1
|
Liu X, Wan L, Zhao R, Chen S, Peng W, Yang F, Zhang H. Mismatch Repair Status and Clinico-radiological Feature-Based Model for Pre-treatment Evaluation of Perineural Invasion and Prognosis in Stage I-III Rectal Cancer. Acad Radiol 2025:S1076-6332(25)00299-5. [PMID: 40318973 DOI: 10.1016/j.acra.2025.03.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/25/2025] [Accepted: 03/26/2025] [Indexed: 05/07/2025]
Abstract
RATIONALE AND OBJECTIVES To develop and validate a predictive model for the pre-treatment evaluation of perineural invasion (PNI) status and to examine its prognostic stratification effectiveness in patients with stage I-III rectal cancer (RC) based on mismatch repair (MMR) status, clinical data, and magnetic resonance imaging (MRI) evaluated features. MATERIALS AND METHODS This retrospective study included 815 patients with stage I-III RC who underwent MRI scans from January 2016 to November 2023 and were randomly assigned to the training and validation cohorts. MMR status, clinical data, and MRI-evaluated features associated with PNI status were identified as independent predictors for developing a predictive model by univariable and multivariable logistic regression analyses in the training cohort. The receiver operating characteristic curves and the area under the curves (AUCs) were utilized to evaluate the diagnostic performance of the prediction model in both the training and validation cohorts. The Kaplan-Meier survival curves and Cox proportional hazards regression analysis were utilized to evaluate the prognostic stratification value of the model in both the training and validation cohorts. RESULTS The predictive model developed with independent predictors, including deficient MMR (odds ratio [OR]=0.434, P=0.021), male gender (OR=1.578, P=0.013), MRI-evaluated tumor morphology (partly annular, OR=3.257, P<0.001; annular, OR=5.184, P<0.001), tumor stage (T3, OR=1.953, P=0.004; T4, OR=2.627, P=0.013), extramural vascular invasion (OR=1.736, P=0.041), tumor deposit (OR=3.902, P<0.001) and mesorectal fascia involvement (OR=2.679, P=0.023), achieved AUCs of 0.748 (95% confidence interval [CI]: 0.711-0.785, P<0.001) and 0.719 (95% CI: 0.640-0.798, P<0.001) in the training and validation cohorts, respectively. The Kaplan-Meier survival curves show effectively prognostic stratification for disease-free survival (DFS), distant metastasis-free survival (DMFS), and recurrence-free survival (RFS) between predicted PNI-positive and PNI-negative patients (both P<0.05). Cox regression analysis indicated that predicted PNI-positive status was a significant risk factor associated with inferior DFS and DMFS in both training and validation cohorts (both P<0.05). The predicted PNI-positive status was a significant risk factor associated with inferior RFS in the training cohort (P=0.002); however, no significant association was observed in the validation cohort (P=0.104). CONCLUSION The developed prediction model for evaluating the PNI status of RC prior to treatment showing acceptable performance and helping with prognostic stratification, which may assist in personalized treatment decisions.
Collapse
Affiliation(s)
- Xiangchun Liu
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, #17 Panjiayuan Nanli, Chaoyang District, Beijing 100021, China
| | - Lijuan Wan
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, #17 Panjiayuan Nanli, Chaoyang District, Beijing 100021, China
| | - Rui Zhao
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, #17 Panjiayuan Nanli, Chaoyang District, Beijing 100021, China
| | - Shuang Chen
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, #17 Panjiayuan Nanli, Chaoyang District, Beijing 100021, China
| | - Wenjing Peng
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, #17 Panjiayuan Nanli, Chaoyang District, Beijing 100021, China
| | - Fan Yang
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, #17 Panjiayuan Nanli, Chaoyang District, Beijing 100021, China
| | - Hongmei Zhang
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, #17 Panjiayuan Nanli, Chaoyang District, Beijing 100021, China.
| |
Collapse
|
2
|
Zeng J, Zhang J, Wang J, Xu L, Wang C, Yin R. Immunotherapy in gestational trophoblastic neoplasia: advances and future directions. Front Immunol 2025; 16:1544585. [PMID: 40292281 PMCID: PMC12021912 DOI: 10.3389/fimmu.2025.1544585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 03/26/2025] [Indexed: 04/30/2025] Open
Abstract
Gestational trophoblastic neoplasia (GTN) is a rare but aggressive malignancy that follows normal or aberrant pregnancies. Until the advent of immunotherapy in 2017, surgery and chemotherapy were the standard treatment modalities, with chemotherapy remaining the cornerstone. However, chemoresistance and high-risk disease present significant challenges in managing GTN. Recent advancements in immunotherapy, particularly immune checkpoint inhibitors (ICIs), have offered new hope for managing these difficult cases. This review provides the comprehensive overview of the mechanisms underlying ICIs in GTN, and explores the potential synergy of combining ICIs with targeted therapies, such as vascular endothelial growth factor and epidermal growth factor receptor inhibitors. We also provide an overview of the latest evidence on the use of ICIs in treating GTN, focusing on their effectiveness in both low- and high-risk cases, as well as in chemorefractory settings. In addition, we discuss ongoing clinical trials, immune-related adverse events associated with ICIs, biomarker-driven approaches, immunosuppressive tumor microenvironments, and the challenges posed with ICIs resistance. The review also explores future directions, including the integration of ICIs into standard regimens, the potential for personalized treatment based on tumor biology, and the importance of fertility preservation in young patients with GTN. In conclusion, while challenges remain, immunotherapy represents a promising frontier in GTN treatment, with the potential to improve outcomes and provide a more personalized approach to care.
Collapse
Affiliation(s)
- Jing Zeng
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Chengdu, Sichuan, China
| | - Jing Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Chengdu, Sichuan, China
- Joint Laboratory of Reproductive Medicine (SCU-CUHK), West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jianzhang Wang
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Lian Xu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Chengdu, Sichuan, China
- Department of Pathology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Cheng Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Chengdu, Sichuan, China
- Department of Pathology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Rutie Yin
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Chengdu, Sichuan, China
| |
Collapse
|
3
|
George MM, Brennick CA, Hagymasi AT, Shcheglova TV, Al Seesi S, Rosales TJ, Baker BM, Mandoiu II, Srivastava PK. A frameshift-generated cancer neoepitope that controls tumor burden in prophylaxis as well as therapy. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025:vkaf016. [PMID: 40209093 DOI: 10.1093/jimmun/vkaf016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/10/2025] [Indexed: 04/12/2025]
Abstract
Insertion or deletion of one or two base pairs within a coding region causes a frameshift, which has the potential to generate neoepitopes (InDel-generated neoepitopes) that lack a self-counterpart and are entirely novel. Despite the obvious appeal of InDel-generated neoepitopes, and the demonstration of such candidate neoepitopes that can elicit a CD8 T-cell response, no InDel-generated neoepitopes that actually control tumors in vivo have been reported thus far. Here, in a mouse colon carcinoma line, we identify 11 InDels, only one of which generates a neoepitope that elicits tumor control in vivo in models of prophylaxis as well as therapy. Although this neoepitope has no self-counterpart, it has a low affinity (IC50 33,937.60 nM) for its MHC I allele. Despite its low affinity for MHC I, this neoepitope elicits antitumor activity in vivo through CD8 T cells. Furthermore, CD8 T cells elicited by this InDel-generated neoepitope, like the neoepitopes created by point mutations, show notably less exhaustion than classical immunogenic epitopes. Ironically, this InDel-generated neoepitope follows the same rules as noted for most of the tumor control-mediating neoepitopes generated by point mutations that have a poor affinity for MHC I alleles.
Collapse
Affiliation(s)
- Mariam M George
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT, United States
- Carole and Ray Neag Comprehensive Cancer Center, University of Connecticut School of Medicine, Farmington, CT, United States
| | - Cory A Brennick
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT, United States
- Carole and Ray Neag Comprehensive Cancer Center, University of Connecticut School of Medicine, Farmington, CT, United States
| | - Adam T Hagymasi
- Carole and Ray Neag Comprehensive Cancer Center, University of Connecticut School of Medicine, Farmington, CT, United States
| | - Tatiana V Shcheglova
- Carole and Ray Neag Comprehensive Cancer Center, University of Connecticut School of Medicine, Farmington, CT, United States
| | - Sahar Al Seesi
- Computer Science Department, Southern Connecticut State University, New Haven, CT, United States
| | - Tatiana J Rosales
- Harper Cancer Research Institute and the Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States
| | - Brian M Baker
- Harper Cancer Research Institute and the Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States
| | - Ion I Mandoiu
- Department of Computer Science and Engineering, University of Connecticut, Storrs, CT, United States
| | - Pramod K Srivastava
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT, United States
- Carole and Ray Neag Comprehensive Cancer Center, University of Connecticut School of Medicine, Farmington, CT, United States
| |
Collapse
|
4
|
Xu G, Feng F, Cui Y, Fu Y, Xiao Y, Chen W, Li M. Prediction of postoperative disease-free survival in colorectal cancer patients using CT radiomics nomogram: a multicenter study. Acta Radiol 2025; 66:269-280. [PMID: 39894908 DOI: 10.1177/02841851241302521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
BackgroundRadiomics analysis is widely used to assess tumor prognosis.PurposeTo explore the value of computed tomography (CT) radiomics nomogram in predicting disease-free survival (DFS) of patients with colorectal cancer (CRC) after operation.Material and MethodsA total of 522 CRC patients from three centers were retrospectively included. Radiomics features were extracted from CT images, and the least absolute shrinkage and selection operator Cox regression algorithm was employed to select radiomics features. Clinical risk factors associated with DFS were selected through univariate and multivariate Cox regression analysis to build the clinical model. A predictive nomogram was developed by amalgamating pertinent clinical risk factors and radiomics features. The predictive performance of the nomogram was evaluated using the C-index, calibration curve, and decision curve. DFS probabilities were estimated using the Kaplan-Meier method.ResultsIntegrating the retained eight radiomics features and three clinical risk factors (pathological N stage, microsatellite instability, perineural invasion), a nomogram was constructed. The C-index for the nomogram were 0.819 (95% CI=0.794-0.844), 0.782 (95% CI=0.740-0.824), 0.786 (95% CI=0.753-0.819), and 0.803 (95% CI=0.765-0.841) in the training set, internal validation set, external validation set 1, and external validation set 2, respectively. The calibration curves demonstrated a favorable congruence between the predicted and observed values as depicted by the nomogram. The decision curve analysis underscored that the nomogram yielded a heightened clinical net benefit.ConclusionThe constructed radiomics nomogram, amalgamating the radiomics features and clinical risk factors, exhibited commendable performance in the individualized prediction of postoperative DFS in CRC patients.
Collapse
Affiliation(s)
- Guodong Xu
- Department of Radiology, The Yancheng Clinical College of Xuzhou Medical University, The First People's Hospital of Yancheng, Yancheng, PR China
| | - Feng Feng
- Department of Radiology, Affiliated Tumor Hospital of Nantong University, Nantong, PR China
| | - Yanfen Cui
- Department of Radiology, Shanxi Cancer Hospital, Shanxi, PR China
| | - Yigang Fu
- Department of Radiology, The Yancheng Clinical College of Xuzhou Medical University, The First People's Hospital of Yancheng, Yancheng, PR China
| | - Yong Xiao
- Department of Radiology, The Yancheng Clinical College of Xuzhou Medical University, The First People's Hospital of Yancheng, Yancheng, PR China
| | - Wang Chen
- Department of Radiology, The Yancheng Clinical College of Xuzhou Medical University, The First People's Hospital of Yancheng, Yancheng, PR China
| | - Manman Li
- Department of Radiology, The Yancheng Clinical College of Xuzhou Medical University, The First People's Hospital of Yancheng, Yancheng, PR China
| |
Collapse
|
5
|
Wu Y, Jiang X, Yu Z, Xing Z, Ma Y, Qing H. Mechanisms of Anti-PD Therapy Resistance in Digestive System Neoplasms. Recent Pat Anticancer Drug Discov 2025; 20:1-25. [PMID: 38305306 PMCID: PMC11865675 DOI: 10.2174/0115748928269276231120103256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/25/2023] [Accepted: 10/03/2023] [Indexed: 02/03/2024]
Abstract
Digestive system neoplasms are highly heterogeneous and exhibit complex resistance mechanisms that render anti-programmed cell death protein (PD) therapies poorly effective. The tumor microenvironment (TME) plays a pivotal role in tumor development, apart from supplying energy for tumor proliferation and impeding the body's anti-tumor immune response, the TME actively facilitates tumor progression and immune escape via diverse pathways, which include the modulation of heritable gene expression alterations and the intricate interplay with the gut microbiota. In this review, we aim to elucidate the mechanisms underlying drug resistance in digestive tumors, focusing on immune-mediated resistance, microbial crosstalk, metabolism, and epigenetics. We will highlight the unique characteristics of each digestive tumor and emphasize the significance of the tumor immune microenvironment (TIME). Furthermore, we will discuss the current therapeutic strategies that hold promise for combination with cancer immune normalization therapies. This review aims to provide a thorough understanding of the resistance mechanisms in digestive tumors and offer insights into potential therapeutic interventions.
Collapse
Affiliation(s)
- Yuxia Wu
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Xiangyan Jiang
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Zeyuan Yu
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Zongrui Xing
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Yong Ma
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Huiguo Qing
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| |
Collapse
|
6
|
Kochavi A, Nagel R, Körner PR, Bleijerveld OB, Lin CP, Huinen Z, Malka Y, Proost N, van de Ven M, Feng X, Navarro JM, Pataskar A, Peeper DS, Champagne J, Agami R. Chemotherapeutic agents and leucine deprivation induce codon-biased aberrant protein production in cancer. Nucleic Acids Res 2024; 52:13964-13979. [PMID: 39588782 DOI: 10.1093/nar/gkae1110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/01/2024] [Accepted: 11/25/2024] [Indexed: 11/27/2024] Open
Abstract
Messenger RNA (mRNA) translation is a tightly controlled process frequently deregulated in cancer. Key to this deregulation are transfer RNAs (tRNAs), whose expression, processing and post-transcriptional modifications are often altered in cancer to support cellular transformation. In conditions of limiting levels of amino acids, this deregulated control of protein synthesis leads to aberrant protein production in the form of ribosomal frameshifting or misincorporation of non-cognate amino acids. Here, we studied leucine, an essential amino acid coded by six different codons. Surprisingly, we found that leucine deprivation leads to ribosomal stalling and aberrant protein production in various cancer cell types, predominantly at one codon, UUA. Similar effects were observed after treatment with chemotherapeutic agents, implying a shared mechanism controlling the downstream effects on mRNA translation. In both conditions, a limitation in the availability of tRNALeu(UAA) for protein production was shown to be the cause for this dominant effect on UUA codons. The induced aberrant proteins can be processed and immune-presented as neoepitopes and can direct T-cell killing. Altogether, we uncovered a novel mode of interplay between DNA damage, regulation of tRNA availability for mRNA translation and aberrant protein production in cancer that could be exploited for anti-cancer therapy.
Collapse
Affiliation(s)
- Adva Kochavi
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, the Netherlands
| | - Remco Nagel
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, the Netherlands
| | - Pierre-Rene Körner
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, the Netherlands
| | - Onno B Bleijerveld
- NKI Proteomics Facility, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | - Chun-Pu Lin
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | - Zowi Huinen
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | - Yuval Malka
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, the Netherlands
| | - Natalie Proost
- Preclinical Intervention Unit and Pharmacology Unit of the Mouse Clinic for Cancer and Ageing (MCCA), The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | - Marieke van de Ven
- Preclinical Intervention Unit and Pharmacology Unit of the Mouse Clinic for Cancer and Ageing (MCCA), The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | - Xiaodong Feng
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, the Netherlands
| | - Jasmine Montenegro Navarro
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, the Netherlands
| | - Abhijeet Pataskar
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, the Netherlands
| | - Daniel S Peeper
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | - Julien Champagne
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, the Netherlands
| | - Reuven Agami
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, the Netherlands
- Erasmus MC, Rotterdam University, Dr. Molewaterplein 40, 3015GD, Rotterdam, the Netherlands
| |
Collapse
|
7
|
Song D, Hou S, Ma N, Yan B, Gao J. Efficacy and safety of PD-1/PD-L1 and CTLA-4 immune checkpoint inhibitors in the treatment of advanced colorectal cancer: a systematic review and meta-analysis. Front Immunol 2024; 15:1485303. [PMID: 39555073 PMCID: PMC11563947 DOI: 10.3389/fimmu.2024.1485303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/15/2024] [Indexed: 11/19/2024] Open
Abstract
Background The efficacy and safety of PD-1/PD-L1 inhibitors combined with CTLA-4 inhibitors in the treatment of advanced colorectal cancer is controversial. This meta-analysis aimed to evaluate the efficacy and safety of PD-1/PD-L1 inhibitors combined with CTLA-4 inhibitors for advanced colorectal cancer. Methods PubMed, Embase, the Cochrane Library, and Web of Science databases were systematically searched for relevant studies. Outcomes including median progression-free survival (mPFS), median overall survival (mOS), overall response rate (ORR), disease control rate (DCR), treatment-related adverse events (TRAEs) and ≥grade 3 TRAEs were extracted for further analysis. The risk of bias was assessed by subgroup analysis. Results 12 articles with 566 patients were identified and subjected to meta-analysis. With regard to survival analysis, the pooled mOS and mPFS were 6.66 months (95%CI 4.85-9.16) and 2.92 months (95%CI 2.23-3.83), respectively. In terms of tumor response, the pooled ORR and DCR were 21% (95%CI 6%-41%) and 49% (95%CI 27%-71%), respectively. The pooled AEs rate and ≥ grade 3 AEs rate were 94% (95%CI 86%-99%) and 44% (95%CI 30%-58%). Conclusion PD-1/PD-L1 inhibitors combined with CTLA-4 inhibitors have shown promising clinical responses in the treatment of colorectal cancer (CRC). Although the incidence of adverse reactions is high, they are generally tolerable. Systematic review registration https://inplasy.com/, identifier INPLASY202480030.
