5067. [PMID: 28005837 PMCID: PMC5201118 DOI: 10.12659/msm.902022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Breast cancer is one of the most common malignant tumors of women. Modern combinatorial therapeutic regimens can reduce patient tumor burdens to undetectable levels, yet in many cases these tumors will relapse. Understanding of breast cancer biology, developing more potent therapeutic approaches, and overcoming resistance are of great importance. WNT5A is a non-canonical signaling member of the WNT family. Its role in breast cancer still remains unclear. Most of the evidence shows that WNT5A is a suppressor in breast cancer and loss of its expression is associated with poor prognosis, while some evidence suggests the tumorigenicity of WNT5A. WNT signaling molecules are potent targets for treatment of cancer. Therefore, understanding the role of WNT5A in breast cancer may provide new ideas and methods for breast cancer treatment. We review the evidence concerning WNT5A and breast cancer involving the signaling pathways and the molecular-targeted therapy of WNT5A. Our results show that the role WNT5A plays depends on the availability of key receptors and intercellular interactions among different cell types.
Collapse
Affiliation(s)
- Ruolan Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China (mainland)
| | - Junhui Huang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China (mainland)
| | - Mei-Zuo Zhong
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China (mainland)
| | - Li Li
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China (mainland)
| | - Guorong Yang
- Department of Oncology, The First People's Hospital of Chenzhou, University of South China, Chenzhou, Hunan, China (mainland)
| | - Li Liu
- 32th Department, Hunan Tumor Hospital, The Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China (mainland)
| | - Yin Wu
- Department of Cardiothoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China (mainland)
| | - Xiaoyi Yao
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China (mainland)
| | - Jing Shi
- Department of Oncology, Xiangya Hospital, Central South University,, Changsha, Hunan, China (mainland)
| | - Zhifu Wu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China (mainland)
| |
Collapse
|
34
|
Obesity-associated NLRC4 inflammasome activation drives breast cancer progression. Nat Commun 2016; 7:13007. [PMID: 27708283 PMCID: PMC5059727 DOI: 10.1038/ncomms13007] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 08/23/2016] [Indexed: 02/06/2023] Open
Abstract
Obesity is associated with an increased risk of developing breast cancer and is also associated with worse clinical prognosis. The mechanistic link between obesity and breast cancer progression remains unclear, and there has been no development of specific treatments to improve the outcome of obese cancer patients. Here we show that obesity-associated NLRC4 inflammasome activation/ interleukin (IL)-1 signalling promotes breast cancer progression. The tumour microenvironment in the context of obesity induces an increase in tumour-infiltrating myeloid cells with an activated NLRC4 inflammasome that in turn activates IL-1β, which drives disease progression through adipocyte-mediated vascular endothelial growth factor A (VEGFA) expression and angiogenesis. Further studies show that treatment of mice with metformin inhibits obesity-associated tumour progression associated with a marked decrease in angiogenesis. This report provides a causal mechanism by which obesity promotes breast cancer progression and lays out a foundation to block NLRC4 inflammasome activation or IL-1β signalling transduction that may be useful for the treatment of obese cancer patients.
