1
|
Tan H, Cai M, Wang J, Yu T, Xia H, Zhao H, Zhang X. Harnessing Macrophages in Cancer Therapy: from Immune Modulators to Therapeutic Targets. Int J Biol Sci 2025; 21:2235-2257. [PMID: 40083710 PMCID: PMC11900799 DOI: 10.7150/ijbs.106275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 02/14/2025] [Indexed: 03/16/2025] Open
Abstract
Macrophages, as the predominant phagocytes, play an essential role in pathogens defense and tissue homeostasis maintenance. In the context of cancer, tumor-associated macrophages (TAMs) have evolved into cunning actors involved in angiogenesis, cancer cell proliferation and metastasis, as well as the construction of immunosuppressive microenvironment. Once properly activated, macrophages can kill tumor cells directly through phagocytosis or attack tumor cells indirectly by stimulating innate and adaptive immunity. Thus, the prospect of targeting TAMs has sparked significant interest and emerged as a promising strategy in immunotherapy. In this review, we summarize the diverse roles and underlying mechanisms of TAMs in cancer development and immunity and highlight the TAM-based therapeutic strategies such as inhibiting macrophage recruitment, inhibiting the differentiation reprogramming of TAMs, blocking phagocytotic checkpoints, inducing trained macrophages, as well as the potential of engineered CAR-armed macrophages in cancer therapy.
Collapse
Affiliation(s)
- Huabing Tan
- Department of Infectious Diseases, Hepatology Institute, Renmin Hospital, Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan, Hubei Province, China
- General internal medicine, Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Meihe Cai
- Department of Traditional Chinese Medicine, Zhushan Renmin Hospital, Zhushan, 442200, China
| | | | - Tao Yu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Houjun Xia
- Center for Cancer Immunology, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Huanbin Zhao
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Present: Division of Pharmaceutical Sciences, Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xiaoyu Zhang
- Department of Gastrointestinal Surgery, Huai'an Second People's Hospital, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| |
Collapse
|
2
|
Kurnit KC, Odunsi K. Harnessing Antitumor Immunity in Ovarian Cancer. Cold Spring Harb Perspect Med 2024; 14:a041336. [PMID: 38621830 PMCID: PMC11610759 DOI: 10.1101/cshperspect.a041336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Despite progress in other tumor types, immunotherapy is not yet part of the standard of care treatment for high-grade serous ovarian cancer patients. Although tumor infiltration by T cells is frequently observed in patients with ovarian cancer, clinical responses to immunotherapy remain low. Mechanisms for immune resistance in ovarian cancer have been explored and may provide insight into future approaches to improve response to immunotherapy agents. In this review, we discuss what is known about the immune landscape in ovarian cancer, review the available data for immunotherapy-based strategies in these patients, and provide possible future directions.
Collapse
Affiliation(s)
- Katherine C Kurnit
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, Illinois 60637, USA
| | - Kunle Odunsi
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, Illinois 60637, USA
- University of Chicago Medicine Comprehensive Cancer Center, Chicago, Illinois 60637, USA
| |
Collapse
|
3
|
Domenici G, Lopes NF, Trindade G, Ramella Gal I, Miret Minard J, Rebelo SP, Freitas C, Duarte N, Brito C. Assessing Novel Antibody-Based Therapies in Reconstructive 3D Cell Models of the Tumor Microenvironment. Adv Biol (Weinh) 2024; 8:e2400431. [PMID: 39601467 DOI: 10.1002/adbi.202400431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/21/2024] [Indexed: 11/29/2024]
Abstract
Targeted, combinatorial, and immunomodulatory therapies, such as antibody-drug conjugates (ADCs) and immunomodulatory antibodies (Abs), are powerful weapons against tumor cells and immune cells within the tumor microenvironment (TME). Therefore, the evaluation of such therapies should be conducted in pre-clinical models able to recapitulate the complex cellular and molecular crosstalk of the TME. To build-in critical hallmarks of the TME, a breast cancer heterotypic 3D cell model (3D-3) is devised using a microencapsulation strategy with an inert biomaterial (alginate) and agitation-based cultures. Both stromal and immune components are added to multicellular tumor spheroids, therefore fostering cancer-associated fibroblasts (CAFs) and tumor-associated macrophages (TAMs) immunomodulatory interactions. The potential of the methodology to assess Ab-based therapies is then addressed by employing a series of anti-HER2-based ADCs. ADCs induced tumor-cell specific cytotoxicity toward HER2+ breast cancer spheroids while sparing HER2-negative CAFs. In addition, an immunomodulatory blocking Ab against colony-stimulating factor 1 receptor (CSF1R) decreases the expression of immunosuppressive and anti-inflammatory markers in TAMs, like what is previously observed upon in vivo α-CSF1R administration. Collectively, the human TME-based 3D-3 cell model is a suitable tool to evaluate the anti-tumor and immunomodulatory potential of novel antibody-based therapies directed against TME targets, such as cancer cells and macrophages.
Collapse
Affiliation(s)
- Giacomo Domenici
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras, 2780-901, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, 2780-157, Portugal
| | - Nuno F Lopes
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras, 2780-901, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, 2780-157, Portugal
| | - Gonçalo Trindade
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras, 2780-901, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, 2780-157, Portugal
| | - Isabella Ramella Gal
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras, 2780-901, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, 2780-157, Portugal
| | - Joan Miret Minard
- Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, Plaça Cívica, Bellaterra, 08193, Spain
| | - Sofia P Rebelo
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras, 2780-901, Portugal
| | - Catarina Freitas
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras, 2780-901, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, 2780-157, Portugal
| | - Nádia Duarte
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras, 2780-901, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, 2780-157, Portugal
| | - Catarina Brito
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras, 2780-901, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, 2780-157, Portugal
| |
Collapse
|
4
|
Liu Y, Xiao H, Zeng H, Xiang Y. Beyond tumor‑associated macrophages involved in spheroid formation and dissemination: Novel insights for ovarian cancer therapy (Review). Int J Oncol 2024; 65:117. [PMID: 39513610 PMCID: PMC11575928 DOI: 10.3892/ijo.2024.5705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/22/2024] [Indexed: 11/15/2024] Open
Abstract
Ovarian cancer (OC) is the most common and deadly malignant tumor of the female reproductive system. When OC cells detach from the primary tumor and enter the ascitic microenvironment, they are present as individual cells or multicellular spheroids in ascites. These spheroids, composed of cancer and non‑malignant cells, are metastatic units and play a crucial role in the progression of OC. However, little is known about the mechanism of spheroid formation and dissemination. Tumor‑associated macrophages (TAMs) in the center of spheroids are key in spheroid formation and metastasis and provide a potential target for OC therapy. The present review summarizes the key biological features of spheroids, focusing on the role of TAMs in spheroid formation, survival and peritoneal metastasis, and the strategies targeting TAMs to provide new insights in treating OC.
Collapse
Affiliation(s)
- Yuchen Liu
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Haoyue Xiao
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Hai Zeng
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Ying Xiang
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, P.R. China
| |
Collapse
|
5
|
Foss CA, Wildes F, Mezzanzanica D, Podo F, Hung CF, Yadav S, Vidaver MFP. Imaging tumor and ascites-associated macrophages in a mouse model of metastatic ovarian cancer. EJNMMI Res 2024; 14:121. [PMID: 39612052 DOI: 10.1186/s13550-024-01157-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/29/2024] [Indexed: 11/30/2024] Open
Abstract
BACKGROUND Tumor-Associated Macrophages (TAMs) play a critical role in the pathogenesis and progression of ovarian cancer, a lethal gynecologic malignancy. [124I]iodo-DPA-713 is a PET radiotracer that is selectively trapped within reactive macrophages. We have employed this radioligand here as well as a fluorescent analog to image TAMs associated with primary tumors, secondary pulmonary metastases and gastrointestinal tract-associated macrophages, associated with ascites accumulation in a syngeneic mouse model of metastatic ovarian cancer. Intact female C57BL/6 mice were engrafted with ID8-Defb29-VEGF tumor pieces. One month after engraftment, the mice were selected for positive bioluminescence to show primary and secondary tumor burden and were then scanned by PET/MRI with [124I]iodo-DPA-713, observing a 24 h uptake time. PET data were overlayed with T2-weighted MRI data to facilitate PET uptake tissue identity. Additionally, mice were imaged ex vivo using Near IR Fluorescence (NIRF), capturing the uptake and sequestration of DPA-713-IRDye800CW, a fluorescent analog of the radioligand used here. Additionally, cell culture uptake of DPA-713-IRDye680LT in ID8-DEFb29-VEGF, IOSE hTERT and RAW264.7 cells was conducted to measure tracer uptake in ovarian cancer cells, ovarian epithelial cells and macrophage. RESULTS PET/MRI data show an intense ring of radiotracer uptake surrounding primary tumors. PET uptake is also associated with lung metastases, but not healthy lung. Mice displaying ascites also display PET uptake along the gastrointestinal tract while sham-operated mice show minimal gastrointestinal uptake. All mice show specific kidney uptake. Mice imaged by NIRF confirmed TAMs uptake mostly at the rim of primary tumors while 1 mm secondary tumors in the lungs displayed robust, homogeneous uptake of the radio- and fluorescent analog. Ex vivo biodistribution of [124I]iodo-DPA-713 showed that contralateral ovaries in middle-stage disease had the highest probe uptake with tissues sampled in mid- and late-stage disease showing increasing uptake. CONCLUSION [124I]iodo-DPA-713 and DPA-713-IRDye800CW sensitively identify and locate TAMs in a syngeneic mouse model of metastatic ovarian cancer.
Collapse
Affiliation(s)
- Catherine A Foss
- Department of Radiology and Radiological Science, The Russell H. Morgan, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- Center for Infection and Inflammation Imaging Research, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| | - Flonné Wildes
- Department of Radiology and Radiological Science, The Russell H. Morgan, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Delia Mezzanzanica
- Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, Milano, 20133, Italy
| | - Franca Podo
- Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | - Chien-Fu Hung
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Santosh Yadav
- Department of Radiology and Radiological Science, The Russell H. Morgan, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Marie-France Penet Vidaver
- Department of Radiology and Radiological Science, The Russell H. Morgan, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
6
|
Scott AL, Jazwinska DE, Kulawiec DG, Zervantonakis IK. Paracrine Ovarian Cancer Cell-Derived CSF1 Signaling Regulates Macrophage Migration Dynamics in a 3D Microfluidic Model that Recapitulates In Vivo Infiltration Patterns in Patient-Derived Xenografts. Adv Healthc Mater 2024; 13:e2401719. [PMID: 38807270 PMCID: PMC11560735 DOI: 10.1002/adhm.202401719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Indexed: 05/30/2024]
Abstract
A high density of macrophages in the ovarian cancer microenvironment is associated with disease progression and poor outcomes. Understanding cancer-macrophage interaction mechanisms that establish this pro-tumorigenic microenvironment is critical for developing macrophage-targeted therapies. Here, 3D microfluidic assays and patient-derived xenografts are utilized to define the role of cancer-derived colony stimulating factor 1 (CSF1) on macrophage infiltration dynamics toward ovarian cancer cells. It is demonstrated that multiple ovarian cancer models promote the infiltration of macrophages into a 3D extracellular matrix in vitro in a cell density-dependent manner. Macrophages exhibit directional migration and increased migration speed under both direct interactions with cancer cells embedded within the matrix and paracrine crosstalk with cancer cells seeded in an independent microchannel. It is also found that platinum-based chemotherapy increases macrophage recruitment and the levels of cancer cell-derived CSF1. Targeting CSF1 signaling under baseline or chemotherapy-treatment conditions reduces the number of infiltrated macrophages. It is further shown that results obtained with the 3D microfluidic model reflect the recruitment profiles of macrophages in patient-derived xenografts in vivo. These findings highlight the role of CSF1 signaling in establishing macrophage-rich ovarian cancer microenvironments, as well as the utility of microfluidic models in recapitulating 3D tumor ecosystems and dissecting cancer-macrophage signaling.