Collapse
Affiliation(s)
- Dandan Song
- Department of Neurology, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shufu Hou
- Department of Gastrointestinal Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ning Ma
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Bing Yan
- Department of Gastrointestinal Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jing Gao
- Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
8
|
Requesens M, Foijer F, Nijman HW, de Bruyn M. Genomic instability as a driver and suppressor of anti-tumor immunity. Front Immunol 2024; 15:1462496. [PMID: 39544936 PMCID: PMC11562473 DOI: 10.3389/fimmu.2024.1462496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/23/2024] [Indexed: 11/17/2024] Open
Abstract
Genomic instability is a driver and accelerator of tumorigenesis and influences disease outcomes across cancer types. Although genomic instability has been associated with immune evasion and worsened disease prognosis, emerging evidence shows that genomic instability instigates pro-inflammatory signaling and enhances the immunogenicity of tumor cells, making them more susceptible to immune recognition. While this paradoxical role of genomic instability in cancer is complex and likely context-dependent, understanding it is essential for improving the success rates of cancer immunotherapy. In this review, we provide an overview of the underlying mechanisms that link genomic instability to pro-inflammatory signaling and increased immune surveillance in the context of cancer, as well as discuss how genomically unstable tumors evade the immune system. A better understanding of the molecular crosstalk between genomic instability, inflammatory signaling, and immune surveillance could guide the exploitation of immunotherapeutic vulnerabilities in cancer.
Collapse
Affiliation(s)
- Marta Requesens
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Floris Foijer
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Hans W. Nijman
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Marco de Bruyn
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
9
|
Yang C, Zhao L, Lin Y, Wang S, Ye Y, Shen Z. Improving the efficiency of immune checkpoint inhibitors for metastatic pMMR/MSS colorectal cancer: Options and strategies. Crit Rev Oncol Hematol 2024; 200:104204. [PMID: 37984588 DOI: 10.1016/j.critrevonc.2023.104204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/24/2023] [Accepted: 11/13/2023] [Indexed: 11/22/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized cancer treatment and been extensively used for patients with metastastic colorectal cancer (mCRC), especially those harboring deficient mismatch repair/ microsatellite instability (dMMR/MSI). However, the majority of mCRC are classified as proficient mismatch repair/microsatellite stability(pMMR/MSS) type characterized by a cold immune microenvironment, rendering them generally unresponsive to ICIs. How to improve the efficacy of ICIs for these patients is an important issue to be solved. On the one hand, it is urgent to discover the predictive biomarkers and clinical characteristics associated with effectiveness and expand the subset of pMMR/MSS mCRC patients who benefit from ICIs. Additionally, combined strategies are being explored to modulate the immune microenvironment of pMMR/MSS CRC and facilitate the conversion of cold tumors into hot tumors. In this review, we have focused on the recent advancements in the predictive biomarkers and combination therapeutic strategies with ICIs for pMMR/MSS mCRC.
Collapse
Affiliation(s)
- Changjiang Yang
- Department of Gastroenterological Surgery, Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing 100044, PR China
| | - Long Zhao
- Department of Gastroenterological Surgery, Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing 100044, PR China
| | - Yilin Lin
- Department of Gastroenterological Surgery, Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing 100044, PR China
| | - Shan Wang
- Department of Gastroenterological Surgery, Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing 100044, PR China
| | - Yingjiang Ye
- Department of Gastroenterological Surgery, Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing 100044, PR China
| | - Zhanlong Shen
- Department of Gastroenterological Surgery, Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing 100044, PR China.
| |
Collapse
|
10
|
Wilbur HC, Le DT, Agarwal P. Immunotherapy of MSI Cancer: Facts and Hopes. Clin Cancer Res 2024; 30:1438-1447. [PMID: 38015720 DOI: 10.1158/1078-0432.ccr-21-1935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/14/2023] [Accepted: 11/06/2023] [Indexed: 11/30/2023]
Abstract
Microsatellite instability (MSI) is a tumor molecular phenotype that evolves from loss of function in the mismatch repair (MMR) proteins through deleterious germline mutations, epigenetic inactivation, or somatic biallelic mutations. This phenotype is characterized by genomic hyper-mutability, increased neoantigen expression, and a favorable, immune-rich tumor microenvironment. These features confer a greater likelihood of response to treatment with the class of agents known as immune checkpoint inhibitors (ICI) and, potentially, other immune-based therapeutics. MSI as a predictive biomarker for response to treatment with ICIs ultimately led to the first tissue-agnostic approval of pembrolizumab for advanced, previously treated MSI or deficient MMR (dMMR) tumors. Nevertheless, response to ICIs in dMMR/MSI tumors is not universal. Identifying predictors of response and elucidating mechanisms of immune escape will be crucial to continued successful treatment of this subset. In this review, we aim to describe the pathogenesis and key immunologic features of dMMR/MSI tumors, provide a brief overview of the currently approved treatments, and discuss promising novel immune-based therapeutics currently under investigation.
Collapse
Affiliation(s)
- H Catherine Wilbur
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| | - Dung T Le
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| | - Parul Agarwal
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
11
|
Ma J, Lin J, Lin X, Ren Y, Liu D, Tang S, Huang L, Xu S, Mao X, Sun P. Assessment of Immune Status in Patients with Mismatch Repair Deficiency Endometrial Cancer. J Inflamm Res 2024; 17:2039-2050. [PMID: 38585471 PMCID: PMC10998506 DOI: 10.2147/jir.s453337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/20/2024] [Indexed: 04/09/2024] Open
Abstract
Objective This study introduced a novel subtype classification method for endometrial cancer (EC) with mismatch repair deficiency (MMRd) by employing immune status and prognosis as the foundational criteria. The goal was to enhance treatment guidance through precise subtype delineation. Methods Study Cohort: This study encompassed a cohort of 119 patients diagnosed with MMRd-EC between 2015 and 2022. Analyses using t-tests and Mann-Whitney U-tests were performed to assess prognostic markers and peripheral blood immune cell profiles in patients with MutS deficiency (MutS-d) versus those with MutL deficiency (MutL-d). Logistic regression analysis was used to identify independent risk factors. Bioinformatics Analysis: An online database was used to assess the prognostic implications, immune cell infiltration, and immune checkpoint involvement associated with the deficiency of MutS versus MutL in EC. Results Patients with MutL-d exhibited heightened risk factors, including elevated cancer grade and increased myometrial invasion, leading to poorer prognosis and shorter overall survival and progression-free survival. Regarding systemic immune status, patients with MutL-d demonstrated decreased peripheral blood lymphocyte percentage, lymphocyte count, and CD8+ T cell percentage. For local immunity, the infiltration of natural killer cells, CD8+ T cells, and cytotoxic T lymphocytes in the tumor tissue was reduced in patients with MutL-d. Additionally, patients with MutL-d exhibited lower expression of immune checkpoint markers. The composition of immune subtypes and survival outcomes also indicate that patients with MutL-d have a poorer immune status and prognosis than the patients with MutS-d. Conclusion Patients with MMRd-EC can be subclassified according to MutS or MutL deficiency. Patients with MutS-d exhibited better immune status, prognosis, and immunotherapy benefits than those with MutL-d. These results can help guide patients to a more precise treatment.
Collapse
Affiliation(s)
- Jincheng Ma
- Laboratory of Gynecologic Oncology, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian Province, People’s Republic of China
- Key Laboratory of Women and Children’s Critical Diseases Research, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian Province, People’s Republic of China
- Fujian Clinical Research Center for Gynecological Oncology, Fujian Maternity and Child Health Hospital (Fujian Obstetrics and Gynecology Hospital), Fuzhou, Fujian Province, People’s Republic of China
| | - Jiansong Lin
- Department of Pathology, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian Province, People’s Republic of China
| | - Xite Lin
- Laboratory of Gynecologic Oncology, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian Province, People’s Republic of China
- Key Laboratory of Women and Children’s Critical Diseases Research, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian Province, People’s Republic of China
- Fujian Clinical Research Center for Gynecological Oncology, Fujian Maternity and Child Health Hospital (Fujian Obstetrics and Gynecology Hospital), Fuzhou, Fujian Province, People’s Republic of China
| | - Yuan Ren
- Laboratory of Gynecologic Oncology, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian Province, People’s Republic of China
- Key Laboratory of Women and Children’s Critical Diseases Research, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian Province, People’s Republic of China
- Fujian Clinical Research Center for Gynecological Oncology, Fujian Maternity and Child Health Hospital (Fujian Obstetrics and Gynecology Hospital), Fuzhou, Fujian Province, People’s Republic of China
| | - Dabin Liu
- Department of Gynecology, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian Province, People’s Republic of China
| | - Shuting Tang
- Laboratory of Gynecologic Oncology, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian Province, People’s Republic of China
- Key Laboratory of Women and Children’s Critical Diseases Research, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian Province, People’s Republic of China
- Fujian Clinical Research Center for Gynecological Oncology, Fujian Maternity and Child Health Hospital (Fujian Obstetrics and Gynecology Hospital), Fuzhou, Fujian Province, People’s Republic of China
| | - Leyi Huang
- Laboratory of Gynecologic Oncology, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian Province, People’s Republic of China
- Key Laboratory of Women and Children’s Critical Diseases Research, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian Province, People’s Republic of China
- Fujian Clinical Research Center for Gynecological Oncology, Fujian Maternity and Child Health Hospital (Fujian Obstetrics and Gynecology Hospital), Fuzhou, Fujian Province, People’s Republic of China
| | - Shuxia Xu
- Department of Pathology, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian Province, People’s Republic of China
| | - Xiaodan Mao
- Laboratory of Gynecologic Oncology, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian Province, People’s Republic of China
- Key Laboratory of Women and Children’s Critical Diseases Research, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian Province, People’s Republic of China
- Fujian Clinical Research Center for Gynecological Oncology, Fujian Maternity and Child Health Hospital (Fujian Obstetrics and Gynecology Hospital), Fuzhou, Fujian Province, People’s Republic of China
| | - Pengming Sun
- Laboratory of Gynecologic Oncology, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian Province, People’s Republic of China
- Key Laboratory of Women and Children’s Critical Diseases Research, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian Province, People’s Republic of China
- Fujian Clinical Research Center for Gynecological Oncology, Fujian Maternity and Child Health Hospital (Fujian Obstetrics and Gynecology Hospital), Fuzhou, Fujian Province, People’s Republic of China
- Department of Gynecology, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian Province, People’s Republic of China
| |
Collapse
|
12
|
Elez E, Kopetz S, Tabernero J, Bekaii-Saab T, Taieb J, Yoshino T, Manji G, Fernandez K, Abbattista A, Zhang X, Morris VK. SEAMARK: phase II study of first-line encorafenib and cetuximab plus pembrolizumab for MSI-H/dMMR BRAFV600E-mutant mCRC. Future Oncol 2024; 20:653-663. [PMID: 37815847 DOI: 10.2217/fon-2022-1249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023] Open
Abstract
Patients with both BRAF V600E mutations and microsatellite instability-high (MSI-H)/mismatch repair-deficient (dMMR) metastatic colorectal cancer (mCRC) have poor prognosis. Currently, there are no specifically targeted first-line treatment options indicated for patients with mCRC whose tumors harbor both molecular aberrations. Pembrolizumab is a checkpoint inhibitor approved for the treatment of MSI-H/dMMR mCRC, and the BRAF inhibitor encorafenib, in combination with cetuximab, is approved for previously treated BRAF V600E-mutant mCRC. Combination of pembrolizumab with encorafenib and cetuximab may synergistically enhance antitumor activity in patients with BRAF V600E-mutant, MSI-H/dMMR mCRC. SEAMARK is a randomized phase II study comparing the efficacy of the combination of pembrolizumab with encorafenib and cetuximab versus pembrolizumab alone in patients with previously untreated BRAF V600E-mutant, MSI-H/dMMR mCRC.
Collapse
Affiliation(s)
- Elena Elez
- Vall d'Hebron Hospital Campus & Vall d'Hebron Institute of Oncology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Scott Kopetz
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Josep Tabernero
- Vall d'Hebron Hospital Campus & Vall d'Hebron Institute of Oncology, Universitat de Vic - Universitat Central de Catalunya, Barcelona, Spain
| | | | - Julien Taieb
- Georges Pompidou European Hospital, Université de Paris, Paris, France
| | | | - Gulam Manji
- Columbia University Irving Medical Center & NewYork-Presbyterian Hospital, New York, NY, USA
| | | | | | | | - Van K Morris
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
13
|
Bu X, Liu S, Zhang Z, Wu J, Pan S, Hu Y. Comprehensive profiling of enhancer RNA in stage II/III colorectal cancer defines two prognostic subtypes with implications for immunotherapy. Clin Transl Oncol 2024; 26:891-904. [PMID: 37697139 DOI: 10.1007/s12094-023-03319-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/29/2023] [Indexed: 09/13/2023]
Abstract
BACKGROUND Recently, enhancer RNAs (eRNAs) have garnered attention as pivotal biomarkers for the onset and progression of cancer. However, the landscape of eRNAs and the implications of eRNA-based molecular subtypes in stage II/III colorectal cancer (CRC) remain largely unexplored. METHODS Comprehensive profiling of eRNAs was conducted on a public stage II/III CRC cohort with total RNA-seq data. We used unsupervised clustering of prognostic eRNAs to establish an eRNA-based subtyping system. Further evaluations included molecular characteristics, immune infiltration, clinical outcomes, and drug responses. Finally, we validated the eRNA-based subtyping system in The Cancer Genome Atlas (TCGA) CRC cohort. RESULTS We identified a total of 6453 expressed eRNAs, among which 237 were prognostic. A global upregulation of eRNAs was observed in microsatellite-stable (MSS) CRCs when compared to microsatellite instability-high (MSI-H) CRCs. Through consensus clustering, two novel molecular subtypes, termed Cluster 1(C1) and Cluster 2(C2), were further identified. C1, associated with the activation of epithelial-mesenchymal transition (EMT), hypoxia, and KRAS signaling pathways, showed poorer prognosis. C2, correlated with the canonical CRC subtype, exhibited superior survival outcomes. In addition, C1 showed enrichment with immune infiltration and more sensitivity to immune checkpoint inhibitors. CONCLUSION Our study unravels the molecular heterogeneity of stage II/III CRC at the eRNA level and highlights the potential applications of the novel eRNA-based subtyping system in predicting prognosis and guiding immunotherapy.