Collapse
|
35
|
Zhang J, Shao Y, He D, Zhang L, Xu G, Shen J. Evidence that bone marrow-derived mesenchymal stem cells reduce epithelial permeability following phosgene-induced acute lung injury via activation of wnt3a protein-induced canonical wnt/β-catenin signaling. Inhal Toxicol 2016; 28:572-579. [PMID: 27644345 DOI: 10.1080/08958378.2016.1228720] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Jing Zhang
- Department of Intensive Care Unit, Center of Emergency & Intensive Care Unit, Jinshan Hospital, Fudan University, Shanghai, China,
- Department of Intensive Care Unit, Medical Research Center of Chemical Injury, Jinshan Hospital, Fudan University, Shanghai, China,
- Department of Intensive Care Unit, Medical Center of Radiation Injury, Jinshan Hospital, Fudan University, Shanghai, China, and
| | - Yiru Shao
- Department of Intensive Care Unit, Center of Emergency & Intensive Care Unit, Jinshan Hospital, Fudan University, Shanghai, China,
- Department of Intensive Care Unit, Medical Research Center of Chemical Injury, Jinshan Hospital, Fudan University, Shanghai, China,
- Department of Intensive Care Unit, Medical Center of Radiation Injury, Jinshan Hospital, Fudan University, Shanghai, China, and
| | - Daikun He
- Department of Intensive Care Unit, Center of Emergency & Intensive Care Unit, Jinshan Hospital, Fudan University, Shanghai, China,
- Department of Intensive Care Unit, Medical Research Center of Chemical Injury, Jinshan Hospital, Fudan University, Shanghai, China,
- Department of Intensive Care Unit, Medical Center of Radiation Injury, Jinshan Hospital, Fudan University, Shanghai, China, and
| | - Lin Zhang
- Department of Intensive Care Unit, Center of Emergency & Intensive Care Unit, Jinshan Hospital, Fudan University, Shanghai, China,
- Department of Intensive Care Unit, Medical Research Center of Chemical Injury, Jinshan Hospital, Fudan University, Shanghai, China,
- Department of Intensive Care Unit, Medical Center of Radiation Injury, Jinshan Hospital, Fudan University, Shanghai, China, and
| | - Guoxiong Xu
- Department of Center Laboratory, Jinshan Hospital, Fudan University, Shanghai, China
| | - Jie Shen
- Department of Intensive Care Unit, Center of Emergency & Intensive Care Unit, Jinshan Hospital, Fudan University, Shanghai, China,
- Department of Intensive Care Unit, Medical Research Center of Chemical Injury, Jinshan Hospital, Fudan University, Shanghai, China,
- Department of Intensive Care Unit, Medical Center of Radiation Injury, Jinshan Hospital, Fudan University, Shanghai, China, and
| |
Collapse
|
36
|
Prasad CP, Chaurasiya SK, Guilmain W, Andersson T. WNT5A signaling impairs breast cancer cell migration and invasion via mechanisms independent of the epithelial-mesenchymal transition. J Exp Clin Cancer Res 2016; 35:144. [PMID: 27623766 PMCID: PMC5022188 DOI: 10.1186/s13046-016-0421-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 09/07/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND WNT5A (-/-) mammary tissue has been shown to exhibit increased ductal elongation, suggesting elevated mammary cell migration. Increased epithelial cell migration/invasion has often but not always been linked to the epithelial-mesenchymal transition (EMT). In the current study, we investigated the loss of WNT5A in HB2 human mammary epithelial cells and hypothesized that this loss increased their invasion via the EMT. Based on these results, we postulated that suppression of breast cancer cell migration and invasion by WNT5A is due to EMT reversal. METHODS WNT5A was transiently knocked down using specific siRNAs, whereas WNT5A signaling was induced in MDA-MB468 and MDA-MB231 breast cancer cells by stably transfecting cells with WNT5A or treating them with recombinant WNT5A (rWNT5A). Changes in EMT markers, CD44, pAKT and AKT expression were assessed using Western blotting and immunofluorescence. The physiological relevance of altered WNT5A signaling was assessed using migration and invasion assays. RESULTS WNT5A knockdown in HB2 mammary epithelial cells resulted in EMT-like changes and increased invasiveness, and these changes were partially reversed by the addition of rWNT5A. These data suggest that WNT5A might inhibit breast cancer cell migration and invasion by a similar EMT reversal. Contrary to our expectations, we did not observe any changes in the EMT status of breast cancer cells, either after treatment with rWNT5A or stable transfection with a WNT5A plasmid, despite the parallel WNT5A-induced inhibition of migration and invasion. Instead, we found that WNT5A signaling impaired CD44 expression and its downstream signaling via AKT. Moreover, knocking down CD44 in breast cancer cells using siRNA impaired cell migration and invasion. CONCLUSIONS WNT5A bi-directionally regulates EMT in mammary epithelial cells, thereby affecting their migration and invasion. However, the ability of WNT5A to inhibit breast cancer cell migration and invasion is an EMT-independent mechanism that, at least in part, can be explained by decreased CD44 expression.