Collapse
Affiliation(s)
- Alexis L Scott
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, 15219, USA
| | - Dorota E Jazwinska
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, 15219, USA
| | - Diana G Kulawiec
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, 15219, USA
| | - Ioannis K Zervantonakis
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, 15219, USA
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15219, USA
- McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, USA
| |
Collapse
|
7
|
Zhan Z, Zhang J, Liang H, Wang C, Hong L, Liu W. KAT6A Condensates Impair PARP1 Trapping of PARP Inhibitors in Ovarian Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400140. [PMID: 38973255 PMCID: PMC11425913 DOI: 10.1002/advs.202400140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/04/2024] [Indexed: 07/09/2024]
Abstract
Most clinical PARP inhibitors (PARPis) trap PARP1 in a chromatin-bound state, leading to PARPi-mediated cytotoxicity. PARPi resistance impedes the treatment of ovarian cancer in clinical practice. However, the mechanism by which cancer cells overcome PARP1 trapping to develop PARPi resistance remains unclear. Here, it is shown that high levels of KAT6A promote PARPi resistance in ovarian cancer, regardless of its catalytic activity. Mechanistically, the liquid-liquid phase separation (LLPS) of KAT6A, facilitated by APEX1, inhibits the cytotoxic effects of PARP1 trapping during PARPi treatment. The stable KAT6A-PARP1-APEX1 complex reduces the amount of PARP1 trapped at the DNA break sites. In addition, inhibition of KAT6A LLPS, rather than its catalytic activity, impairs DNA damage repair and restores PARPi sensitivity in ovarian cancer both in vivo and in vitro. In conclusion, the findings demonstrate the role of KAT6A LLPS in fostering PARPi resistance and suggest that repressing KAT6A LLPS can be a potential therapeutic strategy for PARPi-resistant ovarian cancer.
Collapse
Affiliation(s)
- Zhiyan Zhan
- Department of Clinical Nutrition, Shanghai Children's Medical Center, School of MedicineShanghai Jiao Tong UniversityShanghai200127China
- Clinical Research Center, Shanghai Children's Medical Center, School of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Jiarong Zhang
- Department of Obstetrics and GynecologyZhongshan HospitalFudan UniversityShanghai200032China
| | - Huisheng Liang
- Department of GynecologyZhongshan Hospital, Fudan University (Xiamen Branch)Xiamen361000China
| | - Chong Wang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, School of MedicineShanghai Jiao Tong University85 Wujin RoadShanghai200080China
| | - Li Hong
- Department of Clinical Nutrition, Shanghai Children's Medical Center, School of MedicineShanghai Jiao Tong UniversityShanghai200127China
- Clinical Research Center, Shanghai Children's Medical Center, School of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Wenxue Liu
- Department of Obstetrics and GynecologyZhongshan HospitalFudan UniversityShanghai200032China
| |
Collapse
|
8
|
Shi M, MacLean JA, Hayashi K. The involvement of peritoneal GATA6 + macrophages in the pathogenesis of endometriosis. Front Immunol 2024; 15:1396000. [PMID: 39192982 PMCID: PMC11348394 DOI: 10.3389/fimmu.2024.1396000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024] Open
Abstract
Endometriosis is a chronic inflammatory disease that causes debilitating pelvic pain in women. Macrophages are considered to be key players in promoting disease progression, as abundant macrophages are present in ectopic lesions and elevated in the peritoneum. In the present study, we examined the role of GATA6+ peritoneal macrophages on endometriosis-associated hyperalgesia using mice with a specific myeloid deficiency of GATA6. Lesion induction induced the disappearance of TIM4hi MHCIIlo residential macrophages and the influx of increased Ly6C+ monocytes and TIM4lo MHCIIhi macrophages. The recruitment of MHCIIhi inflammatory macrophages was extensive in Mac Gata6 KO mice due to the severe disappearance of TIM4hi MHCIIlo residential macrophages. Ki67 expression confirmed GATA6-dependent proliferative ability, showing different proliferative phenotypes of TIM4+ residential macrophages in Gata6f/f and Mac Gata6 KO mice. Peritoneal proinflammatory cytokines were elevated after lesion induction. When cytokine levels were compared between Gata6f/f and Mac Gata6 KO mice, TNFα at day 21 in Gata6f/f mice was higher than in Mac Gata6 KO mice. Lesion induction increased both abdominal and hind paw sensitivities. Gata6f/f mice tended to show higher sensitivity in the abdomen after day 21. Elevated expression of TRPV1 and CGRP was observed in the dorsal root ganglia after ELL induction in Gata6f/f mice until days 21 and 42, respectively. These results support that peritoneal GATA6+ macrophages are involved in the recruitment and reprogramming of monocyte-derived macrophages. The extensive recruitment of monocyte-derived macrophages in Mac Gata6 KO mice might protect against inflammatory stimuli during the resolution phase, whereas GATA6 deficiency did not affect lesion initiation and establishment at the acute phase of inflammation. GATA6+ residential macrophages act to sustain local inflammation in the peritoneum and sensitivities in the neurons, reflecting endometriosis-associated hyperalgesia.
Collapse
Affiliation(s)
| | | | - Kanako Hayashi
- School of Molecular Biosciences, Center for Reproductive Biology, Washington State University, Pullman, WA, United States
| |
Collapse
|
9
|
Iwanaga R, Yamamoto TM, Gomez K, Nguyen LL, Woodruff ER, Post MD, Mikeska RG, Danis E, Danhorn T, Boorgula MP, Mitra SS, Marjon NA, Bitler BG, Brubaker LW. Tumor-Intrinsic Activity of Chromobox 2 Remodels the Tumor Microenvironment in High-grade Serous Carcinoma. CANCER RESEARCH COMMUNICATIONS 2024; 4:1919-1932. [PMID: 38984891 PMCID: PMC11298703 DOI: 10.1158/2767-9764.crc-24-0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 05/29/2024] [Accepted: 07/02/2024] [Indexed: 07/11/2024]
Abstract
Chromobox 2 (CBX2), an epigenetic reader and component of polycomb repressor complex 1, is highly expressed in >75% of high-grade serous carcinoma. Increased CBX2 expression is associated with poorer survival, whereas CBX2 knockdown leads to improved chemotherapy sensitivity. In a high-grade serous carcinoma immune-competent murine model, knockdown of CBX2 decreased tumor progression. We sought to explore the impact of modulation of CBX2 on the tumor immune microenvironment (TIME), understanding that the TIME plays a critical role in disease progression and development of therapy resistance. Exploration of existing datasets demonstrated that elevated CBX2 expression significantly correlated with specific immune cell types in the TIME. RNA sequencing and pathway analysis of differentially expressed genes demonstrated immune signature enrichment. Confocal microscopy and co-culture experiments found that modulation of CBX2 leads to increased recruitment and infiltration of macrophages. Flow cytometry of macrophages cultured with CBX2-overexpressing cells showed increased M2-like macrophages and decreased phagocytosis activity. Cbx2 knockdown in the Trp53-null, Brca2-null ID8 syngeneic murine model (ID8 Trp53-/-Brca2-/-) led to decreased tumor progression compared with the control. NanoString immuno-oncology panel analysis suggested that knockdown in Cbx2 shifts immune cell composition, with an increase in macrophages. Multispectral immunohistochemistry (mIHC) further confirmed an increase in macrophage infiltration. Increased CBX2 expression leads to recruitment and polarization of protumor macrophages, and targeting CBX2 may serve to modulate the TIME to enhance the efficacy of immune therapies. SIGNIFICANCE CBX2 expression correlates with the TIME. CBX2 modulation shifts the macrophage population, potentially leading to an immunosuppressive microenvironment, highlighting CBX2 as a target to improve efficacy of immunotherapy.
Collapse
Affiliation(s)
- Ritsuko Iwanaga
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado.
| | - Tomomi M. Yamamoto
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado.
| | - Karina Gomez
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado.
| | - Lily L. Nguyen
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado.
| | - Elizabeth R. Woodruff
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado.
| | - Miriam D. Post
- Department of Pathology, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado.
| | - Railey G. Mikeska
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado.
| | - Etienne Danis
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
| | - Thomas Danhorn
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
| | - Meher P. Boorgula
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
| | - Siddhartha S. Mitra
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado.
| | - Nicole A. Marjon
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado.
| | - Benjamin G. Bitler
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado.
| | - Lindsay W. Brubaker
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado.
| |
Collapse
|
10
|
Kienzler JC, Becher B. Immunity in malignant brain tumors: Tumor entities, role of immunotherapy, and specific contribution of myeloid cells to the brain tumor microenvironment. Eur J Immunol 2024; 54:e2250257. [PMID: 37940552 DOI: 10.1002/eji.202250257] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 10/30/2023] [Accepted: 11/07/2023] [Indexed: 11/10/2023]
Abstract
Malignant brain tumors lack effective treatment, that can improve their poor overall survival achieved with standard of care. Advancement in different cancer treatments has shifted the focus in brain tumor research and clinical trials toward immunotherapy-based approaches. The investigation of the immune cell landscape revealed a dominance of myeloid cells in the tumor microenvironment. Their exact roles and functions are the subject of ongoing research. Current evidence suggests a complex interplay of tumor cells and myeloid cells with competing functions toward support vs. control of tumor growth. Here, we provide a brief overview of the three most abundant brain tumor entities: meningioma, glioma, and brain metastases. We also describe the field of ongoing immunotherapy trials and their results, including immune checkpoint inhibitors, vaccination studies, oncolytic viral therapy, and CAR-T cells. Finally, we summarize the phenotypes of microglia, monocyte-derived macrophages, border-associated macrophages, neutrophils, and potential novel therapy targets.
Collapse
Affiliation(s)
- Jenny C Kienzler
- Institute of Experimental Immunology, Inflammation Research Lab, University of Zurich, Zurich, Switzerland
| | - Burkhard Becher
- Institute of Experimental Immunology, Inflammation Research Lab, University of Zurich, Zurich, Switzerland
| |
Collapse
|
11
|
Wang Y, Sun Y, Li X, Yu X, Zhang K, Liu J, Tian Q, Zhang H, Du X, Wang S. Progress in the treatment of malignant ascites. Crit Rev Oncol Hematol 2024; 194:104237. [PMID: 38128628 DOI: 10.1016/j.critrevonc.2023.104237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 11/14/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
Malignant ascites occurs as a symptom of the terminal stage of cancer, affecting the quality of life through abdominal distension, pain, nausea, anorexia, dyspnea and other symptoms. We describe the current main drug treatments in addition to surgery according to the traditional and new strategies. Traditional treatments were based on anti-tumor chemotherapy and traditional Chinese medicine treatments, as well as diuretics to relieve the patient's symptoms. New treatments mainly involve photothermal therapy, intestinal therapy and targeted immunity. This study emphasizes that both traditional and new therapies have certain advantages and disadvantages, and medication should be adjusted according to different periods of use and different patients. In conclusion, this article reviews the literature to systematically describe the primary treatment modalities for malignant ascites.
Collapse
Affiliation(s)
- Yiqiu Wang
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou, Zhejiang 311121, China; School of Pharmacy, Hangzhou Normal University, Hangzhou, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yunting Sun
- Hangzhou TCM Hospital Afflitiated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311121, China.
| | - Xinyue Li
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou, Zhejiang 311121, China; School of Pharmacy, Hangzhou Normal University, Hangzhou, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Xiaoli Yu
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou, Zhejiang 311121, China; School of Pharmacy, Hangzhou Normal University, Hangzhou, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Keying Zhang
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou, Zhejiang 311121, China; School of Pharmacy, Hangzhou Normal University, Hangzhou, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Jinglei Liu
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou, Zhejiang 311121, China; School of Pharmacy, Hangzhou Normal University, Hangzhou, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Qingchang Tian
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou, Zhejiang 311121, China; School of Pharmacy, Hangzhou Normal University, Hangzhou, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Honghua Zhang
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou, Zhejiang 311121, China; School of Pharmacy, Hangzhou Normal University, Hangzhou, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Xiao Du
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou, Zhejiang 311121, China; School of Pharmacy, Hangzhou Normal University, Hangzhou, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Shuling Wang
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou, Zhejiang 311121, China; School of Pharmacy, Hangzhou Normal University, Hangzhou, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| |
Collapse
|
12
|
Li H, Miao YQ, Suo LP, Wang X, Mao YQ, Zhang XH, Zhou N, Tian JR, Yu XY, Wang TX, Gao Y, Guo HY, Zhang Z, Ma DS, Wu HX, Cui YW, Zhang XL, Chi XC, Li YC, Irwin DM, Niu G, Tan HR. CD206 modulates the role of M2 macrophages in the origin of metastatic tumors. J Cancer 2024; 15:1462-1486. [PMID: 38356723 PMCID: PMC10861823 DOI: 10.7150/jca.91944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/30/2023] [Indexed: 02/16/2024] Open
Abstract
Tumor metastasis is a key factor affecting the life of patients with malignant tumors. For the past hundred years, scientists have focused on how to kill cancer cells and inhibit their metastasis in vivo, but few breakthroughs have been made. Here we hypothesized a novel mode for cancer metastasis. We show that the phagocytosis of apoptotic tumor cells by macrophages leads to their polarization into the M2 phenotype, and that the expression of stem cell related as well as drug resistance related genes was induced. Therefore, it appears that M2 macrophages have "defected" and have been transformed into the initial "metastatic cancer cells", and thus are the source, at least in part, of the distal tissue tumor metastasis. This assumption is supported by the presence of fused cells with characteristics of both macrophage and tumor cell observed in the peripheral blood and ascites of patients with ovarian cancer. By eliminating the expression of CD206 in M2 macrophages using siRNA, we show that the growth and metastasis of tumors was suppressed using both in vitro cell line and with experimental in vivo mouse models. In summary, we show that M2 macrophages in the blood circulation underwent a "change of loyalty" to become "cancer cells" that transformed into distal tissue metastasis, which could be suppressed by the knockdown of CD206 expression.
