1
|
Lee HK, Kim B, Ko YG, Chung SW, Shim WS, Choi SY, Lee SR, Kim SY, Byun Y. Enhancing the bystander effect of antibody-drug conjugate by using a novel caspase-3 cleavable peptide linker to overcome tumor heterogeneity. J Control Release 2025; 382:113738. [PMID: 40246243 DOI: 10.1016/j.jconrel.2025.113738] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 03/26/2025] [Accepted: 04/13/2025] [Indexed: 04/19/2025]
Abstract
Tumor heterogeneity is a major obstacle to effective targeted therapies, including those utilizing antibody-drug conjugates (ADCs). Although some ADCs employ the bystander effect to eliminate neighboring antigen-negative cells, their efficacy often diminishes as antigen-positive cell populations decrease within heterogeneous tumors. To address this limitation in ADC therapies, we developed a novel ADC using a caspase substrate, Asp-Glu-Val-Asp (DEVD), as a linker to generate a more potent and sustained bystander effect. The DEVD ADC effectively targeted antigen-positive cells and released its payload via cathepsin B cleavage. Notably, it exhibited a significant bystander effect mediated by the caspase-3-triggered extracellular cleavage of the linker, enhancing payload release into the tumor microenvironment. In breast cancer xenograft models, the DEVD ADC maintained its efficacy and continued to exert a bystander effect even after the depletion of antigen-positive cells, thereby overcoming challenges posed by tumor heterogeneity. These findings emphasize the potential of DEVD linkers in enhancing ADC efficacy against heterogeneous solid tumors, offering a promising strategy to improve therapeutic outcomes.
Collapse
Affiliation(s)
- Ha Kyeong Lee
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergent Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Byoungmo Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Yoon Gun Ko
- Pharosgen Co. Ltd, 2-404 Jangji-dong 892, Seoul 05852, Republic of Korea
| | - Seung Woo Chung
- Center for Nanomedicine, Wilmer Eye Institute and Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Wan Seob Shim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - So-Young Choi
- New Drug Development Center Osong Medical Innovation Foundation 123 Osongsaengmyeong-ro, Heungdeok-gu, Cheongju, Chungbuk 28160, Republic of Korea
| | - Se-Ra Lee
- New Drug Development Center Osong Medical Innovation Foundation 123 Osongsaengmyeong-ro, Heungdeok-gu, Cheongju, Chungbuk 28160, Republic of Korea
| | - Sang Yoon Kim
- Pharosgen Co. Ltd, 2-404 Jangji-dong 892, Seoul 05852, Republic of Korea.
| | - Youngro Byun
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
2
|
Kunika MD, Kannan A, Velasco GJ, Feng Y, Seaman S, Das BK, Pham D, Lambrecht N, Zhao H, St. Croix B, Gao L. m276-SL-PBD eradicates tumors and instigates long-lasting tumor-free survival in Merkel cell carcinoma preclinical models. iScience 2025; 28:112436. [PMID: 40384933 PMCID: PMC12084002 DOI: 10.1016/j.isci.2025.112436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 12/30/2024] [Accepted: 04/10/2025] [Indexed: 05/20/2025] Open
Abstract
Merkel cell carcinoma (MCC) is a rare but aggressive neuroendocrine carcinoma, and immune checkpoint inhibitors (ICIs) are the only approved therapy; nonetheless, resistance is notable and there is a critical need for novel effective therapies. Recently, CD276 was identified as a promising therapeutic target in human cancers. In preclinical studies, a modified CD276 antibody-drug conjugate (ADC) with pyrrolobenzodiazepine (m276-SL-PBD) elicited more potent anti-tumor effects than two CD276 ADCs currently in clinical trials. Here, we uncover notable CD276 expression in MCC patient tumors, and demonstrate m276-SL-PBD efficacy against MCC preclinical models. Complete eradication is observed in all xenografts bearing CD276 expression, with 82% achieving 180-day tumor-free survival after 4 or 5 weekly doses, and m276-SL-PBD remained efficacious against relapsed tumors. Of clinical relevance, m276-SL-PBD retains its potency in MCC-bearing humanized mice. Importantly, no detectable adverse effects were observed. Thus, m276-SL-PBD is a promising therapy for patients unsuitable or resistant to ICIs.
Collapse
Affiliation(s)
- Mikaela D. Kunika
- Southern California Institute for Research and Education, Long Beach, CA 90822, USA
| | - Aarthi Kannan
- Southern California Institute for Research and Education, Long Beach, CA 90822, USA
- Department of Dermatology, University of California-Irvine, Irvine, CA 92697, USA
| | - Graham J. Velasco
- Pathology Department, Tibor Rubin VA Medical Center, VA Long Beach Healthcare System, Long Beach, CA 90822, USA
| | - Yang Feng
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), National Cancer Institute (NCI), NIH, Frederick, MD 21702, USA
| | - Steven Seaman
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), National Cancer Institute (NCI), NIH, Frederick, MD 21702, USA
| | - Bhaba K. Das
- Southern California Institute for Research and Education, Long Beach, CA 90822, USA
| | - Dillon Pham
- Southern California Institute for Research and Education, Long Beach, CA 90822, USA
| | - Nils Lambrecht
- Pathology Department, Tibor Rubin VA Medical Center, VA Long Beach Healthcare System, Long Beach, CA 90822, USA
| | - Haibo Zhao
- Southern California Institute for Research and Education, Long Beach, CA 90822, USA
| | - Brad St. Croix
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), National Cancer Institute (NCI), NIH, Frederick, MD 21702, USA
| | - Ling Gao
- Southern California Institute for Research and Education, Long Beach, CA 90822, USA
- Department of Dermatology, University of California-Irvine, Irvine, CA 92697, USA
- Dermatology Section, Tibor Rubin VA Medical Center, VA Long Beach Healthcare System, Long Beach, CA 90822, USA
| |
Collapse
|
3
|
Farahani H, Darvishvand R, Khademolhosseini A, Erfani N. Unwrapping the immunological alterations in testicular germ cell tumors: From immune homeostasis to malignancy and emerging immunotherapies. Andrology 2025; 13:747-762. [PMID: 39253799 DOI: 10.1111/andr.13751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/18/2024] [Accepted: 08/20/2024] [Indexed: 09/11/2024]
Abstract
BACKGROUND Testicular germ cell tumors (TGCTs), derived from primordial germ cells, are rare malignancies with high curative potential. However, the emergence of new evidence indicating that 15% of patients experience tumor progression, leading to death, underscores the need for innovative therapeutics. OBJECTIVES This review aimed to explore the immune status in maintaining testicular health and the immune-related aspects of malignancy. Furthermore, it presents an overview of current data on the use of immunotherapy for TGCT patients. RESULTS AND DISCUSSION Recent advances in immunology have opened a promising avenue for studying diseases and highlighted its role in treating diseases. While the immunopathological facets of TGCTs are not fully understood, investigations suggest a complex interplay among testis-resident immune cells, testis-specific cells (i.e., Sertoli cells (SCs) and Leydig cells (LCs)), and immune-regulating mediators (e.g., sex hormones) in the normal testicle that foster the testicular immune privilege (TIP). Although TIP plays a crucial role in sperm production, it also makes testis vulnerable to tumor development. In the context of cancer-related inflammation, disruption of TIP leads to an imbalanced immune response, resulting in chronic inflammation that can contribute to testicular tissue dysfunction or loss, potentially aiding in cancer invasion and progression. CONCLUSION Comparing the immune profiles of normal and malignant testes is valuable and may provide insights into different aspects of testicular immunity and immune-based treatment approaches. For patients resistant to chemotherapy and with a poor prognosis, immunotherapy has shown promising results. However, its effectiveness in treating resistant TGCTs or preventing tumor recurrence is still uncertain.