Collapse
Affiliation(s)
- Chandra Prakash Prasad
- Cell and Experimental Pathology, Department of Translational Medicine, Lund University, Clinical Research Centre, Skåne University Hospital, SE-20502, Malmö, Sweden.
| | - Shivendra Kumar Chaurasiya
- Cell and Experimental Pathology, Department of Translational Medicine, Lund University, Clinical Research Centre, Skåne University Hospital, SE-20502, Malmö, Sweden.,Present Address: Department of Applied Microbiology, School of Biological Sciences, Dr HS Gour Central University, Sagar, Madhya Pradesh, India
| | - William Guilmain
- Cell and Experimental Pathology, Department of Translational Medicine, Lund University, Clinical Research Centre, Skåne University Hospital, SE-20502, Malmö, Sweden
| | - Tommy Andersson
- Cell and Experimental Pathology, Department of Translational Medicine, Lund University, Clinical Research Centre, Skåne University Hospital, SE-20502, Malmö, Sweden
| |
Collapse
|
37
|
Abstract
Tissue development and homeostasis are governed by the actions of stem cells. Multipotent cells are capable of self-renewal during the course of one's lifetime. The accurate and appropriate regulation of stem cell functions is absolutely critical for normal biological activity. Several key developmental or signaling pathways have been shown to play essential roles in this regulatory capacity. Specifically, the Janus-activated kinase/signal transducer and activator of transcription, Hedgehog, Wnt, Notch, phosphatidylinositol 3-kinase/phosphatase and tensin homolog, and nuclear factor-κB signaling pathways have all been shown experimentally to mediate various stem cell properties, such as self-renewal, cell fate decisions, survival, proliferation, and differentiation. Unsurprisingly, many of these crucial signaling pathways are dysregulated in cancer. Growing evidence suggests that overactive or abnormal signaling within and among these pathways may contribute to the survival of cancer stem cells (CSCs). CSCs are a relatively rare population of cancer cells capable of self-renewal, differentiation, and generation of serially transplantable heterogeneous tumors of several types of cancer.
Collapse
Affiliation(s)
- William H. Matsui
- The Matsui Laboratory, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD
- Correspondence: William H. Matsui, The Johns Hopkins University School of Medicine, Baltimore, MD 21287 (e-mail: )
| |
Collapse
|
38
|
Wnt5a Signaling in Cancer. Cancers (Basel) 2016; 8:cancers8090079. [PMID: 27571105 PMCID: PMC5040981 DOI: 10.3390/cancers8090079] [Citation(s) in RCA: 173] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 08/09/2016] [Accepted: 08/22/2016] [Indexed: 01/07/2023] Open
Abstract
Wnt5a is involved in activating several non-canonical WNT signaling pathways, through binding to different members of the Frizzled- and Ror-family receptors. Wnt5a signaling is critical for regulating normal developmental processes, including proliferation, differentiation, migration, adhesion and polarity. However, the aberrant activation or inhibition of Wnt5a signaling is emerging as an important event in cancer progression, exerting both oncogenic and tumor suppressive effects. Recent studies show the involvement of Wnt5a in regulating cancer cell invasion, metastasis, metabolism and inflammation. In this article, we review findings regarding the molecular mechanisms and roles of Wnt5a signaling in various cancer types, and highlight Wnt5a in ovarian cancer.
Collapse
|
39
|
Thiele S, Rachner TD, Rauner M, Hofbauer LC. WNT5A and Its Receptors in the Bone-Cancer Dialogue. J Bone Miner Res 2016; 31:1488-96. [PMID: 27355180 DOI: 10.1002/jbmr.2899] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 06/08/2016] [Accepted: 06/24/2016] [Indexed: 12/12/2022]
Abstract
Wnt signaling is critical for tumorigenesis and skeletal remodeling. However, its contribution to the formation of metastatic bone lesions remains poorly defined. One major challenge of unraveling its role in cancer progression is the high complexity of Wnt signaling, which includes numerous ligands, receptors, and inhibitors, with intricate biological effects and specific signaling pathways depending on the cellular context. In this perspective, we summarize the role of the noncanonical Wnt ligand WNT5A in the development and metastatic process of osteotropic cancer entities. We focus on its tumor-suppressive function in breast cancer, tumor promoting effects in melanoma, and ambiguous role in prostate cancer, and discuss potential challenges and opportunities that may be associated with targeting Wnt signaling for cancer therapy and treatment of bone metastases. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Stefanie Thiele
