1
|
Yu G, Zhang W, Basyal M, Nishida Y, Mizumo H, Ly C, Zhang H, Rice WG, Andreeff M. The multi-kinase inhibitor CG-806 exerts anti-cancer activity against acute myeloid leukemia by co-targeting FLT3, BTK, and aurora kinases. Leuk Lymphoma 2024; 65:1659-1674. [PMID: 38871487 DOI: 10.1080/10428194.2024.2364839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 12/01/2023] [Accepted: 06/01/2024] [Indexed: 06/15/2024]
Abstract
Despite the development of several Fms-like tyrosine kinase 3 (FLT3) inhibitors that have improved outcomes in patients with FLT3-mutant acute myeloid leukemia (AML), drug resistance is frequently observed, which may be associated with the activation of additional pro-survival pathways, such as those regulated by BTK, aurora kinases (AuroK), and potentially others, in addition to acquired tyrosine kinase domain (TKD) mutations of FLT3 gene. FLT3 may not always be a driver mutation. We evaluated the anti-leukemia efficacy of the novel multi-kinase inhibitor CG-806, which targets FLT3 and other kinases, to circumvent drug resistance and target FLT3 wild-type (WT) cells. The anti-leukemia activity of CG-806 was investigated by measuring apoptosis induction and analyzing the cell cycle using flow cytometry in vitro. CG-806 demonstrated superior anti-leukemia efficacy compared to commercially available FLT3 inhibitors, both in vitro and in vivo, regardless of FLT3 mutational status. The mechanism of action of CG-806 may involve its broad inhibitory profile against FLT3, BTK, and AuroK. In FLT3 mutant cells, CG-806 induced G1 phase blockage, whereas in FLT3 WT cells, it resulted in G2/M phase arrest. Targeting FLT3 and Bcl-2 and/or Mcl-1 simultaneously results in a synergistic pro-apoptotic effect in FLT3 mutant leukemia cells. The results of this study suggest that CG-806 is a promising multi-kinase inhibitor with anti-leukemic efficacy regardless of FLT3 mutational status. A phase 1 clinical trial of CG-806 for the treatment of AML has been initiated (NCT04477291).
Collapse
Affiliation(s)
- Guopan Yu
- Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Weiguo Zhang
- Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mahesh Basyal
- Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yuki Nishida
- Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hideaki Mizumo
- Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Charlie Ly
- Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | - Michael Andreeff
- Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
2
|
Ruglioni M, Crucitta S, Luculli GI, Tancredi G, Del Giudice ML, Mechelli S, Galimberti S, Danesi R, Del Re M. Understanding mechanisms of resistance to FLT3 inhibitors in adult FLT3-mutated acute myeloid leukemia to guide treatment strategy. Crit Rev Oncol Hematol 2024; 201:104424. [PMID: 38917943 DOI: 10.1016/j.critrevonc.2024.104424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/06/2024] [Accepted: 06/16/2024] [Indexed: 06/27/2024] Open
Abstract
The presence of FLT3 mutations, including the most common FLT3-ITD (internal tandem duplications) and FLT3-TKD (tyrosine kinase domain), is associated with an unfavorable prognosis in patients affected by acute myeloid leukemia (AML). In this setting, in recent years, new FLT3 inhibitors have demonstrated efficacy in improving survival and treatment response. Nevertheless, the development of primary and secondary mechanisms of resistance poses a significant obstacle to their efficacy. Understanding these mechanisms is crucial for developing novel therapeutic approaches to overcome resistance and improve the outcomes of patients. In this context, the use of novel FLT3 inhibitors and the combination of different targeted therapies have been studied. This review provides an update on the molecular alterations involved in the resistance to FLT3 inhibitors, and describes how the molecular monitoring may be used to guide treatment strategy in FLT3-mutated AML.
Collapse
Affiliation(s)
- Martina Ruglioni
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Stefania Crucitta
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Giovanna Irene Luculli
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Gaspare Tancredi
- Unit of Hematology, Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Maria Livia Del Giudice
- Unit of Hematology, Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Sandra Mechelli
- Unit of Internal Medicine 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Sara Galimberti
- Unit of Hematology, Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Romano Danesi
- Department of Oncology and Hemato-Oncology, University of Milan, Italy.
| | - Marzia Del Re
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Italy
| |
Collapse
|
3
|
Forsberg M, Konopleva M. AML treatment: conventional chemotherapy and emerging novel agents. Trends Pharmacol Sci 2024; 45:430-448. [PMID: 38643058 DOI: 10.1016/j.tips.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/25/2024] [Accepted: 03/25/2024] [Indexed: 04/22/2024]
Abstract
Acute myeloid leukemia (AML) is driven by complex mutations and cytogenetic abnormalities with profound tumoral heterogeneity, making it challenging to treat. Ten years ago, the 5-year survival rate of patients with AML was only 29% with conventional chemotherapy and stem cell transplantation. All attempts to improve conventional therapy over the previous 40 years had failed. Now, new genomic, immunological, and molecular insights have led to a renaissance in AML therapy. Improvements to standard chemotherapy and a wave of new targeted therapies have been developed. However, how best to incorporate these advances into frontline therapy and sequence them in relapse is not firmly established. In this review, we highlight current treatments of AML, targeted agents, and pioneering attempts to synthesize these developments into a rational standard of care (SoC).
Collapse
Affiliation(s)
- Mark Forsberg
- Montefiore Einstein Cancer Center, Department of Oncology, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Marina Konopleva
- Montefiore Einstein Cancer Center, Department of Oncology, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| |
Collapse
|
4
|
Wang J, Tomlinson B, Lazarus HM. Update on Small Molecule Targeted Therapies for Acute Myeloid Leukemia. Curr Treat Options Oncol 2023; 24:770-801. [PMID: 37195589 DOI: 10.1007/s11864-023-01090-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2023] [Indexed: 05/18/2023]
Abstract
OPINION STATEMENT The search for effective therapies for the highly heterogenous disease acute myeloid leukemia (AML) has remained elusive. While cytotoxic therapies can induce complete remission and even, at times, long-term survival, this approach is associated with significant toxic effects to visceral organs and worsening of immune dysfunction and marrow suppression leading to death. Sophisticated molecular studies have revealed defects within the AML cell that can be exploited by utilizing small molecule agents to target these defects, often dubbed "target therapy." Several medications have already established new standards of care for many patients with AML, including FDA-approved agents that inhibitor IDH1, IDH2, FLT3, and BCL-2. Emerging small molecules hold additional to add to the armamentarium of AML treatment options including MCL-1 inhibitors, TP53 inhibitors, menin inhibitors, and E-selectin antagonists. Moreover, the increasing options also mean that future combinations of these agents need to be explored, including with cytotoxic drugs and other newer emerging strategies such as immunotherapies for AML. Recent investigations continue to show that overcoming many of the challenges of treating AML finally is on the horizon.
Collapse
Affiliation(s)
- Jiasheng Wang
- Division of Hematology, Department of Medicine, Seidman Cancer Center, University Hospitals Cleveland Medical Center, Case Western Reserve University, 11000 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Benjamin Tomlinson
- Division of Hematology, Department of Medicine, Seidman Cancer Center, University Hospitals Cleveland Medical Center, Case Western Reserve University, 11000 Euclid Avenue, Cleveland, OH, 44106, USA.
| | - Hillard M Lazarus
- Division of Hematology, Department of Medicine, Seidman Cancer Center, University Hospitals Cleveland Medical Center, Case Western Reserve University, 11000 Euclid Avenue, Cleveland, OH, 44106, USA
| |
Collapse
|
5
|
Ye J, Wu J, Liu B. Therapeutic strategies of dual-target small molecules to overcome drug resistance in cancer therapy. Biochim Biophys Acta Rev Cancer 2023; 1878:188866. [PMID: 36842765 DOI: 10.1016/j.bbcan.2023.188866] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/12/2023] [Accepted: 01/31/2023] [Indexed: 02/28/2023]
Abstract
Despite some advances in targeted therapeutics of human cancers, curative cancer treatment still remains a tremendous challenge due to the occurrence of drug resistance. A variety of underlying resistance mechanisms to targeted cancer drugs have recently revealed that the dual-target therapeutic strategy would be an attractive avenue. Compared to drug combination strategies, one agent simultaneously modulating two druggable targets generally shows fewer adverse reactions and lower toxicity. As a consequence, the dual-target small molecule has been extensively explored to overcome drug resistance in cancer therapy. Thus, in this review, we focus on summarizing drug resistance mechanisms of cancer cells, such as enhanced drug efflux, deregulated cell death, DNA damage repair, and epigenetic alterations. Based upon the resistance mechanisms, we further discuss the current therapeutic strategies of dual-target small molecules to overcome drug resistance, which will shed new light on exploiting more intricate mechanisms and relevant dual-target drugs for future cancer therapeutics.
Collapse
Affiliation(s)
- Jing Ye
- State Key Laboratory of Biotherapy and Cancer Center and Department of Otolaryngology, Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Junhao Wu
- State Key Laboratory of Biotherapy and Cancer Center and Department of Otolaryngology, Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center and Department of Otolaryngology, Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
6
|
Yu G, Zhang W, Zhang H, Ly C, Basyal M, Rice WG, Andreeff M. The multi-kinase inhibitor CG-806 exerts anti-cancer activity against acute myeloid leukemia by co-targeting FLT3, BTK, and Aurora kinases. RESEARCH SQUARE 2023:rs.3.rs-2570204. [PMID: 36865133 PMCID: PMC9980215 DOI: 10.21203/rs.3.rs-2570204/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Background Despite the development of several FLT3 inhibitors that have improved outcomes in patients with FLT3-mutant acute myeloid leukemias (AML), drug resistance is frequently observed, which may be associated with the activation of additional pro-survival pathways such as those regulated by BTK, aurora kinases, and potentially others in addition to acquired tyrosine kinase domains (TKD) mutations of FLT3 gene. FLT3may not always be a driver mutation. Objective To evaluate the anti-leukemia efficacy of the novel multi-kinase inhibitor CG-806, which targets FLT3 and other kinases, in order to circumvent drug resistance and target FLT3 wild-type (WT) cells. Methods The anti-leukemia activity of CG-806 was investigated by measuring apoptosis induction and analyzing cell cycle with flow cytometry in vitro, and its anti-leukemia. Results CG-806 demonstrated superior anti-leukemia efficacy compared to commercially available FLT3 inhibitors, both in vitro and in vivo, regardless of FLT3 mutational status. The mechanism of action of CG-806 may involve its broad inhibitory profile of FLT3, BTK, and aurora kinases. InFLT3 mutant cells, CG-806 induced G1 phase blockage, while in FLT3WT cells, it resulted in G2/M arrest. Targeting FLT3 and Bcl-2 and/or Mcl-1 simultaneously resulted in a synergistic pro-apoptotic effect in FLT3mutant leukemia cells. Conclusion The results of this study suggest that CG-806 is a promising multi-kinase inhibitor with anti-leukemia efficacy, regardless of FLT3 mutational status. A phase 1 clinical trial of CG-806 for the treatment of AML has been initiated (NCT04477291).