Collapse
Affiliation(s)
- Hui Li
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Ying-Qi Miao
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Li-Ping Suo
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xi Wang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yi-Qing Mao
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xue-Hui Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Na Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jun-Rui Tian
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xiu-Yan Yu
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Tong-Xia Wang
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Yan Gao
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Hong-Yan Guo
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Zheng Zhang
- Peking University First Hospital, Beijing, China
| | | | | | | | | | - Xiao-Chun Chi
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | | | - David M. Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Gang Niu
- Beijing N&N Genetech Company, Beijing, China
| | - Huan-Ran Tan
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| |
Collapse
|
13
|
Maslanka J, Torres G, Londregan J, Goldman N, Silberman D, Somerville J, Riggs JE. Loss of B1 and marginal zone B cells during ovarian cancer. Cell Immunol 2024; 395-396:104788. [PMID: 38000306 PMCID: PMC10842900 DOI: 10.1016/j.cellimm.2023.104788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/31/2023] [Accepted: 11/20/2023] [Indexed: 11/26/2023]
Abstract
Recent advances in immunotherapy have not addressed the challenge presented by ovarian cancer. Although the peritoneum is an "accessible" locus for this disease there has been limited characterization of the immunobiology therein. We investigated the ID8-C57BL/6J ovarian cancer model and found marked depletion of B1 cells from the ascites of the peritoneal cavity. There was also selective loss of the B1 and marginal zone B cell subsets from the spleen. Immunity to antigens that activate these subsets validated their loss rather than relocation. A marked influx of myeloid-derived suppressor cells correlated with B cell subset depletion. These observations are discussed in the context of the housekeeping burden placed on innate B cells during ovarian cancer and to foster consideration of B cell biology in therapeutic strategies to address this challenge.
Collapse
Affiliation(s)
- Jeffrey Maslanka
- Department of Biology, Rider University, Lawrenceville, NJ 08648, USA
| | - Gretel Torres
- Department of Biology, Rider University, Lawrenceville, NJ 08648, USA
| | | | - Naomi Goldman
- Department of Biology, Rider University, Lawrenceville, NJ 08648, USA
| | - Daniel Silberman
- Department of Biology, Rider University, Lawrenceville, NJ 08648, USA
| | - John Somerville
- Department of Biology, Rider University, Lawrenceville, NJ 08648, USA
| | - James E Riggs
- Department of Biology, Rider University, Lawrenceville, NJ 08648, USA.
| |
Collapse
|
14
|
Sharrow AC, Ho M, Dua A, Buj R, Blenman KRM, Orsulic S, Buckanovich R, Aird KM, Wu L. Tumor-Associated Macrophages Expand Chemoresistant, Ovarian Cancer Stem-Like Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.17.549067. [PMID: 37503008 PMCID: PMC10370114 DOI: 10.1101/2023.07.17.549067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The persistence of ovarian cancer stem-like cells (OvCSCs) after chemotherapy resistance has been implicated in relapse. However, the ability of these relatively quiescent cells to produce the robust tumor regrowth necessary for relapse remains an enigma. Since normal stem cells exist in a niche, and tumor-associated macrophages (TAMs) are the highest abundance immune cell within ovarian tumors, we hypothesized that TAMs may influence OvCSC proliferation. To test this, we optimized OvCSC enrichment by sphere culture and in vitro polarization of monocytes to a TAM-like M2 phenotype. Using cocultures that permitted the exchange of only soluble factors, we found that M2 macrophages increased the proliferation of sphere cells. Longer-term exposure (5-7 days) to soluble TAM factors led to retention of some stem cell features by OvCSCs but loss of others, suggesting that TAMs may support an intermediate stemness phenotype in OvCSCs. Although TAM coculture decreased the percentage of OvCSCs surviving chemotherapy, it increased the overall number. We therefore sought to determine the influence of this interaction on chemotherapy efficacy in vivo and found that inhibiting macrophages improved chemotherapy response. Comparing the gene expression changes in OvCSCs cocultured with TAMs to publicly available patient data identified 34 genes upregulated in OvCSCs by exposure to soluble TAM factors whose expression correlates with outcome. Overall, these data suggest that TAMs may influence OvCSC proliferation and impact therapeutic response.
Collapse
|
15
|
Kapanadze T, Gamrekelashvili J, Sablotny S, Kijas D, Haller H, Schmidt-Ott K, Limbourg FP. CSF-1 and Notch signaling cooperate in macrophage instruction and tissue repair during peripheral limb ischemia. Front Immunol 2023; 14:1240327. [PMID: 37691936 PMCID: PMC10484478 DOI: 10.3389/fimmu.2023.1240327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/14/2023] [Indexed: 09/12/2023] Open
Abstract
Ischemia causes an inflammatory response featuring monocyte-derived macrophages (MF) involved in angiogenesis and tissue repair. Angiogenesis and ischemic macrophage differentiation are regulated by Notch signaling via Notch ligand Delta-like 1 (Dll1). Colony stimulating factor 1 (CSF-1) is an essential MF lineage factor, but its role in ischemic macrophage development and the interaction with Notch signaling is so far unclear. Using a mouse model of hind limb ischemia with CSF-1 inhibitor studies and Dll1 heterozygous mice we show that CSF-1 is induced in the ischemic niche by a subpopulation of stromal cells expressing podoplanin, which was paralleled by the development of ischemic macrophages. Inhibition of CSF-1 signaling with small molecules or blocking antibodies impaired macrophage differentiation but prolonged the inflammatory response, resulting in impaired perfusion recovery and tissue regeneration. Yet, despite high levels of CSF-1, macrophage maturation and perfusion recovery were impaired in mice with Dll1 haploinsufficiency, while inflammation was exaggerated. In vitro, CSF-1 was not sufficient to induce full MF differentiation from donor monocytes in the absence of recombinant DLL1, while the presence of DLL1 in a dose-dependent manner stimulated MF differentiation in combination with CSF-1. Thus, CSF-1 is an ischemic niche factor that cooperates with Notch signaling in a non-redundant fashion to instruct macrophage cell fate and maturation, which is required for ischemic perfusion recovery and tissue repair.
Collapse
Affiliation(s)
- Tamar Kapanadze
- Vascular Medicine Research, Hannover Medical School, Hannover, Germany
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Jaba Gamrekelashvili
- Vascular Medicine Research, Hannover Medical School, Hannover, Germany
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Stefan Sablotny
- Vascular Medicine Research, Hannover Medical School, Hannover, Germany
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Dustin Kijas
- Vascular Medicine Research, Hannover Medical School, Hannover, Germany
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Hermann Haller
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Kai Schmidt-Ott
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Florian P. Limbourg
- Vascular Medicine Research, Hannover Medical School, Hannover, Germany
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| |
Collapse
|
16
|
Margul D, Yu C, AlHilli MM. Tumor Immune Microenvironment in Gynecologic Cancers. Cancers (Basel) 2023; 15:3849. [PMID: 37568665 PMCID: PMC10417375 DOI: 10.3390/cancers15153849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Gynecologic cancers have varying response rates to immunotherapy due to the heterogeneity of each cancer's molecular biology and features of the tumor immune microenvironment (TIME). This article reviews key features of the TIME and its role in the pathophysiology and treatment of ovarian, endometrial, cervical, vulvar, and vaginal cancer. Knowledge of the role of the TIME in gynecologic cancers has been rapidly developing with a large body of preclinical studies demonstrating an intricate yet dichotomous role that the immune system plays in either supporting the growth of cancer or opposing it and facilitating effective treatment. Many targets and therapeutics have been identified including cytokines, antibodies, small molecules, vaccines, adoptive cell therapy, and bacterial-based therapies but most efforts in gynecologic cancers to utilize them have not been effective. However, with the development of immune checkpoint inhibitors, we have started to see the rapid and successful employment of therapeutics in cervical and endometrial cancer. There remain many challenges in utilizing the TIME, particularly in ovarian cancer, and further studies are needed to identify and validate efficacious therapeutics.
Collapse
Affiliation(s)
| | | | - Mariam M. AlHilli
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Cleveland Clinic, Cleveland, OH 44195, USA; (D.M.); (C.Y.)
| |
Collapse
|
17
|
Wilczyński JR, Wilczyński M, Paradowska E. "DEPHENCE" system-a novel regimen of therapy that is urgently needed in the high-grade serous ovarian cancer-a focus on anti-cancer stem cell and anti-tumor microenvironment targeted therapies. Front Oncol 2023; 13:1201497. [PMID: 37448521 PMCID: PMC10338102 DOI: 10.3389/fonc.2023.1201497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/07/2023] [Indexed: 07/15/2023] Open
Abstract
Ovarian cancer, especially high-grade serous type, is the most lethal gynecological malignancy. The lack of screening programs and the scarcity of symptomatology result in the late diagnosis in about 75% of affected women. Despite very demanding and aggressive surgical treatment, multiple-line chemotherapy regimens and both approved and clinically tested targeted therapies, the overall survival of patients is still unsatisfactory and disappointing. Research studies have recently brought some more understanding of the molecular diversity of the ovarian cancer, its unique intraperitoneal biology, the role of cancer stem cells, and the complexity of tumor microenvironment. There is a growing body of evidence that individualization of the treatment adjusted to the molecular and biochemical signature of the tumor as well as to the medical status of the patient should replace or supplement the foregoing therapy. In this review, we have proposed the principles of the novel regimen of the therapy that we called the "DEPHENCE" system, and we have extensively discussed the results of the studies focused on the ovarian cancer stem cells, other components of cancer metastatic niche, and, finally, clinical trials targeting these two environments. Through this, we have tried to present the evolving landscape of treatment options and put flesh on the experimental approach to attack the high-grade serous ovarian cancer multidirectionally, corresponding to the "DEPHENCE" system postulates.
Collapse
Affiliation(s)
- Jacek R Wilczyński
- Department of Gynecological Surgery and Gynecological Oncology, Medical University of Lodz, Lodz, Poland
| | - Miłosz Wilczyński
- Department of Gynecological, Endoscopic and Oncological Surgery, Polish Mother's Health Center-Research Institute, Lodz, Poland
- Department of Surgical and Endoscopic Gynecology, Medical University of Lodz, Lodz, Poland
| | - Edyta Paradowska
- Laboratory of Virology, Institute of Medical Biology of the Polish Academy of Sciences, Lodz, Poland
| |
Collapse
|
18
|
Chen X, Li Y, Xia H, Chen YH. Monocytes in Tumorigenesis and Tumor Immunotherapy. Cells 2023; 12:1673. [PMID: 37443711 PMCID: PMC10340267 DOI: 10.3390/cells12131673] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 07/15/2023] Open
Abstract
Monocytes are highly plastic innate immune cells that display significant heterogeneity during homeostasis, inflammation, and tumorigenesis. Tumor-induced systemic and local microenvironmental changes influence the phenotype, differentiation, and distribution of monocytes. Meanwhile, monocytes and their related cell subsets perform an important regulatory role in the development of many cancers by affecting tumor growth or metastasis. Thanks to recent advances in single-cell technologies, the nature of monocyte heterogeneity and subset-specific functions have become increasingly clear, making it possible to systematically analyze subset-specific roles of monocytes in tumorigenesis. In this review, we discuss recent discoveries related to monocytes and tumorigenesis, and new strategies for tumor biomarker identification and anti-tumor immunotherapy.