Collapse
Affiliation(s)
- Hadiseh Farahani
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Darvishvand
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Aida Khademolhosseini
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nasrollah Erfani
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
4
|
Wang R, Hu B, Pan Z, Mo C, Zhao X, Liu G, Hou P, Cui Q, Xu Z, Wang W, Yu Z, Zhao L, He M, Wang Y, Fu C, Wei M, Yu L. Antibody-Drug Conjugates (ADCs): current and future biopharmaceuticals. J Hematol Oncol 2025; 18:51. [PMID: 40307936 PMCID: PMC12044742 DOI: 10.1186/s13045-025-01704-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 04/13/2025] [Indexed: 05/02/2025] Open
Abstract
Antibody-drug conjugates (ADCs) represent a novel class of biopharmaceuticals comprising monoclonal antibodies covalently conjugated to cytotoxic agents via engineered chemical linkers. This combination enables targeted delivery of cytotoxic agents to tumor site through recognizing target antigens by antibody while minimizing off-target effects on healthy tissues. Clinically, ADCs overcome the limitations of traditional chemotherapy, which lacks target specificity, and enhance the therapeutic efficacy of monoclonal antibodies, providing higher efficacy and fewer toxicity anti-tumor biopharmaceuticals. ADCs have ushered in a new era of targeted cancer therapy, with 15 drugs currently approved for clinical use. Additionally, ADCs are being investigated as potential therapeutic candidates for autoimmune diseases, persistent bacterial infections, and other challenging indications. Despite their therapeutic benefits, the development and application of ADCs face significant challenges, including antibody immunogenicity, linker instability, and inadequate control over the release of cytotoxic agent. How can ADCs be designed to be safer and more efficient? What is the future development direction of ADCs? This review provides a comprehensive overview of ADCs, summarizing the structural and functional characteristics of the three core components, antibody, linker, and payload. Furthermore, we systematically assess the advancements and challenges associated with the 15 approved ADCs in cancer therapy, while also exploring the future directions and ongoing challenges. We hope that this work will provide valuable insights into the design and optimization of next-generation ADCs for wider clinical applications.
Collapse
Grants
- No. U20A20413, China NSFC-Liaoning joint fund key program
- No. U20A20413, China NSFC-Liaoning joint fund key program
- No. U20A20413, China NSFC-Liaoning joint fund key program
- No. U20A20413, China NSFC-Liaoning joint fund key program
- No. U20A20413, China NSFC-Liaoning joint fund key program
- No. U20A20413, China NSFC-Liaoning joint fund key program
- No. U20A20413, China NSFC-Liaoning joint fund key program
- No. U20A20413, China NSFC-Liaoning joint fund key program
- No. U20A20413, China NSFC-Liaoning joint fund key program
- No. U20A20413, China NSFC-Liaoning joint fund key program
- No. U20A20413, China NSFC-Liaoning joint fund key program
- No. U20A20413, China NSFC-Liaoning joint fund key program
- No. U20A20413, China NSFC-Liaoning joint fund key program
- No. U20A20413, China NSFC-Liaoning joint fund key program
- No. U20A20413, China NSFC-Liaoning joint fund key program
- No. U20A20413, China NSFC-Liaoning joint fund key program
- No. U20A20413, China NSFC-Liaoning joint fund key program
- 2023JH2/20200126 Liaoning Province Scientific Research Foundation
- 2023JH2/20200126 Liaoning Province Scientific Research Foundation
- 2023JH2/20200126 Liaoning Province Scientific Research Foundation
- 2023JH2/20200126 Liaoning Province Scientific Research Foundation
- 2023JH2/20200126 Liaoning Province Scientific Research Foundation
- 2023JH2/20200126 Liaoning Province Scientific Research Foundation
- 2023JH2/20200126 Liaoning Province Scientific Research Foundation
- 2023JH2/20200126 Liaoning Province Scientific Research Foundation
- 2023JH2/20200126 Liaoning Province Scientific Research Foundation
- 2023JH2/20200126 Liaoning Province Scientific Research Foundation
- 2023JH2/20200126 Liaoning Province Scientific Research Foundation
- 2023JH2/20200126 Liaoning Province Scientific Research Foundation
- 2023JH2/20200126 Liaoning Province Scientific Research Foundation
- 2023JH2/20200126 Liaoning Province Scientific Research Foundation
- 2023JH2/20200126 Liaoning Province Scientific Research Foundation
- 2023JH2/20200126 Liaoning Province Scientific Research Foundation
- 2023JH2/20200126 Liaoning Province Scientific Research Foundation
- NSFC, No. 81903658, 82272797, 82304564, China National Natural Science Foundation of China
- NSFC, No. 81903658, 82272797, 82304564, China National Natural Science Foundation of China
- NSFC, No. 81903658, 82272797, 82304564, China National Natural Science Foundation of China
- NSFC, No. 81903658, 82272797, 82304564, China National Natural Science Foundation of China
- NSFC, No. 81903658, 82272797, 82304564, China National Natural Science Foundation of China
- NSFC, No. 81903658, 82272797, 82304564, China National Natural Science Foundation of China
- NSFC, No. 81903658, 82272797, 82304564, China National Natural Science Foundation of China
- NSFC, No. 81903658, 82272797, 82304564, China National Natural Science Foundation of China
- NSFC, No. 81903658, 82272797, 82304564, China National Natural Science Foundation of China
- NSFC, No. 81903658, 82272797, 82304564, China National Natural Science Foundation of China
- NSFC, No. 81903658, 82272797, 82304564, China National Natural Science Foundation of China
- NSFC, No. 81903658, 82272797, 82304564, China National Natural Science Foundation of China
- NSFC, No. 81903658, 82272797, 82304564, China National Natural Science Foundation of China
- NSFC, No. 81903658, 82272797, 82304564, China National Natural Science Foundation of China
- NSFC, No. 81903658, 82272797, 82304564, China National Natural Science Foundation of China
- NSFC, No. 81903658, 82272797, 82304564, China National Natural Science Foundation of China
- NSFC, No. 81903658, 82272797, 82304564, China National Natural Science Foundation of China
Collapse
Affiliation(s)
- Ruili Wang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Baohui Hu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Ziyu Pan
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Chongxia Mo
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Xin Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Guojia Liu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Ping Hou
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Qi Cui
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Zhao Xu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Wenjia Wang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Zhaojin Yu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
- Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, China Medical University, Shenyang, 110122, China
| | - Lin Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
- Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, China
| | - Miao He
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
- Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, China
| | - Yan Wang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
- Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, China Medical University, Shenyang, 110122, China
| | - Chen Fu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China.
- Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, China Medical University, Shenyang, 110122, China.
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China.
- Liaoning Medical Diagnosis and Treatment Center, Shenyang, 110000, China.
| | - Lifeng Yu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China.
- Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
5
|
Tawfiq RK, de Camargo Correia GS, Li S, Zhao Y, Lou Y, Manochakian R. Targeting Lung Cancer with Precision: The ADC Therapeutic Revolution. Curr Oncol Rep 2025:10.1007/s11912-025-01655-5. [PMID: 40238068 DOI: 10.1007/s11912-025-01655-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2025] [Indexed: 04/18/2025]
Abstract
PURPOSE OF REVIEW This review explores the evolving role of antibody-drug conjugates (ADCs) in lung cancer treatment, with a focus on their application in non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC). It highlights advancements in ADC design, mechanisms of action, and key outcomes from recent clinical trials. RECENT FINDINGS ADCs have introduced a new level of precision in oncology by targeting tumor-specific antigens such as HER2, HER3, and TROP-2. Recent clinical trials of agents like trastuzumab deruxtecan, datopotamab deruxtecan, and sacituzumab govitecan have demonstrated meaningful objective response rates and manageable toxicity, offering hope for patients with advanced NSCLC and SCLC. ADCs are transforming the treatment landscape for lung cancer, offering a blend of targeted delivery and potent therapeutic effects. With ongoing efforts to improve safety, efficacy, and antigen targeting, ADCs have the potential to become a cornerstone of lung cancer therapy and pave the way for innovative multimodal approaches in the future.
Collapse
Affiliation(s)
- Reema Kamal Tawfiq
- Division of Hematology and Oncology, Department of Internal Medicine, Mayo Clinic Florida, 4500 San Pablo Rd S, Jacksonville, FL, 32224, USA
| | - Guilherme Sacchi de Camargo Correia
- Division of Hematology and Oncology, Department of Internal Medicine, Mayo Clinic Florida, 4500 San Pablo Rd S, Jacksonville, FL, 32224, USA
| | - Shenduo Li
- Division of Hematology and Oncology, Department of Internal Medicine, Mayo Clinic Florida, 4500 San Pablo Rd S, Jacksonville, FL, 32224, USA
| | - Yujie Zhao
- Division of Hematology and Oncology, Department of Internal Medicine, Mayo Clinic Florida, 4500 San Pablo Rd S, Jacksonville, FL, 32224, USA
| | - Yanyan Lou
- Division of Hematology and Oncology, Department of Internal Medicine, Mayo Clinic Florida, 4500 San Pablo Rd S, Jacksonville, FL, 32224, USA
| | - Rami Manochakian
- Division of Hematology and Oncology, Department of Internal Medicine, Mayo Clinic Florida, 4500 San Pablo Rd S, Jacksonville, FL, 32224, USA.
| |
Collapse
|
6
|
Hernandez-Barry H, dela Cruz-Chuh J, Kajihara KK, Asundi J, Vandlen R, Zhang D, Hazenbos WL, Pillow T, Liu Y, Wu C, Kozak KR, Loyet KM. Mechanistic Characterization of the Potency of THIOMAB Antibody-Drug Conjugates Targeting Staphylococcus aureus and ETbR-Expressing Tumor Cells Using Quantitative LC-MS/MS Analysis of Intracellular Drug Accumulation. Bioconjug Chem 2025; 36:652-661. [PMID: 40179311 PMCID: PMC12007502 DOI: 10.1021/acs.bioconjchem.4c00533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 03/25/2025] [Accepted: 03/26/2025] [Indexed: 04/05/2025]
Abstract
THIOMAB drug conjugate (TDC) technology provides site-specific conjugation of linker drugs to antibodies, allowing for targeted delivery of the payload. While a direct measurement of TDC cytotoxic potency allows efficient screening and confirmation that new drugs conjugated to antibodies result in proper processing in cells, additional mechanistic characterization is often needed to provide information-rich data to guide further optimization of TDC design. For example, a quantitative understanding of how TDCs are processed intracellularly can help determine which processing step is impacting payload delivery and thereby inform the basis of the TDC efficacy. Here, we measure the cellular accumulation of two different TDC drug payloads: MAPK (mitogen-activated protein kinase) pathway inhibitor targeting ETbR-expressing tumor cells and an antibiotic active against Staphylococcus aureus with an in vitro cell-based drug release LC-MS/MS assay in a 96-well format. This assay allowed us to correlate the cellular potency of each unconjugated molecule with the amount of payload that accumulated inside the cell. In the case of the pathway inhibitor drug, the biochemical characterization of TDC processing by cathepsin B and purified human liver enzyme extract demonstrated a correlation between the efficiency of the linker drug cleavage and intracellular payload accumulation. For the antibody-antibiotic conjugate, kinetic analysis of intracellular free drug retention provided valuable insight into the chemistry modifications needed for an efficient TDC. Taken together, we demonstrated the utility of quantitative LC-MS/MS assays as one tool in guiding the design of more effective TDCs via the mechanistic release characterization of two distinct payloads.