- Division of Endocrinology and Metabolic Bone Diseases, Department of Medicine III, Technische Universität (TU) Dresden Medical Center, Dresden, Germany
| | - Tilman D Rachner
- Division of Endocrinology and Metabolic Bone Diseases, Department of Medicine III, Technische Universität (TU) Dresden Medical Center, Dresden, Germany
| | - Martina Rauner
- Division of Endocrinology and Metabolic Bone Diseases, Department of Medicine III, Technische Universität (TU) Dresden Medical Center, Dresden, Germany
| | - Lorenz C Hofbauer
- Division of Endocrinology and Metabolic Bone Diseases, Department of Medicine III, Technische Universität (TU) Dresden Medical Center, Dresden, Germany.,German Cancer Consortium (DKTK), partner site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Center for Healthy Aging, Technische Universität (TU) Dresden Medical Center, Dresden, Germany
| |
Collapse
|
40
|
Chen Y, Zhang Y, Deng Q, Shan N, Xin L, Zhang H, Baker PN, Tong C, Qi H. Response to comments regarding article, "Wnt5a inhibited human trophoblast cell line HTR8/SVneo invasion: implications for early placentation and preeclampsia". J Matern Fetal Neonatal Med 2016; 30:1247-1248. [PMID: 27396722 DOI: 10.1080/14767058.2016.1209801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Ying Chen
- a Department of Obstetrics and Gynecology , The First Affiliated Hospital of Chongqing Medical University , Chongqing , China.,b CanadaChinaNew Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University , Chongqing , China
| | - Yi Zhang
- c Key Laboratory of Birth Defects and Reproductive Health of National Health and Family Planning Commission, Chongqing Population and family planning Science and Technology Research Institute , Chongqing , China , and
| | - Qinyin Deng
- a Department of Obstetrics and Gynecology , The First Affiliated Hospital of Chongqing Medical University , Chongqing , China.,b CanadaChinaNew Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University , Chongqing , China
| | - Nan Shan
- a Department of Obstetrics and Gynecology , The First Affiliated Hospital of Chongqing Medical University , Chongqing , China.,b CanadaChinaNew Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University , Chongqing , China
| | - Luo Xin
- a Department of Obstetrics and Gynecology , The First Affiliated Hospital of Chongqing Medical University , Chongqing , China.,b CanadaChinaNew Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University , Chongqing , China
| | - Hua Zhang
- a Department of Obstetrics and Gynecology , The First Affiliated Hospital of Chongqing Medical University , Chongqing , China.,b CanadaChinaNew Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University , Chongqing , China
| | - Philip N Baker
- a Department of Obstetrics and Gynecology , The First Affiliated Hospital of Chongqing Medical University , Chongqing , China.,b CanadaChinaNew Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University , Chongqing , China.,d Liggins Institute, University of Auckland , Auckland , New Zealand
| | - Chao Tong
- a Department of Obstetrics and Gynecology , The First Affiliated Hospital of Chongqing Medical University , Chongqing , China.,b CanadaChinaNew Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University , Chongqing , China
| | - Hongbo Qi
- a Department of Obstetrics and Gynecology , The First Affiliated Hospital of Chongqing Medical University , Chongqing , China.,b CanadaChinaNew Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University , Chongqing , China
| |
Collapse
|
41
|
Kusner D, Borcherding N, Zhang W. Paracrine WNT5A signaling in healthy and neoplastic mammary tissue. Mol Cell Oncol 2016; 3:e1040145. [PMID: 27308558 DOI: 10.1080/23723556.2015.1040145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 04/07/2015] [Accepted: 04/08/2015] [Indexed: 10/23/2022]
Abstract
Paracrine signaling between mammary epithelial cells has long been appreciated. Recently, we found that Wnt5a, a novel noncanonical Wnt ligand of luminal origin, counteracts canonical Wnt signaling in basal mammary epithelial cells through a paracrine pathway, inhibits the expansion of Erbb2-induced tumor-initiating cells, and suppresses tumor incidence and metastasis.