Collapse
Affiliation(s)
- Guopan Yu
- The University of Texas MD Anderson Cancer Center
| | | | | | - Charlie Ly
- The University of Texas MD Anderson Cancer Center
| | | | | | | |
Collapse
|
7
|
Wang H, Chi L, Yu F, Dai H, Si X, Gao C, Wang Z, Liu L, Zheng J, Ke Y, Liu H, Zhang Q. The overview of Mitogen-activated extracellular signal-regulated kinase (MEK)-based dual inhibitor in the treatment of cancers. Bioorg Med Chem 2022; 70:116922. [PMID: 35849914 DOI: 10.1016/j.bmc.2022.116922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 11/02/2022]
Abstract
Mitogen-activated extracellular signal-regulated kinase 1 and 2 (MEK1/2) are the critical components of the mitogen-activated protein kinase/extracellular signal-regulated kinase 1 and 2 (MAPK/ERK1/2) signaling pathway which is one of the well-characterized kinase cascades regulating cell proliferation, differentiation, growth, metabolism, survival and mobility both in normal and cancer cells. The aberrant activation of MAPK/ERK1/2 pathway is a hallmark of numerous human cancers, therefore targeting the components of this pathway to inhibit its dysregulation is a promising strategy for cancer treatment. Enormous efforts have been done in the development of MEK1/2 inhibitors and encouraging advancements have been made, including four inhibitors approved for clinical use. However, due to the multifactorial property of cancer and rapidly arising drug resistance, the clinical efficacy of these MEK1/2 inhibitors as monotherapy are far from ideal. Several alternative strategies have been developed to improve the limited clinical efficacy, including the dual inhibitor which is a single drug molecule able to simultaneously inhibit two targets. In this review, we first introduced the activation and function of the MAPK/ERK1/2 components and discussed the advantages of MEK1/2-based dual inhibitors compared with the single inhibitors and combination therapy in the treatment of cancers. Then, we overviewed the MEK1/2-based dual inhibitors for the treatment of cancers and highlighted the theoretical basis of concurrent inhibition of MEK1/2 and other targets for development of these dual inhibitors. Besides, the status and results of these dual inhibitors in both preclinical and clinical studies were also the focus of this review.
Collapse
Affiliation(s)
- Hao Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China
| | - Lingling Chi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China
| | - Fuqiang Yu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China
| | - Hongling Dai
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China
| | - Xiaojie Si
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China
| | - Chao Gao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China
| | - Zhengjie Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China
| | - Limin Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China
| | - Jiaxin Zheng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China
| | - Yu Ke
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China.
| | - Hongmin Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou 450052, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China.
| | - Qiurong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China.
| |
Collapse
|
8
|
Xu D, Chen Y, Yang Y, Yin Z, Huang C, Wang Q, Jiang L, Jiang X, Yin C, Liu Q, Yu G. Autophagy activation mediates resistance to FLT3 inhibitors in acute myeloid leukemia with FLT3-ITD mutation. Lab Invest 2022; 20:300. [PMID: 35794565 PMCID: PMC9258138 DOI: 10.1186/s12967-022-03498-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 06/24/2022] [Indexed: 12/18/2022]
Abstract
Background Autophagy plays a critical role in drug resistance in acute myeloid leukemia (AML), including the subtype with FLT3-ITD mutation. Yet how autophagy is activated and mediates resistance to FLT3 inhibitors in FLT3-ITD-positive AML remains unsure. Methods We detected the expression of autophagy markers in FLT3-ITD-positive leukemic cells after vs. before acquired resistance to FLT3 inhibitors; tested the stimulative effect of acquired D835Y mutation and bone marrow micro-environment (BME) on autophagy; explored the mechanism of autophagy mediating FLT3 inhibitor resistance. Results Sorafenib-resistant cells markedly overpresented autophagy markers in comparison with sorafenib-sensitive cells or the cells before sorafenib treatment. Both acquired D835Y mutation and BME activated cytoprotective autophagy to mediate FLT3 inhibitor resistance. Autophagy activation decreased the suppression efficacy of FLT3 inhibitors on FLT3 downstream signaling and then weakened their anti-leukemia effect. Inhibition of autophagy with CQ significantly enhanced the suppressive effect of FLT3 inhibitor on FLT3 downstream signaling, in the end overcame resistance to FLT3 inhibitors. Conclusions Autophagy might be stimulated by acquired mutation or BME, and bypass activate FLT3 downstream signaling to mediate FLT3 inhibitor resistance in FLT3-ITD-positive AML. Targeting autophagy could be a promising strategy to overcome resistance.
Collapse
|
9
|
Liang Y, Fang R, Rao Q. An Insight into the Medicinal Chemistry Perspective of Macrocyclic Derivatives with Antitumor Activity: A Systematic Review. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092837. [PMID: 35566196 PMCID: PMC9100616 DOI: 10.3390/molecules27092837] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/24/2022] [Accepted: 04/27/2022] [Indexed: 11/16/2022]
Abstract
The profound pharmacological properties of macrocyclic compounds have led to their development as drugs. In conformationally pre-organized ring structures, the multiple functions and stereochemical complexity provided by the macrocycle result in high affinity and selectivity of protein targets while maintaining sufficient bioavailability to reach intracellular locations. Therefore, the construction of macrocycles is an ideal choice to solve the problem of “undruggable” targets. Inspection of 68 macrocyclic drugs on the market showed that 10 of them were used to treat cancer, but this structural class still has been poorly explored within drug discovery. This perspective considers the macrocyclic compounds used for anti-tumor with different targets, their advantages and disadvantages, and the various synthetic methods of them.
Collapse
Affiliation(s)
| | | | - Qiu Rao
- Correspondence: (Y.L.); (Q.R.)
| |
Collapse
|
10
|
Zhao JC, Agarwal S, Ahmad H, Amin K, Bewersdorf JP, Zeidan AM. A review of FLT3 inhibitors in acute myeloid leukemia. Blood Rev 2022; 52:100905. [PMID: 34774343 PMCID: PMC9846716 DOI: 10.1016/j.blre.2021.100905] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 01/26/2023]
Abstract
FLT3 mutations are the most common genetic aberrations found in acute myeloid leukemia (AML) and associated with poor prognosis. Since the discovery of FLT3 mutations and their prognostic implications, multiple FLT3-targeted molecules have been evaluated. Midostaurin is approved in the U.S. and Europe for newly diagnosed FLT3 mutated AML in combination with standard induction and consolidation chemotherapy based on data from the RATIFY study. Gilteritinib is approved for relapsed or refractory FLT3 mutated AML as monotherapy based on the ADMIRAL study. Although significant progress has been made in the treatment of AML with FLT3-targeting, many challenges remain. Several drug resistance mechanisms have been identified, including clonal selection, stromal protection, FLT3-associated mutations, and off-target mutations. The benefit of FLT3 inhibitor maintenance therapy, either post-chemotherapy or post-transplant, remains controversial, although several studies are ongoing.
Collapse
Affiliation(s)
- Jennifer C Zhao
- Department of Pharmacy, Yale New Haven Hospital, New Haven, CT, USA
| | - Sonal Agarwal
- Department of Pharmacy, Yale New Haven Hospital, New Haven, CT, USA
| | - Hiba Ahmad
- Department of Pharmacy, Yale New Haven Hospital, New Haven, CT, USA
| | - Kejal Amin
- Department of Pharmacy, Yale New Haven Hospital, New Haven, CT, USA
| | - Jan Philipp Bewersdorf
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA; Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Amer M Zeidan
- Department of Internal Medicine, Section of Hematology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
11
|
Wang B, Wu H, Hu C, Wang H, Liu J, Wang W, Liu Q. An overview of kinase downregulators and recent advances in discovery approaches. Signal Transduct Target Ther 2021; 6:423. [PMID: 34924565 PMCID: PMC8685278 DOI: 10.1038/s41392-021-00826-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 10/28/2021] [Accepted: 11/05/2021] [Indexed: 12/17/2022] Open
Abstract
Since the clinical approval of imatinib, the discovery of protein kinase downregulators entered a prosperous age. However, challenges still exist in the discovery of kinase downregulator drugs, such as the high failure rate during development, side effects, and drug-resistance problems. With the progress made through multidisciplinary efforts, an increasing number of new approaches have been applied to solve the above problems during the discovery process of kinase downregulators. In terms of in vitro and in vivo drug evaluation, progress was also made in cellular and animal model platforms for better and more clinically relevant drug assessment. Here, we review the advances in drug design strategies, drug property evaluation technologies, and efficacy evaluation models and technologies. Finally, we discuss the challenges and perspectives in the development of kinase downregulator drugs.
Collapse
Affiliation(s)
- Beilei Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
| | - Hong Wu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
| | - Chen Hu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
| | - Haizhen Wang
- Hefei PreceDo pharmaceuticals Co., Ltd, Hefei, Anhui, 230088, People's Republic of China
| | - Jing Liu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
| | - Wenchao Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
| | - Qingsong Liu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China.
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China.
| |
Collapse
|
12
|
Nishida Y, Zhao R, Heese LE, Akiyama H, Patel S, Jaeger AM, Jacamo RO, Kojima K, Ma MCJ, Ruvolo VR, Chachad D, Devine W, Lindquist S, Davis RE, Porco JA, Whitesell L, Andreeff M, Ishizawa J. Inhibition of translation initiation factor eIF4a inactivates heat shock factor 1 (HSF1) and exerts anti-leukemia activity in AML. Leukemia 2021; 35:2469-2481. [PMID: 34127794 PMCID: PMC8764661 DOI: 10.1038/s41375-021-01308-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 04/01/2021] [Accepted: 05/21/2021] [Indexed: 01/31/2023]
Abstract
Eukaryotic initiation factor 4A (eIF4A), the enzymatic core of the eIF4F complex essential for translation initiation, plays a key role in the oncogenic reprogramming of protein synthesis, and thus is a putative therapeutic target in cancer. As important component of its anticancer activity, inhibition of translation initiation can alleviate oncogenic activation of HSF1, a stress-inducible transcription factor that enables cancer cell growth and survival. Here, we show that primary acute myeloid leukemia (AML) cells exhibit the highest transcript levels of eIF4A1 compared to other cancer types. eIF4A inhibition by the potent and specific compound rohinitib (RHT) inactivated HSF1 in these cells, and exerted pronounced in vitro and in vivo anti-leukemia effects against progenitor and leukemia-initiating cells, especially those with FLT3-internal tandem duplication (ITD). In addition to its own anti-leukemic activity, genetic knockdown of HSF1 also sensitized FLT3-mutant AML cells to clinical FLT3 inhibitors, and this synergy was conserved in FLT3 double-mutant cells carrying both ITD and tyrosine kinase domain mutations. Consistently, the combination of RHT and FLT3 inhibitors was highly synergistic in primary FLT3-mutated AML cells. Our results provide a novel therapeutic rationale for co-targeting eIF4A and FLT3 to address the clinical challenge of treating FLT3-mutant AML.
Collapse
Affiliation(s)
- Yuki Nishida
- Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ran Zhao
- Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lauren E. Heese
- Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hiroki Akiyama
- Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shreya Patel
- Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alex M. Jaeger
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Rodrigo O. Jacamo
- Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kensuke Kojima
- Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA,Department of Hematology, Kochi Medical School, Kochi University, Nankoku, Kochi, Japan
| | - Man Chun John Ma
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vivian R. Ruvolo
- Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dhruv Chachad
- Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - William Devine
- Department of Chemistry, Center for Molecular Discovery (BU-CMD), Boston University, Boston, MA, USA
| | - Susan Lindquist
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - R. Eric Davis
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John A. Porco
- Department of Chemistry, Center for Molecular Discovery (BU-CMD), Boston University, Boston, MA, USA
| | - Luke Whitesell
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA,Present address: Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Michael Andreeff
- Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jo Ishizawa
- Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
13
|
Tariq MU, Furqan M, Parveen H, Ullah R, Muddassar M, Saleem RSZ, Bavetsias V, Linardopoulos S, Faisal A. CCT245718, a dual FLT3/Aurora A inhibitor overcomes D835Y-mediated resistance to FLT3 inhibitors in acute myeloid leukaemia cells. Br J Cancer 2021; 125:966-974. [PMID: 34446858 DOI: 10.1038/s41416-021-01527-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 07/17/2021] [Accepted: 08/11/2021] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Activating mutations in the Fms-like tyrosine kinase 3 (FLT3) are among the most prevalent oncogenic mutations in acute myeloid leukaemia. Inhibitors selectively targeting FLT3 kinase have shown promising clinical activity; their success in the clinic, however, has been limited due to the emergence of acquired resistance. METHODS CCT245718 was identified and characterised as a dual Aurora A/FLT3 inhibitor through cell-based and biochemical assays. The ability of CCT245718 to overcome TKD-mediated resistance was evaluated in a cell line-based model of drug resistance to FLT3 inhibitors. RESULTS CCT245718 exhibits potent antiproliferative activity towards FLT3-ITD + AML cell lines and strongly binds to FLT3-ITD and TKD (D835Y) mutants in vitro. Activities of both FLT3-ITD and Aurora A are also inhibited in cells. Inhibition of FLT3 results in reduced phosphorylation of STAT5, downregulation of survivin and induction of apoptotic cell death. Moreover, CCT245718 overcomes TKD-mediated resistance in a MOLM-13-derived cell line containing FLT3 with both ITD and D835Y mutations. It also inhibits FLT3 signalling in both parental and resistant cell lines compared to FLT3-specific inhibitor MLN518, which is only active in the parental cell line. CONCLUSIONS Our results demonstrate that CCT245718 is a potent dual FLT3/Aurora A inhibitor that can overcome TKD-mediated acquired resistance.