Collapse
Affiliation(s)
| | | | | | - Jyoti Asundi
- Genentech, Inc., South San Francisco, California 94080, United States
| | - Richard Vandlen
- Genentech, Inc., South San Francisco, California 94080, United States
| | - Donglu Zhang
- Genentech, Inc., South San Francisco, California 94080, United States
| | | | - Thomas Pillow
- Genentech, Inc., South San Francisco, California 94080, United States
| | - Yichin Liu
- Genentech, Inc., South San Francisco, California 94080, United States
| | - Cong Wu
- Genentech, Inc., South San Francisco, California 94080, United States
| | | | - Kelly M. Loyet
- Genentech, Inc., South San Francisco, California 94080, United States
| |
Collapse
|
7
|
Yin Q, Zhang Y, Xie X, Hou M, Chen X, Ding J. Navigating the future of gastric cancer treatment: a review on the impact of antibody-drug conjugates. Cell Death Discov 2025; 11:144. [PMID: 40188055 PMCID: PMC11972320 DOI: 10.1038/s41420-025-02429-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 03/07/2025] [Accepted: 03/21/2025] [Indexed: 04/07/2025] Open
Abstract
Gastric cancer, marked by its high incidence and poor prognosis, demands the urgent development of novel and effective treatment strategies, especially for patients ineligible for surgery or those who have had limited success with chemotherapy, radiotherapy and targeted therapies. Recently, antibody-drug conjugates (ADCs) have become a key area of investigation due to their high specificity and potent antitumor effects. These therapies combine monoclonal antibodies, designed to bind to tumor-specific antigens, with cytotoxic agents that selectively target and destroy malignant cells. ADCs have generated significant interest in clinical trials as a promising approach to improve both treatment efficacy and patient outcomes in gastric cancer. However, their clinical application is not without challenges and limitations that must be addressed. This review discusses the recent progress in the use of ADCs for gastric cancer treatment.
Collapse
Affiliation(s)
- Qingling Yin
- GuiZhou University Medical College, Guiyang, 550025, Guizhou, China
- NHC Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou, China
| | - Yanlong Zhang
- GuiZhou University Medical College, Guiyang, 550025, Guizhou, China
| | - Xueqing Xie
- GuiZhou University Medical College, Guiyang, 550025, Guizhou, China
| | - Meijun Hou
- Graduate School, Zunyi Medical University, Zunyi, Guizhou, 563006, China
| | - Xunsheng Chen
- Department of Gastrointestinal Surgery, Guizhou Provincial People's Hospital, Guiyang, 550002, Guiyang, China
| | - Jie Ding
- Department of Gastrointestinal Surgery, Guizhou Provincial People's Hospital, Guiyang, 550002, Guiyang, China.
| |
Collapse
|
8
|
Goldmacher VS, Gershteyn I, Chari R, Kovtun Y. A bispecific anti-MUC16/anti-death receptor 5 antibody achieves effective and tumor-selective death receptor 5-mediated tumor regression. Sci Rep 2025; 15:9909. [PMID: 40121208 PMCID: PMC11929789 DOI: 10.1038/s41598-025-93927-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 03/10/2025] [Indexed: 03/25/2025] Open
Abstract
The bispecific antibody IMV-M was designed to selectively bind and cluster death receptor 5 (DR5) upon engaging the tumor antigen MUC16 through a novel mechanism-clustering multiple IMV-M molecules on a single MUC16 molecule. IMV-M demonstrated potent, MUC16-selective anti-tumor activity in vitro and in xenograft models without requiring secondary crosslinking, and a pilot non-human primate toxicity study detected no toxicity. Our findings suggest that antibody clustering effectively induces DR5 clustering, resulting in anti-tumor activity. Unlike anti-MUC16 antibody-drug conjugates (ADCs), which rely on cytotoxic payloads, this approach offers a safer and more effective therapeutic strategy. Notably, MUC16 is overexpressed in substantial subsets of ovarian, pancreatic, and lung cancers, with minimal expression in normal tissues, suggesting the broad applicability of this bispecific antibody.
Collapse
Affiliation(s)
- Victor S Goldmacher
- Research and Development, ImmuVia Inc, 245 First Street, Suite 1800, Cambridge, MA, 02142, USA.
| | - Iosif Gershteyn
- Research and Development, ImmuVia Inc, 245 First Street, Suite 1800, Cambridge, MA, 02142, USA
| | - Ravi Chari
- Research and Development, ImmuVia Inc, 245 First Street, Suite 1800, Cambridge, MA, 02142, USA
| | - Yelena Kovtun
- Research and Development, ImmuVia Inc, 245 First Street, Suite 1800, Cambridge, MA, 02142, USA
| |
Collapse
|
9
|
Chang HP, Le HK, Liu S, Shah DK. PK/PD of Positively Charged ADC in Mice. Pharmaceutics 2025; 17:377. [PMID: 40143040 PMCID: PMC11944646 DOI: 10.3390/pharmaceutics17030377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/11/2025] [Accepted: 03/13/2025] [Indexed: 03/28/2025] Open
Abstract
Background/Objectives: Antibody-drug conjugates (ADCs) show significant promise in oncology but often suffer from a narrow therapeutic window. Introducing a positive charge on the antibody is one proposed strategy to enhance tumor distribution and efficacy of ADC. Accordingly, this study evaluates the pharmacokinetics (PK) and pharmacology of an ADC developed using a positively charged (+5) version of anti-HER2 antibody trastuzumab conjugated with vc-MMAE linker-payload. Methods: A positively charged variant of trastuzumab was generated and conjugated to vc-MMAE. In vitro cytotoxicity assays were performed in cell lines with varying HER2 expression levels: N87 (high), MCF-7 (low), and MDA-MB-468 (non-expressing). In vivo biodistribution of wild-type (WT) and positively charged (+5) ADC was investigated in plasma, tumors, liver, and spleen. A pilot efficacy and toxicity study was also conducted in N87 tumor-bearing mice. Results: The charged ADC showed differential potency and PK behavior compared to the WT ADC. The charged ADC had similar potency in N87 cells but demonstrated ~20-fold and ~60-fold higher potency in MCF-7 and MDA-MB-468 cells. Plasma exposures of all the analytes were found to be reduced following the administration of charged ADC. However, total antibody exposure was found to increase in liver, spleen, and low antigen-expressing MCF-7 tumors. Tumor payload exposures were found to be significantly reduced for the charged ADCs, but liver and spleen displayed higher peak concentrations and increased tissue-to-plasma exposure ratios for the payload, suggesting preferential distribution of ADC with high drug-antibody ratio (DAR) to liver and spleen. Consistent with reduced tumor exposures, charged ADC showed lower efficacy in N87 tumor-bearing mice. No overt toxicity was observed for the charged ADC. Conclusions: Our findings suggest that while positively charged ADCs may be more potent in vitro, their efficacy in vivo may be compromised due to altered PK behavior. Thus, introducing a positive charge into the antibody framework may not be a viable strategy for improving the therapeutic potential of ADCs.