Collapse
Affiliation(s)
- Xiaoyun Bu
- Department of Colorectal Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Yuelu District, Changsha, 410013, Hunan, People's Republic of China
| | - Shuang Liu
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Zhiqing Zhang
- Department of Colorectal Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Yuelu District, Changsha, 410013, Hunan, People's Republic of China
| | - Jie Wu
- Department of Colorectal Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Yuelu District, Changsha, 410013, Hunan, People's Republic of China
| | - Shuguang Pan
- Department of Colorectal Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Yuelu District, Changsha, 410013, Hunan, People's Republic of China
| | - Yingbin Hu
- Department of Colorectal Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Yuelu District, Changsha, 410013, Hunan, People's Republic of China.
| |
Collapse
|
14
|
Pan T, Yang H, Wang WY, Rui YY, Deng ZJ, Chen YC, Liu C, Hu H. Neoadjuvant Immunotherapy With Ipilimumab Plus Nivolumab in Mismatch Repair Deficient/Microsatellite Instability-High Colorectal Cancer: A Preliminary Report of Case Series. Clin Colorectal Cancer 2024; 23:104-110. [PMID: 38336555 DOI: 10.1016/j.clcc.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/09/2024] [Accepted: 01/13/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND Although ipilimumab plus nivolumab have significantly improved the survival of metastatic colorectal cancer (CRC) with mismatch repair deficient (dMMR) /microsatellite instability-high (MSI-H), the data on neoadjuvant setting is limited. PATIENTS AND METHODS We enrolled 11 patients with advanced dMMR/MSI-H CRC. 10 patients were locally advanced and 1 was metastatic. Ten patients were treated with 1 dose of ipilimumab (1 mg/kg) and 2 doses of nivolumab (3 mg/kg), and 1 patient was treated with 1 dose of ipilimumab (1 mg/kg) and 2 doses of nivolumab (3 mg/kg) with 2 cycles. All the patients underwent surgery after immunotherapy. The aim of the study was to evaluate the safety and short-term efficacy of this strategy. RESULTS Pathologic responses were observed in 11/11 (100%) dMMR/MSI-H tumors, with 9/11 (81.8%) achieving complete responses. Among these 9 cases with complete responses, 1 achieved a radiological noncomplete response after treatment with 1 dose of ipilimumab (1 mg/kg) and 2 doses of nivolumab (3 mg/kg), so another cycle of treatment with 1 dose of ipilimumab (1 mg/kg) and 2 doses of nivolumab (3 mg/kg) was administered, followed by surgery. The postoperative pathological evaluation was a complete response. Seven patients (63.6%) developed grade I/II adverse events. No patients developed grade III/IV adverse events or postoperative complications. CONCLUSION Neoadjuvant immunotherapy with ipilimumab plus nivolumab induced tumor regression with a major clinical and pathological response in advanced dMMR/MSI-H CRC. Notably, patients do not achieve a complete response to neoadjuvant immunotherapy, additional neoadjuvant immunotherapy may offer benefits. Further research is needed to assess the long-term efficacy of this strategy.
Collapse
Affiliation(s)
- Tao Pan
- Department of Colorectal Cancer Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Hui Yang
- Department of Colorectal Cancer Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Wu-Yi Wang
- Department of Colorectal Cancer Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Yuan-Yi Rui
- Department of Colorectal Cancer Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Zi-Jian Deng
- Department of Colorectal Cancer Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Yung-Chang Chen
- Department of Medical Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Chao Liu
- Department of Colorectal Cancer Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Hai Hu
- Department of Colorectal Cancer Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
15
|
Flecchia C, Auclin E, Alouani E, Mercier M, Hollebecque A, Turpin A, Mazard T, Pernot S, Dutherage M, Cohen R, Borg C, Hautefeuille V, Sclafani F, Ben-Abdelghani M, Aparicio T, De La Fouchardière C, Herve C, Perkins G, Heinrich K, Kunzmann V, Gallois C, Guimbaud R, Tougeron D, Taieb J. Primary resistance to immunotherapy in patients with a dMMR/MSI metastatic gastrointestinal cancer: who is at risk? An AGEO real-world study. Br J Cancer 2024; 130:442-449. [PMID: 38102227 PMCID: PMC10844357 DOI: 10.1038/s41416-023-02524-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/09/2023] [Accepted: 11/24/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND The outstanding efficacy of immunotherapy in metastatic dMMR/MSI gastro-intestinal (GI) cancers has led to a rapid increase in the number of patients treated. However, 20-30% of patients experience primary resistance to immune checkpoint inhibitors (ICIPR) and need better characterization. METHODS This AGEO real-world study retrospectively analyzed the efficacy and safety of ICIs and identified clinical variables associated with ICIPR in patients with metastatic dMMR/MSI GI cancers treated with immunotherapy between 2015 and 2022. RESULTS 399 patients were included, 284 with colorectal cancer (CRC) and 115 with non-CRC, mostly treated by an anti-PD(L)1 (88.0%). PFS at 24 months was 55.8% (95CI [50.8-61.2]) and OS at 48 months was 59.1% (95CI [53.0-65.9]). ORR was 51.0%, and 25.1% of patients were ICIPR. There was no statistical difference in ORR, DCR, PFS, or OS between CRC and non-CRC groups. In multivariable analysis, ICIPR was associated with ECOG-PS ≥ 2 (OR = 3.36), liver metastases (OR = 2.19), peritoneal metastases (OR = 2.00), ≥1 previous line of treatment (OR = 1.83), and age≤50 years old (OR = 1.76). CONCLUSION These five clinical factors associated with primary resistance to ICIs should be considered by physicians to guide treatment choice in GI dMMR/MSI metastatic cancer patients.
Collapse
Affiliation(s)
- Clémence Flecchia
- Department of Digestive Oncology, Georges Pompidou European Hospital, Assistance Publique des Hôpitaux de Paris (AP-HP), Université Paris Cité, Paris, France
| | - Edouard Auclin
- CARPEM, SIRIC, Université Paris Cité, Georges Pompidou European Hospital, Paris, France
| | - Emily Alouani
- Digestive Oncology Department, Rangueil Hospital, University Hospital of Toulouse, Toulouse, France
| | - Mathilde Mercier
- Gastroenterology and Hepatology Department, Poitiers University Hospital, Poitiers, France
| | - Antoine Hollebecque
- Drug Development Department (DITEP), Gustave Roussy Institute, Saclay University, 94800, Villejuif, France
| | - Anthony Turpin
- Department of Medical Oncology, CNRS UMR9020, Inserm UMR-S 1277-Canther-Cancer Heterogeneity, Plasticity and Resistance to Therapies, University of Lille, CHU Lille, Lille, France
| | - Thibault Mazard
- Department of Medical Oncology, Institut de Recherche en Cancérologie de Montpellier, INSERM, University of Montpellier, ICM, Montpellier, France
| | - Simon Pernot
- Department of Digestive Oncology, Institut Bergonié, Bordeaux, France
| | - Marie Dutherage
- Department of Medical Oncology, Henri Becquerel Centre, Rouen, France
| | - Romain Cohen
- Department of Medical Oncology, Sorbonne University, Hôpital Saint-Antoine, AP-HP, and INSERM UMRS 938, Équipe Instabilité des Microsatellites et Cancer, Équipe Labellisée par la Ligue Nationale Contre le Cancer, SIRIC CURAMUS, Centre de recherche Saint Antoine, Paris, France
| | - Christophe Borg
- Department of Medical Oncology, University Hospital of Besançon, Besançon, France
| | - Vincent Hautefeuille
- Department of Hepato-Gastroenterology and Digestive Oncology, CHU Amiens Picardie, Amiens, France
| | - Francesco Sclafani
- Department of Digestive Oncology, Institut Jules Bordet, The Brussels University Hospital, Université Libre de Bruxelles, 1070, Anderlecht, Belgium
| | | | - Thomas Aparicio
- Gastroenterology Department, Saint Louis Hospital, APHP, Paris, France
| | | | - Camille Herve
- Department of Medical Oncology, GHM, Grenoble, France
| | | | - Kathrin Heinrich
- Department of Medicine III and Comprehensive Cancer Center (CCC Munich LMU), University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Volker Kunzmann
- Department of Internal Medicine II, University Hospital Würzburg, Germany on behalf of the WERA Comprehensive Cancer Center Alliance, Würzburg, Germany
| | - Claire Gallois
- CARPEM, SIRIC, Université Paris Cité, Georges Pompidou European Hospital, Paris, France
| | - Rosine Guimbaud
- Digestive Oncology Department, Rangueil Hospital, University Hospital of Toulouse, Toulouse, France
| | - David Tougeron
- Gastroenterology and Hepatology Department, Poitiers University Hospital, Poitiers, France
| | - Julien Taieb
- Department of Digestive Oncology, Georges Pompidou European Hospital, Assistance Publique des Hôpitaux de Paris (AP-HP), Université Paris Cité, Paris, France.
| |
Collapse
|
16
|
Zhang H, Wen H, Zhu Q, Zhang Y, Xu F, Ma T, Guo Y, Lu C, Zhao X, Ji Y, Wang Z, Chu Y, Ge D, Gu J, Liu R. Genomic profiling and associated B cell lineages delineate the efficacy of neoadjuvant anti-PD-1-based therapy in oesophageal squamous cell carcinoma. EBioMedicine 2024; 100:104971. [PMID: 38244291 PMCID: PMC10831182 DOI: 10.1016/j.ebiom.2024.104971] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Neoadjuvant chemoimmunotherapy has offered novel therapeutic options for patients with locally advanced oesophageal squamous cell carcinoma (ESCC). Depicting the landscape of genomic and immune profiles is critical in predicting therapeutic responses. METHODS We integrated whole-exome sequencing, single-cell RNA sequencing, and immunofluorescence data of ESCC samples from 24 patients who received neoadjuvant treatment with PD-1 inhibitors plus paclitaxel and platinum-based chemotherapy to identify correlations with therapeutic responses. FINDINGS An elevation of small insertions and deletions was observed in responders. DNA mismatch repair (MMR) pathway alternations were highly frequent in patients with optimal responses and correlated with tumour infiltrating lymphocytes (TILs). Among the TILs in ESCC, dichotomous developing trajectories of B cells were identified, with one lineage differentiating towards LMO2+ germinal centre B cells and another lineage differentiating towards CD55+ memory B cells. While LMO2+ germinal centre B cells were enriched in responding tumours, CD55+ memory B cells were found to correlate with inferior responses to combination therapy, exhibiting immune-regulating features and impeding the cytotoxicity of CD8+ T cells. The comprehensive evaluation of transcriptomic B cell lineage features was validated to predict responses to immunotherapy in patients with cancer. INTERPRETATION This comprehensive evaluation of tumour MMR pathway alternations and intra-tumoural B cell features will help to improve the selection and management of patients with ESCC to receive neoadjuvant chemoimmunotherapy. FUNDING National Science Foundation of China (82373371, 82330053), Eastern Scholar Program at Shanghai Institutions of Higher Learning, National Science and Technology Major Project of China (2023YFA1800204, 2020YFC2008402), and Science and Technology Commission of Shanghai Municipality (22ZR1410700, 20ZR1410800).
Collapse
Affiliation(s)
- Hongyu Zhang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Haoyu Wen
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Qiaoliang Zhu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yuchen Zhang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Fengkai Xu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Teng Ma
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yifan Guo
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Chunlai Lu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xuelian Zhao
- Department of Pathology, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Yuan Ji
- Department of Pathology, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Zhiqiang Wang
- Department of Immunology, School of Basic Medical Sciences, Shanghai Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Yiwei Chu
- Department of Immunology, School of Basic Medical Sciences, Shanghai Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Di Ge
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Jie Gu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Ronghua Liu
- Fifth People's Hospital and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, 200032, Shanghai, China.
| |
Collapse
|
17
|
Yang Y, Wu SF, Bao W. Molecular subtypes of endometrial cancer: Implications for adjuvant treatment strategies. Int J Gynaecol Obstet 2024; 164:436-459. [PMID: 37525501 DOI: 10.1002/ijgo.14969] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/06/2023] [Accepted: 06/13/2023] [Indexed: 08/02/2023]
Abstract
BACKGROUND When determining adjuvant treatment for endometrial cancer, the decision typically relies on factors such as cancer stage, histologic grade, subtype, and a few histopathologic markers. The Cancer Genome Atlas revealed molecular subtyping of endometrial cancer, which can provide more accurate prognostic information and guide personalized treatment plans. OBJECTIVE To summarize the expression and molecular basis of the main biomarkers of endometrial cancer. SEARCH STRATEGY PubMed was searched from January 2000 to March 2023. SELECTION CRITERIA Studies evaluating molecular subtypes of endometrial cancer and implications for adjuvant treatment strategies. DATA COLLECTION AND ANALYSIS Three authors independently performed a comprehensive literature search, collected and extracted data, and assessed the methodological quality of the included studies. MAIN RESULTS We summarized the molecular subtyping of endometrial cancer, including mismatch repair deficient, high microsatellite instability, polymerase epsilon (POLE) exonuclease domain mutated, TP53 gene mutation, and non-specific molecular spectrum. We also summarized planned and ongoing clinical trials and common therapy methods in endometrial cancer. POLE mutated endometrial cancer consistently exhibits favorable patient outcomes, regardless of adjuvant therapy. Genomic similarities between p53 abnormality endometrial cancer and high-grade serous ovarian cancer suggested possible overlapping treatment strategies. High levels of immune checkpoint molecules, such as programmed cell death 1 and programmed cell death 1 ligand 1 can counterbalance mismatch repair deficient endometrial cancer immune phenotype. Hormonal treatment is an appealing option for high-risk non-specific molecular spectrum endometrial cancers, which are typically endometrioid and hormone receptor positive. Combining clinical and pathologic characteristics to guide treatment decisions for patients, including concurrent radiochemotherapy, chemotherapy, inhibitor therapy, endocrine therapy, and immunotherapy, might improve the management of endometrial cancer and provide more effective treatment options for patients. CONCLUSIONS We have characterized the molecular subtypes of endometrial cancer and discuss their value in terms of a patient-tailored therapy in order to prevent significant under- or overtreatment.
Collapse
Affiliation(s)
- Ye Yang
- Obstetrics and Gynecology Department, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Su Fang Wu
- Obstetrics and Gynecology Department, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Wei Bao
- Obstetrics and Gynecology Department, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| |
Collapse
|
18
|
Maekawa S, Takata R, Obara W. Molecular Mechanisms of Prostate Cancer Development in the Precision Medicine Era: A Comprehensive Review. Cancers (Basel) 2024; 16:523. [PMID: 38339274 PMCID: PMC10854717 DOI: 10.3390/cancers16030523] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
The progression of prostate cancer (PCa) relies on the activation of the androgen receptor (AR) by androgens. Despite efforts to block this pathway through androgen deprivation therapy, resistance can occur through several mechanisms, including the abnormal activation of AR, resulting in castration-resistant PCa following the introduction of treatment. Mutations, amplifications, and splicing variants in AR-related genes have garnered attention in this regard. Furthermore, recent large-scale next-generation sequencing analysis has revealed the critical roles of AR and AR-related genes, as well as the DNA repair, PI3K, and cell cycle pathways, in the onset and progression of PCa. Moreover, research on epigenomics and microRNA has increasingly become popular; however, it has not translated into the development of effective therapeutic strategies. Additionally, treatments targeting homologous recombination repair mutations and the PI3K/Akt pathway have been developed and are increasingly accessible, and multiple clinical trials have investigated the efficacy of immune checkpoint inhibitors. In this comprehensive review, we outline the status of PCa research in genomics and briefly explore potential future developments in the field of epigenetic modifications and microRNAs.
Collapse
Affiliation(s)
- Shigekatsu Maekawa
- Department of Urology, Iwate Medical University, Iwate 028-3694, Japan; (R.T.); (W.O.)
| | | | | |
Collapse
|
19
|
Selves J, de Castro E Gloria H, Brunac AC, Saffi J, Guimbaud R, Brousset P, Hoffmann JS. Exploring the basis of heterogeneity of cancer aggressiveness among the mutated POLE variants. Life Sci Alliance 2024; 7:e202302290. [PMID: 37891003 PMCID: PMC10610022 DOI: 10.26508/lsa.202302290] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/04/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Germline pathogenic variants in the exonuclease domain of the replicative DNA polymerase Pol ε encoded by the POLE gene, predispose essentially to colorectal and endometrial tumors by inducing an ultramutator phenotype. It is still unclear whether all the POLE alterations influence similar strength tumorigenesis, immune microenvironment, and treatment response. In this review, we summarize the current understanding of the mechanisms and consequences of POLE mutations in human malignancies; we highlight the heterogeneity of mutation rate and cancer aggressiveness among POLE variants, propose some mechanistic basis underlining such heterogeneity, and discuss novel considerations for the choice and efficacy of therapies of POLE tumors.