Collapse
Affiliation(s)
- David Kusner
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, USA; Holden Comprehensive Cancer Center, Carver College of Medicine, University of Iowa, Iowa City, USA
| | - Nicholas Borcherding
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, USA; Medical Science Training Program, Carver College of Medicine, University of Iowa, Iowa City, USA; Molecular and Cellular Biology Program, Carver College of Medicine, University of Iowa, Iowa City, USA
| | - Weizhou Zhang
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, USA; Holden Comprehensive Cancer Center, Carver College of Medicine, University of Iowa, Iowa City, USA; Medical Science Training Program, Carver College of Medicine, University of Iowa, Iowa City, USA; Molecular and Cellular Biology Program, Carver College of Medicine, University of Iowa, Iowa City, USA; Immunology Program, Carver College of Medicine, University of Iowa, Iowa City, USA
| |
Collapse
|
42
|
Perkins TN, Dentener MA, Stassen FR, Rohde GG, Mossman BT, Wouters EF, Reynaert NL. Alteration of canonical and non-canonical WNT-signaling by crystalline silica in human lung epithelial cells. Toxicol Appl Pharmacol 2016; 301:61-70. [DOI: 10.1016/j.taap.2016.04.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 04/05/2016] [Accepted: 04/06/2016] [Indexed: 12/31/2022]
|
43
|
Yuan X, Dong B, Xu Y, Dong L, Huang J, Zhang J, Chen Y, Xue W, Huang Y. TIKI2 is upregulated and plays an oncogenic role in renal cell carcinoma. Oncotarget 2016; 7:17212-9. [PMID: 26942462 PMCID: PMC4941381 DOI: 10.18632/oncotarget.7873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 02/11/2016] [Indexed: 11/25/2022] Open
Abstract
TIKI2 is a negative regulator of the Wnt family. Although many Wnt antagonists play important roles in renal cell carcinoma (RCC), the molecular function of TIKI2 in human RCC has not been fully elucidated. Here, we analyzed TIKI2 mRNA level in RCC specimens, the corresponding non-tumor tissues, RCC cell lines, and human proximal tubule epithelial cell line HK-2 using qPCR. We demonstrated that TIKI2 was highly expressed in RCC tissue (P < 0.05) and most RCC cell lines. In vitro, TIKI2 knockdown significantly inhibited proliferation, invasion, and clone formation ability of 769-P cells compared with controls, while ectopic TIKI2 expression enhanced A498 cell proliferation, invasion, and clone formation ability. In vivo, the average tumor volume was significantly increased in mice injected with A498-Tiki2 cells (P < 0.05). In the 769-P cell TIKI2 knockdown group, the average tumor volume was not significantly different compared to that of the control group (P = 0.08). Moreover, Wnt/β-catenin signaling was not affected by TIKI2 knockdown or overexpression. Results of the present study indicate that TIKI2 is upregulated in RCC tissues and plays an oncogenic role in RCC.
Collapse
Affiliation(s)
- Xiaodong Yuan
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Baijun Dong
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yunze Xu
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Liang Dong
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jiwei Huang
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jin Zhang
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yonghui Chen
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Wei Xue
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yiran Huang
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
44
|
Lin CY, Barry-Holson KQ, Allison KH. Breast cancer stem cells: are we ready to go from bench to bedside? Histopathology 2015; 68:119-37. [DOI: 10.1111/his.12868] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Chieh-Yu Lin
- Department of Pathology; Stanford University; Stanford CA USA
| | | | | |
Collapse
|
45
|
Kim Y, Hong M, Do IG, Ha SY, Lee D, Suh YL. Wnt5a, Ryk and Ror2 expression in glioblastoma subgroups. Pathol Res Pract 2015; 211:963-72. [PMID: 26596412 DOI: 10.1016/j.prp.2015.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 10/01/2015] [Accepted: 10/01/2015] [Indexed: 10/22/2022]
Abstract
BACKGROUND Wnt5a, a non-canonical Wnt ligand, has been shown to play tumor-promoting or tumor-suppressive roles in different neoplasms. Increased Wnt5a expression and Wnt5a-dependent invasive activity that is mediated by one of its receptors, Ryk, have been reported in glioblastomas. METHODS We investigated the protein expression of Wnt5a, its receptors Ryk and Ror2, and the canonical Wnt pathway marker β-catenin in 186 cases of glioblastoma and its variants. Associations with clinicopathological and molecular variables and prognosis were analyzed. RESULTS All glioblastoma cases expressed Wnt5a, Ryk and Ror2 with a different grade. The expression of both Ryk and Ror2 correlated with that of Wnt5a in glioblastomas. The expression of β-catenin did not correlate with any of Wnt5a, Ryk or Ror2. Wnt5a expression was significantly different among subgroups of the glioblastoma. However, none of Wnt5a, Ryk or Ror2 had a prognostic impact on glioblastoma. For β-catenin, a shorter progression-free survival was noted in the glioblastoma with oligodendroglioma component (GBMO) subgroup. CONCLUSIONS Our results corroborated previous findings of Ryk-mediated Wnt5a effect, and suggested a role for Ror2 in the Wnt5a machinery in glioblastoma.