Collapse
Affiliation(s)
| | | | | | - Dhaval K. Shah
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY 14214, USA; (H.-P.C.); (H.K.L.)
| |
Collapse
|
10
|
Ge H, Liu C, Shen C, Hu D, Zhao X, Wang Y, Ge H, Qin R, Ma X, Wang Y. The effectiveness and safety of RC48 alone or in combination with PD-1 inhibitors for locally advanced or metastatic urothelial carcinoma: a multicenter, real-world study. J Transl Med 2025; 23:243. [PMID: 40022107 PMCID: PMC11871675 DOI: 10.1186/s12967-025-06237-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 02/11/2025] [Indexed: 03/03/2025] Open
Abstract
BACKGROUND RC48 is an antibody-drug conjugate (ADC) specifically targeting HER2. Phase II and III clinical trials have proven its significant anti-tumor effect against locally advanced or metastatic urothelial carcinoma (la/mUC). This study aims to further assess the effectiveness and safety of RC48 for patients with la/mUC and provide insights for further clinical practice. METHODS Retrospective analysis for 42 patients with la/mUC who underwent RC48 alone or in combination with PD-1 inhibitors therapy between 18 October 2022 and 1 May 2024 were conducted to assess effectiveness and safety of RC48. Descriptive statistics were used to summarize baseline characteristics, treatment-related adverse events, etc. Cox proportional risk model and the Kaplan-Meier method were applied to analyze patients' survival. RESULTS We observed a median progression-free survival (mPFS) of 6.2 months, although median overall survival (mOS) has not been reached so far. An objective response rate (ORR) of 54.8% and a disease control rate (DCR) of 83.3% was also observed. Patients with first-line therapy, second- or later-line therapy and neoadjuvant therapy were observed disease remission with ORRs of 47.7%, 40.0% and 100.0%, respectively. The most common treatment-related adverse events (TRAEs) include hypoesthesia and elevated transaminases which affect over 90.0% of patients and mostly grade 1-2 in severity, and no treatment-related fatalities were found. CONCLUSIONS This multicenter, real-world study confirms that RC48 alone or in combination with PD-1 inhibitors exerted a promising effectiveness and manageable safety for first-line, second- and post-line, and neoadjuvant therapy with la/mUC.
Collapse
Affiliation(s)
- Huaixi Ge
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Changxue Liu
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Chengquan Shen
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Ding Hu
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xinzhao Zhao
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yanhua Wang
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Huimin Ge
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Ruize Qin
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xiaocheng Ma
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yonghua Wang
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
- Urinary Diseases Clinical Medical Research Center of Qingdao, Qingdao, Shandong, China.
- Shandong Province Medical and Health Key Laboratory of Urology, Qingdao, Shandong, China.
| |
Collapse
|
11
|
Nervig CS, Rice M, Marelli M, Christie RJ, Owen SC. Modular Synthesis of Anti-HER2 Dual-Drug Antibody-Drug Conjugates Demonstrating Improved Toxicity. Bioconjug Chem 2025; 36:190-202. [PMID: 39841105 DOI: 10.1021/acs.bioconjchem.4c00398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Antibodies have gained clinical success in the last two decades for the targeted delivery of highly toxic small molecule chemotherapeutics. Yet antibody-drug conjugates (ADCs) often fail in the clinic due to the development of resistance. The delivery of two mechanistically distinct small molecule drugs on one antibody is of increasing interest to overcome these challenges with single-drug ADCs. We have developed a modular synthetic strategy for the construction of a library of 19 dual-drug ADCs where drugs are conjugated through unnatural cyclopentadiene-containing amino acids and native cysteine residues on an anti-HER2 trastuzumab scaffold. Importantly, this strategy utilizes the same functional group on the linker-drug construct; this allows for the facile addition of drugs at either conjugation site and enables the evaluation of different drug-to-antibody ratios and combinations of drug pairs. We tested the library on high- and mid-HER2 expressing cell lines and observed increased toxicity in several dual-drug ADCs compared with single-drug constructs. The strategy developed herein provides a method for the facile synthesis, characterization, and evaluation of dual-payload ADCs. Simultaneous delivery of combinations of drugs with distinct mechanisms of action is critical for the next generation of targeted drug delivery.
Collapse
Affiliation(s)
- Christine S Nervig
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112 United States
| | - Megan Rice
- Biologics Engineering, AstraZeneca Oncology R&D, One MedImmune Way, Gaithersburg, Maryland 20878 United States
| | - Marcello Marelli
- Biologics Engineering, AstraZeneca Oncology R&D, One MedImmune Way, Gaithersburg, Maryland 20878 United States
| | - R James Christie
- Biologics Engineering, AstraZeneca Oncology R&D, One MedImmune Way, Gaithersburg, Maryland 20878 United States
| | - Shawn C Owen
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112 United States
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, Utah 84112, United States
- Department of Biomedical Engineering, University of Utah Salt Lake City, Utah 84112, United States
| |
Collapse
|
12
|
Long J, Shao T, Wang Y, Chen T, Chen Y, Chen YL, Wang Q, Yu X, Yu J, He K, Lin HB, Diao X, Wang G, Wang C. PEGylation of Dipeptide Linker Improves Therapeutic Index and Pharmacokinetics of Antibody-Drug Conjugates. Bioconjug Chem 2025; 36:179-189. [PMID: 39832173 DOI: 10.1021/acs.bioconjchem.4c00392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Hydrophobic payloads incorporated into antibody-drug conjugates (ADCs) typically are superior to hydrophilic ones in tumor penetration and "bystander killing" upon release from ADCs. However, they are prone to aggregation and accelerated plasma clearance, which lead to reduced efficacies and increased toxicities of ADC molecules. Shielding the hydrophobicity of payloads by incorporating polyethylene glycol (PEG) elements or sugar groups into the ADC linkers has emerged as a viable alternative to directly adopting hydrophilic payloads. In this study, ADC linkers incorporating PEG or sugar groups were synthesized by modifying dipeptide linkers, with hydrophobic monomethyl auristatin E (MMAE) serving as an exemplary hydrophobic payload. All drug-linkers (DLs) were conjugated to RS7, a humanized antibody targeting Trop-2, with drug-to-antibody ratio (DAR) values set at 4 or 8. Among these, the ADC molecule RS7-DL 11, featuring a methyl-PEG24 (mPEG24) moiety as a side chain to the Valine-Lysine-PAB (VK) linker, demonstrated maximum hydrophilicity, biophysical stability, and tumor suppression, along with prolonged half-life and enhanced animal tolerability. In conclusion, through PEGylation of the traditional dipeptide linker, we have demonstrated an optimized ADC conjugation technology that can be employed for conjugating ultrahydrophobic payloads, thus enhancing both the therapeutic index and pharmacokinetics profile.