Collapse
Affiliation(s)
- Janick Selves
- Department of Pathology, Institut Universitaire du Cancer-Oncopole de Toulouse; Centre Hospitalier Universitaire (CHU), Toulouse, France
- Université Fédérale Toulouse Midi-Pyrénées, Université Toulouse III Paul Sabatier, INSERM, CRCT, Toulouse, France
| | - Helena de Castro E Gloria
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - Anne-Cécile Brunac
- Department of Pathology, Institut Universitaire du Cancer-Oncopole de Toulouse; Centre Hospitalier Universitaire (CHU), Toulouse, France
| | - Jenifer Saffi
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - Rosine Guimbaud
- Université Fédérale Toulouse Midi-Pyrénées, Université Toulouse III Paul Sabatier, INSERM, CRCT, Toulouse, France
- Department of Digestive Oncology, Centre Hospitalier Universitaire (CHU), Toulouse, France
- Department of Digestive Surgery, Centre Hospitalier Universitaire (CHU), Toulouse, France
| | - Pierre Brousset
- Department of Pathology, Institut Universitaire du Cancer-Oncopole de Toulouse; Centre Hospitalier Universitaire (CHU), Toulouse, France
- Université Fédérale Toulouse Midi-Pyrénées, Université Toulouse III Paul Sabatier, INSERM, CRCT, Toulouse, France
- Laboratoire d'Excellence Toulouse Cancer (TOUCAN), Toulouse, France
| | - Jean-Sébastien Hoffmann
- Department of Pathology, Institut Universitaire du Cancer-Oncopole de Toulouse; Centre Hospitalier Universitaire (CHU), Toulouse, France
- Laboratoire d'Excellence Toulouse Cancer (TOUCAN), Toulouse, France
| |
Collapse
|
20
|
Matsuoka T, Yashiro M. Current status and perspectives of genetic testing in gastrointestinal cancer (Review). Oncol Lett 2024; 27:21. [PMID: 38058469 PMCID: PMC10696628 DOI: 10.3892/ol.2023.14155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/30/2023] [Indexed: 12/08/2023] Open
Abstract
Genetic testing has become widespread in daily medical care for gastrointestinal (GI) cancers. However, unlike breast cancer and non-small cell lung cancer, in which personalized medicine targeting various driver genes is standardized, the incidence of targeted gene abnormalities in GI cancers is low. Nevertheless, such abnormalities may be linked to therapeutic agents and the further development of therapeutic agents for personalized medicine for GI cancers is desired. A liquid biopsy is of great benefit in offering clinical decision support, in applications such as GI cancer screening, surgical interventions, monitoring disease status and enhancing patient survival outcomes, all of which would contribute to personalized medicine. Germline genetic testing is required for several types of GI cancer, which shows clinical indications of hereditary predisposition. The increasing use of multigene panel testing has redefined gene-cancer associations, and consequently the estimate of cancer risk that vary from low to high penetrance. Comprehensive genetic testing can enable the detection of novel treatment targets and the discovery of undefined multiple diagnostic/predictive markers, which may enhance the molecular-level understanding of GI cancers. Genetic testing can also aid the design of more appropriate and adequate genomic-driven therapies for patients who may benefit from other standardized therapeutic methods.
Collapse
Affiliation(s)
- Tasuku Matsuoka
- Department of Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, Osaka 5458585, Japan
| | - Masakazu Yashiro
- Department of Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, Osaka 5458585, Japan
- Institute of Medical Genetics, Osaka Metropolitan University, Osaka 5458585, Japan
| |
Collapse
|
21
|
Catalano M, Iannone LF, Nesi G, Nobili S, Mini E, Roviello G. Immunotherapy-related biomarkers: Confirmations and uncertainties. Crit Rev Oncol Hematol 2023; 192:104135. [PMID: 37717881 DOI: 10.1016/j.critrevonc.2023.104135] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/18/2023] [Accepted: 09/12/2023] [Indexed: 09/19/2023] Open
Abstract
Immunotherapy profoundly changed oncology treatment, becoming one of the main therapeutical strategies. Remarkable improvement has been achieved in survival outcomes, but the percentage of patients who benefit from immunotherapy is still limited. Only one-third of patients receiving immune checkpoint inhibitors (ICIs) achieve long-term response. Several patients are not responsive to treatment or relapse after an initial response. To date, programmed death-ligand 1, microsatellite instability, and tumor mutational burden are the three biomarkers validated to predict the ICIs response, but a single variable seems still insufficient in the patient's selection. Considering the substantial and increasing use of these drugs, the identification of new predictive biomarkers of ICI response is of paramount importance. We summarize the state of the art and the clinical use of immune biomarkers in oncology, highlighting the strength and weaknesses of currently approved biomarkers, describing the emerging tissues and circulating biomarkers, and outlining future perspectives.
Collapse
Affiliation(s)
- Martina Catalano
- 1 Section of Clinical Pharmacology and Oncology, Department of Health Sciences, University of Florence, 50139 Florence, Italy
| | - Luigi Francesco Iannone
- 1 Section of Clinical Pharmacology and Oncology, Department of Health Sciences, University of Florence, 50139 Florence, Italy
| | - Gabriella Nesi
- Section of Pathological Anatomy, Department of Health Sciences, University of Florence, 50139 Florence, Italy
| | - Stefania Nobili
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, 50139 Florence, Italy
| | - Enrico Mini
- 1 Section of Clinical Pharmacology and Oncology, Department of Health Sciences, University of Florence, 50139 Florence, Italy
| | - Giandomenico Roviello
- 1 Section of Clinical Pharmacology and Oncology, Department of Health Sciences, University of Florence, 50139 Florence, Italy.
| |
Collapse
|
22
|
Wei P, Kou W, Riaz F, Zhang K, Fu J, Pan F. Combination therapy of HIFα inhibitors and Treg depletion strengthen the anti-tumor immunity in mice. Eur J Immunol 2023; 53:e2250182. [PMID: 37615189 DOI: 10.1002/eji.202250182] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 07/12/2023] [Accepted: 08/22/2023] [Indexed: 08/25/2023]
Abstract
Hypoxia-inducible factor 1 alpha (HIF1α), under hypoxic conditions, is known to play an oxygen sensor stabilizing role by exerting context- and cell-dependent stimulatory and inhibitory functions in immune cells. Nevertheless, how HIF1α regulates T cell differentiation and functions in tumor settings has not been elucidated. Herein, we demonstrated that T-cell-specific deletion of HIF1α improves the inflammatory potential and memory phenotype of CD8+ T cells. We validated that T cell-specific HIF1α ablation reduced the B16 melanomas development with the indication of ameliorated antitumor immune response with enhanced IFN-γ+ CD8+ T cells despite the increase in the Foxp3+ regulatory T-cell population. This was further verified by treating tumor-bearing mice with a HIF1α inhibitor. Results indicated that HIF1α inhibitor also recapitulates HIF1α ablation effects by declining tumor growth and enhancing the memory and inflammatory potential of CD8+ T cells. Furthermore, a combination of Treg inhibitor with HIF1α inhibitor can substantially reduce tumor size. Collectively, these findings highlight the notable roles of HIF1α in distinct CD8+ T-cell subsets. This study suggests the significant implications for enhancing the potential of T cell-based antitumor immunity by combining HIF1α and Tregs inhibitors.
Collapse
Affiliation(s)
- Ping Wei
- Department of Otolaryngology, Ministry of Education Key Laboratory of Child Development, and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Kou
- Department of Otolaryngology, Ministry of Education Key Laboratory of Child Development, and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Farooq Riaz
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, P. R. China
| | - Kaimin Zhang
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, P. R. China
| | - Juan Fu
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Fan Pan
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, P. R. China
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
23
|
Gao Y, Wu A. Organ Preservation in MSS Rectal Cancer. Clin Colon Rectal Surg 2023; 36:430-440. [PMID: 37795468 PMCID: PMC10547535 DOI: 10.1055/s-0043-1767710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Rectal cancer is a heterogeneous disease with complex genetic and molecular subtypes. Emerging progress of neoadjuvant therapy has led to increased pathological and clinical complete response (cCR) rates for microsatellite stable (MSS) rectal cancer, which responds poorly to immune checkpoint inhibitor alone. As a result, organ preservation of MSS rectal cancer as an alternative to radical surgery has gradually become a feasible option. For patients with cCR or near-cCR after neoadjuvant treatment, organ preservation can be implemented safely with less morbidity. Patient selection can be done either before the neoadjuvant treatment for higher probability or after with careful assessment for a favorable outcome. Those patients who achieved a good clinical response are managed with nonoperative management, organ preservation surgery, or radiation therapy alone followed by strict surveillance. The oncological outcomes of patients with careful selection and organ preservation seem to be noninferior compared with those of radical surgery, with lower postoperative morbidity. However, more studies should be done to seek better regression of tumor and maximize the possibility of organ preservation in MSS rectal cancer.
Collapse
Affiliation(s)
- Yuye Gao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Unit III, Gastrointestinal Cancer Center, Peking University Cancer Hospital and Institute, Beijing, China
| | - Aiwen Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Unit III, Gastrointestinal Cancer Center, Peking University Cancer Hospital and Institute, Beijing, China
| |
Collapse
|
24
|
Oshima K, Yamazaki K. Immune checkpoint inhibitor therapy in neoadjuvant and adjuvant treatment for cancer: A paradigm shift in the treatment of resectable gastrointestinal cancer 3)A paradigm shift in the treatment of colorectal cancer. Int J Clin Oncol 2023; 28:1442-1450. [PMID: 37668816 DOI: 10.1007/s10147-023-02387-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/09/2023] [Indexed: 09/06/2023]
Abstract
Immune checkpoint inhibitors, such as anti-programmed cell death-1, programmed cell death ligand-1, and cytotoxic T-lymphocyte antigen-4 monoclonal antibodies, have been notably effective in various types of cancers. Mismatch repair deficiency and microsatellite instability-high tumors have been established as striking biomarkers for response to immune checkpoint inhibitors. These biomarkers show a higher mutational burden, have cancer-associated neoantigens, and dense immune cell infiltration, which generates a robust immune response. For metastatic colorectal cancer, pembrolizumab and nivolumab, with or without ipilimumab, are recommended for chemotherapy-refractory patients, and pembrolizumab is recommended for chemotherapy-naive patients with mismatch repair deficiency and microsatellite instability-high tumors. Conversely, patients with mismatch repair-proficient and microsatellite-stable metastatic colorectal cancer showed no clinical benefit from immune checkpoint inhibitor monotherapy. Currently, combination therapy with anti-programmed cell death-1/programmed cell death ligand-1 and cytotoxic T-lymphocyte antigen-4 monoclonal antibodies or a combination of immune checkpoint inhibitors with molecular targeting agents or radiotherapy have been investigated to modulate immune cells and enhance therapeutic efficacy in mismatch repair-proficient and microsatellite-stable metastatic colorectal cancer. Furthermore, immune checkpoint inhibitors have been developed for neoadjuvant and adjuvant settings. In this review, we summarize the existing clinical data and discuss future perspectives with a focus on immune checkpoint inhibitor-based treatments for colorectal cancer.
Collapse
Affiliation(s)
- Kotoe Oshima
- Division of Gastrointestinal Oncology, Shizuoka Cancer Center, 1007 Shimonagakubo, Nagaizumi-Cho, Sunto-Gun, Shizuoka, 411-8777, Japan
| | - Kentaro Yamazaki
- Division of Gastrointestinal Oncology, Shizuoka Cancer Center, 1007 Shimonagakubo, Nagaizumi-Cho, Sunto-Gun, Shizuoka, 411-8777, Japan.
| |
Collapse
|
25
|
Xiao B, Yu J, Ding PR. Nonoperative Management of dMMR/MSI-H Colorectal Cancer following Neoadjuvant Immunotherapy: A Narrative Review. Clin Colon Rectal Surg 2023; 36:378-384. [PMID: 37795463 PMCID: PMC10547541 DOI: 10.1055/s-0043-1767703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Immunotherapy with PD-1 blockade has achieved a great success in colorectal cancers (CRCs) with high microsatellite instability (MSI-H) and deficient mismatch repair (dMMR), and has become the first-line therapy in metastatic setting. Studies of neoadjuvant immunotherapy also report exciting results, showing high rates of clinical complete response (cCR) and pathological complete response. The high efficacy and long duration of response of immunotherapy has prompt attempts to adopt watch-and-wait strategy for patients achieving cCR following the treatment. Thankfully, the watch-and-wait approach has been proposed for nearly 20 years for patients undergoing chemoradiotherapy and has gained ground among patients as well as clinicians. In this narrative review, we combed through the available information on immunotherapy for CRC and on the watch-and-wait strategy in chemoradiotherapy, and looked forward to a future where neoadjuvant immunotherapy as a curative therapy would play a big part in the treatment of MSI-H/dMMR CRC.
Collapse
Affiliation(s)
- Binyi Xiao
- Department of Colorectal Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Jiehai Yu
- Department of Colorectal Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Pei-Rong Ding
- Department of Colorectal Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| |
Collapse
|
26
|
Li M, Xu G, Cui Y, Wang M, Wang H, Xu X, Duan S, Shi J, Feng F. CT-based radiomics nomogram for the preoperative prediction of microsatellite instability and clinical outcomes in colorectal cancer: a multicentre study. Clin Radiol 2023; 78:e741-e751. [PMID: 37487841 DOI: 10.1016/j.crad.2023.06.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 06/15/2023] [Accepted: 06/29/2023] [Indexed: 07/26/2023]
Abstract
AIM To develop and validate a computed tomography (CT)-based radiomics nomogram for preoperative prediction of microsatellite instability (MSI) status and clinical outcomes in colorectal cancer (CRC) patients. MATERIALS AND METHODS This retrospective study enrolled 497 CRC patients from three centres. Least absolute shrinkage and selection operator regression was utilised for feature selection and constructing the radiomics signature. Univariate and multivariate logistic regression analyses were employed to identify significant clinical variables. The radiomics nomogram was constructed by integrating the radiomics signature and the identified clinical variables. The performance of the nomogram was evaluated through receiver operating characteristic curves, calibration curves, and decision curve analysis. Kaplan-Meier analysis was performed to investigate the prognostic value of the nomogram. RESULTS The radiomics signature comprised 10 radiomics features associated with MSI status. The nomogram, integrating the radiomics signature and independent predictors (age, location, and thickness), demonstrated favourable calibration and discrimination, achieving areas under the receiver operating characteristic (ROC) curves (AUCs) of 0.89 (95% confidence interval [CI]: 0.83-0.95), 0.87 (95% CI: 0.79-0.95), 0.88 (95% CI: 0.81-0.96), and 0.86 (95% CI: 0.78-0.93) in the training cohort, internal validation cohort, and two external validation cohorts, respectively. The nomogram exhibited superior performance compared to the clinical model (p<0.05). Additionally, survival analysis demonstrated that the nomogram successfully stratified stage II CRC patients based on prognosis (hazard ratio [HR]: 0.357, p=0.022). CONCLUSION The radiomics nomogram demonstrated promising performance in predicting MSI status and stratifying the prognosis of patients with CRC.
Collapse
Affiliation(s)
- M Li
- Department of Radiology, Affiliated Tumour Hospital of Nantong University, Nantong 226001, Jiangsu Province, China; Department of Radiology, Yancheng No. 1 People's Hospital, Yancheng 224006, Jiangsu Province, China
| | - G Xu
- Department of Radiology, Yancheng No. 1 People's Hospital, Yancheng 224006, Jiangsu Province, China; Department of Radiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Y Cui
- Department of Radiology, Shanxi Cancer Hospital, Shanxi 030013, Shanxi Province, China
| | - M Wang
- Department of Radiology, Yancheng No. 1 People's Hospital, Yancheng 224006, Jiangsu Province, China
| | - H Wang
- Department of Radiology, Affiliated Tumour Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - X Xu
- Department of Radiotherapy, Affiliated Tumour Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - S Duan
- GE Healthcare China, Shanghai 210000, China
| | - J Shi
- Department of Radiology, Affiliated Tumour Hospital of Nantong University, Nantong 226001, Jiangsu Province, China.
| | - F Feng
- Department of Radiology, Affiliated Tumour Hospital of Nantong University, Nantong 226001, Jiangsu Province, China.
| |
Collapse
|
27
|
Taïeb J, Bouche O, André T, Le Malicot K, Laurent-Puig P, Bez J, Toullec C, Borg C, Randrian V, Evesque L, Corbinais S, Perrier H, Buecher B, Di Fiore F, Gallois C, Emile JF, Lepage C, Elhajbi F, Tougeron D. Avelumab vs Standard Second-Line Chemotherapy in Patients With Metastatic Colorectal Cancer and Microsatellite Instability: A Randomized Clinical Trial. JAMA Oncol 2023; 9:1356-1363. [PMID: 37535388 PMCID: PMC10401392 DOI: 10.1001/jamaoncol.2023.2761] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 05/24/2023] [Indexed: 08/04/2023]
Abstract
IMPORTANCE Only 1 randomized clinical trial has shown the superiority of immune checkpoint inhibitors in patients with deficient mismatch repair and/or microsatellite instability (dMMR/MSI) metastatic colorectal cancer (mCRC) in the first-line setting. OBJECTIVES To determine whether avelumab (an anti-programmed cell death ligand 1 antibody) improves progression-free survival (PFS) compared with standard second-line chemotherapy in patients with dMMR/MSI mCRC. DESIGN, SETTING, AND PARTICIPANTS The SAMCO-PRODIGE 54 trial is a national open-label phase 2 randomized clinical trial that was conducted from April 24, 2018, to April 29, 2021, at 49 French sites. Patients with dMMR/MSI mCRC who experienced progression while receiving standard first-line therapy were included in the analysis. INTERVENTIONS Patients were randomized to receive standard second-line therapy or avelumab every 2 weeks until progression, unacceptable toxic effects, or patient refusal. MAIN OUTCOME AND MEASURES The primary end point was PFS according to RECIST (Response Evaluation Criteria in Solid Tumours), version 1.1, evaluated by investigators in patients with mCRC and confirmed dMMR and MSI status who received at least 1 dose of treatment (modified intention-to-treat [mITT] population). RESULTS A total of 122 patients were enrolled in the mITT population. Median age was 66 (IQR, 56-76) years, 65 patients (53.3%) were women, 100 (82.0%) had a right-sided tumor, and 52 (42.6%) had BRAF V600E-mutated tumors. There was no difference in patients and tumor characteristics between treatment groups. No new safety concerns in either group were detected, with fewer treatment-related adverse events of at least grade 3 in the avelumab group than in the chemotherapy group (20 [31.7%] vs 34 [53.1%]; P = .02). After a median follow-up of 33.3 (95% CI, 28.3-34.8) months, avelumab was superior to chemotherapy with or without targeted agents with respect to PFS (15 [24.6%] vs 5 [8.2%] among patients without progression; P = .03). Rates of PFS rates at 12 months were 31.2% (95% CI, 20.1%-42.9%) and 19.4% (95% CI, 10.6%-30.2%) in the avelumab and control groups, respectively, and 27.4% (95% CI, 16.8%-39.0%) and 9.1% (95% CI, 3.2%-18.8%) at 18 months. Objective response rates were similar in both groups (18 [29.5%] vs 16 [26.2%]; P = .45). Among patients with disease control, 18 (75.7%) in the avelumab group compared with 9 (19.1%) in the control group had ongoing disease control at 18 months. CONCLUSIONS The SAMCO-PRODIGE 54 phase 2 randomized clinical trial showed, in patients with dMMR/MSI mCRC, better PFS and disease control duration with avelumab over standard second-line treatment, with a favorable safety profile. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT03186326.