Collapse
Affiliation(s)
| | | | - Houjun Xia
- Center for Cancer Immunology, Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen 518000, China; (X.C.); (Y.L.)
| | - Youhai H. Chen
- Center for Cancer Immunology, Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen 518000, China; (X.C.); (Y.L.)
| |
Collapse
|
19
|
Xu G, Mo Y, Li J, Wei Q, Zhou F, Chen J. Two tripartite classification systems of CD86 + and CD206 + macrophages are significantly associated with tumor recurrence in stage II-III colorectal cancer. Front Immunol 2023; 14:1136875. [PMID: 37342343 PMCID: PMC10277500 DOI: 10.3389/fimmu.2023.1136875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/22/2023] [Indexed: 06/22/2023] Open
Abstract
Introduction The prognostic value of tumor-associated macrophages remains unclear in colorectal cancer (CRC). Two tripartite classification systems, namely, ratio and quantity subgroups, were investigated as the prognostic stratification tools for stage II-III CRC. Methods We assessed the infiltration intensity of CD86+ and CD206+ macrophages in 449 cases with stage II-III disease by immunohistochemical staining. Ratio subgroups were defined by the lower- and upper-quartile points of CD206+/(CD86++CD206+) macrophage ratio, including the low-, moderate-, and high-ratio subgroups. Quantity subgroups were defined by the median points of CD86+ and CD206+ macrophages and included the low-, moderate-, and high-risk subgroups. The main analysis was recurrence-free survival (RFS) and overall survival (OS). Results Ratio subgroups (RFS/OS: HR=2.677/2.708, all p<0.001) and quantity subgroups (RFS/OS: HR=3.137/3.250, all p<0.001) could serve as independent prognostic indicators that effectively predicted survival outcomes. More importantly, log-rank test revealed that patients in the high-ratio (RFS/OS: HR=2.950/3.151, all p<0.001) or high-risk (RFS/OS: HR=3.453/3.711, all p<0.001) subgroup exhibited decreased survival outcomes after adjuvant chemotherapy. The predictive accuracy of the quantity subgroups within 48 months was higher than that of the ratio subgroups and tumor stage (all p<0.05). Conclusions Ratio and quantity subgroups could serve as independent prognostic indicators that could potentially be incorporated into the tumor staging algorithm to improve prognostic stratification and provide better predictions of survival outcomes in stage II-III CRC after adjuvant chemotherapy.
Collapse
Affiliation(s)
- Guozeng Xu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Hubei, China
- Department of Oncology, Liuzhou People’s Hospital of Guangxi Medical University, Guangxi, China
| | - Yuzhen Mo
- Department of Radiation Oncology, Guangzhou Red Cross Hospital of Jinan University, Guangdong, China
| | - Jing Li
- Department of Oncology, Liuzhou People’s Hospital of Guangxi Medical University, Guangxi, China
| | - Qingqing Wei
- Department of Oncology, Liuzhou People’s Hospital of Guangxi Medical University, Guangxi, China
| | - Fuxiang Zhou
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Hubei, China
| | - Jian Chen
- Department of Medical Oncology, Yantai Yuhuangding Hospital of Qingdao University, Shandong, China
| |
Collapse
|
20
|
Pankowska KA, Będkowska GE, Chociej-Stypułkowska J, Rusak M, Dąbrowska M, Osada J. Crosstalk of Immune Cells and Platelets in an Ovarian Cancer Microenvironment and Their Prognostic Significance. Int J Mol Sci 2023; 24:ijms24119279. [PMID: 37298230 DOI: 10.3390/ijms24119279] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/17/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Ovarian cancer (OC) is one of the deadliest gynecological cancers, largely due to the fast development of metastasis and drug resistance. The immune system is a critical component of the OC tumor microenvironment (TME) and immune cells such as T cells, NK cells, and dendritic cells (DC) play a key role in anti-tumor immunity. However, OC tumor cells are well known for evading immune surveillance by modulating the immune response through various mechanisms. Recruiting immune-suppressive cells such as regulatory T cells (Treg cells), macrophages, or myeloid-derived suppressor cells (MDSC) inhibit the anti-tumor immune response and promote the development and progression of OC. Platelets are also involved in immune evasion by interaction with tumor cells or through the secretion of a variety of growth factors and cytokines to promote tumor growth and angiogenesis. In this review, we discuss the role and contribution of immune cells and platelets in TME. Furthermore, we discuss their potential prognostic significance to help in the early detection of OC and to predict disease outcome.
Collapse
Affiliation(s)
- Katarzyna Aneta Pankowska
- Department of Haematological Diagnostics, Medical University of Bialystok, Waszyngtona 15A Street, 15-269 Bialystok, Poland
| | - Grażyna Ewa Będkowska
- Department of Haematological Diagnostics, Medical University of Bialystok, Waszyngtona 15A Street, 15-269 Bialystok, Poland
| | - Joanna Chociej-Stypułkowska
- Department of Haematological Diagnostics, Medical University of Bialystok, Waszyngtona 15A Street, 15-269 Bialystok, Poland
| | - Małgorzata Rusak
- Department of Haematological Diagnostics, Medical University of Bialystok, Waszyngtona 15A Street, 15-269 Bialystok, Poland
| | - Milena Dąbrowska
- Department of Haematological Diagnostics, Medical University of Bialystok, Waszyngtona 15A Street, 15-269 Bialystok, Poland
| | - Joanna Osada
- Department of Haematological Diagnostics, Medical University of Bialystok, Waszyngtona 15A Street, 15-269 Bialystok, Poland
| |
Collapse
|
21
|
Aarhus TI, Bjørnstad F, Wolowczyk C, Larsen KU, Rognstad L, Leithaug T, Unger A, Habenberger P, Wolf A, Bjørkøy G, Pridans C, Eickhoff J, Klebl B, Hoff BH, Sundby E. Synthesis and Development of Highly Selective Pyrrolo[2,3- d]pyrimidine CSF1R Inhibitors Targeting the Autoinhibited Form. J Med Chem 2023; 66:6959-6980. [PMID: 37191268 DOI: 10.1021/acs.jmedchem.3c00428] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Colony-stimulating factor-1 receptor (CSF1R) is a receptor tyrosine kinase that controls the differentiation and maintenance of most tissue-resident macrophages, and the inhibition of CSF1R has been suggested as a possible therapy for a range of human disorders. Herein, we present the synthesis, development, and structure-activity relationship of a series of highly selective pyrrolo[2,3-d]pyrimidines, showing subnanomolar enzymatic inhibition of this receptor and with excellent selectivity toward other kinases in the platelet-derived growth factor receptor (PDGFR) family. The crystal structure of the protein and 23 revealed that the binding conformation of the protein is DFG-out-like. The most promising compounds in this series were profiled for cellular potency and subjected to pharmacokinetic profiling and in vivo stability, indicating that this compound class could be relevant in a potential disease setting. Additionally, these compounds inhibited primarily the autoinhibited form of the receptor, contrasting the behavior of pexidartinib, which could explain the exquisite selectivity of these structures.
Collapse
Affiliation(s)
- Thomas Ihle Aarhus
- Department of Materials Science & Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - Frithjof Bjørnstad
- Department of Materials Science & Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - Camilla Wolowczyk
- Department of Biomedical Laboratory Science, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | | | - Line Rognstad
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - Trygve Leithaug
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - Anke Unger
- Lead Discovery Center GmbH, Otto-Hahn-Straße 15, 44227 Dortmund, Germany
| | - Peter Habenberger
- Lead Discovery Center GmbH, Otto-Hahn-Straße 15, 44227 Dortmund, Germany
| | - Alexander Wolf
- Lead Discovery Center GmbH, Otto-Hahn-Straße 15, 44227 Dortmund, Germany
| | - Geir Bjørkøy
- Department of Biomedical Laboratory Science, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - Clare Pridans
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, U.K
| | - Jan Eickhoff
- Lead Discovery Center GmbH, Otto-Hahn-Straße 15, 44227 Dortmund, Germany
| | - Bert Klebl
- Lead Discovery Center GmbH, Otto-Hahn-Straße 15, 44227 Dortmund, Germany
| | - Bård H Hoff
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - Eirik Sundby
- Department of Materials Science & Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| |
Collapse
|
22
|
Li L, Tian Y. The role of metabolic reprogramming of tumor-associated macrophages in shaping the immunosuppressive tumor microenvironment. Biomed Pharmacother 2023; 161:114504. [PMID: 37002579 DOI: 10.1016/j.biopha.2023.114504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/04/2023] [Accepted: 03/07/2023] [Indexed: 03/15/2023] Open
Abstract
Macrophages are potent immune effector cells in innate immunity and exert dual-effects in the tumor microenvironment (TME). Tumor-associated macrophages (TAMs) make up a significant portion of TME immune cells. Similar to M1/M2 macrophages, TAMs are also highly plastic, and their functions are regulated by cytokines, chemokines and other factors in the TME. The metabolic changes in TAMs are significantly associated with polarization towards a protumour or antitumour phenotype. The metabolites generated via TAM metabolic reprogramming in turn promote tumor progression and immune tolerance. In this review, we explore the metabolic reprogramming of TAMs in terms of energy, amino acid and fatty acid metabolism and the potential roles of these changes in immune suppression.
Collapse
Affiliation(s)
- Lunxu Li
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu Tian
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
23
|
Truxova I, Cibula D, Spisek R, Fucikova J. Targeting tumor-associated macrophages for successful immunotherapy of ovarian carcinoma. J Immunother Cancer 2023; 11:jitc-2022-005968. [PMID: 36822672 PMCID: PMC9950980 DOI: 10.1136/jitc-2022-005968] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2023] [Indexed: 02/25/2023] Open
Abstract
Epithelial ovarian cancer (EOC) is among the top five causes of cancer-related death in women, largely reflecting early, prediagnosis dissemination of malignant cells to the peritoneum. Despite improvements in medical therapies, particularly with the implementation of novel drugs targeting homologous recombination deficiency, the survival rates of patients with EOC remain low. Unlike other neoplasms, EOC remains relatively insensitive to immune checkpoint inhibitors, which is correlated with a tumor microenvironment (TME) characterized by poor infiltration by immune cells and active immunosuppression dominated by immune components with tumor-promoting properties, especially tumor-associated macrophages (TAMs). In recent years, TAMs have attracted interest as potential therapeutic targets by seeking to reverse the immunosuppression in the TME and enhance the clinical efficacy of immunotherapy. Here, we review the key biological features of TAMs that affect tumor progression and their relevance as potential targets for treating EOC. We especially focus on the therapies that might modulate the recruitment, polarization, survival, and functional properties of TAMs in the TME of EOC that can be harnessed to develop superior combinatorial regimens with immunotherapy for the clinical care of patients with EOC.
Collapse
Affiliation(s)
| | - David Cibula
- Gynecologic Oncology Center, Department of Obstetrics and Gynecology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Radek Spisek
- Sotio Biotech, Prague, Czech Republic,Department of Immunology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Jitka Fucikova
- Sotio Biotech, Prague, Czech Republic .,Department of Immunology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| |
Collapse
|
24
|
Abiko K, Hamanishi J, Matsumura N, Mandai M. Dynamic host immunity and PD-L1/PD-1 blockade efficacy: developments after "IFN-γ from lymphocytes induces PD-L1 expression and promotes progression of ovarian cancer". Br J Cancer 2023; 128:461-467. [PMID: 36068276 PMCID: PMC9938281 DOI: 10.1038/s41416-022-01960-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/01/2022] [Accepted: 08/11/2022] [Indexed: 11/09/2022] Open
Abstract
In the article titled "IFN-γ from lymphocytes induces PD-L1 expression and promotes progression of ovarian cancer" in 2015, we showed that PD-L1 expression is induced by IFN-γ from lymphocytes in the tumour microenvironment. This article proposed that PD-L1 expression in cancer cells is not stable but varies among cases, or even within a case, which is influenced by the stromal infiltration of cytotoxic lymphocytes. Immune-checkpoint inhibitors, especially anti-PD-1/PD-L1 therapies, are now widely used to treat various types of cancer. Predictive biomarkers for the efficacy of immune-checkpoint inhibitors include PD-L1 expression, MSI/mismatch repair deficiency and high tumour mutation burden. However, clinical trials have proven that their use in ovarian cancer is still challenging. Reliable biomarkers and new treatment strategies may be sought by elucidating the complex immune microenvironment of ovarian cancer. Although the interaction between cytotoxic lymphocytes and PD-1/PD-L1 on tumour cells is at the centre of therapeutic targets, other immune checkpoints and various immunosuppressive cells also play important roles in ovarian cancer. Targeting these role players in combination with PD-1/PD-L1 blockade may be a promising therapeutic strategy.