Collapse
Affiliation(s)
- Muhammad Usama Tariq
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Muhammad Furqan
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Hira Parveen
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Rahim Ullah
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Muhammad Muddassar
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Rahman Shah Zaib Saleem
- Department of Chemistry and Chemical Engineering, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Vassilios Bavetsias
- Cancer Research UK, Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Spiros Linardopoulos
- Cancer Research UK, Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK.,Breast Cancer Now, Division of Breast Cancer Research, The Institute of Cancer Research, London, UK.,AstraZeneca, Cambridge, UK
| | - Amir Faisal
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan.
| |
Collapse
|
14
|
Hogan FL, Williams V, Knapper S. FLT3 Inhibition in Acute Myeloid Leukaemia - Current Knowledge and Future Prospects. Curr Cancer Drug Targets 2021; 20:513-531. [PMID: 32418523 DOI: 10.2174/1570163817666200518075820] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 03/12/2020] [Accepted: 03/29/2020] [Indexed: 12/20/2022]
Abstract
Activating mutations of FMS-like tyrosine kinase 3 (FLT3) are present in 30% of acute myeloid leukaemia (AML) patients at diagnosis and confer an adverse clinical prognosis. Mutated FLT3 has emerged as a viable therapeutic target and a number of FLT3-directed tyrosine kinase inhibitors have progressed through clinical development over the last 10-15 years. The last two years have seen United States Food and Drug Administration (US FDA) approvals of the multi-kinase inhibitor midostaurin for newly-diagnosed FLT3-mutated patients, when used in combination with intensive chemotherapy, and of the more FLT3-selective agent gilteritinib, used as monotherapy, for patients with relapsed or treatment-refractory FLT3-mutated AML. The 'second generation' agents, quizartinib and crenolanib, are also at advanced stages of clinical development. Significant challenges remain in negotiating a variety of potential acquired drug resistance mechanisms and in optimizing sequencing of FLT3 inhibitory drugs with existing and novel treatment approaches in different clinical settings, including frontline therapy, relapsed/refractory disease, and maintenance treatment. In this review, the biology of FLT3, the clinical challenge posed by FLT3-mutated AML, the developmental history of the key FLT3-inhibitory compounds, mechanisms of disease resistance, and the future outlook for this group of agents, including current and planned clinical trials, is discussed.
Collapse
Affiliation(s)
- Francesca L Hogan
- Department of Haematology, University Hospital of Wales, Cardiff, United Kingdom
| | - Victoria Williams
- Department of Haematology, University Hospital of Wales, Cardiff, United Kingdom
| | - Steven Knapper
- School of Medicine, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
15
|
Wang J, Shen SH, Hu BF, Wang GL. Successful use of trametinib and dasatinib combined with chemotherapy in the treatment of Ph-positive B-cell acute lymphoblastic leukemia: A case report. Medicine (Baltimore) 2021; 100:e26440. [PMID: 34160436 PMCID: PMC8238268 DOI: 10.1097/md.0000000000026440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 06/07/2021] [Indexed: 01/04/2023] Open
Abstract
RATIONALE Relapsed or refractory acute lymphoblastic leukemia poses a significant clinical challenge due to its poor prognosis, showing survival rates of less than a year even with the use of novel therapies. In this report, we describe the safe and effective use of trametinib combined with dasatinib in a patient with acute lymphoblastic leukemia (ALL). To the best of our knowledge, this is the first report on the successful use of 2 targeted drugs such as trametinib and dasatinib in a pediatric patient with Ph+ ALL and recurrent pancreatitis. PATIENT CONCERNS A 6-year-old boy with ALL and Philadelphia chromosome (Ph+) who had recurrent asparaginase-associated pancreatitis. DIAGNOSIS The patient was diagnosed with ALL, based on clinical features, laboratory analyses, bone marrow aspiration evaluation in morphology, immunology, cytogenetics, and molecular. INTERVENTIONS The patient was treated with dasatinib combined with an intermediate risk-oriented chemotherapy. However, owing to recurrent asparaginase-associated pancreatitis, the patient has to abandon asparaginase in consolidation. Considering the high risk of relapse, we used trametinib and dasatinib combined with chemotherapy as maintenance chemotherapy. OUTCOMES After 6 months, there were no obvious side effects or residual disease. LESSONS We suggest that the combination of trametinib and dasatinib may represent a viable option to treat patients with potential relapsed/refractory Ph+ ALL.
Collapse
Affiliation(s)
- Jing Wang
- Ningbo Women and Children's Hospital, Ningbo
| | - Shu-Hong Shen
- Shanghai Children's Medical Center, Shanghai Jiaotong University, Shanghai, China
| | - Bin-Fei Hu
- Ningbo Women and Children's Hospital, Ningbo
| | | |
Collapse
|
16
|
Amrhein JA, Knapp S, Hanke T. Synthetic Opportunities and Challenges for Macrocyclic Kinase Inhibitors. J Med Chem 2021; 64:7991-8009. [PMID: 34076436 DOI: 10.1021/acs.jmedchem.1c00217] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Macrocycles are typically cyclic variants of inhibitors derived from uncyclized canonical molecules or from natural products. For medicinal chemistry, drug-like macrocycles have received increasing interest over the past few years, since it has been demonstrated that macrocyclization can favorably alter the biological and physiochemical properties as well as selectivity in comparison to the acyclic analogue. Recent drug approvals such as Lorlatinib, glecaprevir, or voxilaprevir underline the clinical relevance of drug-like macrocycles. However, the synthesis of drug-like macrocycles can be challenging, since the ring-closing reaction is generally challenging with yields depending on the size and geometry of the bridging linker. Nevertheless, macrocycles are one opportunity to expand the synthetic toolbox for medicinal chemistry to provide bioactive molecules. Therefore, we reviewed the past literature of drug-like macrocycles highlighting reactions that have been successfully used for the macrocyclization. We classified the cyclization reactions by their type, ring-size, yield, and macrocyclization efficiency index.
Collapse
Affiliation(s)
- Jennifer Alisa Amrhein
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany.,Structure Genomics Consortium Buchmann Institute for Molecular Life Sciences, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 15, D-60438 Frankfurt am Main, Germany
| | - Stefan Knapp
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany.,Structure Genomics Consortium Buchmann Institute for Molecular Life Sciences, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 15, D-60438 Frankfurt am Main, Germany
| | - Thomas Hanke
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany.,Structure Genomics Consortium Buchmann Institute for Molecular Life Sciences, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 15, D-60438 Frankfurt am Main, Germany
| |
Collapse
|
17
|
Glucocorticoids enhance the antileukemic activity of FLT3 inhibitors in FLT3-mutant acute myeloid leukemia. Blood 2021; 136:1067-1079. [PMID: 32396937 DOI: 10.1182/blood.2019003124] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 04/24/2020] [Indexed: 02/01/2023] Open
Abstract
FLT3 is a frequently mutated gene that is highly associated with a poor prognosis in acute myeloid leukemia (AML). Despite initially responding to FLT3 inhibitors, most patients eventually relapse with drug resistance. The mechanism by which resistance arises and the initial response to drug treatment that promotes cell survival is unknown. Recent studies show that a transiently maintained subpopulation of drug-sensitive cells, so-called drug-tolerant "persisters" (DTPs), can survive cytotoxic drug exposure despite lacking resistance-conferring mutations. Using RNA sequencing and drug screening, we find that treatment of FLT3 internal tandem duplication AML cells with quizartinib, a selective FLT3 inhibitor, upregulates inflammatory genes in DTPs and thereby confers susceptibility to anti-inflammatory glucocorticoids (GCs). Mechanistically, the combination of FLT3 inhibitors and GCs enhances cell death of FLT3 mutant, but not wild-type, cells through GC-receptor-dependent upregulation of the proapoptotic protein BIM and proteasomal degradation of the antiapoptotic protein MCL-1. Moreover, the enhanced antileukemic activity by quizartinib and dexamethasone combination has been validated using primary AML patient samples and xenograft mouse models. Collectively, our study indicates that the combination of FLT3 inhibitors and GCs has the potential to eliminate DTPs and therefore prevent minimal residual disease, mutational drug resistance, and relapse in FLT3-mutant AML.
Collapse
|
18
|
Somasagara RR, Huang X, Xu C, Haider J, Serody JS, Armistead PM, Leung T. Targeted therapy of human leukemia xenografts in immunodeficient zebrafish. Sci Rep 2021; 11:5715. [PMID: 33707624 PMCID: PMC7952715 DOI: 10.1038/s41598-021-85141-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 02/25/2021] [Indexed: 01/05/2023] Open
Abstract
Personalized medicine holds tremendous promise for improving safety and efficacy of drug therapies by optimizing treatment regimens. Rapidly developed patient-derived xenografts (pdx) could be a helpful tool for analyzing the effect of drugs against an individual's tumor by growing the tumor in an immunodeficient animal. Severe combined immunodeficiency (SCID) mice enable efficient in vivo expansion of vital tumor cells and generation of personalized xenografts. However, they are not amenable to large-scale rapid screening, which is critical in identifying new compounds from large compound libraries. The development of a zebrafish model suitable for pdx could facilitate large-scale screening of drugs targeted against specific malignancies. Here, we describe a novel strategy for establishing a zebrafish model for drug testing in leukemia xenografts. We used chronic myelogenous leukemia and acute myeloid leukemia for xenotransplantation into SCID zebrafish to evaluate drug screening protocols. We showed the in vivo efficacy of the ABL inhibitor imatinib, MEK inhibitor U0126, cytarabine, azacitidine and arsenic trioxide. We performed corresponding in vitro studies, demonstrating that combination of MEK- and FLT3-inhibitors exhibit an enhanced effect in vitro. We further evaluated the feasibility of zebrafish for transplantation of primary human hematopoietic cells that can survive at 15 day-post-fertilization. Our results provide critical insights to guide development of high-throughput platforms for evaluating leukemia.
Collapse
Affiliation(s)
- Ranganatha R Somasagara
- The Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, North Carolina Research Campus, Kannapolis, NC, 28081, USA
| | - Xiaoyan Huang
- The Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, North Carolina Research Campus, Kannapolis, NC, 28081, USA
| | - Chunyu Xu
- The Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, North Carolina Research Campus, Kannapolis, NC, 28081, USA
| | - Jamil Haider
- The Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, North Carolina Research Campus, Kannapolis, NC, 28081, USA
| | - Jonathan S Serody
- Division of Hematology/Oncology, Department of Medicine, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Paul M Armistead
- Division of Hematology/Oncology, Department of Medicine, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - TinChung Leung
- The Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, North Carolina Research Campus, Kannapolis, NC, 28081, USA. .,Department of Biological & Biomedical Sciences, North Carolina Central University, Durham, NC, 27707, USA.
| |
Collapse
|
19
|
Tang H, Jia S, Bi L, Jia W, Gao G. Treatment options for older unfit patients with acute myeloid leukemia. Future Oncol 2021; 17:837-851. [PMID: 33522289 DOI: 10.2217/fon-2020-0615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Older acute myeloid leukemia patients usually experience a bleak outcome, especially those in the unfit group. For this unfit category, intensive chemotherapy and allogeneic stem cell transplantation are usually accompanied by higher early mortality, which results from higher risk genetic profiles and worse psychological and physiological conditions. The significant improvement in genetic technology recently has driven the appearance of several mutation-targeted therapies, such as FLT3, Bcl-2, IDH and Hedgehog pathway inhibitors and an anti-CD33 antibody-drug conjugate, which have changed enormously the therapeutic landscape of acute myeloid leukemia. This review describes the treatment dilemma of the unfit group and discusses the objective clinical data of each targeted drug and mechanisms of resistance, with a focus on combination strategies with fewer toxicities and abrogation of drug resistance.