Collapse
Affiliation(s)
- Julien Taïeb
- Institut du Cancer Paris Cancer Research for Personalized Medicine, Assistance Publique–Hôpitaux de Paris (AP-HP), Hôpital Européen Georges Pompidou, Paris, France
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique, Sorbonne Université, Université Sorbonne Paris Cité, Université de Paris, Paris, France
- Department of Gastroenterology and Digestive Oncology, Georges Pompidou European Hospital, AP-HP Centre, Université Paris Cité, Paris, France
| | - Olivier Bouche
- Department of Digestive Oncology, Centre Hospitalier Universitaire (CHU) Reims, Reims, France
| | - Thierry André
- Sorbonne Université and Hôpital Saint Antoine, INSERM 938 and Site de Recherche Intégrée sur le Cancer CURAMUS, Paris, France
| | - Karine Le Malicot
- Fédération Francophone de Cancérologie Digestive, EPICAD INSERM Lipides Nutrition Cancer–Unité Mixte de Recherche 1231, University of Burgundy and Franche Comté, Dijon, France
| | - Pierre Laurent-Puig
- Institut du Cancer Paris Cancer Research for Personalized Medicine, Assistance Publique–Hôpitaux de Paris (AP-HP), Hôpital Européen Georges Pompidou, Paris, France
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique, Sorbonne Université, Université Sorbonne Paris Cité, Université de Paris, Paris, France
- Department of Gastroenterology and Digestive Oncology, Georges Pompidou European Hospital, AP-HP Centre, Université Paris Cité, Paris, France
| | - Jérémie Bez
- Fédération Francophone de Cancérologie Digestive, EPICAD INSERM Lipides Nutrition Cancer–Unité Mixte de Recherche 1231, University of Burgundy and Franche Comté, Dijon, France
| | - Clémence Toullec
- Department of Medical Oncology, Institut du Cancer, Avignon-Provence, France
| | - Christophe Borg
- Department of Medical Oncology, University Hospital of Besançon, Besançon, France
| | - Violaine Randrian
- Department of Gastroenterology and Hepatology, Poitiers University Hospital, Poitiers, France
| | - Ludovic Evesque
- Department of Medical Oncology, Centre Antoine Lacassagne, Nice, France
| | | | - Hervé Perrier
- Department of Hepato-Gastroenterology, Hôpital Saint-Joseph, Marseille, France
| | - Bruno Buecher
- Department of Oncology, Institut Curie, Paris, France
| | - Frederic Di Fiore
- Hepatogastroenterology Department, CHU Rouen, University of Rouen Normandy, INSERM 1245, Institut de Recherche en Oncologie Group, Normandie University, Rouen, France
| | - Claire Gallois
- Institut du Cancer Paris Cancer Research for Personalized Medicine, Assistance Publique–Hôpitaux de Paris (AP-HP), Hôpital Européen Georges Pompidou, Paris, France
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique, Sorbonne Université, Université Sorbonne Paris Cité, Université de Paris, Paris, France
| | - Jean Francois Emile
- EA4340, Pathology Department and INSERM, Ambroise Paré Hospital, Boulogne, France
| | - Côme Lepage
- Sorbonne Université and Hôpital Saint Antoine, INSERM 938 and Site de Recherche Intégrée sur le Cancer CURAMUS, Paris, France
- Department of Digestive Oncology, University Hospital Dijon, University of Burgundy and Franche Comté, Dijon, France
| | - Farid Elhajbi
- Medical Oncology Department, Oscar Lambret Center, Lille, France
| | - David Tougeron
- Department of Gastroenterology and Hepatology, Poitiers University Hospital, Poitiers, France
| |
Collapse
|
28
|
Cornista AM, Giolito MV, Baker K, Hazime H, Dufait I, Datta J, Khumukcham SS, De Ridder M, Roper J, Abreu MT, Breckpot K, Van der Jeught K. Colorectal Cancer Immunotherapy: State of the Art and Future Directions. GASTRO HEP ADVANCES 2023; 2:1103-1119. [PMID: 38098742 PMCID: PMC10721132 DOI: 10.1016/j.gastha.2023.09.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Cancer immunotherapy has become an indispensable mode of treatment for a multitude of solid tumor cancers. Colorectal cancer (CRC) has been one of the many cancer types to benefit from immunotherapy, especially in advanced disease where standard treatment fails to prevent recurrence or results in poor survival. The efficacy of immunotherapy in CRC has not been without challenge, as early clinical trials observed dismal responses in unselected CRC patients treated with checkpoint inhibitors. Many studies and clinical trials have since refined immunotherapies available for CRC, solidifying immunotherapy as a powerful asset for CRC treatment. This review article examines CRC immunotherapies, from their foundation, through emerging avenues for improvement, to future directions.
Collapse
Affiliation(s)
- Alyssa Mauri Cornista
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida
| | - Maria Virginia Giolito
- Department of Biomedical Sciences, Vrije Universiteit Brussel, Laboratory for Molecular and Cellular Therapy, Brussels, Belgium
| | - Kristi Baker
- Department of Oncology, University of Alberta, Edmonton, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada
| | - Hajar Hazime
- Division of Gastroenterology, University of Miami Miller School of Medicine, Miami, Florida
| | - Inès Dufait
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jashodeep Datta
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
- Division of Surgical Oncology, Dewitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Saratchandra Singh Khumukcham
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, North Carolina
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina
| | - Mark De Ridder
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jatin Roper
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, North Carolina
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina
| | - Maria T. Abreu
- Division of Gastroenterology, University of Miami Miller School of Medicine, Miami, Florida
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Karine Breckpot
- Department of Biomedical Sciences, Vrije Universiteit Brussel, Laboratory for Molecular and Cellular Therapy, Brussels, Belgium
| | - Kevin Van der Jeught
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| |
Collapse
|
29
|
Pu T, Peddle A, Zhu J, Tejpar S, Verbandt S. Neoantigen identification: Technological advances and challenges. Methods Cell Biol 2023; 183:265-302. [PMID: 38548414 DOI: 10.1016/bs.mcb.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Neoantigens have emerged as promising targets for cutting-edge immunotherapies, such as cancer vaccines and adoptive cell therapy. These neoantigens are unique to tumors and arise exclusively from somatic mutations or non-genomic aberrations in tumor proteins. They encompass a wide range of alterations, including genomic mutations, post-transcriptomic variants, and viral oncoproteins. With the advancements in technology, the identification of immunogenic neoantigens has seen rapid progress, raising new opportunities for enhancing their clinical significance. Prediction of neoantigens necessitates the acquisition of high-quality samples and sequencing data, followed by mutation calling. Subsequently, the pipeline involves integrating various tools that can predict the expression, processing, binding, and recognition potential of neoantigens. However, the continuous improvement of computational tools is constrained by the availability of datasets which contain validated immunogenic neoantigens. This review article aims to provide a comprehensive summary of the current knowledge as well as limitations in neoantigen prediction and validation. Additionally, it delves into the origin and biological role of neoantigens, offering a deeper understanding of their significance in the field of cancer immunotherapy. This article thus seeks to contribute to the ongoing efforts to harness neoantigens as powerful weapons in the fight against cancer.
Collapse
Affiliation(s)
- Ting Pu
- Digestive Oncology Unit, KULeuven, Leuven, Belgium
| | | | - Jingjing Zhu
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | | | | |
Collapse
|
30
|
Guan J, Li GM. DNA mismatch repair in cancer immunotherapy. NAR Cancer 2023; 5:zcad031. [PMID: 37325548 PMCID: PMC10262306 DOI: 10.1093/narcan/zcad031] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/08/2023] [Accepted: 06/07/2023] [Indexed: 06/17/2023] Open
Abstract
Tumors defective in DNA mismatch repair (dMMR) exhibit microsatellite instability (MSI). Currently, patients with dMMR tumors are benefitted from anti-PD-1/PDL1-based immune checkpoint inhibitor (ICI) therapy. Over the past several years, great progress has been made in understanding the mechanisms by which dMMR tumors respond to ICI, including the identification of mutator phenotype-generated neoantigens, cytosolic DNA-mediated activation of the cGAS-STING pathway, type-I interferon signaling and high tumor-infiltration of lymphocytes in dMMR tumors. Although ICI therapy shows great clinical benefits, ∼50% of dMMR tumors are eventually not responsive. Here we review the discovery, development and molecular basis of dMMR-mediated immunotherapy, as well as tumor resistant problems and potential therapeutic interventions to overcome the resistance.
Collapse
Affiliation(s)
- Junhong Guan
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, China
| | - Guo-Min Li
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
31
|
Hijazi A, Antoniotti C, Cremolini C, Galon J. Light on life: immunoscore immune-checkpoint, a predictor of immunotherapy response. Oncoimmunology 2023; 12:2243169. [PMID: 37554310 PMCID: PMC10405746 DOI: 10.1080/2162402x.2023.2243169] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 08/10/2023] Open
Abstract
In the last decade, a plethora of immunotherapeutic strategies have been designed to modulate the tumor immune microenvironment. In particular, immune checkpoint (IC) blockade therapies present the most promising advances made in cancer treatment in recent years. In non-small cell lung cancer (NSCLC), biomarkers predicting response to IC treatments are currently lacking. We have recently identified Immunoscore-IC, a powerful biomarker that predicts the efficiency of immune-checkpoint inhibitors (ICIs) in NSCLC patients. Immunoscore-IC is an in vitro diagnostic assay that quantifies densities of PD-L1+, CD8+ cells, and distances between CD8+ and PD-L1+ cells in the tumor microenvironment. Immunoscore-IC can classify responder vs non-responder NSCLC patients for ICIs therapy and is revealed as a promising predictive marker of response to anti-PD-1/PD-L1 immunotherapy in these patients. Immunoscore-IC has also shown a significant predictive value, superior to the currently used PD-L1 marker. In colorectal cancer (CRC), the addition of atezolizumab to first-line FOLFOXIRI plus bevacizumab improved progression-free survival (PFS) in patients with previously untreated metastatic CRC. In the AtezoTRIBE trial, Immunoscore-IC emerged as the first biomarker with robust predictive value in stratifying pMMR metastatic CRC patients who critically benefit from checkpoint inhibitors. Thus, Immunoscore-IC could be a universal biomarker to predict response to PD-1/PD-L1 checkpoint inhibitor immunotherapy across multiple cancer indications. Therefore, cancer patient stratification (by Immunoscore-IC), based on the presence of T lymphocytes and PD-L1 potentially provides support for clinicians to guide them through combination cancer treatment decisions.
Collapse
Affiliation(s)
- Assia Hijazi
- INSERM, Laboratory of Integrative Cancer Immunology, Paris, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Paris, France
| | - Carlotta Antoniotti
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Chiara Cremolini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Jérôme Galon
- INSERM, Laboratory of Integrative Cancer Immunology, Paris, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Paris, France
- Veracyte, Marseille, France
| |
Collapse
|
32
|
Ascrizzi S, Arillotta GM, Grillone K, Caridà G, Signorelli S, Ali A, Romeo C, Tassone P, Tagliaferri P. Lynch Syndrome Biopathology and Treatment: The Potential Role of microRNAs in Clinical Practice. Cancers (Basel) 2023; 15:3930. [PMID: 37568746 PMCID: PMC10417124 DOI: 10.3390/cancers15153930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Lynch syndrome (LS), also known as Hereditary Non-Polyposis Colorectal Cancer (HNPCC), is an autosomal dominant cancer syndrome which causes about 2-3% of cases of colorectal carcinoma. The development of LS is due to the genetic and epigenetic inactivation of genes involved in the DNA mismatch repair (MMR) system, causing an epiphenomenon known as microsatellite instability (MSI). Despite the fact that the genetics of the vast majority of MSI-positive (MSI+) cancers can be explained, the etiology of this specific subset is still poorly understood. As a possible new mechanism, it has been recently demonstrated that the overexpression of certain microRNAs (miRNAs, miRs), such as miR-155, miR-21, miR-137, can induce MSI or modulate the expression of the genes involved in LS pathogenesis. MiRNAs are small RNA molecules that regulate gene expression at the post-transcriptional level by playing a critical role in the modulation of key oncogenic pathways. Increasing evidence of the link between MSI and miRNAs in LS prompted a deeper investigation into the miRNome involved in these diseases. In this regard, in this study, we discuss the emerging role of miRNAs as crucial players in the onset and progression of LS as well as their potential use as disease biomarkers and therapeutic targets in the current view of precision medicine.
Collapse
Affiliation(s)
- Serena Ascrizzi
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (S.A.); (G.M.A.); (K.G.); (G.C.); (S.S.); (A.A.); (C.R.); (P.T.)
| | - Grazia Maria Arillotta
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (S.A.); (G.M.A.); (K.G.); (G.C.); (S.S.); (A.A.); (C.R.); (P.T.)
| | - Katia Grillone
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (S.A.); (G.M.A.); (K.G.); (G.C.); (S.S.); (A.A.); (C.R.); (P.T.)
| | - Giulio Caridà
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (S.A.); (G.M.A.); (K.G.); (G.C.); (S.S.); (A.A.); (C.R.); (P.T.)
| | - Stefania Signorelli
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (S.A.); (G.M.A.); (K.G.); (G.C.); (S.S.); (A.A.); (C.R.); (P.T.)
| | - Asad Ali
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (S.A.); (G.M.A.); (K.G.); (G.C.); (S.S.); (A.A.); (C.R.); (P.T.)
| | - Caterina Romeo
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (S.A.); (G.M.A.); (K.G.); (G.C.); (S.S.); (A.A.); (C.R.); (P.T.)
| | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (S.A.); (G.M.A.); (K.G.); (G.C.); (S.S.); (A.A.); (C.R.); (P.T.)
- Medical Oncology and Translational Medical Oncology Units, University Hospital Renato Dulbecco, 88100 Catanzaro, Italy
| | - Pierosandro Tagliaferri
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (S.A.); (G.M.A.); (K.G.); (G.C.); (S.S.); (A.A.); (C.R.); (P.T.)
- Medical Oncology and Translational Medical Oncology Units, University Hospital Renato Dulbecco, 88100 Catanzaro, Italy
| |
Collapse
|
33
|
Vuković Đerfi K, Salar A, Cacev T, Kapitanović S. EMAST Type of Microsatellite Instability-A Distinct Entity or Blurred Overlap between Stable and MSI Tumors. Genes (Basel) 2023; 14:1474. [PMID: 37510378 PMCID: PMC10380056 DOI: 10.3390/genes14071474] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Microsatellite instability (MSI) represents an accumulation of frameshifts in short tandem repeats, microsatellites, across the genome due to defective DNA mismatch repair (dMMR). MSI has been associated with distinct clinical, histological, and molecular features of tumors and has proven its prognostic and therapeutic value in different types of cancer. Recently, another type of microsatellite instability named elevated microsatellite alterations at selected tetranucleotide repeats (EMAST) has been reported across many different tumors. EMAST tumors have been associated with chronic inflammation, higher tumor stage, and poor prognosis. Nevertheless, the clinical significance of EMAST and its relation to MSI remains unclear. It has been proposed that EMAST arises as a result of isolated MSH3 dysfunction or as a secondary event in MSI tumors. Even though previous studies have associated EMAST with MSI-low phenotype in tumors, recent studies show a certain degree of overlap between EMAST and MSI-high tumors. However, even in stable tumors, (MSS) frameshifts in microsatellites can be detected as a purely stochastic event, raising the question of whether EMAST truly represents a distinct type of microsatellite instability. Moreover, a significant fraction of patients with MSI tumors do not respond to immunotherapy and it can be speculated that in these tumors, EMAST might act as a modifying factor.