Collapse
Affiliation(s)
- Kaoru Abiko
- Department of Obstetrics and Gynecology, National Hospital Organization Kyoto Medical Center, Kyoto, Japan.
| | - Junzo Hamanishi
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Noriomi Matsumura
- Department of Obstetrics and Gynecology, Kindai University Faculty of Medicine, Osaka-sayama, Osaka prefecture, Japan
| | - Masaki Mandai
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
25
|
Gata6 + large peritoneal macrophages: an evolutionarily conserved sentinel and effector system for infection and injury. Trends Immunol 2023; 44:129-145. [PMID: 36623953 DOI: 10.1016/j.it.2022.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 01/08/2023]
Abstract
There are striking similarities between the sea urchin cavity macrophage-like phagocytes (coelomocytes) and mammalian cavity macrophages in not only their location, but also their behaviors. These cells are crucial for maintaining homeostasis within the cavity following a breach, filling the gap and functioning as a barrier between vital organs and the environment. In this review, we summarize the evolving literature regarding these Gata6+ large peritoneal macrophages (GLPMs), focusing on ontogeny, their responses to perturbations, including their rapid aggregation via coagulation, as well as scavenger receptor cysteine-rich domains and their potential roles in diseases, such as cancer. We challenge the 50-year old phenomenon of the 'macrophage disappearance reaction' (MDR) and propose the new term 'macrophage disturbance of homeostasis reaction' (MDHR), which may better describe this complex phenomenon.
Collapse
|
26
|
Alsina-Sanchis E, Mülfarth R, Moll I, Böhn S, Wiedmann L, Jordana-Urriza L, Ziegelbauer T, Zimmer E, Taylor J, De Angelis Rigotti F, Stögbauer A, Giaimo BD, Cerwenka A, Borggrefe T, Fischer A, Rodriguez-Vita J. Endothelial RBPJ Is Essential for the Education of Tumor-Associated Macrophages. Cancer Res 2022; 82:4414-4428. [PMID: 36200806 DOI: 10.1158/0008-5472.can-22-0076] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 08/03/2022] [Accepted: 09/30/2022] [Indexed: 01/24/2023]
Abstract
Epithelial ovarian cancer (EOC) is one of the most lethal gynecologic cancers worldwide. EOC cells educate tumor-associated macrophages (TAM) through CD44-mediated cholesterol depletion to generate an immunosuppressive tumor microenvironment (TME). In addition, tumor cells frequently activate Notch1 receptors on endothelial cells (EC) to facilitate metastasis. However, further work is required to establish whether the endothelium also influences the education of recruited monocytes. Here, we report that canonical Notch signaling through RBPJ in ECs is an important player in the education of TAMs and EOC progression. Deletion of Rbpj in the endothelium of adult mice reduced infiltration of monocyte-derived macrophages into the TME of EOC and prevented the acquisition of a typical TAM gene signature; this was associated with stronger cytotoxic activity of T cells and decreased tumor burden. Mechanistically, CXCL2 was identified as a novel Notch/RBPJ target gene that regulated the expression of CD44 on monocytes and subsequent cholesterol depletion of TAMs. Bioinformatic analysis of ovarian cancer patient data showed that increased CXCL2 expression is accompanied by higher expression of CD44 and TAM education. Together, these findings indicate that EOC cells induce the tumor endothelium to secrete CXCL2 to establish an immunosuppressive microenvironment. SIGNIFICANCE Endothelial Notch signaling favors immunosuppression by increasing CXCL2 secretion to stimulate CD44 expression in macrophages, facilitating their education by tumor cells.
Collapse
Affiliation(s)
- Elisenda Alsina-Sanchis
- Division Vascular Signaling and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Institute for Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Ronja Mülfarth
- Division Vascular Signaling and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Iris Moll
- Division Vascular Signaling and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sarah Böhn
- Division Vascular Signaling and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lena Wiedmann
- Division Vascular Signaling and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Lorea Jordana-Urriza
- Division Vascular Signaling and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tara Ziegelbauer
- Division Vascular Signaling and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Eleni Zimmer
- Division Vascular Signaling and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jacqueline Taylor
- Division Vascular Signaling and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Francesca De Angelis Rigotti
- Division Vascular Signaling and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Tumour-Stroma Communication Laboratory, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Adrian Stögbauer
- Division Vascular Signaling and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Adelheid Cerwenka
- Department of Immunobiochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany Tissue
| | - Tilman Borggrefe
- Institute of Biochemistry, University of Giessen, Giessen, Germany
| | - Andreas Fischer
- Division Vascular Signaling and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Institute for Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Juan Rodriguez-Vita
- Division Vascular Signaling and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Tumour-Stroma Communication Laboratory, Centro de Investigación Príncipe Felipe, Valencia, Spain
| |
Collapse
|
27
|
Xu T, Liu Z, Huang L, Jing J, Liu X. Modulating the tumor immune microenvironment with nanoparticles: A sword for improving the efficiency of ovarian cancer immunotherapy. Front Immunol 2022; 13:1057850. [PMID: 36532066 PMCID: PMC9751906 DOI: 10.3389/fimmu.2022.1057850] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/21/2022] [Indexed: 12/04/2022] Open
Abstract
With encouraging antitumor effects, immunotherapy represented by immune checkpoint blockade has developed into a mainstream cancer therapeutic modality. However, only a minority of ovarian cancer (OC) patients could benefit from immunotherapy. The main reason is that most OC harbor a suppressive tumor immune microenvironment (TIME). Emerging studies suggest that M2 tumor-associated macrophages (TAMs), T regulatory cells (Tregs), myeloid-derived suppressor cells (MDSCs), and cancer-associated fibroblasts (CAFs) are enriched in OC. Thus, reversing the suppressive TIME is considered an ideal candidate for improving the efficiency of immunotherapy. Nanoparticles encapsulating immunoregulatory agents can regulate immunocytes and improve the TIME to boost the antitumor immune response. In addition, some nanoparticle-mediated photodynamic and photothermal therapy can directly kill tumor cells and induce tumor immunogenic cell death to activate antigen-presenting cells and promote T cell infiltration. These advantages make nanoparticles promising candidates for modulating the TIME and improving OC immunotherapy. In this review, we analyzed the composition and function of the TIME in OC and summarized the current clinical progress of OC immunotherapy. Then, we expounded on the promising advances in nanomaterial-mediated immunotherapy for modulating the TIME in OC. Finally, we discussed the obstacles and challenges in the clinical translation of this novel combination treatment regimen. We believe this resourceful strategy will open the door to effective immunotherapy of OC and benefit numerous patients.
Collapse
Affiliation(s)
| | | | | | - Jing Jing
- *Correspondence: Xiaowei Liu, ; Jing Jing,
| | | |
Collapse
|
28
|
Rajtak A, Ostrowska-Leśko M, Żak K, Tarkowski R, Kotarski J, Okła K. Integration of local and systemic immunity in ovarian cancer: Implications for immunotherapy. Front Immunol 2022; 13:1018256. [PMID: 36439144 PMCID: PMC9684707 DOI: 10.3389/fimmu.2022.1018256] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 10/18/2022] [Indexed: 08/21/2023] Open
Abstract
Cancer is a disease that induces many local and systemic changes in immunity. The difficult nature of ovarian cancer stems from the lack of characteristic symptoms that contributes to a delayed diagnosis and treatment. Despite the enormous progress in immunotherapy, its efficacy remains limited. The heterogeneity of tumors, lack of diagnostic biomarkers, and complex immune landscape are the main challenges in the treatment of ovarian cancer. Integrative approaches that combine the tumor microenvironment - local immunity - together with periphery - systemic immunity - are urgently needed to improve the understanding of the disease and the efficacy of treatment. In fact, multiparametric analyses are poised to improve our understanding of ovarian tumor immunology. We outline an integrative approach including local and systemic immunity in ovarian cancer. Understanding the nature of both localized and systemic immune responses will be crucial to boosting the efficacy of immunotherapies in ovarian cancer patients.
Collapse
Affiliation(s)
- Alicja Rajtak
- 1st Chair and Department of Oncological Gynecology and Gynecology, Medical University of Lublin, Lublin, Poland
| | - Marta Ostrowska-Leśko
- 1st Chair and Department of Oncological Gynecology and Gynecology, Medical University of Lublin, Lublin, Poland
- Chair and Department of Toxicology, Medical University of Lublin, Lublin, Poland
| | - Klaudia Żak
- 1st Chair and Department of Oncological Gynaecology and Gynaecology, Student Scientific Association, Medical University of Lublin, Lublin, Poland
| | - Rafał Tarkowski
- 1st Chair and Department of Oncological Gynecology and Gynecology, Medical University of Lublin, Lublin, Poland
| | - Jan Kotarski
- 1st Chair and Department of Oncological Gynecology and Gynecology, Medical University of Lublin, Lublin, Poland
| | - Karolina Okła
- 1st Chair and Department of Oncological Gynecology and Gynecology, Medical University of Lublin, Lublin, Poland
- Department of Surgery, University of Michigan Rogel Cancer Center, Ann Arbor, MI, United States
| |
Collapse
|
29
|
Zhang Y, Ouyang D, Chen YH, Xia H. Peritoneal resident macrophages in tumor metastasis and immunotherapy. Front Cell Dev Biol 2022; 10:948952. [PMID: 36035994 PMCID: PMC9402905 DOI: 10.3389/fcell.2022.948952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/20/2022] [Indexed: 11/30/2022] Open
Abstract
Macrophages residing in various tissues play crucial roles in innate immunity, tissue repair, and immune homeostasis. The development and differentiation of macrophages in non-lymphoid tissues are highly regulated by the tissue microenvironment. Peritoneum provides a unique metastatic niche for certain types of tumor cells. As the dominant immune cell type in peritoneal cavity, macrophages control the immune response to tumor and influence the efficacy of anti-tumor therapy. Considering the heterogeneity of macrophages in origin, metabolism, and function, it is always challenging to define the precise roles of macrophages in tumor microenvironment. We review here recent progresses in peritoneal resident macrophage research in the context of physiological and metastatic tumor conditions, which may benefit the development of new anti-tumor therapies through targeting macrophages.
Collapse
Affiliation(s)
- Yu Zhang
- Center for Cancer Immunology, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Dongyun Ouyang
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Youhai H. Chen
- Center for Cancer Immunology, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Houjun Xia
- Center for Cancer Immunology, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- *Correspondence: Houjun Xia,
| |
Collapse
|
30
|
Zi Y, Yang K, He J, Wu Z, Liu J, Zhang W. Strategies to enhance drug delivery to solid tumors by harnessing the EPR effects and alternative targeting mechanisms. Adv Drug Deliv Rev 2022; 188:114449. [PMID: 35835353 DOI: 10.1016/j.addr.2022.114449] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/03/2022] [Accepted: 07/06/2022] [Indexed: 12/20/2022]
Abstract
The Enhanced Permeability and Retention (EPR) effect has been recognized as the central paradigm in tumor-targeted delivery in the last decades. In the wake of this concept, nanotechnologies have reached phenomenal levels in research. However, clinical tumors display a poor manifestation of EPR effect. Factors including tumor heterogeneity, complicating tumor microenvironment, and discrepancies between laboratory models and human tumors largely contribute to poor efficiency in tumor-targeted delivery and therapeutic failure in clinical translation. In this article, approaches for evaluation of EPR effect in human tumor were overviewed as guidance to employ EPR effect for cancer treatment. Strategies to augment EPR-mediated tumoral delivery are discussed in different dimensions including enhancement of vascular permeability, depletion of tumor extracellular matrix and optimization of nanoparticle design. Besides, the recent development in alternative tumor-targeted delivery mechanisms are highlighted including transendothelial pathway, endogenous cell carriers and non-immunogenic bacteria-mediated delivery. In addition, the emerging preclinical models better reflect human tumors are introduced. Finally, more rational applications of EPR effect in other disease and field are proposed. This article elaborates on fundamental reasons for the gaps between theoretical expectation and clinical outcomes, attempting to provide some perspective directions for future development of cancer nanomedicines in this still evolving landscape.
Collapse
Affiliation(s)
- Yixuan Zi
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, PR China
| | - Kaiyun Yang
- School of Pharmacy, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Jianhua He
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, PR China
| | - Zimei Wu
- School of Pharmacy, University of Auckland, Private Bag 92019, Auckland, New Zealand.
| | - Jianping Liu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Wenli Zhang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
31
|
Metabolism and polarization regulation of macrophages in the tumor microenvironment. Cancer Lett 2022; 543:215766. [PMID: 35690285 DOI: 10.1016/j.canlet.2022.215766] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/18/2022] [Accepted: 05/28/2022] [Indexed: 11/23/2022]
Abstract
The occurrence and development of tumors depend on the tumor microenvironment (TME), which consists of various types of cellular and acellular components. Tumor-associated macrophages (TAMs) are the most abundant stromal cell types in the TME. The competition for nutrients between tumor cells and macrophages leads to a limited supply of nutrients, such as glucose, lipids, and amino acids, to immune cells, which affects the differentiation and function of macrophages. Other factors in the TME, such as cytokines, chemokines, and immune checkpoints, also affect the polarization and function of macrophages. Remodeling the tumor microenvironment induces changes in macrophage nutrient uptake and polarization status, which enhance anti-tumor immunity and oxidative stress resistance and suppress immune escape. This review summarizes the influence factors on tumor progression and immune function under different conditions of macrophages. It also demonstrates the metabolic heterogeneity and phenotypic plasticity of macrophages, which provides novel strategies for anti-tumor treatment.