Collapse
Affiliation(s)
- Jing Long
- Biotherapeutics Discovery Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting Shao
- Biotherapeutics Discovery Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yongmei Wang
- Biotherapeutics Discovery Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianzhi Chen
- Biotherapeutics Discovery Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yuning Chen
- Biotherapeutics Discovery Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi-Li Chen
- Biotherapeutics Discovery Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Shanghai Mabstone Biotechnologies, Ltd., Shanghai 201203, China
| | - Qi Wang
- Biotherapeutics Discovery Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiong Yu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266005, People's Republic of China
| | - Jinghua Yu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China
| | - Kaifeng He
- Biotherapeutics Discovery Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Han-Bin Lin
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China
- Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan 528400, Guangdong, China
| | - Xingxing Diao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China
| | - Guifeng Wang
- Biotherapeutics Discovery Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunhe Wang
- Biotherapeutics Discovery Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Dartsbio Pharmaceuticals, Ltd., Zhongshan 528400, Guangdong, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
13
|
Majumder U, Zhu X, Custar D, Li D, Fang H, McGonigle S, Albone E, Cheng X, Lai W, Amy Siu Y, Bresciano K, Hart A, Postema M. A Novel Concept for Cleavable Linkers Applicable to Conjugation Chemistry - Design, Synthesis and Characterization. Chembiochem 2025; 26:e202400826. [PMID: 39424599 DOI: 10.1002/cbic.202400826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 10/16/2024] [Indexed: 10/21/2024]
Abstract
Linkers with disulfide bonds are the only cleavable linkers that utilize physiological thiol gradients as a trigger to initiate the intracellular drug release cascade. Herein, we present a novel concept exploiting the thiol gradient phenomena to design a new class of cleavable linker with no disulfide bond. To support the concept, an electron-deficient sulfonamide-based cleavable linker amenable to conjugation of drug molecules with targeting agents, was developed. Modulating the electron-withdrawing nature of the aryl sulfonamide was critical to the balance between the stability and drug release. Favorable stability and payload release in human serum under physiologically relevant thiol concentrations was demonstrated with two potent cytotoxics. Intracellular payload release was further validated in cell-based assay in context of antibody-drug conjugate generated from monoclonal antibody and sulfonamide containing linker. To support the proposed release mechanism, possible downstream by-products formed from the drug-linker adduct were characterized.
Collapse
Affiliation(s)
- Utpal Majumder
- Oncology Product Creation Unit, Eisai Inc., 35 Cambridgepark Drive, Cambridge, MA-02140, USA
| | - Xiaojie Zhu
- Oncology Product Creation Unit, Eisai Inc., 35 Cambridgepark Drive, Cambridge, MA-02140, USA
| | - Daniel Custar
- Oncology Product Creation Unit, Eisai Inc., 35 Cambridgepark Drive, Cambridge, MA-02140, USA
| | - Danyang Li
- Oncology Product Creation Unit, Eisai Inc., 35 Cambridgepark Drive, Cambridge, MA-02140, USA
| | - Hui Fang
- Oncology Product Creation Unit, Eisai Inc., 35 Cambridgepark Drive, Cambridge, MA-02140, USA
| | - Sharon McGonigle
- Oncology Product Creation Unit, Eisai Inc., 35 Cambridgepark Drive, Cambridge, MA-02140, USA
| | - Earl Albone
- EPAT, Eisai Inc., 210 Welsh Pool Road, Exton, PA, 19341, USA
| | - Xin Cheng
- EPAT, Eisai Inc., 210 Welsh Pool Road, Exton, PA, 19341, USA
| | - Weidong Lai
- DMPK Core Functional Unit, Eisai Inc., 35 Cambridgepark Drive, Cambridge, MA, 02140, USA
| | - Y Amy Siu
- DMPK Core Functional Unit, Eisai Inc., 35 Cambridgepark Drive, Cambridge, MA, 02140, USA
| | - Karen Bresciano
- DMPK Core Functional Unit, Eisai Inc., 35 Cambridgepark Drive, Cambridge, MA, 02140, USA
| | - Andrew Hart
- DMPK Core Functional Unit, Eisai Inc., 35 Cambridgepark Drive, Cambridge, MA, 02140, USA
| | - Maarten Postema
- Oncology Product Creation Unit, Eisai Inc., 35 Cambridgepark Drive, Cambridge, MA-02140, USA
| |
Collapse
|
14
|
Maji D, Wolke M, Khaja S, Savaryn JP, Kalvass JC, Jenkins GJ. Application of drug-induced growth rate inhibition and intracellular drug exposures for comprehensive evaluation of cellular drug sensitivity. Sci Rep 2025; 15:5064. [PMID: 39934176 PMCID: PMC11814085 DOI: 10.1038/s41598-025-86919-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 01/15/2025] [Indexed: 02/13/2025] Open
Abstract
In vitro cellular assays are indispensable tools for preclinical understanding of therapeutic candidates. Herein, we have outlined methods for robust determination of cellular sensitivities by adapting drug-induced growth-rate inhibition analysis combined with intracellular drug exposure measurements. Using two auristatins as tool molecules, we demonstrate wide variety of cellular response in sensitive versus resistant cancer cells, as well as in a toxicity-relevant cell type. Cellular response analysis generates metrics describing efficacious extracellular concentrations of drug, as well as the phenotype of response-cytotoxic versus cytostatic. Cell associated drug measurements bridge the gap between extracellular drug concentrations and exposure at intracellular sites required for a desired pharmacodynamic response. Such methods can complement rational drug design by providing thorough understanding of the drug mechanism of action, guide mechanistic selection of target indication and inform exposure-response analysis at various stages of drug discovery.
Collapse
Affiliation(s)
- Dolonchampa Maji
- Quantitative, Translational & ADME Sciences, AbbVie, Inc, North Chicago, IL, USA
| | - Malerie Wolke
- Quantitative, Translational & ADME Sciences, AbbVie, Inc, North Chicago, IL, USA
| | - Shamim Khaja
- Quantitative, Translational & ADME Sciences, AbbVie, Inc, North Chicago, IL, USA
| | - John P Savaryn
- Quantitative, Translational & ADME Sciences, AbbVie, Inc, North Chicago, IL, USA
| | - John C Kalvass
- Quantitative, Translational & ADME Sciences, AbbVie, Inc, North Chicago, IL, USA
| | - Gary J Jenkins
- Quantitative, Translational & ADME Sciences, AbbVie, Inc, North Chicago, IL, USA.