Collapse
Affiliation(s)
- Kristina Vuković Đerfi
- Laboratory for Personalized Medicine, Division of Molecular Medicine, Rudjer Boskovic Institute, Bijenicka cesta 54, 10000 Zagreb, Croatia
| | - Anamarija Salar
- Laboratory for Personalized Medicine, Division of Molecular Medicine, Rudjer Boskovic Institute, Bijenicka cesta 54, 10000 Zagreb, Croatia
| | - Tamara Cacev
- Laboratory for Personalized Medicine, Division of Molecular Medicine, Rudjer Boskovic Institute, Bijenicka cesta 54, 10000 Zagreb, Croatia
| | - Sanja Kapitanović
- Laboratory for Personalized Medicine, Division of Molecular Medicine, Rudjer Boskovic Institute, Bijenicka cesta 54, 10000 Zagreb, Croatia
| |
Collapse
|
34
|
GUAN HANYANG, WU YUE, LI LU, YANG YABING, QIU SHENGHUI, ZHAO ZHAN, CHU XIAODONG, HE JIASHUAI, CHEN ZUYANG, ZHANG YIRAN, DING HUI, PAN JINGHUA, PAN YUNLONG. Tumor neoantigens: Novel strategies for application of cancer immunotherapy. Oncol Res 2023; 31:437-448. [PMID: 37415744 PMCID: PMC10319592 DOI: 10.32604/or.2023.029924] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/11/2023] [Indexed: 07/08/2023] Open
Abstract
Neoantigen-targeted immunotherapy is a rapidly advancing field that holds great promise for treating cancer. The recognition of antigens by immune cells is a crucial step in tumor-specific killing, and neoantigens generated by mutations in cancer cells possess high immunogenicity and are selectively expressed in tumor cells, making them an attractive therapeutic target. Currently, neoantigens find utility in various domains, primarily in the realm of neoantigen vaccines such as DC vaccines, nucleic acid vaccines, and synthetic long peptide vaccines. Additionally, they hold promise in adoptive cell therapy, encompassing tumor-infiltrating cells, T cell receptors, and chimeric antigen receptors which are expressed by genetically modified T cells. In this review, we summarized recent progress in the clinical use of tumor vaccines and adoptive cell therapy targeting neoantigens, discussed the potential of neoantigen burden as an immune checkpoint in clinical settings. With the aid of state-of-the-art sequencing and bioinformatics technologies, together with significant advancements in artificial intelligence, we anticipated that neoantigens will be fully exploited for personalized tumor immunotherapy, from screening to clinical application.
Collapse
Affiliation(s)
- HANYANG GUAN
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - YUE WU
- Department of Gynecology, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, China
| | - LU LI
- Department of Gastroenterology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - YABING YANG
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - SHENGHUI QIU
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - ZHAN ZHAO
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - XIAODONG CHU
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - JIASHUAI HE
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - ZUYANG CHEN
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - YIRAN ZHANG
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - HUI DING
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - JINGHUA PAN
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - YUNLONG PAN
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| |
Collapse
|
35
|
Pesce E, Cordiglieri C, Bombaci M, Eppenberger-Castori S, Oliveto S, Manara C, Crosti M, Ercan C, Coto M, Gobbini A, Campagnoli S, Donnarumma T, Martinelli M, Bevilacqua V, De Camilli E, Gruarin P, Sarnicola ML, Cassinotti E, Baldari L, Viale G, Biffo S, Abrignani S, Terracciano LM, Grifantini R. TMEM123 a key player in immune surveillance of colorectal cancer. Front Immunol 2023; 14:1194087. [PMID: 37426665 PMCID: PMC10327427 DOI: 10.3389/fimmu.2023.1194087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 05/31/2023] [Indexed: 07/11/2023] Open
Abstract
Colorectal cancer (CRC) is a leading cause of cancer-associated death. In the tumor site, the interplay between effector immune cells and cancer cells determines the balance between tumor elimination or outgrowth. We discovered that the protein TMEM123 is over-expressed in tumour-infiltrating CD4 and CD8 T lymphocytes and it contributes to their effector phenotype. The presence of infiltrating TMEM123+ CD8+ T cells is associated with better overall and metastasis-free survival. TMEM123 localizes in the protrusions of infiltrating T cells, it contributes to lymphocyte migration and cytoskeleton organization. TMEM123 silencing modulates the underlying signaling pathways dependent on the cytoskeletal regulator WASP and the Arp2/3 actin nucleation complex, which are required for synaptic force exertion. Using tumoroid-lymphocyte co-culture assays, we found that lymphocytes form clusters through TMEM123, anchoring to cancer cells and contributing to their killing. We propose an active role for TMEM123 in the anti-cancer activity of T cells within tumour microenvironment.
Collapse
Affiliation(s)
- Elisa Pesce
- Istituto Nazionale Genetica Molecolare (INGM), Padiglione Romeo ed Enrica Invernizzi, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Chiara Cordiglieri
- Istituto Nazionale Genetica Molecolare (INGM), Padiglione Romeo ed Enrica Invernizzi, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Mauro Bombaci
- Istituto Nazionale Genetica Molecolare (INGM), Padiglione Romeo ed Enrica Invernizzi, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Stefania Oliveto
- Istituto Nazionale Genetica Molecolare (INGM), Padiglione Romeo ed Enrica Invernizzi, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Cristina Manara
- Istituto Nazionale Genetica Molecolare (INGM), Padiglione Romeo ed Enrica Invernizzi, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Mariacristina Crosti
- Istituto Nazionale Genetica Molecolare (INGM), Padiglione Romeo ed Enrica Invernizzi, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Caner Ercan
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - Mairene Coto
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - Andrea Gobbini
- Istituto Nazionale Genetica Molecolare (INGM), Padiglione Romeo ed Enrica Invernizzi, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | | | | | | | - Valeria Bevilacqua
- Istituto Nazionale Genetica Molecolare (INGM), Padiglione Romeo ed Enrica Invernizzi, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Elisa De Camilli
- Department of Pathology, European Institute of Oncology, Milan, Italy
| | - Paola Gruarin
- Istituto Nazionale Genetica Molecolare (INGM), Padiglione Romeo ed Enrica Invernizzi, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Maria L. Sarnicola
- Istituto Nazionale Genetica Molecolare (INGM), Padiglione Romeo ed Enrica Invernizzi, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Elisa Cassinotti
- Department of Surgery, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Ludovica Baldari
- Department of Surgery, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Giuseppe Viale
- Department of Pathology, European Institute of Oncology, Milan, Italy
- Department of Oncology and Hemato-oncology, Università degli Studi di Milano, Milan, Italy
| | - Stefano Biffo
- Istituto Nazionale Genetica Molecolare (INGM), Padiglione Romeo ed Enrica Invernizzi, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Sergio Abrignani
- Istituto Nazionale Genetica Molecolare (INGM), Padiglione Romeo ed Enrica Invernizzi, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Luigi M. Terracciano
- IRCCS Humanitas Research Hospital, Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Renata Grifantini
- Istituto Nazionale Genetica Molecolare (INGM), Padiglione Romeo ed Enrica Invernizzi, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
- CheckmAb Srl, Milan, Italy
| |
Collapse
|
36
|
Egan H, Treacy O, Lynch K, Leonard NA, O'Malley G, Reidy E, O'Neill A, Corry SM, De Veirman K, Vanderkerken K, Egan LJ, Ritter T, Hogan AM, Redmond K, Peng L, Che J, Gatlin W, Jayaraman P, Sheehan M, Canney A, Hynes SO, Kerr EM, Dunne PD, O'Dwyer ME, Ryan AE. Targeting stromal cell sialylation reverses T cell-mediated immunosuppression in the tumor microenvironment. Cell Rep 2023; 42:112475. [PMID: 37167967 DOI: 10.1016/j.celrep.2023.112475] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 02/03/2023] [Accepted: 04/19/2023] [Indexed: 05/13/2023] Open
Abstract
Immunosuppressive tumor microenvironments (TMEs) reduce the effectiveness of immune responses in cancer. Mesenchymal stromal cells (MSCs), precursors to cancer-associated fibroblasts (CAFs), promote tumor progression by enhancing immune cell suppression in colorectal cancer (CRC). Hyper-sialylation of glycans promotes immune evasion in cancer through binding of sialic acids to their receptors, Siglecs, expressed on immune cells, which results in inhibition of effector functions. The role of sialylation in shaping MSC/CAF immunosuppression in the TME is not well characterized. In this study, we show that tumor-conditioned stromal cells have increased sialyltransferase expression, α2,3/6-linked sialic acid, and Siglec ligands. Tumor-conditioned stromal cells and CAFs induce exhausted immunomodulatory CD8+ PD1+ and CD8+ Siglec-7+/Siglec-9+ T cell phenotypes. In vivo, targeting stromal cell sialylation reverses stromal cell-mediated immunosuppression, as shown by infiltration of CD25 and granzyme B-expressing CD8+ T cells in the tumor and draining lymph node. Targeting stromal cell sialylation may overcome immunosuppression in the CRC TME.
Collapse
Affiliation(s)
- Hannah Egan
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Lambe Institute for Translational Research, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
| | - Oliver Treacy
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Lambe Institute for Translational Research, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
| | - Kevin Lynch
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Lambe Institute for Translational Research, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
| | - Niamh A Leonard
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Lambe Institute for Translational Research, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
| | - Grace O'Malley
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Lambe Institute for Translational Research, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
| | - Eileen Reidy
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Lambe Institute for Translational Research, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland
| | - Aoise O'Neill
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Lambe Institute for Translational Research, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
| | - Shania M Corry
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Kim De Veirman
- Laboratory for Haematology and Immunology (HEIM), Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Karin Vanderkerken
- Laboratory for Haematology and Immunology (HEIM), Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Laurence J Egan
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Lambe Institute for Translational Research, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
| | - Thomas Ritter
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland
| | - Aisling M Hogan
- Lambe Institute for Translational Research, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Department of Colorectal Surgery, Galway University Hospital, Galway, Ireland
| | - Keara Redmond
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Li Peng
- Palleon Pharmaceuticals, Waltham, MA 02451, USA
| | - Jenny Che
- Palleon Pharmaceuticals, Waltham, MA 02451, USA
| | | | | | - Margaret Sheehan
- Division of Anatomical Pathology, Galway University Hospital, Galway, Ireland
| | - Aoife Canney
- Division of Anatomical Pathology, Galway University Hospital, Galway, Ireland
| | - Sean O Hynes
- Division of Anatomical Pathology, Galway University Hospital, Galway, Ireland; Discipline of Pathology, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
| | - Emma M Kerr
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Philip D Dunne
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK; Cancer Research UK Beatson Institute, Glasgow, UK
| | - Michael E O'Dwyer
- Lambe Institute for Translational Research, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Blood Cancer Network of Ireland (BCNI), Galway, Ireland; Department of Hematology, Galway University Hospital, Galway, Ireland
| | - Aideen E Ryan
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Lambe Institute for Translational Research, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland.
| |
Collapse
|
37
|
Greco L, Rubbino F, Dal Buono A, Laghi L. Microsatellite Instability and Immune Response: From Microenvironment Features to Therapeutic Actionability-Lessons from Colorectal Cancer. Genes (Basel) 2023; 14:1169. [PMID: 37372349 DOI: 10.3390/genes14061169] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Microsatellite instability (MSI) can be found in 15-20% of all colorectal cancers (CRC) and is the key feature of a defective DNA mismatch repair (MMR) system. Currently, MSI has been established as a unique and pivotal biomarker in the diagnosis, prognosis, and treatment of CRC. MSI tumors display a strong lymphocytic activation and a shift toward a tumoral microenvironment restraining metastatic potential and ensuing in a high responsiveness to immunotherapy of MSI CRC. Indeed, neoplastic cells with an MMR defect overexpress several immune checkpoint proteins, such as programmed death-1 (PD-1) and programmed death-ligand 1(PD-L1), that can be pharmacologically targeted, allowing for the revival the cytotoxic immune response toward the tumor. This review aims to illustrate the role of MSI in the tumor biology of colorectal cancer, focusing on the immune interactions with the microenvironment and their therapeutic implications.
Collapse
Affiliation(s)
- Luana Greco
- Laboratory of Molecular Gastroenterology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
| | - Federica Rubbino
- Laboratory of Molecular Gastroenterology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
| | - Arianna Dal Buono
- Division of Gastroenterology, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
| | - Luigi Laghi
- Laboratory of Molecular Gastroenterology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| |
Collapse
|
38
|
Talhouni S, Fadhil W, Mongan NP, Field L, Hunter K, Makhsous S, Maciel-Guerra A, Kaur N, Nestarenkaite A, Laurinavicius A, Willcox BE, Dottorini T, Spendlove I, Jackson AM, Ilyas M, Ramage JM. Activated tissue resident memory T-cells (CD8+CD103+CD39+) uniquely predict survival in left sided "immune-hot" colorectal cancers. Front Immunol 2023; 14:1057292. [PMID: 37251410 PMCID: PMC10213916 DOI: 10.3389/fimmu.2023.1057292] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 04/21/2023] [Indexed: 05/31/2023] Open
Abstract
Introduction Characterization of the tumour immune infiltrate (notably CD8+ T-cells) has strong predictive survival value for cancer patients. Quantification of CD8 T-cells alone cannot determine antigenic experience, as not all infiltrating T-cells recognize tumour antigens. Activated tumour-specific tissue resident memory CD8 T-cells (TRM) can be defined by the co-express of CD103, CD39 and CD8. We investigated the hypothesis that the abundance and localization of TRM provides a higher-resolution route to patient stratification. Methods A comprehensive series of 1000 colorectal cancer (CRC) were arrayed on a tissue microarray, with representative cores from three tumour locations and the adjacent normal mucosa. Using multiplex immunohistochemistry we quantified and determined the localization of TRM. Results Across all patients, activated TRM were an independent predictor of survival, and superior to CD8 alone. Patients with the best survival had immune-hot tumours heavily infiltrated throughout with activated TRM. Interestingly, differences between right- and left-sided tumours were apparent. In left-sided CRC, only the presence of activated TRM (and not CD8 alone) was prognostically significant. Patients with low numbers of activated TRM cells had a poor prognosis even with high CD8 T-cell infiltration. In contrast, in right-sided CRC, high CD8 T-cell infiltration with low numbers of activated TRM was a good prognosis. Conclusion The presence of high intra-tumoural CD8 T-cells alone is not a predictor of survival in left-sided CRC and potentially risks under treatment of patients. Measuring both high tumour-associated TRM and total CD8 T-cells in left-sided disease has the potential to minimize current under-treatment of patients. The challenge will be to design immunotherapies, for left-sided CRC patients with high CD8 T-cells and low activate TRM,that result in effective immune responses and thereby improve patient survival.