Collapse
Affiliation(s)
- Hailong Tang
- Department of Hematology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Shuangshuang Jia
- Department of Hematology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Lei Bi
- Department of Hematology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Weijing Jia
- Department of Hematology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Guangxun Gao
- Department of Hematology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| |
Collapse
|
20
|
Jeanpierre S, Arizkane K, Thongjuea S, Grockowiak E, Geistlich K, Barral L, Voeltzel T, Guillemin A, Gonin-Giraud S, Gandrillon O, Nicolini FE, Mead AJ, Maguer-Satta V, Lefort S. The quiescent fraction of chronic myeloid leukemic stem cells depends on BMPR1B, Stat3 and BMP4-niche signals to persist in patients in remission. Haematologica 2021; 106:111-122. [PMID: 32001529 PMCID: PMC7776261 DOI: 10.3324/haematol.2019.232793] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 01/27/2020] [Indexed: 12/16/2022] Open
Abstract
Chronic myeloid leukemia arises from the transformation of hematopoietic stem cells by the BCR-ABL oncogene. Though transformed cells are predominantly BCR-ABL-dependent and sensitive to tyrosine kinase inhibitor treatment, some BMPR1B+ leukemic stem cells are treatment-insensitive and rely, among others, on the bone morphogenetic protein (BMP) pathway for their survival via a BMP4 autocrine loop. Here, we further studied the involvement of BMP signaling in favoring residual leukemic stem cell persistence in the BM of patients having achieved remission under treatment. We demonstrate by single-cell RNASequencing analysis that a sub-fraction of surviving BMPR1B+ leukemic stem cells are co-enriched in BMP signaling, quiescence and stem cell signatures, without modulation of the canonical BMP target genes, but enrichment in actors of the Jak2/Stat3 signaling pathway. Indeed, based on a new model of persisting CD34+CD38– leukemic stem cells, we show that BMPR1B+ cells display co-activated Smad1/5/8 and Stat3 pathways. Interestingly, we reveal that only the BMPR1B+ cells adhering to stromal cells display a quiescent status. Surprisingly, this quiescence is induced by treatment, while non-adherent BMPR1B+ cells treated with tyrosine kinase inhibitors continued to proliferate. The subsequent targeting of BMPR1B and Jak2 pathways decreased quiescent leukemic stem cells by promoting their cell cycle re-entry and differentiation. Moreover, while Jak2-inhibitors alone increased BMP4 production by mesenchymal cells, the addition of the newly described BMPR1B inhibitor (E6201) impaired BMP4-mediated production by stromal cells. Altogether, our data demonstrate that targeting both BMPR1B and Jak2/Stat3 efficiently impacts persisting and dormant leukemic stem cells hidden in their BM microenvironment.
Collapse
Affiliation(s)
| | | | | | | | | | - Lea Barral
- Centre de Recherche en Cancérologie de Lyon
| | | | - Anissa Guillemin
- Laboratoire de biologie et modélisation de la cellule. LBMC - Ecole Normale Superieure - Lyon
| | - Sandrine Gonin-Giraud
- Laboratoire de biologie et modélisation de la cellule. LBMC - Ecole Normale Superieure - Lyon
| | - Olivier Gandrillon
- Laboratoire de biologie et modélisation de la cellule. LBMC - Ecole Normale Superieure - Lyon
| | | | | | | | | |
Collapse
|
21
|
Khoury JD, Tashakori M, Yang H, Loghavi S, Wang Y, Wang J, Piya S, Borthakur G. Pan-RAF Inhibition Shows Anti-Leukemic Activity in RAS-Mutant Acute Myeloid Leukemia Cells and Potentiates the Effect of Sorafenib in Cells with FLT3 Mutation. Cancers (Basel) 2020; 12:cancers12123511. [PMID: 33255818 PMCID: PMC7761301 DOI: 10.3390/cancers12123511] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 12/19/2022] Open
Abstract
Simple Summary We demonstrate that the pan-RAF inhibitor LY3009120 induces apoptosis and inhibits proliferation in AML cells harboring RAS or FLT3 mutations through action on the RAS/RAF/MEK/ERK and the AKT/mTOR pathways. Notably, pan-RAF inhibition combined with Ara-C overcomes drug resistance mediated by bone marrow-derived mesenchymal stem cells. Furthermore, the combination of LY3009120 and tyrosine kinase inhibition with sorafenib appears to synergistically increase apoptosis in AML cells carrying FLT3-ITD mutation. Abstract RAF molecules play a critical role in cell signaling through their integral impact on the RAS/RAF/MEK/ERK signaling pathway, which is constitutively activated in a sizeable subset of acute myeloid leukemia (AML) patients. We evaluated the impact of pan-RAF inhibition using LY3009120 in AML cells harboring mutations upstream and downstream of RAF. LY3009120 had anti-proliferative and pro-apoptotic effects and suppressed pERK1/2 levels in leukemic cells with RAS and FLT3 mutations. Using reverse protein phase array analysis, we identified reductions in the expression/activation of cell signaling components downstream of RAF (activated p38) and cell cycle regulators (Wee1/cyclin B1, Cdc2/Cdk1, activated Rb, etc.). Notably, LY3009120 potentiated the effect of Ara-C on AML cells and overcame bone marrow mesenchymal stromal cell-mediated chemoresistance, with RAS-mutated cells showing a notable reduction in pAKT (Ser473). Furthermore, the combination of LY3009120 and sorafenib resulted in significantly higher levels of apoptosis in AML cells with heterozygous and hemizygous FLT3 mutations. In conclusion, pan-RAF inhibition in AML using LY3009120 results in anti-leukemic activity, and combination with Ara-C or sorafenib potentiates its effect.
Collapse
Affiliation(s)
- Joseph D. Khoury
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, MS-072, Houston, TX 77030, USA; (M.T.); (H.Y.); (S.L.)
- Correspondence: (J.D.K.); (G.B.)
| | - Mehrnoosh Tashakori
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, MS-072, Houston, TX 77030, USA; (M.T.); (H.Y.); (S.L.)
| | - Hong Yang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, MS-072, Houston, TX 77030, USA; (M.T.); (H.Y.); (S.L.)
| | - Sanam Loghavi
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, MS-072, Houston, TX 77030, USA; (M.T.); (H.Y.); (S.L.)
| | - Ying Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (Y.W.); (J.W.)
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (Y.W.); (J.W.)
| | - Sujan Piya
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, MS-072, Houston, TX 77030, USA;
| | - Gautam Borthakur
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, MS-072, Houston, TX 77030, USA;
- Correspondence: (J.D.K.); (G.B.)
| |
Collapse
|
22
|
Borthakur G, Zeng Z, Cortes JE, Chen HC, Huang X, Konopleva M, Ravandi F, Kadia T, Patel KP, Daver N, Kelly MA, McQueen T, Wang RY, Kantarjian H, Andreeff M. Phase 1 study of combinatorial sorafenib, G-CSF, and plerixafor treatment in relapsed/refractory, FLT3-ITD-mutated acute myelogenous leukemia patients. Am J Hematol 2020; 95:1296-1303. [PMID: 32697348 DOI: 10.1002/ajh.25943] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/14/2020] [Accepted: 07/20/2020] [Indexed: 01/18/2023]
Abstract
Stroma-leukemia interactions mediated by CXCR4, CD44, VLA4, and their respective ligands contribute to therapy resistance in FLT3-ITD-mutated acute myelogenous leukemia (AML). We conducted a phase 1 study with the combination of sorafenib (a FLT3-ITD inhibitor), plerixafor (a SDF-1/CXCR4 inhibitor), and G-CSF (that cleaves SDF-1, CD44, and VLA4). Twenty-eight patients with relapsed/refractory FLT3-ITD-mutated AML were enrolled from December 2010 to December 2013 at three dose levels of sorafenib (400, 600, and 800 mg twice daily) and G-CSF and plerixafor were administered every other day for seven doses starting on day one. Sorafenib 800 mg twice daily was selected for the expansion phase. While no dose-limiting toxicities (DLT) were encountered in the four-week DLT window, hand-foot syndrome and rash were seen beyond the DLT window, which required dose reductions in most patients. The response rate was 36% (complete response (CR) = 4, complete remission with incomplete platelet recovery (CRp) = 4, complete remission with incomplete hematologic recovery (CRi) = 1, and partial response (PR) = 1) for the intention to treat population. Treatment resulted in 58.4 and 47 mean fold mobilization of blasts and CD34 /38- stem/progenitor cells, respectively, to the circulation. Expression of the adhesion molecules CXCR4, CD44, and VLA4 on circulating leukemia cells correlated negatively with the mobilization of CD34+/38-, CD34+/38-/123+ "progenitor" cells (all P ≤ .002). Mass cytometry analysis of sequential samples from two patients demonstrated resistance emerging early on from sub-clones with persistent Akt and/or ERK signaling. In conclusion, the strategy of combined inhibition of FLT3 kinase and stromal adhesive interactions has promising activity in relapsed/refractory, FLT3-ITD-mutated AML, which warrants further evaluation in the front-line setting.
Collapse
Affiliation(s)
- Gautam Borthakur
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Section of Molecular Hematology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Zhihong Zeng
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Section of Molecular Hematology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jorge E Cortes
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hsiang-Chun Chen
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xuelin Huang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Marina Konopleva
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Section of Molecular Hematology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Farhad Ravandi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Tapan Kadia
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Keyur P Patel
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Naval Daver
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mary A Kelly
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Teresa McQueen
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Section of Molecular Hematology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ru-Yiu Wang
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Section of Molecular Hematology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hagop Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael Andreeff
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Section of Molecular Hematology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
23
|
Melgar K, Walker MM, Jones LM, Bolanos LC, Hueneman K, Wunderlich M, Jiang JK, Wilson KM, Zhang X, Sutter P, Wang A, Xu X, Choi K, Tawa G, Lorimer D, Abendroth J, O'Brien E, Hoyt SB, Berman E, Famulare CA, Mulloy JC, Levine RL, Perentesis JP, Thomas CJ, Starczynowski DT. Overcoming adaptive therapy resistance in AML by targeting immune response pathways. Sci Transl Med 2020; 11:11/508/eaaw8828. [PMID: 31484791 DOI: 10.1126/scitranslmed.aaw8828] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 07/24/2019] [Indexed: 12/17/2022]
Abstract
Targeted inhibitors to oncogenic kinases demonstrate encouraging clinical responses early in the treatment course; however, most patients will relapse because of target-dependent mechanisms that mitigate enzyme-inhibitor binding or through target-independent mechanisms, such as alternate activation of survival and proliferation pathways, known as adaptive resistance. Here, we describe mechanisms of adaptive resistance in FMS-like receptor tyrosine kinase (FLT3)-mutant acute myeloid leukemia (AML) by examining integrative in-cell kinase and gene regulatory network responses after oncogenic signaling blockade by FLT3 inhibitors (FLT3i). We identified activation of innate immune stress response pathways after treatment of FLT3-mutant AML cells with FLT3i and showed that innate immune pathway activation via the interleukin-1 receptor-associated kinase 1 and 4 (IRAK1/4) complex contributes to adaptive resistance in FLT3-mutant AML cells. To overcome this adaptive resistance mechanism, we developed a small molecule that simultaneously inhibits FLT3 and IRAK1/4 kinases. The multikinase FLT3-IRAK1/4 inhibitor eliminated adaptively resistant FLT3-mutant AML cells in vitro and in vivo and displayed superior efficacy as compared to current targeted FLT3 therapies. These findings uncover a polypharmacologic strategy for overcoming adaptive resistance to therapy in AML by targeting immune stress response pathways.