Collapse
|
32
|
Spheroid Formation and Peritoneal Metastasis in Ovarian Cancer: The Role of Stromal and Immune Components. Int J Mol Sci 2022; 23:ijms23116215. [PMID: 35682890 PMCID: PMC9181487 DOI: 10.3390/ijms23116215] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 12/13/2022] Open
Abstract
Ovarian cancer (OC) is one of the most common gynecological cancers, with the worst prognosis and the highest mortality rate. Peritoneal dissemination (or carcinomatosis) accompanied by ascites formation is the most unfavorable factor in the progression and recurrence of OC. Tumor cells in ascites are present as either separate cells or, more often, as cell aggregates, i.e., spheroids which promote implantation on the surface of nearby organs and, at later stages, metastases to distant organs. Malignant ascites comprises a unique tumor microenvironment; this fact may be of relevance in the search for new prognostic and predictive factors that would make it possible to personalize the treatment of patients with OC. However, the precise mechanisms of spheroid formation and carcinomatosis are still under investigation. Here, we summarize data on ascites composition as well as the activity of fibroblasts and macrophages, the key stromal and immune components, in OC ascites. We describe current knowledge about the role of fibroblasts and macrophages in tumor spheroid formation, and discuss the specific functions of fibroblasts, macrophages and T cells in tumor peritoneal dissemination and implantation.
Collapse
|
33
|
Zhan Z, Wang Z, Bao Y, Liu W, Hong L. OI inhibites development of ovarian cancer by blocking crosstalk between cancer cells and macrophages via HIF-1α pathway. Biochem Biophys Res Commun 2022; 606:142-148. [DOI: 10.1016/j.bbrc.2022.03.106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 03/21/2022] [Indexed: 11/02/2022]
|
34
|
Schweer D, McAtee A, Neupane K, Richards C, Ueland F, Kolesar J. Tumor-Associated Macrophages and Ovarian Cancer: Implications for Therapy. Cancers (Basel) 2022; 14:2220. [PMID: 35565348 PMCID: PMC9101750 DOI: 10.3390/cancers14092220] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 12/14/2022] Open
Abstract
The tumor microenvironment (TME) has been implicated to play an important role in the progression of ovarian cancer. One of the most important components of the TME is tumor associated macrophages (TAMs). Phenotypically, macrophages are broadly categorized as M1 pro-inflammatory or M2 anti-inflammatory, based on the cytokines and chemokines that they secrete. The tumor microenvironment is associated with macrophages of an M2 phenotype which suppress the surrounding immune environment, assist tumor cells in evading immune targeting, and support tumor growth and metastasis. Contrarily, M1 macrophages help mount an immune response against tumors, and are associated with a more favorable prognosis in solid tumors. One of the characteristic indicators of a poor prognosis in ovarian cancer is the overrepresentation of M2-type TAMs. As such, therapeutic modalities targeting TME and TAMs are of increasing interest. Pharmacological approaches to eliminate TAMs, include decreasing macrophage survival and recruitment and increasing phagocytosis, have been underwhelming. Clinical strategies targeting these macrophage subtypes via repolarization to an M1 antitumoral state deserve increasing attention, and may serve as a new modality for immunotherapy.
Collapse
Affiliation(s)
- David Schweer
- Markey Cancer Center, Division of Gynecologic Oncology, University of Kentucky, Lexington, KY 40536, USA; (D.S.); (F.U.)
| | - Annabel McAtee
- School of Medicine, University of Kentucky, Lexington, KY 40536, USA;
| | - Khaga Neupane
- Department of Chemistry, College of Arts and Sciences, University of Kentucky, Lexington, KY 40536, USA; (K.N.); (C.R.)
| | - Christopher Richards
- Department of Chemistry, College of Arts and Sciences, University of Kentucky, Lexington, KY 40536, USA; (K.N.); (C.R.)
| | - Frederick Ueland
- Markey Cancer Center, Division of Gynecologic Oncology, University of Kentucky, Lexington, KY 40536, USA; (D.S.); (F.U.)
| | - Jill Kolesar
- Department of Pharmacology and Toxicology, University of Kentucky, Lexington, KY 40202, USA
| |
Collapse
|
35
|
Wouters R, Westrøm S, Vankerckhoven A, Thirion G, Ceusters J, Claes S, Schols D, Bønsdorff TB, Vergote I, Coosemans A. Effect of Particle Carriers for Intraperitoneal Drug Delivery on the Course of Ovarian Cancer and Its Immune Microenvironment in a Mouse Model. Pharmaceutics 2022; 14:pharmaceutics14040687. [PMID: 35456521 PMCID: PMC9031420 DOI: 10.3390/pharmaceutics14040687] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/11/2022] [Accepted: 03/20/2022] [Indexed: 02/04/2023] Open
Abstract
Novel treatment strategies are needed to provide a better prognosis for ovarian cancer. For this purpose, the current study was designed to evaluate the effects of different types of particle drug carriers on tumor response and on the tumor immune microenvironment (TME) after intraperitoneal (IP) administration in a murine tumor model. Mice with ID8-fLuc ovarian cancer were injected IP with pegylated liposomes, hydroxyapatite, polystyrene, poly(lactic-co-glycolic acid) (PLGA) and calcium carbonate (CaCO3) microparticles to evaluate the effect of the candidate carriers without drugs. Our results show that several types of microparticle drug carriers caused hyperproliferation of the tumor when injected IP, as reflected in a reduced survival or an accelerated onset of ascites. Alterations of the product formulation of CaCO3 microparticles could result in less hyperproliferation. The hyperproliferation caused by CaCO3 and PLGA was largely driven by a strong innate immune suppression. A combination with chemotherapy was not able to sufficiently counteract the tumor progression caused by the drug carriers. This research points towards the importance of evaluating a drug carrier before using it in a therapeutic setting, since drug carriers themselves can detrimentally influence tumor progression and immune status of the TME. However, it remains to be determined whether the hyperproliferation in this model will be of relevance in other cancer models or in humans.
Collapse
Affiliation(s)
- Roxanne Wouters
- Laboratory of Tumor Immunology and Immunotherapy, Department of Oncology, Leuven Cancer Institute, KU Leuven, 3000 Leuven, Belgium; (A.V.); (G.T.); (J.C.); (A.C.)
- Oncoinvent AS, 0484 Oslo, Norway; (S.W.); (T.B.B.)
- Correspondence:
| | - Sara Westrøm
- Oncoinvent AS, 0484 Oslo, Norway; (S.W.); (T.B.B.)
| | - Ann Vankerckhoven
- Laboratory of Tumor Immunology and Immunotherapy, Department of Oncology, Leuven Cancer Institute, KU Leuven, 3000 Leuven, Belgium; (A.V.); (G.T.); (J.C.); (A.C.)
| | - Gitte Thirion
- Laboratory of Tumor Immunology and Immunotherapy, Department of Oncology, Leuven Cancer Institute, KU Leuven, 3000 Leuven, Belgium; (A.V.); (G.T.); (J.C.); (A.C.)
| | - Jolien Ceusters
- Laboratory of Tumor Immunology and Immunotherapy, Department of Oncology, Leuven Cancer Institute, KU Leuven, 3000 Leuven, Belgium; (A.V.); (G.T.); (J.C.); (A.C.)
| | - Sandra Claes
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute, 3000 Leuven, Belgium; (S.C.); (D.S.)
| | - Dominique Schols
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute, 3000 Leuven, Belgium; (S.C.); (D.S.)
| | | | - Ignace Vergote
- Department of Obstetrics and Gynecology, Leuven Cancer Institute, University Hospitals Leuven, 3000 Leuven, Belgium;
- Department of Oncology, Gynecological Oncology, KU Leuven, 3000 Leuven, Belgium
| | - An Coosemans
- Laboratory of Tumor Immunology and Immunotherapy, Department of Oncology, Leuven Cancer Institute, KU Leuven, 3000 Leuven, Belgium; (A.V.); (G.T.); (J.C.); (A.C.)
| |
Collapse
|
36
|
Hama S, Nishi T, Isono E, Itakura S, Yoshikawa Y, Nishimoto A, Suzuki S, Kirimura N, Todo H, Kogure K. Intraperitoneal administration of nanoparticles containing tocopheryl succinate prevents peritoneal dissemination. Cancer Sci 2022; 113:1779-1788. [PMID: 35253340 PMCID: PMC9128176 DOI: 10.1111/cas.15321] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 11/30/2022] Open
Abstract
Intraperitoneal administration of anticancer nanoparticles is a rational strategy for preventing peritoneal dissemination of colon cancer owing to the prolonged retention of nanoparticles in the abdominal cavity. However, instability of nanoparticles in body fluids causes inefficient retention, reducing its anticancer effects. We have previously developed anticancer nanoparticles containing tocopheryl succinate, which showed high in vivo stability and multifunctional anticancer effects. In the present study, we have demonstrated that peritoneal dissemination derived from colon cancer was prevented by intraperitoneal administration of tocopheryl succinate nanoparticles. The biodistribution of tocopheryl succinate nanoparticles was evaluated by inductively coupled plasma mass spectroscopy and imaging analysis in mice administered quantum dot encapsulated tocopheryl succinate nanoparticles. Intraperitoneal administration of tocopheryl succinate nanoparticles showed longer retention in the abdominal cavity than by its intravenous administration. Moreover, due to effective biodistribution, tumor growth was prevented by intraperitoneal administration of tocopheryl succinate nanoparticles. Furthermore, the anticancer effect was attributed to the inhibition of cancer cell proliferation and improvement of the intraperitoneal microenvironment, such as decrease in the levels of vascular endothelial growth factor A, interleukin 10, and M2-like phenotype of tumor-associated macrophages. Collectively, intraperitoneal administration of tocopheryl succinate nanoparticles is expected to have multifaceted antitumor effects against colon cancer with peritoneal dissemination.
Collapse
Affiliation(s)
- Susumu Hama
- Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, Tokyo, 202-8585, Japan
| | - Takayuki Nishi
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, Kyoto, 607-8414, Japan
| | - Eitaro Isono
- Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, Tokyo, 202-8585, Japan
| | - Shoko Itakura
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, Saitama, 350-0295, Japan
| | - Yutaka Yoshikawa
- Department of Health, Sports, and Nutrition, Faculty of Health and Welfare, Kobe Women's University, Kobe, 650-0046, Japan
| | - Akinori Nishimoto
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, Kyoto, 607-8414, Japan
| | - Satoko Suzuki
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, Kyoto, 607-8414, Japan
| | - Naoko Kirimura
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, Kyoto, 607-8414, Japan
| | - Hiroaki Todo
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, Saitama, 350-0295, Japan
| | - Kentaro Kogure
- Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8505, Japan
| |
Collapse
|
37
|
Soto-Diaz K, Vailati-Riboni M, Louie AY, McKim DB, Gaskins HR, Johnson RW, Steelman AJ. Treatment With the CSF1R Antagonist GW2580, Sensitizes Microglia to Reactive Oxygen Species. Front Immunol 2021; 12:734349. [PMID: 34899694 PMCID: PMC8664563 DOI: 10.3389/fimmu.2021.734349] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/01/2021] [Indexed: 01/29/2023] Open
Abstract
Microglia activation and proliferation are hallmarks of many neurodegenerative disorders and may contribute to disease pathogenesis. Neurons actively regulate microglia survival and function, in part by secreting the microglia mitogen interleukin (IL)-34. Both IL-34 and colony stimulating factor (CSF)-1 bind colony stimulating factor receptor (CSFR)1 expressed on microglia. Systemic treatment with central nervous system (CNS) penetrant, CSFR1 antagonists, results in microglia death in a dose dependent matter, while others, such as GW2580, suppress activation during disease states without altering viability. However, it is not known how treatment with non-penetrant CSF1R antagonists, such as GW2580, affect the normal physiology of microglia. To determine how GW2580 affects microglia function, C57BL/6J mice were orally gavaged with vehicle or GW2580 (80mg/kg/d) for 8 days. Body weights and burrowing behavior were measured throughout the experiment. The effects of GW2580 on circulating leukocyte populations, brain microglia morphology, and the transcriptome of magnetically isolated adult brain microglia were determined. Body weights, burrowing behavior, and circulating leukocytes were not affected by treatment. Analysis of Iba-1 stained brain microglia indicated that GW2580 treatment altered morphology, but not cell number. Analysis of RNA-sequencing data indicated that genes related to reactive oxygen species (ROS) regulation and survival were suppressed by treatment. Treatment of primary microglia cultures with GW2580 resulted in a dose-dependent reduction in viability only when the cells were concurrently treated with LPS, an inducer of ROS. Pre-treatment with the ROS inhibitor, YCG063, blocked treatment induced reductions in viability. Finally, GW2580 sensitized microglia to hydrogen peroxide induced cell death. Together, these data suggest that partial CSF1R antagonism may render microglia more susceptible to reactive oxygen and nitrogen species.