Collapse
Affiliation(s)
- Shahd Talhouni
- Cancer Immunology Group, School of Medicine, University of Nottingham Biodiscovery Institute, Nottingham, United Kingdom
- Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Wakkas Fadhil
- Academic Unit of Translational Medical Sciences, School of Medicine, Queens Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Nigel P. Mongan
- School of Veterinary Medicine and Sciences, University of Nottingham Biodiscovery Institute, Nottingham, United Kingdom
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, United States
| | - Lara Field
- Cancer Immunology Group, School of Medicine, University of Nottingham Biodiscovery Institute, Nottingham, United Kingdom
| | - Kelly Hunter
- Birmingham Tissue Analytics, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Sogand Makhsous
- Cancer Immunology Group, School of Medicine, University of Nottingham Biodiscovery Institute, Nottingham, United Kingdom
| | - Alexandre Maciel-Guerra
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, United Kingdom
| | - Nayandeep Kaur
- Cancer Immunology Group, School of Medicine, University of Nottingham Biodiscovery Institute, Nottingham, United Kingdom
| | - Ausrine Nestarenkaite
- Faculty of Medicine, Institute of Biomedical Sciences, Vilnius University, Vilnius, Lithuania
| | - Arvydas Laurinavicius
- Faculty of Medicine, Institute of Biomedical Sciences, Vilnius University, Vilnius, Lithuania
| | - Benjamin E. Willcox
- Birmingham Tissue Analytics, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Tania Dottorini
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, United Kingdom
| | - Ian Spendlove
- Cancer Immunology Group, School of Medicine, University of Nottingham Biodiscovery Institute, Nottingham, United Kingdom
| | - Andrew M. Jackson
- Host-Tumour Interactions Group, School of Medicine, University of Nottingham Biodiscovery Institute, Nottingham, United Kingdom
| | - Mohammad Ilyas
- Academic Unit of Translational Medical Sciences, School of Medicine, Queens Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Judith M. Ramage
- Cancer Immunology Group, School of Medicine, University of Nottingham Biodiscovery Institute, Nottingham, United Kingdom
| |
Collapse
|
39
|
Gögenur M, Balsevicius L, Bulut M, Colak N, Justesen TF, Fiehn AMK, Jensen MB, Høst-Rasmussen K, Cappelen B, Gaggar S, Tajik A, Zahid JA, Bennedsen ALB, D'Ondes TDB, Raskov H, Sækmose SG, Hansen LB, Salanti A, Brix S, Gögenur I. Neoadjuvant intratumoral influenza vaccine treatment in patients with proficient mismatch repair colorectal cancer leads to increased tumor infiltration of CD8+ T cells and upregulation of PD-L1: a phase 1/2 clinical trial. J Immunother Cancer 2023; 11:jitc-2023-006774. [PMID: 37172969 DOI: 10.1136/jitc-2023-006774] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND In colorectal cancer, the effects of immune checkpoint inhibitors are mostly limited to patients with deficient mismatch repair tumors, characterized by a high grade infiltration of CD8+T cells. Interventions aimed at increasing intratumoral CD8+T-cell infiltration in proficient mismatch repair tumors are lacking. METHODS We conducted a proof of concept phase 1/2 clinical trial, where patients with non-metastasizing sigmoid or rectal cancer, scheduled for curative intended surgery, were treated with an endoscopic intratumorally administered neoadjuvant influenza vaccine. Blood and tumor samples were collected before the injection and at the time of surgery. The primary outcome was safety of the intervention. Evaluation of pathological tumor regression grade, immunohistochemistry, flow cytometry of blood, tissue bulk transcriptional analyses, and spatial protein profiling of tumor regions were all secondary outcomes. RESULTS A total of 10 patients were included in the trial. Median patient age was 70 years (range 54-78), with 30% women. All patients had proficient mismatch repair Union of International Cancer Control stage I-III tumors. No endoscopic safety events occurred, with all patients undergoing curative surgery as scheduled (median 9 days after intervention). Increased CD8+T-cell tumor infiltration was evident after vaccination (median 73 vs 315 cells/mm2, p<0.05), along with significant downregulation of messenger RNA gene expression related to neutrophils and upregulation of transcripts encoding cytotoxic functions. Spatial protein analysis showed significant local upregulation of programmed death-ligand 1 (PD-L1) (adjusted p value<0.05) and downregulation of FOXP3 (adjusted p value<0.05). CONCLUSIONS Neoadjuvant intratumoral influenza vaccine treatment in this cohort was demonstrated to be safe and feasible, and to induce CD8+T-cell infiltration and upregulation of PD-L1 proficient mismatch repair sigmoid and rectal tumors. Definitive conclusions regarding safety and efficacy can only be made in larger cohorts. TRIAL REGISTRATION NUMBER NCT04591379.
Collapse
Affiliation(s)
- Mikail Gögenur
- Center for Surgical Science, Department of Surgery, Zealand University Hospital Koge, Koge, Denmark
| | - Lukas Balsevicius
- Center for Surgical Science, Department of Surgery, Zealand University Hospital Koge, Koge, Denmark
| | - Mustafa Bulut
- Center for Surgical Science, Department of Surgery, Zealand University Hospital Koge, Koge, Denmark
- Department of Clinical Medicine, University of Copenhagen, Kobenhavn, Denmark
| | - Nesibe Colak
- Center for Surgical Science, Department of Surgery, Zealand University Hospital Koge, Koge, Denmark
| | - Tobias Freyberg Justesen
- Center for Surgical Science, Department of Surgery, Zealand University Hospital Koge, Koge, Denmark
| | - Anne-Marie Kanstrup Fiehn
- Department of Clinical Medicine, University of Copenhagen, Kobenhavn, Denmark
- Department of Pathology, Zealand University Hospital Roskilde, Roskilde, Denmark
| | | | - Kathrine Høst-Rasmussen
- Center for Surgical Science, Department of Surgery, Zealand University Hospital Koge, Koge, Denmark
| | - Britt Cappelen
- Center for Surgical Science, Department of Surgery, Zealand University Hospital Koge, Koge, Denmark
| | - Shruti Gaggar
- Center for Surgical Science, Department of Surgery, Zealand University Hospital Koge, Koge, Denmark
| | - Asma Tajik
- Center for Surgical Science, Department of Surgery, Zealand University Hospital Koge, Koge, Denmark
| | - Jawad Ahmad Zahid
- Center for Surgical Science, Department of Surgery, Zealand University Hospital Koge, Koge, Denmark
| | | | - Tommaso Del Buono D'Ondes
- Center for Surgical Science, Department of Surgery, Zealand University Hospital Koge, Koge, Denmark
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Hans Raskov
- Center for Surgical Science, Department of Surgery, Zealand University Hospital Koge, Koge, Denmark
| | | | | | - Ali Salanti
- Department of Infectious Diseases, Copenhagen University Hospital, Kobenhavn, Denmark
| | - Susanne Brix
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Ismail Gögenur
- Center for Surgical Science, Department of Surgery, Zealand University Hospital Koge, Koge, Denmark
- Department of Clinical Medicine, University of Copenhagen, Kobenhavn, Denmark
| |
Collapse
|
40
|
Li Z, Zhang J, Zhong Q, Feng Z, Shi Y, Xu L, Zhang R, Yu F, Lv B, Yang T, Huang C, Cui F, Chen F. Development and external validation of a multiparametric MRI-based radiomics model for preoperative prediction of microsatellite instability status in rectal cancer: a retrospective multicenter study. Eur Radiol 2023; 33:1835-1843. [PMID: 36282309 DOI: 10.1007/s00330-022-09160-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/27/2022] [Accepted: 08/29/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVES To establish and validate a radiomics model based on multiparametric magnetic resonance imaging (MRI), and to predict microsatellite instability (MSI) status in rectal cancer patients. METHODS A total of 199 patients with pathologically confirmed rectal cancer were included. The MSI status was confirmed by immunohistochemistry (IHC) staining. Clinical factors and laboratory data associated with MSI status were analyzed. The imaging data of 100 patients from one of the hospitals were used as the training set. The remaining 99 patients from the other two hospitals were used as the external validation set. The regions of interest (ROIs) were delineated from T1-weighted imaging (T1WI), T2-weighted imaging (T2WI), diffusion-weighted imaging (DWI), and contrast-enhanced T1WI (CE-T1WI) sequence to extract the radiomics features. The Tree-based approach was used for feature selection. The models were constructed based on the four single sequences and a combination of the four sequences using the random forest (RF) algorithm. The external validation set was used to verify the generalization ability of each model. The receiver operating characteristic (ROC) curves and the area under the curve (AUC) were plotted to evaluate and compare the predictive performance of each model. RESULTS In the four single-series models, the CE-T1WI model performed the best. The AUCs of the T1WI, T2WI, DWI, and CE-T1WI prediction models in the training set were 0.74, 0.71, 0.71, and 0.78, respectively, while in the external validation set, the corresponding AUCs were 0.67, 0.66, 0.70, and 0.77. The prediction and generalization performance of the combined model of multi-sequences was comparable to that of the CE-T1WI model and it was better than that of the remaining three single-series models, with AUC values of 0.78 and 0.78 in the training and validation sets, respectively. CONCLUSION The established radiomics models based on CE-T1WI or multiparametric MRI have similar predictive performance. They have the potential to predict MSI status in rectal cancer patients. KEY POINTS • A radiomics model for the prediction of MSI status in patients with rectal cancer was established and validated using external validation. • The models based on CE-T1WI or multiparametric MRI have better predictive performance than those based on single unenhanced sequence images. • The radiomics model has the potential to suggest MSI status in rectal cancer patients; however, it is not yet a substitute for histological confirmation.
Collapse
Affiliation(s)
- Zhi Li
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jing Zhang
- Department of Radiology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi Zhong
- Department of Radiology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Zhan Feng
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yushu Shi
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ligong Xu
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Rui Zhang
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Fang Yu
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Biao Lv
- Department of Radiology, The 903 Hospital of Joint Logistics Support Force of PLA, Hangzhou, Zhejiang, China
| | - Tian Yang
- Department of Radiology, Shulan (Hangzhou) Hospital, Hangzhou, Zhejiang, China
| | - Chencui Huang
- Department of Research Collaboration, R&D Center, Beijing Deepwise & League of PHD Technology Co., Ltd, Beijing, China
| | - Feng Cui
- Department of Radiology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Feng Chen
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
41
|
Plewa N, Poncette L, Blankenstein T. Generation of TGFβR2(-1) neoantigen-specific HLA-DR4-restricted T cell receptors for cancer therapy. J Immunother Cancer 2023; 11:jitc-2022-006001. [PMID: 36822673 PMCID: PMC9950979 DOI: 10.1136/jitc-2022-006001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
BACKGROUND Adoptive transfer of patient's T cells, engineered to express a T cell receptor (TCR) with defined novel antigen specificity, is a convenient form of cancer therapy. In most cases, major histocompatibility complex (MHC) I-restricted TCRs are expressed in CD8+ T cells and the development of CD4+ T cells engineered to express an MHC II-restricted TCR lacks behind. Critical is the choice of the target antigen, whether the epitope is efficiently processed and binds with high affinity to MHC molecules. A mutation in the transforming growth factor β receptor 2 (TGFβR2(-1)) gene creates a frameshift peptide caused by the deletion of one adenine (-1) within a microsatellite sequence. This somatic mutation is recurrent in microsatellite instable colorectal and gastric cancers and, therefore, is a truly tumor-specific antigen detected in many patients. METHODS ABabDR4 mice, which express a diverse human TCR repertoire restricted to human MHC II molecule HLA-DRA/DRB1*0401 (HLA-DR4), were immunized with the TGFβR2(-1) peptide and TGFβR2(-1)-specific TCRs were isolated from responding CD4+ T cells. The TGFβR2(-1)-specific TCRs were expressed in human CD4+ T cells and their potency and safety profile were assessed by co-cultures and other functional assays. RESULTS We demonstrated that TGFβR2(-1) neoantigen is immunogenic and elicited CD4+ T cell responses in ABabDR4 mice. When expressed in human CD4+ T cells, the HLA-DR4 restricted TGFβR2(-1)-specific TCRs induced IFNy expression at low TGFβR2(-1) peptide amounts. The TGFβR2(-1)-specific TCRs recognized HLA-DR4+ lymphoblastoid cells, which endogenously processed and presented the neoantigen, and colorectal cancer cell lines SW48 and HCT116 naturally expressing the TGFβR2(-1) mutation. No MHC II alloreactivity or cross-reactivity to peptides with a similar TCR-recognition motif were observed, indicating the safety of the TCRs. CONCLUSIONS The data suggest that HLA-DR4-restricted TCRs specific for the TGFβR2(-1) recurrent neoantigen can be valuable candidates for adoptive T cell therapy of a sizeable number of patients with cancer.
Collapse
Affiliation(s)
- Natalia Plewa
- Max Delbruck Centre for Molecular Medicine, Berlin, Germany
| | - Lucia Poncette
- Max Delbruck Centre for Molecular Medicine, Berlin, Germany
| | | |
Collapse
|
42
|
Wang Q, Shen X, Chen G, Du J. How to overcome resistance to immune checkpoint inhibitors in colorectal cancer: From mechanisms to translation. Int J Cancer 2023. [PMID: 36752642 DOI: 10.1002/ijc.34464] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 01/14/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023]
Abstract
Immunotherapy, especially with immune checkpoint inhibitors (ICIs), has shown advantages in cancer treatment and is a new hope for patients who have failed multiline therapy. However, in colorectal cancer (CRC), the benefit is limited to a small subset of patients with microsatellite instability-high (MSI-H) or mismatch repair-deficient (dMMR) metastatic CRC (mCRC). In addition, 45% to 60% of dMMR/MSI-H mCRC patients showed primary or acquired resistance to ICIs. This means that these patients may have potential unknown pathways mediating immune escape. Almost all mismatch repair-proficient (pMMR) or microsatellite-stable (MSS) mCRC patients do not benefit from ICIs. In this review, we discuss the mechanisms of action of ICIs and their current status in CRC. We then discuss the mechanisms of primary and acquired resistance to ICIs in CRC. Finally, we discuss promising therapeutic strategies to overcome resistance to ICIs in the clinic.
Collapse
Affiliation(s)
- Qianyu Wang
- Medical Department of General Surgery, The 1st Medical Center, Chinese PLA General Hospital, Beijing, China.,The Second School of Clinical Medicine, Shanxi Medical University, Taiyuan, China
| | - Xiaofei Shen
- Department of General Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Gang Chen
- Medical Department of General Surgery, The 1st Medical Center, Chinese PLA General Hospital, Beijing, China.,Department of General Surgery, The 7th Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Junfeng Du
- Medical Department of General Surgery, The 1st Medical Center, Chinese PLA General Hospital, Beijing, China.,Department of General Surgery, The 7th Medical Center, Chinese PLA General Hospital, Beijing, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
43
|
Challenges and Therapeutic Opportunities in the dMMR/MSI-H Colorectal Cancer Landscape. Cancers (Basel) 2023; 15:cancers15041022. [PMID: 36831367 PMCID: PMC9954007 DOI: 10.3390/cancers15041022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
About 5 to 15% of all colorectal cancers harbor mismatch repair deficient/microsatellite instability-high status (dMMR/MSI-H) that associates with high tumor mutation burden and increased immunogenicity. As a result, and in contrast to other colorectal cancer phenotypes, a significant subset of dMMR/MSI-H cancer patients strongly benefit from immunotherapy. Yet, a large proportion of these tumors remain unresponsive to any immuno-modulating treatment. For this reason, current efforts are focused on the characterization of resistance mechanisms and the identification of predictive biomarkers to guide therapeutic decision-making. Here, we provide an overview on the new advances related to the diagnosis and definition of dMMR/MSI-H status and focus on the distinct clinical, functional, and molecular cues that associate with dMMR/MSI-H colorectal cancer. We review the development of novel predictive factors of response or resistance to immunotherapy and their potential application in the clinical setting. Finally, we discuss current and emerging strategies applied to the treatment of localized and metastatic dMMR/MSI-H colorectal tumors in the neoadjuvant and adjuvant setting.
Collapse
|
44
|
Immunogenomic Biomarkers and Validation in Lynch Syndrome. Cells 2023; 12:cells12030491. [PMID: 36766832 PMCID: PMC9914748 DOI: 10.3390/cells12030491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/15/2023] [Accepted: 01/22/2023] [Indexed: 02/05/2023] Open
Abstract
Lynch syndrome (LS) is an inherited disorder in which affected individuals have a significantly higher-than-average risk of developing colorectal and non-colorectal cancers, often before the age of 50 years. In LS, mutations in DNA repair genes lead to a dysfunctional post-replication repair system. As a result, the unrepaired errors in coding regions of the genome produce novel proteins, called neoantigens. Neoantigens are recognised by the immune system as foreign and trigger an immune response. Due to the invasive nature of cancer screening tests, universal cancer screening guidelines unique for LS (primarily colonoscopy) are poorly adhered to by LS variant heterozygotes (LSVH). Currently, it is unclear whether immunogenomic components produced as a result of neoantigen formation can be used as novel biomarkers in LS. We hypothesise that: (i) LSVH produce measurable and dynamic immunogenomic components in blood, and (ii) these quantifiable immunogenomic components correlate with cancer onset and stage. Here, we discuss the feasibility to: (a) identify personalised novel immunogenomic biomarkers and (b) validate these biomarkers in various clinical scenarios in LSVH.