Collapse
Affiliation(s)
- Katelyn Melgar
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Immunology Graduate Program, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Morgan M Walker
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Lyndsey C Bolanos
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Kathleen Hueneman
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Mark Wunderlich
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Jian-Kang Jiang
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kelli M Wilson
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xiaohu Zhang
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Patrick Sutter
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Amy Wang
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xin Xu
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kwangmin Choi
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Gregory Tawa
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | - Eric O'Brien
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Scott B Hoyt
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ellin Berman
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Christopher A Famulare
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - James C Mulloy
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Ross L Levine
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - John P Perentesis
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Craig J Thomas
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA. .,Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20829, USA
| | - Daniel T Starczynowski
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA. .,Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| |
Collapse
|
24
|
Eguchi M, Minami Y, Kuzume A, Chi S. Mechanisms Underlying Resistance to FLT3 Inhibitors in Acute Myeloid Leukemia. Biomedicines 2020; 8:biomedicines8080245. [PMID: 32722298 PMCID: PMC7459983 DOI: 10.3390/biomedicines8080245] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/10/2020] [Accepted: 07/16/2020] [Indexed: 01/03/2023] Open
Abstract
FLT3-ITD and FLT3-TKD mutations were observed in approximately 20 and 10% of acute myeloid leukemia (AML) cases, respectively. FLT3 inhibitors such as midostaurin, gilteritinib and quizartinib show excellent response rates in patients with FLT3-mutated AML, but its duration of response may not be sufficient yet. The majority of cases gain secondary resistance either by on-target and off-target abnormalities. On-target mutations (i.e., FLT3-TKD) such as D835Y keep the TK domain in its active form, abrogating pharmacodynamics of type II FLT3 inhibitors (e.g., midostaurin and quizartinib). Second generation type I inhibitors such as gilteritinib are consistently active against FLT3-TKD as well as FLT3-ITD. However, a “gatekeeper” mutation F691L shows universal resistance to all currently available FLT3 inhibitors. Off-target abnormalities are consisted with a variety of somatic mutations such as NRAS, AXL and PIM1 that bypass or reinforce FLT3 signaling. Off-target mutations can occur just in the primary FLT3-mutated clone or be gained by the evolution of other clones. A small number of cases show primary resistance by an FL-dependent, FGF2-dependent, and stromal CYP3A4-mediated manner. To overcome these mechanisms, the development of novel agents such as covalently-coupling FLT3 inhibitor FF-10101 and the investigation of combination therapy with different class agents are now ongoing. Along with novel agents, gene sequencing may improve clinical approaches by detecting additional targetable mutations and determining individual patterns of clonal evolution.
Collapse
Affiliation(s)
- Motoki Eguchi
- Department of Hematology, National Cancer Center Hospital East, Kashiwa 277-8577, Japan; (M.E.); (A.K.); (S.C.)
| | - Yosuke Minami
- Department of Hematology, National Cancer Center Hospital East, Kashiwa 277-8577, Japan; (M.E.); (A.K.); (S.C.)
- Correspondence: ; Tel.: +81-4-7133-1111; Fax: +81-7133-6502
| | - Ayumi Kuzume
- Department of Hematology, National Cancer Center Hospital East, Kashiwa 277-8577, Japan; (M.E.); (A.K.); (S.C.)
- Division of Hematology/Oncology, Department of Internal Medicine, Kameda Medical Center, Kamogawa 296-8602, Japan
| | - SungGi Chi
- Department of Hematology, National Cancer Center Hospital East, Kashiwa 277-8577, Japan; (M.E.); (A.K.); (S.C.)
| |
Collapse
|
25
|
Kim BR, Jung SH, Han AR, Park G, Kim HJ, Yuan B, Battula VL, Andreeff M, Konopleva M, Chung YJ, Cho BS. CXCR4 Inhibition Enhances Efficacy of FLT3 Inhibitors in FLT3-Mutated AML Augmented by Suppressed TGF-b Signaling. Cancers (Basel) 2020; 12:cancers12071737. [PMID: 32629802 PMCID: PMC7407511 DOI: 10.3390/cancers12071737] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/18/2020] [Accepted: 04/20/2020] [Indexed: 12/13/2022] Open
Abstract
Given the proven importance of the CXCL12/CXCR4 axis in the stroma–acute myeloid leukemia (AML) interactions and the rapid emergence of resistance to FLT3 inhibitors, we investigated the efficacy and safety of a novel CXCR4 inhibitor, LY2510924, in combination with FLT3 inhibitors in preclinical models of AML with FLT3-ITD mutations (FLT3-ITD-AML). Quizartinib, a potent FLT3 inhibitor, induced apoptosis in FLT3-ITD-AML, while LY2510924 blocked surface CXCR4 without inducing apoptosis. LY2510924 significantly reversed stroma-mediated resistance against quizartinib mainly through the MAPK pathway. In mice with established FLT3-ITD-AML, LY2510924 induced durable mobilization and differentiation of leukemia cells, resulting in enhanced anti-leukemia effects when combined with quizartinib, whereas transient effects were seen on non-leukemic blood cells in immune-competent mice. Sequencing of the transcriptome of the leukemic cells surviving in vivo treatment with quizartinib and LY2510924 revealed that genes related to TGF-β signaling may confer resistance against the drug combination. In co-culture experiments of FLT3-ITD-AML and stromal cells, both silencing of TGF-β in stromal cells or TGF-β-receptor kinase inhibitor enhanced apoptosis by combined treatment. Disruption of the CXCL12/CXCR4 axis in FLT3-ITD-AML by LY2510924 and its negligible effects on normal immunocytes could safely enhance the potency of quizartinib, which may be further improved by blockade of TGF-β signaling.
Collapse
Affiliation(s)
- Bo-Reum Kim
- Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (B.-R.K.); (A.-R.H.); (H.-J.K.)
| | - Seung-Hyun Jung
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
- Department of Cancer Evolution Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - A-Reum Han
- Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (B.-R.K.); (A.-R.H.); (H.-J.K.)
| | - Gyeongsin Park
- Department of Pathology, College of Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
| | - Hee-Je Kim
- Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (B.-R.K.); (A.-R.H.); (H.-J.K.)
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Bin Yuan
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (B.Y.); (V.L.B.); (M.A.)
| | - Venkata Lokesh Battula
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (B.Y.); (V.L.B.); (M.A.)
| | - Michael Andreeff
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (B.Y.); (V.L.B.); (M.A.)
| | - Marina Konopleva
- Department of Leukemia, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Yeun-Jun Chung
- Department of Cancer Evolution Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Correspondence: (Y.-J.C.); (B.-S.C.)
| | - Byung-Sik Cho
- Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (B.-R.K.); (A.-R.H.); (H.-J.K.)
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (B.Y.); (V.L.B.); (M.A.)
- Correspondence: (Y.-J.C.); (B.-S.C.)
| |
Collapse
|
26
|
Long L, Assaraf YG, Lei ZN, Peng H, Yang L, Chen ZS, Ren S. Genetic biomarkers of drug resistance: A compass of prognosis and targeted therapy in acute myeloid leukemia. Drug Resist Updat 2020; 52:100703. [PMID: 32599434 DOI: 10.1016/j.drup.2020.100703] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/22/2020] [Accepted: 04/27/2020] [Indexed: 12/17/2022]
Abstract
Acute myeloid leukemia (AML) is a highly aggressive hematological malignancy with complex heterogenous genetic and biological nature. Thus, prognostic prediction and targeted therapies might contribute to better chemotherapeutic response. However, the emergence of multidrug resistance (MDR) markedly impedes chemotherapeutic efficacy and dictates poor prognosis. Therefore, prior evaluation of chemoresistance is of great importance in therapeutic decision making and prognosis. In recent years, preclinical studies on chemoresistance have unveiled a compendium of underlying molecular basis, which facilitated the development of targetable small molecules. Furthermore, routing genomic sequencing has identified various genomic aberrations driving cellular response during the course of therapeutic treatment through adaptive mechanisms of drug resistance, some of which serve as prognostic biomarkers in risk stratification. However, the underlying mechanisms of MDR have challenged the certainty of the prognostic significance of some mutations. This review aims to provide a comprehensive understanding of the role of MDR in therapeutic decision making and prognostic prediction in AML. We present an updated genetic landscape of the predominant mechanisms of drug resistance with novel targeted therapies and potential prognostic biomarkers from preclinical and clinical chemoresistance studies in AML. We particularly highlight the unfolded protein response (UPR) that has emerged as a critical regulatory pathway in chemoresistance of AML with promising therapeutic horizon. Futhermore, we outline the most prevalent mutations associated with mechanisms of chemoresistance and delineate the future directions to improve the current prognostic tools. The molecular analysis of chemoresistance integrated with genetic profiling will facilitate decision making towards personalized prognostic prediction and enhanced therapeutic efficacy.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Biomarkers, Tumor/antagonists & inhibitors
- Biomarkers, Tumor/genetics
- Disease-Free Survival
- Drug Resistance, Multiple/drug effects
- Drug Resistance, Multiple/genetics
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/mortality
- Molecular Targeted Therapy/methods
- Mutation
- Neoplasm Recurrence, Local/epidemiology
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/prevention & control
- Precision Medicine/methods
- Prognosis
- Unfolded Protein Response/genetics
Collapse
Affiliation(s)
- Luyao Long
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P.R. China; Graduate School, Chinese Academy of Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Zi-Ning Lei
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA; School of Public Health, Guangzhou Medical University, Guangzhou, P.R. China
| | - Hongwei Peng
- Department of Pharmacy, First Affiliated Hospital of Nanchang University, Nanchang, P.R. China
| | - Lin Yang
- Department of Hematology, the Second Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA.
| | - Simei Ren
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P.R. China; Graduate School, Chinese Academy of Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China.
| |
Collapse
|
27
|
He B, Yang N, Man CH, Ng NK, Cher C, Leung H, Kan LL, Cheng BY, Lam SS, Wang ML, Zhang C, Kwok H, Cheng G, Sharma R, Ma AC, So CE, Kwong Y, Leung AY. Follistatin is a novel therapeutic target and biomarker in FLT3/ITD acute myeloid leukemia. EMBO Mol Med 2020; 12:e10895. [PMID: 32134197 PMCID: PMC7136967 DOI: 10.15252/emmm.201910895] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 02/07/2020] [Accepted: 02/14/2020] [Indexed: 12/12/2022] Open
Abstract
Internal tandem duplication of Fms-like tyrosine kinase 3 (FLT3/ITD) occurs in about 30% of acute myeloid leukemia (AML) and is associated with poor response to conventional treatment and adverse outcome. Here, we reported that human FLT3/ITD expression led to axis duplication and dorsalization in about 50% of zebrafish embryos. The morphologic phenotype was accompanied by ectopic expression of a morphogen follistatin (fst) during early embryonic development. Increase in fst expression also occurred in adult FLT3/ITD-transgenic zebrafish, Flt3/ITD knock-in mice, and human FLT3/ITD AML cells. Overexpression of human FST317 and FST344 isoforms enhanced clonogenicity and leukemia engraftment in xenotransplantation model via RET, IL2RA, and CCL5 upregulation. Specific targeting of FST by shRNA, CRISPR/Cas9, or antisense oligo inhibited leukemic growth in vitro and in vivo. Importantly, serum FST positively correlated with leukemia engraftment in FLT3/ITD AML patient-derived xenograft mice and leukemia blast percentage in primary AML patients. In FLT3/ITD AML patients treated with FLT3 inhibitor quizartinib, serum FST levels correlated with clinical response. These observations supported FST as a novel therapeutic target and biomarker in FLT3/ITD AML.