Collapse
Affiliation(s)
- Katiria Soto-Diaz
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Mario Vailati-Riboni
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Allison Y Louie
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Daniel B McKim
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - H Rex Gaskins
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Department of Biomedical and Translational Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Rodney W Johnson
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Andrew J Steelman
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
38
|
Bronger H. Immunology and Immune Checkpoint Inhibition in Ovarian Cancer - Current Aspects. Geburtshilfe Frauenheilkd 2021; 81:1128-1144. [PMID: 34629492 PMCID: PMC8494520 DOI: 10.1055/a-1475-4335] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 04/05/2021] [Indexed: 12/17/2022] Open
Abstract
In the last decade immunotherapies such as immune checkpoint blockade (ICB) against the PD-1/PD-L1 system have revolutionised the treatment of numerous entities. To date, ovarian cancer has benefited very little from this success story. Possible causes include a rather low mutational burden compared to other tumour types, inadequate presentation of (neo-)antigens, and increased infiltration with immunosuppressive immune cells such as regulatory T cells and tumour-associated macrophages. In the clinical trials completed to date, the response rates to PD-1/PD-L1 checkpoint inhibitors have therefore been disappointingly low as well, although isolated long-term remissions have also been observed in ovarian cancer. The task now is to find suitable predictive biomarkers as well as to identify combination partners for ICB therapy that can increase the immunogenicity of ovarian cancer or overcome immunosuppressive resistance mechanisms. This paper provides an overview of the immune milieu in ovarian cancer, its impact on the effect of ICB, and summarises the clinical trial data available to date on ICB in ovarian cancer.
Collapse
Affiliation(s)
- Holger Bronger
- Klinik und Poliklinik für Frauenheilkunde, Klinikum rechts der Isar, Technische Universität München, München, Germany.,Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partnerstandort München und Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| |
Collapse
|
39
|
Reis-Sobreiro M, Teixeira da Mota A, Jardim C, Serre K. Bringing Macrophages to the Frontline against Cancer: Current Immunotherapies Targeting Macrophages. Cells 2021; 10:2364. [PMID: 34572013 PMCID: PMC8464913 DOI: 10.3390/cells10092364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/07/2021] [Accepted: 08/29/2021] [Indexed: 12/21/2022] Open
Abstract
Macrophages are found in all tissues and display outstanding functional diversity. From embryo to birth and throughout adult life, they play critical roles in development, homeostasis, tissue repair, immunity, and, importantly, in the control of cancer growth. In this review, we will briefly detail the multi-functional, protumoral, and antitumoral roles of macrophages in the tumor microenvironment. Our objective is to focus on the ever-growing therapeutic opportunities, with promising preclinical and clinical results developed in recent years, to modulate the contribution of macrophages in oncologic diseases. While the majority of cancer immunotherapies target T cells, we believe that macrophages have a promising therapeutic potential as tumoricidal effectors and in mobilizing their surroundings towards antitumor immunity to efficiently limit cancer progression.
Collapse
Affiliation(s)
| | | | | | - Karine Serre
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal; (M.R.-S.); (A.T.d.M.); (C.J.)
| |
Collapse
|
40
|
Tumor-Associated Macrophage Promotes the Survival of Cancer Cells upon Docetaxel Chemotherapy via the CSF1/CSF1R-CXCL12/CXCR4 Axis in Castration-Resistant Prostate Cancer. Genes (Basel) 2021; 12:genes12050773. [PMID: 34069563 PMCID: PMC8161256 DOI: 10.3390/genes12050773] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/04/2021] [Accepted: 05/18/2021] [Indexed: 01/16/2023] Open
Abstract
Castration-resistant prostate cancer (CRPC) is an advanced stage of prostate cancer that can progress rapidly even in patients treated with castration. Previously, we found that tumor-associated macrophages (TAM) can be recruited by CSF-1 secreted by docetaxel-treated prostate cancer cells and promote the survival of cancer cells in response to chemotherapy. The inhibition of CSF-1R can impede this effect and significantly prolong survival in xenograft mice. However, the actual mechanism of how TAM improves cancer cell survival still remains elusive and controversial. Here, for the first time, we found that the enhanced survival of cancer cells achieved by TAM was mainly mediated by CXCR4 activation from the increased secretion of CXCL12 from CSF-1 activated TAM. This finding helps to clarify the mechanism of chemoresistance for second-line chemotherapy using docetaxel, facilitating the development of novel drugs to overcome immune tolerance in castration-resistant prostate cancer.
Collapse
|
41
|
Ye X, An L, Wang X, Zhang C, Huang W, Sun C, Li R, Ma H, Wang H, Gao M. ALOX5AP Predicts Poor Prognosis by Enhancing M2 Macrophages Polarization and Immunosuppression in Serous Ovarian Cancer Microenvironment. Front Oncol 2021; 11:675104. [PMID: 34094977 PMCID: PMC8172172 DOI: 10.3389/fonc.2021.675104] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/29/2021] [Indexed: 12/20/2022] Open
Abstract
Background Serous ovarian cancer (SOC) is a highly lethal gynecological malignancy with poor prognosis. Given the importance of the immune-related tumor microenvironment (TME) in ovarian cancer, investigating tumor-immune interactions and identifying novel prognostic and therapeutic targets in SOC is a promising avenue of research. ALOX5AP (Arachidonate 5-Lipoxygenase Activating Protein) is a key enzyme in converting arachidonic acid to leukotriene: a crucial immune-modulating lipid mediator. However, the role of ALOX5AP in SOC has yet to be studied. Methods ALOX5AP expression patterns across ovarian cancer and their normal tissue counterparts were cross-checked using public microarray and RNA-seq analyses and then validated in clinical samples by qRT-PCR. Kaplan-Meier survival analysis was performed in multiple independent SOC patient cohorts. Univariate and multivariate Cox regression analysis were then employed to identify clinical risk parameters associated with survival, and a genomic-clinicopathologic nomogram was built. Gene enrichment, immune infiltration, and immunosuppressor correlation analyses were then evaluated. Results ALOX5AP mRNA levels in SOC tissues were significantly upregulated compared to normal tissues. Elevated ALOX5AP was markedly associated with poor overall survival and progression-free survival in multiple SOC patient cohorts as well as with adverse clinicopathological features, including lymphatic invasion, unsatisfactory cytoreductive surgery, rapid relapse after primary treatment, and platinum non-responsiveness. A predictive nomogram, which integrated ALOX5AP expression and two independent prognosis factors (primary therapy outcome and tumor residual), was conducted to predict the 3-year and 5-year survival rate of SOC patients. Mechanistically, functional and pathway enrichment analyses revealed that ALOX5AP was primarily involved in immune response and regulation. Further exploration demonstrated that ALOX5AP was highly expressed in the immunoreactive subtype of ovarian cancer and closely related to immunocyte infiltration, especially M2 macrophage polarization. Additionally, ALOX5AP was enriched in the C4 (lymphocyte depleted) immune subtype of SOC and associated with crucial immune-repressive receptors in the tumor microenvironment at the genomic level. Conclusions ALOX5AP expression indicates a worse survival outcome and has the potential to be utilized as a prognostic predictor for SOC patients. Given the availability of well-studied ALOX5AP inhibitors, this study has immediate clinical implications for the exploitation of ALOX5AP as an immunotherapeutic target in SOC.
Collapse
Affiliation(s)
- Xiang Ye
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, China.,Key Laboratory of Experimental Teratology of Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Limei An
- Health Management Division, Rizhao Central Hospital, Rizhao, China
| | - Xiangxiang Wang
- Department of Obstetrics and Gynecology, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Chenyi Zhang
- Department of Obstetrics and Gynecology, Gynecology Oncology Key Laboratory, Qilu Hospital of Shandong University, Jinan, China
| | - Wenqian Huang
- Department of Obstetrics and Gynecology, Gynecology Oncology Key Laboratory, Qilu Hospital of Shandong University, Jinan, China
| | - Chenggong Sun
- Department of Obstetrics and Gynecology, Gynecology Oncology Key Laboratory, Qilu Hospital of Shandong University, Jinan, China
| | - Rongrong Li
- Department of Obstetrics and Gynecology, Gynecology Oncology Key Laboratory, Qilu Hospital of Shandong University, Jinan, China
| | - Hanlin Ma
- Department of Obstetrics and Gynecology, Gynecology Oncology Key Laboratory, Qilu Hospital of Shandong University, Jinan, China
| | - Hongyan Wang
- Department of Obstetrics and Gynecology, Gynecology Oncology Key Laboratory, Qilu Hospital of Shandong University, Jinan, China
| | - Min Gao
- Department of Obstetrics and Gynecology, Gynecology Oncology Key Laboratory, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
42
|
Gu X, Li SY, DeFalco T. Immune and vascular contributions to organogenesis of the testis and ovary. FEBS J 2021; 289:2386-2408. [PMID: 33774913 PMCID: PMC8476657 DOI: 10.1111/febs.15848] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 03/07/2021] [Accepted: 03/26/2021] [Indexed: 02/06/2023]
Abstract
Gonad development is a highly regulated process that coordinates cell specification and morphogenesis to produce sex-specific organ structures that are required for fertility, such as testicular seminiferous tubules and ovarian follicles. While sex determination occurs within specialized gonadal supporting cells, sexual differentiation is evident throughout the entire organ, including within the interstitial compartment, which contains immune cells and vasculature. While immune and vascular cells have been traditionally appreciated for their supporting roles during tissue growth and homeostasis, an increasing body of evidence supports the idea that these cell types are critical drivers of sexually dimorphic morphogenesis of the gonad. Myeloid immune cells, such as macrophages, are essential for multiple aspects of gonadogenesis and fertility, including for forming and maintaining gonadal vasculature in both sexes at varying stages of life. While vasculature is long known for supporting organ growth and serving as an export mechanism for gonadal sex steroids in utero, it is also an important component of fetal testicular morphogenesis and differentiation; additionally, it is vital for ovarian corpus luteal function and maintenance of pregnancy. These findings point toward a new paradigm in which immune cells and blood vessels are integral components of sexual differentiation and organogenesis. In this review, we discuss the state of the field regarding the diverse roles of immune and vascular cells during organogenesis of the testis and ovary and highlight outstanding questions in the field that could stimulate new research into these previously underappreciated constituents of the gonad.
Collapse
Affiliation(s)
- Xiaowei Gu
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, OH, USA
| | - Shu-Yun Li
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, OH, USA
| | - Tony DeFalco
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, OH, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, OH, USA
| |
Collapse
|
43
|
Cummings M, Freer C, Orsi NM. Targeting the tumour microenvironment in platinum-resistant ovarian cancer. Semin Cancer Biol 2021; 77:3-28. [PMID: 33607246 DOI: 10.1016/j.semcancer.2021.02.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 01/09/2021] [Accepted: 02/10/2021] [Indexed: 02/07/2023]
Abstract
Ovarian cancer typically presents at an advanced stage, and although the majority of cases initially respond well to platinum-based therapies, chemoresistance almost always occurs leading to a poor long-term prognosis. While various cellular autonomous mechanisms contribute to intrinsic or acquired platinum resistance, the tumour microenvironment (TME) plays a central role in resistance to therapy and disease progression by providing cancer stem cell niches, promoting tumour cell metabolic reprogramming, reducing chemotherapy drug perfusion and promoting an immunosuppressive environment. As such, the TME is an attractive therapeutic target which has been the focus of intense research in recent years. This review provides an overview of the unique ovarian cancer TME and its role in disease progression and therapy resistance, highlighting some of the latest preclinical and clinical data on TME-targeted therapies. In particular, it focuses on strategies targeting cancer-associated fibroblasts, tumour-associated macrophages, cancer stem cells and cancer cell metabolic vulnerabilities.