Collapse
|
45
|
Neoantigens: promising targets for cancer therapy. Signal Transduct Target Ther 2023; 8:9. [PMID: 36604431 PMCID: PMC9816309 DOI: 10.1038/s41392-022-01270-x] [Citation(s) in RCA: 404] [Impact Index Per Article: 202.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/14/2022] [Accepted: 11/27/2022] [Indexed: 01/07/2023] Open
Abstract
Recent advances in neoantigen research have accelerated the development and regulatory approval of tumor immunotherapies, including cancer vaccines, adoptive cell therapy and antibody-based therapies, especially for solid tumors. Neoantigens are newly formed antigens generated by tumor cells as a result of various tumor-specific alterations, such as genomic mutation, dysregulated RNA splicing, disordered post-translational modification, and integrated viral open reading frames. Neoantigens are recognized as non-self and trigger an immune response that is not subject to central and peripheral tolerance. The quick identification and prediction of tumor-specific neoantigens have been made possible by the advanced development of next-generation sequencing and bioinformatic technologies. Compared to tumor-associated antigens, the highly immunogenic and tumor-specific neoantigens provide emerging targets for personalized cancer immunotherapies, and serve as prospective predictors for tumor survival prognosis and immune checkpoint blockade responses. The development of cancer therapies will be aided by understanding the mechanism underlying neoantigen-induced anti-tumor immune response and by streamlining the process of neoantigen-based immunotherapies. This review provides an overview on the identification and characterization of neoantigens and outlines the clinical applications of prospective immunotherapeutic strategies based on neoantigens. We also explore their current status, inherent challenges, and clinical translation potential.
Collapse
|
46
|
Nasca V, Barretta F, Corti F, Lonardi S, Niger M, Elez ME, Fakih M, Jayachandran P, Shah AT, Salati M, Fenocchio E, Salvatore L, Cremolini C, Ros J, Ambrosini M, Mazzoli G, Intini R, Overman MJ, Miceli R, Pietrantonio F. Association of immune-related adverse events with the outcomes of immune checkpoint inhibitors in patients with dMMR/MSI-H metastatic colorectal cancer. J Immunother Cancer 2023; 11:jitc-2022-005493. [PMID: 36593068 PMCID: PMC9809233 DOI: 10.1136/jitc-2022-005493] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2022] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) show a tremendous activity in microsatellite instability-high (MSI-H) metastatic colorectal cancer (mCRC), but a consistent fraction of patients does not respond. Prognostic/predictive markers are needed. Despite previous investigations in other tumor types, immune-related adverse events (irAEs) have not been well evaluated in patients with MSI-H cancers treated with ICIs. METHODS We conducted an international cohort study at tertiary cancer centers collecting clinic-pathological features from 331 patients with MSI-H mCRC treated with ICIs. Of note, the irAEs were summarized using a 'burden score' constructed in a way that the same score value could be obtained by cumulating many low-grade irAEs or few high-grade irAEs; as a result, the lower the burden the better. Clearly, the irAE burden is not a baseline information, thus it was modeled as a time-dependent variable in univariable and multivariable Cox models. RESULTS Among 331 patients, irAEs were reported in 144 (43.5%) patients. After a median follow-up time of 29.7 months, patients with higher burden of skin, endocrine and musculoskeletal irAEs (the latter two's effect was confirmed at multivariable analysis) had longer overall survival (OS), as opposed to gastrointestinal, pneumonitis, neurological, liver, renal and other irAEs, which showed an harmful effect. Similar results were observed for progression-free survival (PFS). Based on the results retrieved from organ-specific irAEs, 'aggregated' burden scores were developed to distinguish 'protective' (endocrine and musculoskeletal) and 'harmful' (gastrointestinal, pneumonitis, neurological, hepatic) irAEs showing prognostic effects on OS and PFS. CONCLUSIONS Our results demonstrate that not all irAEs could exert a protective effect on oncologic outcome. An easy-to-use model for ICIs toxicity (burden score of protective and harmful irAEs) may be used as surrogate marker of response.
Collapse
Affiliation(s)
- Vincenzo Nasca
- Department of Medical Oncology, IRCCS Fondazione Istituto Nazionale dei Tumori, Milano, Italy
| | - Francesco Barretta
- Unit of Clinical Epidemiology and Trial Organization, IRCCS Fondazione Istituto Nazionale dei Tumori, Milano, Italy
| | - Francesca Corti
- Department of Medical Oncology, IRCCS Fondazione Istituto Nazionale dei Tumori, Milano, Italy
| | - Sara Lonardi
- Department of Medical Oncology, Istituto Oncologico Veneto Istituto di Ricovero e Cura a Carattere Scientifico, Padua, Italy
| | - Monica Niger
- Department of Medical Oncology, IRCCS Fondazione Istituto Nazionale dei Tumori, Milano, Italy
| | - Maria Elena Elez
- Medical Oncology Department, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Marwan Fakih
- Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center Duarte, Duarte, California, USA
| | - Priya Jayachandran
- Oncology, University of Southern California, Los Angeles, California, USA
| | | | | | - Elisabetta Fenocchio
- Multidisciplinary Outpatient Oncology Clinic, Candiolo Cancer Institute, Candiolo, Italy
| | - Lisa Salvatore
- Oncologia Medica, Università Cattolica del Sacro Cuore, Roma, Italy
- Cancer Comprehensive Center, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, Roma, Italy
| | - Chiara Cremolini
- Unit of Medical Oncology 2, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy
| | - Javier Ros
- Medical Oncology, Vall d'Hebron Institute of Oncology, Barcelona, Spain
- Hospital Vall Hebron, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Margherita Ambrosini
- Department of Medical Oncology, IRCCS Fondazione Istituto Nazionale dei Tumori, Milano, Italy
| | - Giacomo Mazzoli
- Department of Medical Oncology, IRCCS Fondazione Istituto Nazionale dei Tumori, Milano, Italy
| | - Rossana Intini
- Department of Oncology, IRCCS Istituto Oncologico Veneto, Padova, Italy
| | - Michael J Overman
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Rosalba Miceli
- Unit of Clinical Epidemiology and Trial Organization, IRCCS Fondazione Istituto Nazionale dei Tumori, Milano, Italy
| | - Filippo Pietrantonio
- Department of Medical Oncology, IRCCS Fondazione Istituto Nazionale dei Tumori, Milano, Italy
| |
Collapse
|
47
|
Xiao BY, Zhang X, Cao TY, Li DD, Jiang W, Kong LH, Tang JH, Han K, Zhang CZ, Mei WJ, Xiao J, Pan ZZ, Li YF, Zhang XS, Ding PR. Neoadjuvant Immunotherapy Leads to Major Response and Low Recurrence in Localized Mismatch Repair-Deficient Colorectal Cancer. J Natl Compr Canc Netw 2023; 21:60-66.e5. [PMID: 36630898 DOI: 10.6004/jnccn.2022.7060] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 08/01/2022] [Indexed: 01/13/2023]
Abstract
BACKGROUND Our study aimed to evaluate the efficacy and feasibility of neoadjuvant anti-PD-1 treatment for localized mismatch repair-deficient (dMMR) colorectal cancer (CRC). PATIENTS AND METHODS The study cohort included patients with localized dMMR CRC who received PD-1 inhibitors as neoadjuvant therapy from 3 medical centers in Southern China. Main eligibility criteria included age between 18 and 75 years, ECOG performance status of 0 or 1, and receipt of ≥2 doses of PD-1 inhibitors. RESULTS A total of 73 patients were included. Most of the tumors were locally advanced, including 19 (26.0%) T4a and 29 (39.7%) T4b. Most patients (79.5%) received PD-1 inhibitor monotherapy. Objective response per radiologic assessment was achieved in 62 (84.9%) patients, including 17 (23.3%) with complete response (CR) and 45 (61.6%) with partial response, with a median time to response of 9.6 weeks. Patients with T4a/4b disease had a similar response rate as those with T2-3 disease (84.0% vs 85.4%; P=.999). As of writing, a total of 50 patients have undergone surgery. Pathologic CR was achieved in most (57.1%) patients and remained high (59.5%) even among the 38 patients with T4a/4b disease. The 17 patients with CR did not undergo surgery and adopted a watch-and-wait strategy. After a median follow-up of 17.2 months (range, 3.4-45.1 months), the overall median recurrence-free and overall survivals were not reached. Among patients undergoing surgery or achieving CR, the 2-year tumor-specific disease-free and overall survival rates were both 100%. During neoadjuvant treatment, grade 3-4 adverse events occurred in 8 patients; 4 required acute intervention. Severe postoperative complications were recorded in 4 patients, 3 of whom required a second surgery. CONCLUSIONS Neoadjuvant therapy with PD-1 blockade is highly effective for localized dMMR CRC, with an acceptable safety profile and low recurrence rate. This treatment holds promise for becoming the new standard of care for localized dMMR CRCs.
Collapse
Affiliation(s)
- Bin-Yi Xiao
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Xuan Zhang
- Department of Colorectal Surgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Guangzhou, China
| | - Tai-Yuan Cao
- Department of Medical Oncology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Dan-Dan Li
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Wu Jiang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Ling-Heng Kong
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Jing-Hua Tang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Kai Han
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Chen-Zhi Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Wei-Jian Mei
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Jian Xiao
- Department of Medical Oncology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhi-Zhong Pan
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Yun-Feng Li
- Department of Colorectal Surgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Guangzhou, China
| | - Xiao-Shi Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Pei-Rong Ding
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| |
Collapse
|
48
|
Flecchia C, Zaanan A, Lahlou W, Basile D, Broudin C, Gallois C, Pilla L, Karoui M, Manceau G, Taieb J. MSI colorectal cancer, all you need to know. Clin Res Hepatol Gastroenterol 2022; 46:101983. [PMID: 35732266 DOI: 10.1016/j.clinre.2022.101983] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/18/2022] [Indexed: 02/04/2023]
Abstract
Colorectal cancer management has been dramatically impacted by molecular profiling these last years. Among these molecular subgroups, patients with microsatellite instability (MSI) are of particular interest, owing to the prognostic and predictive value of this tumor biomarker. This review article explains the molecular abnormalities underlying MSI phenotype and the consequences of such molecular abnormalities on carcinogenesis, genetic instability and immune infiltration. It details the diagnostic methods for identifying MSI colorectal cancer patients and describes how the prognostic and theranostic values of this marker are impacting treatment decision-making for these patients in 2022.
Collapse
Affiliation(s)
- Clémence Flecchia
- Department of Gastroenterology and Digestive Oncology, European Georges Pompidou Hospital, AP-HP, Paris-Cité University, Paris, France
| | - Aziz Zaanan
- Department of Gastroenterology and Digestive Oncology, European Georges Pompidou Hospital, AP-HP, Paris-Cité University, Paris, France
| | - Widad Lahlou
- Department of Gastroenterology and Digestive Oncology, European Georges Pompidou Hospital, AP-HP, Paris-Cité University, Paris, France
| | - Debora Basile
- Department of Oncology, San Bortolo General Hospital, AULSS8 Berica, Vicenza, Italy
| | - Chloé Broudin
- Department of Pathology, European Georges Pompidou Hospital, AP-HP, Paris, France
| | - Claire Gallois
- Department of Gastroenterology and Digestive Oncology, European Georges Pompidou Hospital, AP-HP, Paris-Cité University, Paris, France
| | - Lorenzo Pilla
- Department of Gastroenterology and Digestive Oncology, European Georges Pompidou Hospital, AP-HP, Paris-Cité University, Paris, France
| | - Mehdi Karoui
- Department of Surgery, European Georges Pompidou Hospital, AP-HP, Paris, France
| | - Gilles Manceau
- Department of Surgery, European Georges Pompidou Hospital, AP-HP, Paris, France
| | - Julien Taieb
- Department of Gastroenterology and Digestive Oncology, European Georges Pompidou Hospital, AP-HP, Paris-Cité University, Paris, France.
| |
Collapse
|
49
|
Zheng X, Ma Y, Bai Y, Huang T, Lv X, Deng J, Wang Z, Lian W, Tong Y, Zhang X, Yue M, Zhang Y, Li L, Peng M. Identification and validation of immunotherapy for four novel clusters of colorectal cancer based on the tumor microenvironment. Front Immunol 2022; 13:984480. [PMID: 36389763 PMCID: PMC9650243 DOI: 10.3389/fimmu.2022.984480] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 10/07/2022] [Indexed: 12/24/2022] Open
Abstract
The incidence and mortality of colorectal cancer (CRC) are increasing year by year. The accurate classification of CRC can realize the purpose of personalized and precise treatment for patients. The tumor microenvironment (TME) plays an important role in the malignant progression and immunotherapy of CRC. An in-depth understanding of the clusters based on the TME is of great significance for the discovery of new therapeutic targets for CRC. We extracted data on CRC, including gene expression profile, DNA methylation array, somatic mutations, clinicopathological information, and copy number variation (CNV), from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO) (four datasets-GSE14333, GSE17538, GSE38832, and GSE39582), cBioPortal, and FireBrowse. The MCPcounter was utilized to quantify the abundance of 10 TME cells for CRC samples. Cluster repetitive analysis was based on the Hcluster function of the Pheatmap package in R. The ESTIMATE package was applied to compute immune and stromal scores for CRC patients. PCA analysis was used to remove batch effects among different datasets and transform genome-wide DNA methylation profiling into methylation of tumor-infiltrating lymphocyte (MeTIL). We evaluated the mutation differences of the clusters using MOVICS, DeconstructSigs, and GISTIC packages. As for therapy, TIDE and SubMap analyses were carried out to forecast the immunotherapy response of the clusters, and chemotherapeutic sensibility was estimated based on the pRRophetic package. All results were verified in the TCGA and GEO data. Four immune clusters (ImmClust-CS1, ImmClust-CS2, ImmClust-CS3, and ImmClust-CS4) were identified for CRC. The four ImmClusts exhibited distinct TME compositions, cancer-associated fibroblasts (CAFs), functional orientation, and immune checkpoints. The highest immune, stromal, and MeTIL scores were observed in CS2, in contrast to the lowest scores in CS4. CS1 may respond to immunotherapy, while CS2 may respond to immunotherapy after anti-CAFs. Among the four ImmClusts, the top 15 markers with the highest mutation frequency were acquired, and CS1 had significantly lower CNA on the focal level than other subtypes. In addition, CS1 and CS2 patients had more stable chromosomes than CS3 and CS4. The most sensitive chemotherapeutic agents in these four ImmClusts were also found. IHC results revealed that CD29 stained significantly darker in the cancer samples, indicating that their CD29 was highly expressed in colon cancer. This work revealed the novel clusters based on TME for CRC, which would guide in predicting the prognosis, biological features, and appropriate treatment for patients with CRC.
Collapse
Affiliation(s)
- Xiaoyong Zheng
- Department of Digestion, Henan Provincial Third People’s Hospital, Zhengzhou, China
| | - Yajie Ma
- Department of Medical Affair, Henan Provincial Third People’s Hospital, Zhengzhou, China
| | - Yan Bai
- Department of Digestion, Zhengzhou First People’s Hospital, Zhengzhou, China
| | - Tao Huang
- Medical School, Huanghe Science and Technology University, Zhengzhou, China
| | - Xuefeng Lv
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jinhai Deng
- Richard Dimbleby Department of Cancer Research, Comprehensive Cancer Centre, Kings College London, London, United Kingdom
| | - Zhongquan Wang
- Department of Clinical Laboratory, Henan Provincial Third People’s Hospital, Zhengzhou, China
| | - Wenping Lian
- Department of Clinical Laboratory, Henan Provincial Third People’s Hospital, Zhengzhou, China
| | - Yalin Tong
- Department of Digestion, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinyu Zhang
- Department of Medical Affair, Henan Provincial Third People’s Hospital, Zhengzhou, China
| | - Miaomiao Yue
- Department of Digestion, Henan Provincial Third People’s Hospital, Zhengzhou, China
| | - Yan Zhang
- Department of Digestion, Henan Provincial Third People’s Hospital, Zhengzhou, China
| | - Lifeng Li
- Medical School, Huanghe Science and Technology University, Zhengzhou, China
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Internet Medical and System Applications of National Engineering Laboratory, Zhengzhou, China
| | - Mengle Peng
- Department of Clinical Laboratory, Henan Provincial Third People’s Hospital, Zhengzhou, China
| |
Collapse
|
50
|
Nagel R, Pataskar A, Champagne J, Agami R. Boosting Antitumor Immunity with an Expanded Neoepitope Landscape. Cancer Res 2022; 82:3637-3649. [PMID: 35904353 PMCID: PMC9574376 DOI: 10.1158/0008-5472.can-22-1525] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/07/2022] [Accepted: 07/21/2022] [Indexed: 01/07/2023]
Abstract
Immune-checkpoint blockade therapy has been successfully applied to many cancers, particularly tumors that harbor a high mutational burden and consequently express a high abundance of neoantigens. However, novel approaches are needed to improve the efficacy of immunotherapy for treating tumors that lack a high load of classic genetically derived neoantigens. Recent discoveries of broad classes of nongenetically encoded and inducible neoepitopes open up new avenues for therapeutic development to enhance sensitivity to immunotherapies. In this review, we discuss recent work on neoantigen discovery, with an emphasis on novel classes of noncanonical neoepitopes.
Collapse
Affiliation(s)
- Remco Nagel
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Abhijeet Pataskar
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Julien Champagne
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Reuven Agami
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Erasmus MC, Rotterdam University, Rotterdam, the Netherlands
| |
Collapse
|