| |
Collapse
|
15
|
Jiang Y, Dong S, Wang Y. Antibody-Drug Conjugates Targeting CD30 in T-Cell Lymphomas: Clinical Progression and Mechanism. Cancers (Basel) 2025; 17:496. [PMID: 39941862 PMCID: PMC11815818 DOI: 10.3390/cancers17030496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/27/2025] [Accepted: 01/31/2025] [Indexed: 02/16/2025] Open
Abstract
CD30 is overexpressed in many T-cell lymphoma (TCL) entities, including subsets of peripheral T-cell lymphomas (PTCL) and cutaneous T-cell lymphomas (CTCL). The antibody-drug conjugate brentuximab vedotin (BV), targeting CD30-positive cells, has been approved for the treatment of relapsed or refractory (R/R) systemic anaplastic large cell lymphoma (sALCL), and primary cutaneous anaplastic large cell lymphoma or mycosis fungoides in patients who have received previous systemic therapy. However, many patients still experience disease progression after BV monotherapy. Extensive efforts have been dedicated to investigating effective combinations of BV. A phase III clinical study demonstrated that the combination of BV with cyclophosphamide, doxorubicin, and prednisone (CHP) is superior to cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP) for CD30-positive PTCL. This study led to the approval of BV with CHP as the first-line therapy for CD30-positive PTCL (sALCL in Europe). We summarize the encouraging combination applications of BV in this review. Ongoing studies on combination therapies of BV are also listed, highlighting potential directions for the future application of BV. We focus on dissecting the underlying mechanisms of BV, discussing its effects on both tumor cells and the tumor microenvironment. Exploring resistance mechanisms in TCL provide valuable insights for optimizing BV-based therapies in the future.
Collapse
Affiliation(s)
- Yi Jiang
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing 100034, China; (Y.J.); (S.D.)
- National Clinical Research Center for Skin and Immune Diseases, Beijing 100034, China
- NMPA Key Laboratory for Quality Control and Evaluation of Cosmetics, Beijing 100034, China
| | - Sai Dong
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing 100034, China; (Y.J.); (S.D.)
- The Second Clinical Medical School, Peking University, Beijing 100044, China
| | - Yang Wang
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing 100034, China; (Y.J.); (S.D.)
- National Clinical Research Center for Skin and Immune Diseases, Beijing 100034, China
- NMPA Key Laboratory for Quality Control and Evaluation of Cosmetics, Beijing 100034, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
16
|
Wang Y, Li G, Wang H, Qi Q, Wang X, Lu H. Targeted therapeutic strategies for Nectin-4 in breast cancer: Recent advances and future prospects. Breast 2025; 79:103838. [PMID: 39577073 PMCID: PMC11616553 DOI: 10.1016/j.breast.2024.103838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/31/2024] [Accepted: 11/13/2024] [Indexed: 11/24/2024] Open
Abstract
Nectin-4 is a cell adhesion molecule which has gained more and more attention as a therapeutic target in cancer recently. Overexpression of Nectin-4 has been observed in various tumors, including breast cancer, and is associated with tumor progression. Enfortumab vedotin(EV)is an antibody-drug conjugate (ADC) targeting Nectin-4, which has been approved by FDA for the treatment of urothelial carcinoma. Notably, Nectin-4 was also investigated as a target for breast cancer in preclinical and clinical settings. Nectin-4-targeted approaches, such as ADCs, oncolytic viruses, photothermal therapy and immunotherapy, have shown promising results in early-phase clinical trials. These therapies offer novel strategies for delivering targeted treatments to Nectin-4-expressing cancer cells, enhancing treatment efficacy and minimizing off-target effects. In conclusion, this review aims to provide an overview of the latest advances in understanding the role of Nectin-4 in breast cancer and discuss the future development prospects of Nectin-4 targeted agents.
Collapse
Affiliation(s)
- Yufei Wang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China; Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Guangliang Li
- Department of Medical Oncology (Breast Cancer), Zhejiang Cancer Hospital, Hangzhou, China
| | - Hanying Wang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Quan Qi
- Department of Medical Oncology, Huzhou Central Hospital, Huzhou, China
| | - Xian Wang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China.
| | - Haiqi Lu
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China.
| |
Collapse
|
17
|
Li S, Zhao X, Fu K, Zhu S, Pan C, Yang C, Wang F, To KK, Fu L. Resistance to antibody-drug conjugates: A review. Acta Pharm Sin B 2025; 15:737-756. [PMID: 40177568 PMCID: PMC11959940 DOI: 10.1016/j.apsb.2024.12.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 04/05/2025] Open
Abstract
Antibody-drug conjugates (ADCs) are antitumor drugs composed of monoclonal antibodies and cytotoxic payload covalently coupled by a linker. Currently, 15 ADCs have been clinically approved worldwide. More than 100 clinical trials at different phases are underway to investigate the newly developed ADCs. ADCs represent one of the fastest growing classes of targeted antitumor drugs in oncology drug development. It takes advantage of the specific targeting of tumor-specific antigen by antibodies to deliver cytotoxic chemotherapeutic drugs precisely to tumor cells, thereby producing promising antitumor efficacy and favorable adverse effect profiles. However, emergence of drug resistance has severely hindered the clinical efficacy of ADCs. In this review, we introduce the structure and mechanism of ADCs, describe the development of ADCs, summarized the latest research about the mechanisms of ADC resistance, discussed the strategies to overcome ADCs resistance, and predicted biomarkers for treatment response to ADC, aiming to contribute to the development of ADCs in the future.
Collapse
Affiliation(s)
- Sijia Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Xinyu Zhao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Kai Fu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Shuangli Zhu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Can Pan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Chuan Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Fang Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Kenneth K.W. To
- School of Pharmacy, the Chinese University of Hong Kong, Hong Kong 999077, China
| | - Liwu Fu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| |
Collapse
|
18
|
Zhu Y, Song Y, Zhou X, Zhang W, Luo H. Antibody-drug conjugates in breast cancer. Carcinogenesis 2025; 46:bgae082. [PMID: 39742416 DOI: 10.1093/carcin/bgae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/18/2024] [Accepted: 12/31/2024] [Indexed: 01/03/2025] Open
Abstract
Antibody-drug conjugates (ADCs) have garnered significant attention as an innovative therapeutic strategy in cancer treatment. The mechanism of action for ADCs involves the targeted delivery of antibodies to specific receptors, followed by the release of cytotoxic payloads directly into tumor cells. In recent years, ADCs have made substantial progress in the treatment of breast cancer (BC), particularly demonstrating significant efficacy in the human epidermal growth factor receptor-2 (HER-2)-positive subgroup. Clinical evidence indicates that ADCs have notably improved treatment efficacy and survival outcomes for BC patients. However, challenges such as drug toxicities and the emergence of drug resistance necessitate further research and discussion. In this paper, we will summarize the advances in ADCs targeting various receptors in BC patients and explore the challenges and future directions in this field. We anticipate that the increasing availability of ADCs will lead to more effective and personalized treatment options for BC patients.