Collapse
Affiliation(s)
- Yuil Kim
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Mineui Hong
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - In-Gu Do
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Sang Yun Ha
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Dakeun Lee
- Department of Pathology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Yeon-Lim Suh
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
46
|
Zhang X, Zhao L, Li X, Wang X, Li L, Fu X, Sun Z, Li Z, Nan F, Chang Y, Zhang M. ATP-binding cassette sub-family C member 4 (ABCC4) is overexpressed in human NK/T-cell lymphoma and regulates chemotherapy sensitivity: Potential as a functional therapeutic target. Leuk Res 2015; 39:1448-54. [PMID: 26499190 DOI: 10.1016/j.leukres.2015.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 08/11/2015] [Accepted: 10/04/2015] [Indexed: 02/07/2023]
Abstract
Nasal-type natural killer/T-cell (NK/T-cell) lymphomas are subtypes of non-Hodgkin's lymphoma (NHL), which are typically more clinically aggressive. There is, however relatively little understanding of nasal-type NK/T-cell lymphoma molecular pathogenesis. Thus, in this study we applied RNA sequencing to systematically screen for altered gene expression in human NK/T-cell lymphoma cell lines YTS and SNK-6 versus normal NK cells. We found that ATP-binding cassette sub-family C Member 4 (ABCC4) levels were significantly upregulated both in human NK/T-cell lymphoma YTS and SNK-6 cells, as compared with normal NK cells. These expression levels were further confirmed by real-time PCR. Protein levels of ABCC4 were also significantly higher in YTS and SNK-6 cells as compared with normal NK cells. Clinically relevant, ABCC4 expression levels were significantly higher in human NK/T-cell lymphoma tissues as compared with control nasal mucosa tissues, confirmed by immunohistochemical staining. In addition, we explored the biological function of such ABCC4 upregulation. Overexpression of ABCC4 by lentivirus transfection induced chemotherapy resistance to epirubicin (EPI) and cisplatin (DDP) in YTS cells. In contrast, knockdown of ABCC4 expression by shRNA contributed to chemotherapy sensitivity by both EPI and DDP. Furthermore, overexpression of ABCC4 inhibited, while downregulation of ABCC4 increased, YTS cell apoptosis following treatment by EPI or DDP. Therefore, the present study identified ABCC4 to be overexpressed in human NK/T-cell lymphoma cells, to regulate chemotherapy sensitivity to EPI and DDP, and possibly to be a functional therapeutic target. These findings may provide a basic rationale for new approaches in the effort to develop anti-tumor therapeutics for NK/T-cell lymphoma.
Collapse
Affiliation(s)
- Xudong Zhang
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, No.1 Jian She Road, Zhengzhou, Henan, China
| | - Lu Zhao
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, No.1 Jian She Road, Zhengzhou, Henan, China
| | - Xin Li
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, No.1 Jian She Road, Zhengzhou, Henan, China
| | - Xinhua Wang
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, No.1 Jian She Road, Zhengzhou, Henan, China
| | - Ling Li
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, No.1 Jian She Road, Zhengzhou, Henan, China
| | - Xiaorui Fu
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, No.1 Jian She Road, Zhengzhou, Henan, China
| | - Zhenchang Sun
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, No.1 Jian She Road, Zhengzhou, Henan, China
| | - Zhaoming Li
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, No.1 Jian She Road, Zhengzhou, Henan, China
| | - Feifei Nan
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, No.1 Jian She Road, Zhengzhou, Henan, China
| | - Yu Chang
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, No.1 Jian She Road, Zhengzhou, Henan, China
| | - Mingzhi Zhang
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, No.1 Jian She Road, Zhengzhou, Henan, China.
| |
Collapse
|
47
|
Abstract
Extensive molecular characterization of tumors has revealed that the activity of multiple signaling pathways is often simultaneously dampened or enhanced in cancer cells. Aberrant WNT signaling and tyrosine kinase signaling are two pathways that are frequently up- or downregulated in cancer. Although signaling pathways regulated by WNTs, tyrosine kinases, and other factors are often conceptualized as independent entities, the biological reality is likely much more complex. Understanding the mechanisms of crosstalk between multiple signal transduction networks is a key challenge for cancer researchers. The overall goals of this review are to describe mechanisms of crosstalk between WNT and tyrosine kinase pathways in cancer and to discuss how understanding intersections between WNT and tyrosine kinase signaling networks might be exploited to improve current therapies.