Collapse
Affiliation(s)
- Bai‐Liang He
- Division of HematologyDepartment of MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong SARChina
- Guangdong Provincial Key Laboratory of Biomedical ImagingThe Fifth Affiliated HospitalSun Yat‐sen UniversityZhuhaiGuangdong ProvinceChina
| | - Ning Yang
- Division of HematologyDepartment of MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong SARChina
| | - Cheuk Him Man
- Division of HematologyDepartment of MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong SARChina
| | - Nelson Ka‐Lam Ng
- Division of HematologyDepartment of MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong SARChina
| | - Chae‐Yin Cher
- Division of HematologyDepartment of MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong SARChina
| | - Ho‐Ching Leung
- Division of HematologyDepartment of MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong SARChina
| | - Leo Lai‐Hok Kan
- Division of HematologyDepartment of MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong SARChina
| | - Bowie Yik‐Ling Cheng
- Division of HematologyDepartment of MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong SARChina
| | - Stephen Sze‐Yuen Lam
- Division of HematologyDepartment of MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong SARChina
| | - Michelle Lu‐Lu Wang
- Division of HematologyDepartment of MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong SARChina
| | - Chun‐Xiao Zhang
- Division of HematologyDepartment of MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong SARChina
| | - Hin Kwok
- Centre for Genomic SciencesThe University of Hong KongHong Kong SARChina
| | - Grace Cheng
- Centre for Genomic SciencesThe University of Hong KongHong Kong SARChina
| | - Rakesh Sharma
- Centre for Genomic SciencesThe University of Hong KongHong Kong SARChina
| | - Alvin Chun‐Hang Ma
- Department of Health Technology and InformaticsThe Hong Kong Polytechnic UniversityHong Kong SARChina
| | - Chi‐Wai Eric So
- Leukemia and Stem Cell Biology GroupDivision of Cancer StudiesDepartment of Hematological MedicineKing's College LondonLondonUK
| | - Yok‐Lam Kwong
- Division of HematologyDepartment of MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong SARChina
| | - Anskar Yu‐Hung Leung
- Division of HematologyDepartment of MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong SARChina
| |
Collapse
|
28
|
Short NJ, Konopleva M, Kadia TM, Borthakur G, Ravandi F, DiNardo CD, Daver N. Advances in the Treatment of Acute Myeloid Leukemia: New Drugs and New Challenges. Cancer Discov 2020; 10:506-525. [DOI: 10.1158/2159-8290.cd-19-1011] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/23/2019] [Accepted: 11/20/2019] [Indexed: 11/16/2022]
|
29
|
Bucy T, Zoscak JM, Mori M, Borate U. Patients with FLT3-mutant AML needed to enroll on FLT3-targeted therapeutic clinical trials. Blood Adv 2019; 3:4055-4064. [PMID: 31816063 PMCID: PMC6963255 DOI: 10.1182/bloodadvances.2019000532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 10/30/2019] [Indexed: 12/21/2022] Open
Abstract
We sought to identify the total number of therapeutic trials targeting FLT3-mutant acute myeloid leukemia (AML) to estimate the number of patients needed to satisfy recruitment when compared with the incidence of this mutation in the US AML population. A systematic review of all therapeutic clinical trials focusing on adult FLT3-mutated AML was conducted from 2000 to 2017. An updated search was performed using ClinicalTrials.gov for trials added between October 2017 and December 2018. Analysis was performed for ClinicalTrials.gov search results from 2000 to 2017 to provide descriptive estimates of discrepancies between anticipated clinical trial enrollment using consistently cited rates of adult participation of 1%, 3%, and 5%, as well as 10% participation identified by the American Society of Clinical Oncology in 2008. Twenty-five pharmaceutical or biological agents aimed at treating FLT3-mutant AML were identified. Pharmaceutical vs cooperative group/nonprofit support was 2.3:1, with 30 different pharmaceutical collaborators and 13 cooperative group/nonprofit collaborators. The number of patients needed to satisfy study enrollment begins to surpass the upper bound of estimated participation in 2010, noticeably surpassing projected participation rates between 2015 and 2016. The number of patients needed to satisfy study enrollment surpasses 3% and 5% rates of historical participation for US-only trials in 2017. We estimate that 15% of all US patients with FLT3-mutant AML would have to enroll in US and internationally accruing trials to satisfy requirements in 2017, or approximately 3 times the upper level of historical participation rates in the United States. The current clinical trial agenda in this space requires high percentage enrollment for sustainability.
Collapse
Affiliation(s)
- Taylor Bucy
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR; and
- Oregon Health & Science University-Portland State University School of Public Health, Portland, OR
| | - John M Zoscak
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR; and
- Oregon Health & Science University-Portland State University School of Public Health, Portland, OR
| | - Motomi Mori
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR; and
- Oregon Health & Science University-Portland State University School of Public Health, Portland, OR
| | - Uma Borate
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR; and
| |
Collapse
|
30
|
Morales ML, Arenas A, Ortiz-Ruiz A, Leivas A, Rapado I, Rodríguez-García A, Castro N, Zagorac I, Quintela-Fandino M, Gómez-López G, Gallardo M, Ayala R, Linares M, Martínez-López J. MEK inhibition enhances the response to tyrosine kinase inhibitors in acute myeloid leukemia. Sci Rep 2019; 9:18630. [PMID: 31819100 PMCID: PMC6901485 DOI: 10.1038/s41598-019-54901-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 11/19/2019] [Indexed: 12/28/2022] Open
Abstract
FMS-like tyrosine kinase 3 (FLT3) is a key driver of acute myeloid leukemia (AML). Several tyrosine kinase inhibitors (TKIs) targeting FLT3 have been evaluated clinically, but their effects are limited when used in monotherapy due to the emergence of drug-resistance. Thus, a better understanding of drug-resistance pathways could be a good strategy to explore and evaluate new combinational therapies for AML. Here, we used phosphoproteomics to identify differentially-phosphorylated proteins in patients with AML and TKI resistance. We then studied resistance mechanisms in vitro and evaluated the efficacy and safety of rational combinational therapy in vitro, ex vivo and in vivo in mice. Proteomic and immunohistochemical studies showed the sustained activation of ERK1/2 in bone marrow samples of patients with AML after developing resistance to FLT3 inhibitors, which was identified as a common resistance pathway. We examined the concomitant inhibition of MEK-ERK1/2 and FLT3 as a strategy to overcome drug-resistance, finding that the MEK inhibitor trametinib remained potent in TKI-resistant cells and exerted strong synergy when combined with the TKI midostaurin in cells with mutated and wild-type FLT3. Importantly, this combination was not toxic to CD34+ cells from healthy donors, but produced survival improvements in vivo when compared with single therapy groups. Thus, our data point to trametinib plus midostaurin as a potentially beneficial therapy in patients with AML.
Collapse
Affiliation(s)
- María Luz Morales
- H12O-CNIO Haematological Malignancies Clinical Research Unit, Hospital 12 de Octubre - Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | - Alicia Arenas
- H12O-CNIO Haematological Malignancies Clinical Research Unit, Hospital 12 de Octubre - Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | - Alejandra Ortiz-Ruiz
- H12O-CNIO Haematological Malignancies Clinical Research Unit, Hospital 12 de Octubre - Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | - Alejandra Leivas
- H12O-CNIO Haematological Malignancies Clinical Research Unit, Hospital 12 de Octubre - Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | - Inmaculada Rapado
- H12O-CNIO Haematological Malignancies Clinical Research Unit, Hospital 12 de Octubre - Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
- Servicio de Hematología, Hospital 12 de Octubre, Madrid, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), ISCIII, Madrid, Spain
| | - Alba Rodríguez-García
- H12O-CNIO Haematological Malignancies Clinical Research Unit, Hospital 12 de Octubre - Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | - Nerea Castro
- Servicio de Hematología, Hospital 12 de Octubre, Madrid, Spain
| | - Ivana Zagorac
- Breast Cancer Clinical Research Unit, Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | - Miguel Quintela-Fandino
- Breast Cancer Clinical Research Unit, Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | - Gonzalo Gómez-López
- Bioinformatics Unit, Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | - Miguel Gallardo
- H12O-CNIO Haematological Malignancies Clinical Research Unit, Hospital 12 de Octubre - Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | - Rosa Ayala
- H12O-CNIO Haematological Malignancies Clinical Research Unit, Hospital 12 de Octubre - Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
- Servicio de Hematología, Hospital 12 de Octubre, Madrid, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), ISCIII, Madrid, Spain
- Universidad Complutense de Madrid, Madrid, Spain
| | - María Linares
- H12O-CNIO Haematological Malignancies Clinical Research Unit, Hospital 12 de Octubre - Centro Nacional de Investigaciones Oncológicas, Madrid, Spain.
- Universidad Complutense de Madrid, Madrid, Spain.
| | - Joaquín Martínez-López
- H12O-CNIO Haematological Malignancies Clinical Research Unit, Hospital 12 de Octubre - Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
- Servicio de Hematología, Hospital 12 de Octubre, Madrid, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), ISCIII, Madrid, Spain
- Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
31
|
Kazi JU, Rönnstrand L. FMS-like Tyrosine Kinase 3/FLT3: From Basic Science to Clinical Implications. Physiol Rev 2019; 99:1433-1466. [PMID: 31066629 DOI: 10.1152/physrev.00029.2018] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
FMS-like tyrosine kinase 3 (FLT3) is a receptor tyrosine kinase that is expressed almost exclusively in the hematopoietic compartment. Its ligand, FLT3 ligand (FL), induces dimerization and activation of its intrinsic tyrosine kinase activity. Activation of FLT3 leads to its autophosphorylation and initiation of several signal transduction cascades. Signaling is initiated by the recruitment of signal transduction molecules to activated FLT3 through binding to specific phosphorylated tyrosine residues in the intracellular region of FLT3. Activation of FLT3 mediates cell survival, cell proliferation, and differentiation of hematopoietic progenitor cells. It acts in synergy with several other cytokines to promote its biological effects. Deregulated FLT3 activity has been implicated in several diseases, most prominently in acute myeloid leukemia where around one-third of patients carry an activating mutant of FLT3 which drives the disease and is correlated with poor prognosis. Overactivity of FLT3 has also been implicated in autoimmune diseases, such as rheumatoid arthritis. The observation that gain-of-function mutations of FLT3 can promote leukemogenesis has stimulated the development of inhibitors that target this receptor. Many of these are in clinical trials, and some have been approved for clinical use. However, problems with acquired resistance to these inhibitors are common and, furthermore, only a fraction of patients respond to these selective treatments. This review provides a summary of our current knowledge regarding structural and functional aspects of FLT3 signaling, both under normal and pathological conditions, and discusses challenges for the future regarding the use of targeted inhibition of these pathways for the treatment of patients.
Collapse
Affiliation(s)
- Julhash U Kazi
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University , Lund , Sweden ; Lund Stem Cell Center, Department of Laboratory Medicine, Lund University , Lund , Sweden ; and Division of Oncology, Skåne University Hospital , Lund , Sweden
| | - Lars Rönnstrand
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University , Lund , Sweden ; Lund Stem Cell Center, Department of Laboratory Medicine, Lund University , Lund , Sweden ; and Division of Oncology, Skåne University Hospital , Lund , Sweden
| |
Collapse
|
32
|
Tallis E, Borthakur G. Novel treatments for relapsed/refractory acute myeloid leukemia with FLT3 mutations. Expert Rev Hematol 2019; 12:621-640. [PMID: 31232619 DOI: 10.1080/17474086.2019.1635882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Introduction: Mutations in the gene encoding for the FMS-like tyrosine kinase 3 (FLT3) are present in about 30% of adults with AML and are associated with shorter disease-free and overall survival after initial therapy. Prognosis of relapsed/refractory AML with FLT3 mutations is even more dismal with median overall survival of a few months only. Areas covered: This review will cover current and emerging treatments for relapsed/refractory AML with FLT3 mutations, preclinical rationale and clinical trials with new encouraging data for this particularly challenging population. The authors discuss mechanisms of resistance to FLT3 inhibitors and how these insights serve to identify current and future treatments. As allogeneic stem cell transplant in the first remission is the preferred therapy for newly diagnosed AML patients with FLT3 mutations, the authors discuss the role of maintenance after SCT for the prevention of relapse. Expert opinion: Relapsed/refractory AML with FLT3 mutations remains a therapeutic challenge with currently available treatments. However, the evolution of targeted therapies with next-generation FLT3 inhibitors and their combinations with chemotherapy is showing much promise. Moreover, growing understanding of the pathways of resistance to treatment has led to the identification of various targeted therapies currently being explored, which in time will improve outcomes.