Collapse
Affiliation(s)
- M Cummings
- Leeds Institute of Medical Research at St James's, St James's University Hospital, Beckett Street, Leeds, LS9 7TF, United Kingdom
| | - C Freer
- Leeds Institute of Medical Research at St James's, St James's University Hospital, Beckett Street, Leeds, LS9 7TF, United Kingdom
| | - N M Orsi
- Leeds Institute of Medical Research at St James's, St James's University Hospital, Beckett Street, Leeds, LS9 7TF, United Kingdom; St James's Institute of Oncology, Bexley Wing, Beckett Street, Leeds, LS9 7TF, United Kingdom.
| |
Collapse
|
44
|
Drakes ML, Stiff PJ. Ovarian Cancer: Therapeutic Strategies to Overcome Immune Suppression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1330:33-54. [PMID: 34339029 DOI: 10.1007/978-3-030-73359-9_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Ovarian cancer generally escapes diagnosis until the advanced stages. High-grade serous ovarian cancer (HGSOC) is the most frequently occurring form of this malaise and is a disease which has the highest mortality rate of gynecologic cancers. Over recent years it has been revealed that the course of such cancers can be significantly influenced by the nature of immune cells in tumors at the time of diagnosis and by immune cells induced by therapy. Numerous investigators have since focused on disease biology to identify biomarkers or therapeutic targets. Yet, while over the past decade there have been significant improvements in state-of-the-art surgery for ovarian cancer as frontline therapy, there have been limited advancements in the development of novel curative or management drugs for this disease. This chapter discusses the major elements of immune suppression in HGSOC from a biological viewpoint, mechanisms of overcoming resistance to therapies, and recent therapy aimed at improving patient care and survival.
Collapse
Affiliation(s)
- Maureen L Drakes
- Department of Medicine, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, IL, USA.
| | - Patrick J Stiff
- Department of Medicine, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, IL, USA
| |
Collapse
|
45
|
An Y, Yang Q. Tumor-associated macrophage-targeted therapeutics in ovarian cancer. Int J Cancer 2020; 149:21-30. [PMID: 33231290 DOI: 10.1002/ijc.33408] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 10/24/2020] [Accepted: 11/03/2020] [Indexed: 01/06/2023]
Abstract
Ovarian cancer is one of the most common gynecological malignancies. The tumor microenvironment plays an important role in regulating the progression of ovarian cancer. Macrophages, which are important immune cells in the tumor microenvironment, participate in the regulation of various biological behaviors and influence the prognosis of ovarian cancer. A large number of studies have targeted macrophages for the treatment of ovarian cancer. In addition, macrophages also play a regulatory role by interacting with other immune cells, including T cells and mesothelial cells, in the ovarian cancer microenvironment. In this review, we discuss the progress made in macrophage-targeted therapy for ovarian cancer. Although there are still several challenges in using this treatment, targeted macrophage therapy is still a promising treatment for ovarian cancer.
Collapse
Affiliation(s)
- Yuanyuan An
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Qing Yang
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
46
|
Targeting colony stimulating factor-1 receptor signalling to treat ectopic pregnancy. Sci Rep 2020; 10:15638. [PMID: 32973322 PMCID: PMC7519033 DOI: 10.1038/s41598-020-72785-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 09/07/2020] [Indexed: 11/08/2022] Open
Abstract
1–2% of pregnancies are ectopic, the majority implanting in the Fallopian tube. A single, systemic dose of methotrexate, a DNA-synthesis (S phase) inhibitor, has been used since 1991 for outpatient treatment of women with stable EP. However, methotrexate has limited clinical and cost effectiveness, restricting its use to 25–30% of these women. There is an unmet need for better medical treatment for EP. Colony stimulating factor-1 (CSF-1) promotes placentation and creates a pro-inflammatory environment that is fundamental for the maintenance of a normal pregnancy. We hypothesised that CSF-1 is also involved in the placentation and maintenance of an EP. Herein, we demonstrate the immunolocalisation of the CSF-1 receptor (CSF-1R) as well as its ligand (CSF-1) in immortalised first trimester trophoblast cells. We show that a specific CSF-1R kinase inhibitor, GW2580, abolishes CSF-1 induced trophoblast cell proliferation and migration and can be cytotoxic. We then demonstrate the expression of CSF-1R and CSF-1 in the cytotrophoblast and syncytiotrophoblast within ectopic implantation sites from women with EP. Our data suggests that CSF-1 is involved in the survival and proliferation of trophoblast cells in EP. This suggests that pharmacological disruption of CSF-1/CSF-1R signaling axis could be the basis of a new therapeutic for EP.
Collapse
|
47
|
Qin J, Zhang X, Tan B, Zhang S, Yin C, Xue Q, Zhang Z, Ren H, Chen J, Liu M, Qian M, Du B. Blocking P2X7-Mediated Macrophage Polarization Overcomes Treatment Resistance in Lung Cancer. Cancer Immunol Res 2020; 8:1426-1439. [PMID: 32933967 DOI: 10.1158/2326-6066.cir-20-0123] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 07/03/2020] [Accepted: 09/10/2020] [Indexed: 12/24/2022]
Abstract
P2X7, a crucial sensor of extracellular ATP, is widely distributed in different immune cells as a potent stimulant of inflammation and immunity. P2X7 is also highly expressed in immunosuppressive cells such as tumor-associated macrophages (TAM) and even tumor cells. However, the function and potential applications of P2X7-mediated immunosuppressive responses in the tumor microenvironment remain unclear. Here, we demonstrated that P2X7 was highly expressed in TAMs and that P2X7 deficiency impaired the "M2-like" polarization of TAMs via downregulation of STAT6 and IRF4 phosphorylation both in vivo and in vitro P2X7 deficiency restricted the progression of urethane-induced lung carcinogenesis and Lewis lung cancer by decreasing tumor cell proliferation and angiogenesis, promoting T-cell mobilization, and reversing M2-like TAM polarization. Thus, deletion or blockade of P2X7 was therapeutic for lung cancer. Furthermore, resistance to both immunotherapy (anti-PD-1 antibody) and chemotherapy (cisplatin) was overcome by coadministration of the P2X7 inhibitors O-ATP, A-438079 hydrochloride, and A-740003. Therefore, our data revealed a vital role of P2X7 in tumor formation through regulating TAM polarization, suggesting the therapeutic potential of P2X7 blockade in patients with lung cancer.
Collapse
Affiliation(s)
- Juliang Qin
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China.,Joint Center for Translational Medicine, Fengxian District Central Hospital, Fengxian District, Shanghai, China
| | - Xiaoyu Zhang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Binghe Tan
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Su Zhang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Chengcong Yin
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Qi Xue
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Zhen Zhang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Hua Ren
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Jinlian Chen
- Joint Center for Translational Medicine, Fengxian District Central Hospital, Fengxian District, Shanghai, China
| | - Mingyao Liu
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Min Qian
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Bing Du
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China.
| |
Collapse
|
48
|
Liu M, Silva-Sanchez A, Randall TD, Meza-Perez S. Specialized immune responses in the peritoneal cavity and omentum. J Leukoc Biol 2020; 109:717-729. [PMID: 32881077 DOI: 10.1002/jlb.5mir0720-271rr] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 07/13/2020] [Accepted: 07/24/2020] [Indexed: 12/15/2022] Open
Abstract
The peritoneal cavity is a fluid filled space that holds most of the abdominal organs, including the omentum, a visceral adipose tissue that contains milky spots or clusters of leukocytes that are organized similar to those in conventional lymphoid tissues. A unique assortment of leukocytes patrol the peritoneal cavity and migrate in and out of the milky spots, where they encounter Ags or pathogens from the peritoneal fluid and respond accordingly. The principal role of leukocytes in the peritoneal cavity is to preserve tissue homeostasis and secure tissue repair. However, when peritoneal homeostasis is disturbed by inflammation, infection, obesity, or tumor metastasis, specialized fibroblastic stromal cells and mesothelial cells in the omentum regulate the recruitment of peritoneal leukocytes and steer their activation in unique ways. In this review, the types of cells that reside in the peritoneal cavity, the role of the omentum in their maintenance and activation, and how these processes function in response to pathogens and malignancy will be discussed.
Collapse
Affiliation(s)
- Mingyong Liu
- Department of Medicine, Division of Clinical Immunology and Rheumatology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Aaron Silva-Sanchez
- Department of Medicine, Division of Clinical Immunology and Rheumatology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Troy D Randall
- Department of Medicine, Division of Clinical Immunology and Rheumatology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Selene Meza-Perez
- Department of Medicine, Division of Clinical Immunology and Rheumatology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
49
|
Yang Y, Yang Y, Yang J, Zhao X, Wei X. Tumor Microenvironment in Ovarian Cancer: Function and Therapeutic Strategy. Front Cell Dev Biol 2020; 8:758. [PMID: 32850861 PMCID: PMC7431690 DOI: 10.3389/fcell.2020.00758] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/20/2020] [Indexed: 02/05/2023] Open
Abstract
Ovarian cancer is one of the leading causes of death in patients with gynecological malignancy. Despite optimal cytoreductive surgery and platinum-based chemotherapy, ovarian cancer disseminates and relapses frequently, with poor prognosis. Hence, it is urgent to find new targeted therapies for ovarian cancer. Recently, the tumor microenvironment has been reported to play a vital role in the tumorigenesis of ovarian cancer, especially with discoveries from genome-, transcriptome- and proteome-wide studies; thus tumor microenvironment may present potential therapeutic target for ovarian cancer. Here, we review the interactions between the tumor microenvironment and ovarian cancer and various therapies targeting the tumor environment.
Collapse
Affiliation(s)
- Yanfei Yang
- Department of Gynecology and Obstetrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| | - Yang Yang
- Department of Gynecology and Obstetrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| | - Jing Yang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xia Zhao
- Department of Gynecology and Obstetrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
50
|
Deng X, Yang Q, Wang Y, Zhou C, Guo Y, Hu Z, Liao W, Xu G, Zeng R. CSF-1R inhibition attenuates ischemia-induced renal injury and fibrosis by reducing Ly6C + M2-like macrophage infiltration. Int Immunopharmacol 2020; 88:106854. [PMID: 32771945 DOI: 10.1016/j.intimp.2020.106854] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 07/26/2020] [Accepted: 07/26/2020] [Indexed: 01/15/2023]
Abstract
Acute kidney injury (AKI) to chronic kidney disease (CKD) progression has become a life-threatening disease. However, an effective therapeuticstrategyis still needed. The pathophysiology of AKI-to-CKD progression involves chronic inflammation and renal fibrosis driven by macrophage activation, which is physiologically dependent on colony-stimulating factor-1 receptor (CSF-1R) signaling. In this study, we modulated macrophage infiltration through oral administration of the CSF-1R inhibitor GW2580 in an ischemia-reperfusion (I/R)-induced AKI model to evaluate its therapeutic effects on preventing the progression of AKI to CKD. We found that GW2580 induced a significant reduction in the number of macrophages in I/R-injured kidneys and attenuated I/R-induced renal injury and subsequent interstitial fibrosis. By flow cytometry, we observed that the reduced macrophages were primarily Ly6C+ inflammatory macrophages in the GW2580-treated kidneys, while there was no significant difference in the number and percentage of Ly6C-CX3CR1+ macrophages. We further found that these reduced macrophages also demonstrated some characteristics of M2-like macrophages, which have been generally regarded as profibrotic subtypes in chronic inflammation. These results indicate the existence of phenotypic and functional crossover between Ly6C+ and M2-like macrophages in I/R kidneys, which induces AKI worsening to CKD. In conclusion, therapeutic GW2580 treatment alleviates acute renal injury and subsequent fibrosis by reducing Ly6C+ M2-like macrophage infiltration in ischemia-induced AKI.
Collapse
Affiliation(s)
- Xuan Deng
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Ave, Wuhan, Hubei, 430030, China
| | - Qian Yang
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Ave, Wuhan, Hubei, 430030, China
| | - Yuxi Wang
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Ave, Wuhan, Hubei, 430030, China
| | - Cheng Zhou
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Ave, Wuhan, Hubei, 430030, China
| | - Yi Guo
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Ave, Wuhan, Hubei, 430030, China
| | - Zhizhi Hu
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Ave, Wuhan, Hubei, 430030, China
| | - Wenhui Liao
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Ave, Wuhan, Hubei, 430030, China
| | - Gang Xu
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Ave, Wuhan, Hubei, 430030, China.
| | - Rui Zeng
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Ave, Wuhan, Hubei, 430030, China.
| |
Collapse
|