Collapse
Affiliation(s)
- Jaimie N Anastas
- Harvard Medical School Department of Cell Biology, Boston, MA; Boston Children's Hospital Division of Newborn Medicine, Boston, MA.
| |
Collapse
|
48
|
Wang CY, Filippakopoulos P. Beating the odds: BETs in disease. Trends Biochem Sci 2015; 40:468-79. [PMID: 26145250 DOI: 10.1016/j.tibs.2015.06.002] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 06/01/2015] [Accepted: 06/04/2015] [Indexed: 01/16/2023]
Abstract
Bromodomains (BRDs) are evolutionarily conserved protein interaction modules that specifically recognise acetyl-lysine on histones and other proteins, facilitating roles in regulating gene transcription. BRD-containing proteins bound to chromatin loci such as enhancers are often deregulated in disease leading to aberrant expression of proinflammatory cytokines and growth-promoting genes. Recent developments targeting the bromo and extraterminal (BET) subset of BRD proteins demonstrated remarkable efficacy in murine models providing a compelling rationale for drug development and translation to the clinic. Here we summarise recent advances in our understanding of the roles of BETs in regulating gene transcription in normal and diseased tissue as well as the current status of their clinical translation.
Collapse
Affiliation(s)
- Chen-Yi Wang
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Panagis Filippakopoulos
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, UK; Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK.
| |
Collapse
|
49
|
Borcherding N, Bormann N, Kusner D, Kolb R, Zhang W. Transcriptome analysis of basal and luminal tumor-initiating cells in ErbB2-driven breast cancer. GENOMICS DATA 2015; 4:119-122. [PMID: 26167451 PMCID: PMC4493742 DOI: 10.1016/j.gdata.2015.04.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Breast cancer is the leading cause of cancer-related mortality for females worldwide [1]. Improving early screening strategies and understanding the events that lead to tumor initiation have led to demonstrable improvements in clinical outcome. Our previous work revealed a variance in the tumorigenic capacity between different mammary epithelial cell populations in an MMTV-ErbB2 mouse model. In order to greater understand how different mammary epithelial cells influence the tumorigenic capacity in ErbB2-induced breast cancer, we transplanted different cell populations from pre-neoplastic MMTV-ErbB2 female mice into recipient mice for tumorigenic study. We found that different mammary epithelial cells bear different tumorigenic potentials even when induced by the same ErbB2 proto-oncogene. To understand the difference in tumors formed from different epithelial cells, we performed gene expression profiling using these tumors (GSE64487). Several genes were further validated using real-time reverse transcription polymerase chain reaction (RT-PCR). Here we provide further details on the experimental methods and microarray analysis. This data provides a resource to further understanding how different mammary cell populations can initiate ErbB2-driven tumors and the role of these cell populations as putative tumor-initiating cells (TICs).
Collapse
Affiliation(s)
- Nicholas Borcherding
- Department of Pathology, University of Iowa, Iowa City, IA 52242-1109 ; Medical Science Training Program, University of Iowa, Iowa City, IA 52242-1109 ; Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242-1109 ; Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109
| | - Nicholas Bormann
- Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109
| | - David Kusner
- Department of Pathology, University of Iowa, Iowa City, IA 52242-1109 ; Molecular and Cellular Biology Program, University of Iowa, Iowa City, IA 52242-1109
| | - Ryan Kolb
- Department of Pathology, University of Iowa, Iowa City, IA 52242-1109 ; Immunology Program, University of Iowa, Iowa City, IA 52242-1109
| | - Weizhou Zhang
- Department of Pathology, University of Iowa, Iowa City, IA 52242-1109 ; Medical Science Training Program, University of Iowa, Iowa City, IA 52242-1109 ; Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242-1109 ; Molecular and Cellular Biology Program, University of Iowa, Iowa City, IA 52242-1109 ; Immunology Program, University of Iowa, Iowa City, IA 52242-1109 ; Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109
| |
Collapse
|