Collapse
Affiliation(s)
- Eran Tallis
- a Department of Leukemia, The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Gautam Borthakur
- a Department of Leukemia, The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| |
Collapse
|
33
|
Yuan T, Qi B, Jiang Z, Dong W, Zhong L, Bai L, Tong R, Yu J, Shi J. Dual FLT3 inhibitors: Against the drug resistance of acute myeloid leukemia in recent decade. Eur J Med Chem 2019; 178:468-483. [PMID: 31207462 DOI: 10.1016/j.ejmech.2019.06.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 05/16/2019] [Accepted: 06/02/2019] [Indexed: 01/18/2023]
Abstract
Acute myeloid leukemia (AML) is a malignant disease characterized by abnormal growth and differentiation of hematopoietic stem cells. Although the pathogenesis has not been fully elucidated, many specific gene mutations have been found in AML. Fms-like tyrosine kinase 3 (FLT3) is recognized as a drug target for the treatment of AML, and the activation mutations of FLT3 were found in about 30% of AML patients. Targeted inhibition of FLT3 receptor tyrosine kinase has shown promising results in the treatment of FLT3 mutation AML. Unfortunately, the therapeutic effects of FLT3 tyrosine kinase inhibitors used as AML monotherapy are usually accompanied by the high risk of resistance development within a few months after treatment. FLT3 dual inhibitors were generated with the co-inhibition of FLT3 and another target, such as CDK4, JAK2, MEK, Mer, Pim, etc., to solve the problems mentioned above. As a result, the therapeutic effect of the drug is significantly improved, while the toxic and side effects are reduced. Besides, the life quality of AML patients with FLT3 mutation has been effectively improved. In this paper, we reviewed the studies of dual FLT3 inhibitors that have been discovered in recent years for the treatment of AML.
Collapse
Affiliation(s)
- Ting Yuan
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Baowen Qi
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Zhongliang Jiang
- Miller School of Medicine, University of Miami, Miami, Florida, 33136, USA
| | - Wenjuan Dong
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Lei Zhong
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Lan Bai
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Rongsheng Tong
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Jiying Yu
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Jianyou Shi
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, Chengdu, 610072, China.
| |
Collapse
|
34
|
Lee J, Lim B, Pearson T, Choi K, Fuson JA, Bartholomeusz C, Paradiso LJ, Myers T, Tripathy D, Ueno NT. Anti-tumor and anti-metastasis efficacy of E6201, a MEK1 inhibitor, in preclinical models of triple-negative breast cancer. Breast Cancer Res Treat 2019; 175:339-351. [PMID: 30826934 DOI: 10.1007/s10549-019-05166-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 02/09/2019] [Indexed: 12/31/2022]
Abstract
PURPOSE Triple-negative breast cancer (TNBC) lacks the receptor targets estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2, and thus, it does not respond to receptor-targeted treatments. TNBC has higher recurrence, metastasis, and mortality rates than other subtypes of breast cancer. Mounting data suggest that the MAPK (also known as RAS-RAF-MEK-ERK) pathway is an important therapeutic target in TNBC. METHODS To evaluate anti-tumor and anti-metastasis efficacy of E6201, we used cell proliferation assay, soft agar assay, cell cycle assay, Annexin V staining assay, immunoblotting analysis, immunohistochemistry, migration assay, invasion assay, mammary fat pad xenograft, and experimental and spontaneous metastasis xenograft models. We also evaluated the anti-tumor efficacy of E6201 plus CDK4/6 inhibitor, mTOR inhibitor, or ATR inhibitor. RESULTS E6201 inhibited TNBC cell colony formation, migration, and invasion in a dose-dependent manner. E6201 induced G1 cell cycle arrest and apoptosis. E6201 inhibited TNBC xenograft growth and inhibited TNBC lung metastasis and improved mouse survival in experimental metastasis and spontaneous metastasis assays. Immunohistochemical staining demonstrated that E6201 decreased the metastatic burden in the lung and decreased phosphorylated ERK expression in a dose-dependent manner. Combination of E6201 with CDK4/6 inhibitor or mTOR inhibitor enhanced E6201's in vitro anti-tumor efficacy. CONCLUSION These results indicate that E6201 exhibits anti-tumor efficacy against TNBC in vitro and anti-metastasis efficacy against TNBC in vivo. These results provide a rationale for further clinical development of E6201 as a MAPK-pathway-targeted therapy for TNBC.
Collapse
Affiliation(s)
- Jangsoon Lee
- Section of Translational Breast Cancer Research, Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Unit 1354, 1515 Holcombe Boulevard, Houston, TX, 77030-4009, USA
| | - Bora Lim
- Section of Translational Breast Cancer Research, Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Unit 1354, 1515 Holcombe Boulevard, Houston, TX, 77030-4009, USA
| | - Troy Pearson
- Section of Translational Breast Cancer Research, Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kuicheon Choi
- Section of Translational Breast Cancer Research, Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jon A Fuson
- Section of Translational Breast Cancer Research, Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chandra Bartholomeusz
- Section of Translational Breast Cancer Research, Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Unit 1354, 1515 Holcombe Boulevard, Houston, TX, 77030-4009, USA
| | | | | | - Debu Tripathy
- Section of Translational Breast Cancer Research, Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Naoto T Ueno
- Section of Translational Breast Cancer Research, Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA. .,Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Unit 1354, 1515 Holcombe Boulevard, Houston, TX, 77030-4009, USA.
| |
Collapse
|
35
|
Cioccio J, Claxton D. Therapy of acute myeloid leukemia: therapeutic targeting of tyrosine kinases. Expert Opin Investig Drugs 2019; 28:337-349. [DOI: 10.1080/13543784.2019.1584610] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Joseph Cioccio
- Department of Medicine, Penn State Hershey Medical Center, Hershey, PA, USA
| | - David Claxton
- Department of Medicine, Penn State Hershey Medical Center, Hershey, PA, USA
| |
Collapse
|
36
|
Short NJ, Kantarjian H, Ravandi F, Daver N. Emerging treatment paradigms with FLT3 inhibitors in acute myeloid leukemia. Ther Adv Hematol 2019; 10:2040620719827310. [PMID: 30800259 PMCID: PMC6378516 DOI: 10.1177/2040620719827310] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 01/07/2019] [Indexed: 11/17/2022] Open
Abstract
Mutations in the fms-like tyrosine kinase 3 (FLT3) gene are detected in approximately one-third of patients with newly diagnosed acute myeloid leukemia (AML). These consist of the more common FLT3-internal tandem duplication (ITD) in approximately 20-25% of AML cases, and point mutations in the tyrosine kinase domain (TKD) in approximately 5-10%. FLT3 mutations, especially FLT3-ITD, are associated with proliferative disease, increased risk of relapse, and inferior overall survival when treated with conventional regimens. However, the recent development of well tolerated and active FLT3 inhibitors has significantly improved the outcomes of this aggressive subtype of AML. The multikinase inhibitor midostaurin was approved by the United States Food and Drug Administration (US FDA) in April 2017 for the frontline treatment of patients with FLT3-mutated (either ITD or TKD) AML in combination with induction chemotherapy, representing the first new drug approval in AML in nearly two decades. In November 2018, the US FDA also approved the second-generation FLT3 inhibitor gilteritinib as a single agent for patients with relapsed or refractory FLT3-mutated AML. Promising phase I and II efficacy data for quizartinib is likely to lead to a third regulatory approval in relapsed/refractory AML in the near future. However, despite the significant progress made in managing FLT3-mutated AML, many questions remain regarding the best approach to integrate these inhibitors into combination regimens, and also the optimal sequencing of different FLT3 inhibitors in various clinical settings. This review comprehensively examines the FLT3 inhibitors currently in clinical development, with an emphasis on their spectra of activity against different FLT3 mutations and other kinases, clinical safety and efficacy data, and their current and future roles in the management of AML. The mechanisms of resistance to FLT3 inhibitors and potential combination strategies to overcome such resistance pathways are also discussed.
Collapse
Affiliation(s)
- Nicholas J. Short
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hagop Kantarjian
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Farhad Ravandi
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Naval Daver
- Department of Leukemia, Unit 428, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| |
Collapse
|
37
|
Li CW, Lai TY, Chen BS. Changes of signal transductivity and robustness of gene regulatory network in the carcinogenesis of leukemic subtypes via microarray sample data. Oncotarget 2018; 9:23636-23660. [PMID: 29805763 PMCID: PMC5955113 DOI: 10.18632/oncotarget.25318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 04/11/2018] [Indexed: 11/25/2022] Open
Abstract
Mutation accumulation and epigenetic alterations in genes are important for carcinogenesis. Because leukemogenesis-related signal pathways have been investigated and microarray sample data have been produced in acute myeloid leukemia (AML), myelodysplastic syndromes (MDS) and normal cells, systems analysis in coupling pathways becomes possible. Based on system modeling and identification, we could construct the coupling pathways and their associated gene regulatory networks using microarray sample data. By applying system theory to the estimated system model in coupling pathways, we can then obtain transductivity sensitivity, basal sensitivity and error sensitivity of each protein to identify the potential impact of genetic mutations, epigenetic alterations and the coupling of other pathways from the perspective of energy, respectively. By comparing the results in AML, MDS and normal cells, we investigated the potential critical genetic mutations and epigenetic alterations that activate or repress specific cellular functions to promote MDS or AML leukemogenesis. We suggested that epigenetic modification of β-catenin and signal integration of CSLs, AP-2α, STATs, c-Jun and β-catenin could contribute to cell proliferation at AML and MDS. Epigenetic regulation of ERK and genetic mutation of p53 could lead to the repressed apoptosis, cell cycle arrest and DNA repair in leukemic cells. Genetic mutation of JAK, epigenetic regulation of ERK, and signal integration of C/EBPα could result in the promotion of MDS cell differentiation. According to the results, we proposed three drugs, decitabine, genistein, and monorden for preventing AML leukemogenesis, while three drugs, decitabine, thalidomide, and geldanamycin, for preventing MDS leukemogenesis.
Collapse
Affiliation(s)
- Cheng-Wei Li
- Laboratory of Control and Systems Biology, Department of Electrical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Tzu-Ying Lai
- Laboratory of Control and Systems Biology, Department of Electrical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Bor-Sen Chen
- Laboratory of Control and Systems Biology, Department of Electrical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
38
|
Maust JD, Whitehead CE, Sebolt-Leopold JS. Oncogenic Mutants of MEK1: A Trilogy Unfolds. Cancer Discov 2018; 8:534-536. [DOI: 10.1158/2159-8290.cd-18-0192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
39
|
Gao Y, Chang MT, McKay D, Na N, Zhou B, Yaeger R, Torres NM, Muniz K, Drosten M, Barbacid M, Caponigro G, Stuart D, Moebitz H, Solit DB, Abdel-Wahab O, Taylor BS, Yao Z, Rosen N. Allele-Specific Mechanisms of Activation of MEK1 Mutants Determine Their Properties. Cancer Discov 2018; 8:648-661. [PMID: 29483135 DOI: 10.1158/2159-8290.cd-17-1452] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 02/14/2018] [Accepted: 02/20/2018] [Indexed: 01/10/2023]
Abstract
Mutations at multiple sites in MEK1 occur in cancer, suggesting that their mechanisms of activation might be different. We analyzed 17 tumor-associated MEK1 mutants and found that they drove ERK signaling autonomously or in a RAS/RAF-dependent manner. The latter are sensitive to feedback inhibition of RAF, which limits their functional output, and often cooccur with RAS or RAF mutations. They act as amplifiers of RAF signaling. In contrast, another class of mutants deletes a hitherto unrecognized negative regulatory segment of MEK1, is RAF- and phosphorylation-independent, is unaffected by feedback inhibition of upstream signaling, and drives high ERK output and transformation in the absence of RAF activity. Moreover, these RAF-independent mutants are insensitive to allosteric MEK inhibitors, which preferentially bind to the inactivated form of MEK1. All the mutants are sensitive to an ATP-competitive MEK inhibitor. Thus, our study comprises a novel therapeutic strategy for tumors driven by RAF-independent MEK1 mutants.Significance: Mutants with which MEK1 mutants coexist and their sensitivity to inhibitors are determined by allele-specific properties. This study shows the importance of functional characterization of mutant alleles in single oncogenes and identifies a new class of MEK1 mutants, insensitive to current MEK1 inhibitors but treatable with a new ATP-competitive inhibitor. Cancer Discov; 8(5); 648-61. ©2018 AACR.See related commentary by Maust et al., p. 534This article is highlighted in the In This Issue feature, p. 517.
Collapse
Affiliation(s)
- Yijun Gao
- Program in Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Matthew T Chang
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California
| | - Daniel McKay
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | - Na Na
- Program in Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Bing Zhou
- Department of Cellular and Molecular Medicine, University of California, San Diego, California
| | - Rona Yaeger
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Neilawattie M Torres
- Program in Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Keven Muniz
- Program in Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Matthias Drosten
- Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | - Mariano Barbacid
- Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | | | - Darrin Stuart
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | - Henrik Moebitz
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | - David B Solit
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Omar Abdel-Wahab
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Barry S Taylor
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York.,Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Zhan Yao
- Program in Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, New York. .,Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Neal Rosen
- Program in Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, New York. .,Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Center for Mechanism-Based Therapeutics, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
40
|
Chaikuad A, Koch P, Laufer SA, Knapp S. The Cysteinome of Protein Kinases as a Target in Drug Development. Angew Chem Int Ed Engl 2018; 57:4372-4385. [DOI: 10.1002/anie.201707875] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/20/2017] [Indexed: 01/04/2023]
Affiliation(s)
- Apirat Chaikuad
- Nuffield Department of Clinical Medicine; Structural Genomics Consortium and Target Discovery Institute; University of Oxford, Old Road Campus Research Building; Roosevelt Drive Oxford OX3 7DQ UK
- Institute for Pharmaceutical Chemistry; Goethe-University; Max-von-Laue-Strasse 9 60438 Frankfurt am Main Germany
| | - Pierre Koch
- Department of Pharmaceutical/Medicinal Chemistry; Eberhard-Karls-University Tübingen; Auf der Morgenstelle 8 72076 Tübingen Germany
| | - Stefan A. Laufer
- Department of Pharmaceutical/Medicinal Chemistry; Eberhard-Karls-University Tübingen; Auf der Morgenstelle 8 72076 Tübingen Germany
- German Cancer Consortium DKTK, Standort Tübingen; Germany
| | - Stefan Knapp
- Nuffield Department of Clinical Medicine; Structural Genomics Consortium and Target Discovery Institute; University of Oxford, Old Road Campus Research Building; Roosevelt Drive Oxford OX3 7DQ UK
- German Cancer Consortium DKTK, Standort Frankfurt/Mainz; Germany
- Institute for Pharmaceutical Chemistry; Goethe-University; Max-von-Laue-Strasse 9 60438 Frankfurt am Main Germany
- Structural Genomics Consortium and Buchmann Institute for Molecular Life Sciences; Johann Wolfgang Goethe-University; Max-von-Laue-Strasse 15 60438 Frankfurt am Main Germany
| |
Collapse
|
41
|
Chaikuad A, Koch P, Laufer SA, Knapp S. Das Cysteinom der Proteinkinasen als Zielstruktur in der Arzneistoffentwicklung. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201707875] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Apirat Chaikuad
- Nuffield Department of Clinical Medicine; Structural Genomics Consortium and Target Discovery Institute; Universität Oxford, Old Road Campus Research Building; Roosevelt Drive Oxford OX3 7DQ Großbritannien
- Institut für pharmazeutische Chemie; Johann Wolfgang Goethe-Universität; Max-von-Laue-Straße 9 60438 Frankfurt am Main Deutschland
| | - Pierre Koch
- Institut für pharmazeutische und medizinische Chemie; Eberhard-Karls-Universität Tübingen; Auf der Morgenstelle 8 72076 Tübingen Deutschland
| | - Stefan A. Laufer
- Institut für pharmazeutische und medizinische Chemie; Eberhard-Karls-Universität Tübingen; Auf der Morgenstelle 8 72076 Tübingen Deutschland
- Deutsches Zentrum für translationale Krebsforschung, Standort; Tübingen Deutschland
| | - Stefan Knapp
- Nuffield Department of Clinical Medicine; Structural Genomics Consortium and Target Discovery Institute; Universität Oxford, Old Road Campus Research Building; Roosevelt Drive Oxford OX3 7DQ Großbritannien
- Deutsches Zentrum für translationale Krebsforschung, Standort Frankfurt/Mainz; Deutschland
- Institut für pharmazeutische Chemie; Johann Wolfgang Goethe-Universität; Max-von-Laue-Straße 9 60438 Frankfurt am Main Deutschland
- Structural Genomics Consortium and Buchmann Institute for Molecular Life Sciences; Johann Wolfgang Goethe-Universität; Max-von-Laue-Straße 15 60438 Frankfurt am Main Deutschland
| |
Collapse
|
42
|
Abstract
PURPOSE OF REVIEW Although the treatment paradigm for acute myeloid leukemia (AML) had been largely unchanged for many years, in-depth molecular characterization has revolutionized our understanding of mutations that drive the disease, subsequently serving to guide current clinical investigation. Furthermore, recent advances in the field have highlighted the importance of optimizing known efficacious agents by improving drug delivery or bypassing resistance mechanisms. The current status of novel agents which are shaping the clinical management of AML patients are summarized in this review. RECENT FINDINGS Practice changing findings over the past year include improved overall survival (OS) in a molecularly defined AML subgroup as well as in elderly patients with secondary AML (sAML). Specifically, synergistic combination of daunorubicin and cytarabine (i.e., CPX-351) was found to improve OS in sAML patients. Furthermore, although multiple mutation specific inhibitors have been developed, optimal combination with additional agents appears critical, as monotherapies have not resulted in durable remissions or improved outcomes. Improved OS via the addition of midostaurin to intensive chemotherapy in FLT3 mutant AML supports this concept. SUMMARY For the first time in AML, personalized therapy has become possible through improved understanding of the molecular architecture and survival pathways of an individual's disease. The landscape of AML treatment is encouraging, with multiple novel agents likely to gain approval over the next 5 years.
Collapse
|
43
|
Bruner JK, Ma HS, Li L, Qin ACR, Rudek MA, Jones RJ, Levis MJ, Pratz KW, Pratilas CA, Small D. Adaptation to TKI Treatment Reactivates ERK Signaling in Tyrosine Kinase-Driven Leukemias and Other Malignancies. Cancer Res 2017; 77:5554-5563. [PMID: 28923853 DOI: 10.1158/0008-5472.can-16-2593] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 05/18/2017] [Accepted: 08/16/2017] [Indexed: 01/28/2023]
Abstract
FMS-like tyrosine kinase-3 (FLT3) tyrosine kinase inhibitors (TKI) have been tested extensively to limited benefit in acute myeloid leukemia (AML). We hypothesized that FLT3/internal tandem duplication (ITD) leukemia cells exhibit mechanisms of intrinsic signaling adaptation to TKI treatment that are associated with an incomplete response. Here, we identified reactivation of ERK signaling within hours following treatment of FLT3/ITD AML cells with selective inhibitors of FLT3. When these cells were treated with inhibitors of both FLT3 and MEK in combination, ERK reactivation was abrogated and anti-leukemia effects were more pronounced compared with either drug alone. ERK reactivation was also observed following inhibition of other tyrosine kinase-driven cancer cells, including EGFR-mutant lung cancer, HER2-amplified breast cancer, and BCR-ABL leukemia. These studies reveal an adaptive feedback mechanism in tyrosine kinase-driven cancers associated with reactivation of ERK signaling in response to targeted inhibition. Cancer Res; 77(20); 5554-63. ©2017 AACR.
Collapse
Affiliation(s)
- J Kyle Bruner
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Hayley S Ma
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Li Li
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Alice Can Ran Qin
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Michelle A Rudek
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Richard J Jones
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Mark J Levis
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Keith W Pratz
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Christine A Pratilas
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland. .,Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Donald Small
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland. .,Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
44
|
Chen Y, Pan Y, Guo Y, Zhao W, Ho WT, Wang J, Xu M, Yang FC, Zhao ZJ. Tyrosine kinase inhibitors targeting FLT3 in the treatment of acute myeloid leukemia. Stem Cell Investig 2017; 4:48. [PMID: 28607922 DOI: 10.21037/sci.2017.05.04] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 04/25/2017] [Indexed: 12/25/2022]
Abstract
Acute myeloid leukemia (AML) is a cancer of the myeloid lineage of blood cells. Although significant progress has been made in treating many types of cancers during recent years, AML remains a deadly disease with survival rate lagging behind other blood cancers. A combination of toxic chemotherapies has been the standard AML treatment for more than 40 years. With intensive efforts to define the pathogenesis of AML, novel therapeutic drugs targeting key molecular defects in AML are being developed. Mutated in nearly 30% of AML, FMS-like tyrosine kinase 3 (FLT3) represents one of the most attractive targets. FLT3 mutants resulted from either internal tandem duplication (ITD) or point mutations possess enhanced kinase activity and cause constitutive activation of signaling. To date, several small molecule inhibitors of FLT3 have been developed but their clinical efficacy is limited due to a lack of potency and the generation of drug resistance. Therefore, next-generation FLT3 inhibitors overcoming these limitations are urgently in need. This review focuses on the pathological role of mutant FLT3 in the development of AML, the current status of FLT3 inhibitor development, and mechanisms underlining the development of resistance to existing FLT3 inhibitors.
Collapse
Affiliation(s)
- Yun Chen
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Yihang Pan
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Yao Guo
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Wanke Zhao
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Wanting Tina Ho
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jianlong Wang
- Department of Cell, Developmental and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mingjiang Xu
- Sylvester Comprehensive Cancer Center, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Feng-Chun Yang
- Sylvester Comprehensive Cancer Center, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Zhizhuang Joe Zhao
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
45
|
Ghiaur G, Levis M. Mechanisms of Resistance to FLT3 Inhibitors and the Role of the Bone Marrow Microenvironment. Hematol Oncol Clin North Am 2017; 31:681-692. [PMID: 28673395 DOI: 10.1016/j.hoc.2017.04.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The presence of FLT3 mutations in acute myeloid leukemia (AML) carries a particularly poor prognosis, making the development of FLT3 inhibitors an imperative goal. The last decade has seen an abundance of clinical trials using these drugs alone or in combination with chemotherapy. This culminated with the recent approval by the US Food and Drug Administration of Midostaurin for the treatment of FLT3-mutated AML. Initial success has been followed by the emergence of clinical resistance. Although novel FLT3 inhibitors are being developed, studies into mechanisms of resistance raise hope of new strategies to prevent emergence of resistance and eliminate minimal residual disease.
Collapse
Affiliation(s)
- Gabriel Ghiaur
- Adult Leukemia Program, Division of Hematological Malignancies, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, 1650 Orleans Street CRB I, Room 243, Baltimore, MD 21287, USA.
| | - Mark Levis
- Adult Leukemia Program, Division of Hematological Malignancies, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, 1650 Orleans Street CRB I, Room 2M44, Baltimore, MD 21287, USA
| |
Collapse
|
46
|
Aminoisoquinoline benzamides, FLT3 and Src-family kinase inhibitors, potently inhibit proliferation of acute myeloid leukemia cell lines. Future Med Chem 2017; 9:1213-1225. [PMID: 28490193 DOI: 10.4155/fmc-2017-0067] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
AIM Mutated or overexpressed FLT3 drives about 30% of reported acute myeloid leukemia (AML). Currently, FLT3 inhibitors have shown durable clinical responses but a complete remission of AML with FLT3 inhibitors remains elusive due to mutation-driven resistance mechanisms. The development of FLT3 inhibitors that also target other downstream oncogenic kinases may combat the resistance mechanism. RESULTS 4-substituted aminoisoquinoline benzamides potently inhibit Src-family kinases and FLT3, including secondary mutations, such as FLT3D835. Modifications of aminoisoquinoline benzamide to aminoquinoline or aminoquinazoline abrogated FLT3 and Src-family kinase binding. CONCLUSION The lead aminoisoquinolines potently inhibited FLT3-driven AML cell lines, MV4-11 and MOLM-14. These aminoisoquinoline benzamides represent new kinase scaffolds with high potential to be translated into anticancer agents.
Collapse
|
47
|
MZH29 is a novel potent inhibitor that overcomes drug resistance FLT3 mutations in acute myeloid leukemia. Leukemia 2016; 31:913-921. [DOI: 10.1038/leu.2016.297] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/12/2016] [Accepted: 09/15/2016] [Indexed: 12/15/2022]
|