Collapse
Affiliation(s)
- Yinxing Zhu
- Department of Radiation Oncology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, 6 Beijing West Road, Huai'an 223300, China
| | - Yaqi Song
- Department of Radiation Oncology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, 6 Beijing West Road, Huai'an 223300, China
| | - Xilei Zhou
- Department of Radiation Oncology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, 6 Beijing West Road, Huai'an 223300, China
| | - Wenwen Zhang
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China
| | - Honglei Luo
- Department of Radiation Oncology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, 6 Beijing West Road, Huai'an 223300, China
| |
Collapse
|
19
|
Chen W, Zhang Z. Recent Advances in Understanding the Clinical Responses of Brentuximab Vedotin in Lymphoma and the Correlation with CD30 Expression. Onco Targets Ther 2025; 18:1-14. [PMID: 39802262 PMCID: PMC11720807 DOI: 10.2147/ott.s487088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/23/2024] [Indexed: 01/16/2025] Open
Abstract
Brentuximab vedotin (BV) is an antibody-drug conjugate that combines the CD30 monoclonal antibody with the microtubule-disrupting agent, monomethyl auristatin E, which induces apoptosis in the tumor cell upon its release from the conjugate. The safety and efficacy of BV have been assessed in several studies in patients with T- and B-cell lymphomas. This article reviews the currently available data on the distribution of CD30 expression in T- and B-cell lymphomas, as well as the various levels of CD30 positivity cutoff used in the literature. It also analyzes the relationship between CD30 expression levels and the clinical response to BV in clinical trials for both T- and B-cell lymphomas and investigates BV efficacy in patients with low or undetectable levels of CD30 and examines potential mechanisms by which BV exerts its effect on these patients. This review contributes to the growing evidence suggesting that CD30 expression levels do not predict the clinical benefit of BV as the drug demonstrated substantial efficacy in patients across a wide range of CD30 expression levels while suggesting that the antitumor activity was not associated with CD30 expression levels. Furthermore, the potential of BV as a targeted approach along with its mechanism of action is also summarized to explain its key role in the future treatments of lymphomas, especially for CD30-expressing lymphomas.
Collapse
Affiliation(s)
- Wen Chen
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People’s Republic of China
| | - Zhihong Zhang
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People’s Republic of China
| |
Collapse
|
20
|
Akram F, Ali AM, Akhtar MT, Fatima T, Shabbir I, Ul Haq I. The journey of antibody-drug conjugates for revolutionizing cancer therapy: A review. Bioorg Med Chem 2025; 117:118010. [PMID: 39586174 DOI: 10.1016/j.bmc.2024.118010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/09/2024] [Accepted: 11/15/2024] [Indexed: 11/27/2024]
Abstract
Antibody-drug conjugates (ADCs) represent a powerful class of targeted cancer therapies that harness the specificity of monoclonal antibodies to deliver cytotoxic payloads directly to tumor cells, minimizing off-target effects. This review explores the advancements in ADC technologies, focusing on advancing next-generation ADCs with novel payloads, conjugation strategies, and enhanced pharmacokinetic profiles. In particular, we highlight innovative payloads, including microtubule inhibitors, spliceosome modulators, and RNA polymerase inhibitors, that offer new mechanisms of cytotoxicity beyond traditional apoptosis induction. Additionally, the introduction of sophisticated conjugation techniques, such as site-specific conjugation using engineered cysteines, enzymatic methods, and integration of non-natural amino acids, has greatly improved the homogeneity, efficacy, and safety of ADCs. Furthermore, the review delves into the mechanistic insights into ADC action, detailing the intracellular pathways that facilitate drug release and cell death, and discussing the significance of bioconjugation methods in optimizing drug-antibody ratios (DARs). The establishment of comprehensive databases like ADCdb, which catalog vital pharmacological and biological data for ADCs, is also explored as a critical resource for advancing ADC research and clinical application. Finally, the clinical landscape of ADCs is examined, with a focus on the evolution of FDA-approved ADCs, such as Gemtuzumab Ozogamicin and Trastuzumab Emtansine, as well as emerging candidates in ongoing trials. As ADCs continue to evolve, their potential to revolutionize cancer therapy remains immense, offering new hope for more effective and personalized treatment options. ADCs also offer a significant advancement in targeted cancer therapy by merging the specificity of monoclonal antibodies with cytotoxic potency of chemotherapeutic agents. Hence, this dual mechanism intensifies tumor selectivity while minimizing systemic toxicity, paving the way for more effective and safer cancer treatments.
Collapse
Affiliation(s)
- Fatima Akram
- Dr. Ikram-ul-Haq Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan; Department of Biology, Saint Louis University, St. Louis, MO, USA.
| | - Amna Murrawat Ali
- Dr. Ikram-ul-Haq Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
| | - Muhammad Tayyab Akhtar
- Dr. Ikram-ul-Haq Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
| | - Taseer Fatima
- Dr. Ikram-ul-Haq Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
| | - Ifrah Shabbir
- Dr. Ikram-ul-Haq Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
| | - Ikram Ul Haq
- Dr. Ikram-ul-Haq Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan; Pakistan Academy of Sciences, Islamabad, Pakistan
| |
Collapse
|
21
|
Khera E, Dharmarajan L, Hainzl D, Engelhardt V, Vostiarova H, Davis J, Ebel N, Wuersch K, Romanet V, Sharaby S, Kearns JD. QSP modeling of a transiently inactivating antibody-drug conjugate highlights benefit of short antibody half life. J Pharmacokinet Pharmacodyn 2024; 52:7. [PMID: 39690276 PMCID: PMC11652588 DOI: 10.1007/s10928-024-09956-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 10/03/2024] [Indexed: 12/19/2024]
Abstract
Antibody drug conjugates (ADC) are a promising class of oncology therapeutics consisting of an antibody conjugated to a payload via a linker. DYP688 is a novel ADC comprising of a signaling protein inhibitor payload (FR900359) that undergoes unique on-antibody inactivation in plasma, resulting in complex pharmacology. To assess the impact of FR inactivation on DYP688 pharmacology and clinical developability, we performed translational modeling of preclinical PK and tumor growth inhibition (TGI) data, accompanied by mechanistic Krogh cylinder tumor modeling. Using a PK-TGI model, we identified a composite exposure-above-tumorostatic concentration (AUCTSC) metric as the PK-driver of efficacy. To underpin the mechanisms behind AUCTSC as the driver of efficacy, we performed quantitative systems pharmacology (QSP) modeling of DYP688 intratumoral pharmacokinetics and pharmacodynamics. Through exploratory simulations, we show that by deviating from canonical ADC design dogma, DYP688 has optimal FR900359 activity despite its transient inactivation. Finally, we performed the successful preclinical to clinical translation of DYP688 PK, including the payload inactivation kinetics, evidenced by good agreement of the predicted PK to the observed interim clinical PK. Overall, this work highlights early quantitative pharmacokinetics as a missing link in the ADC design-developability chasm.
Collapse
Affiliation(s)
- Eshita Khera
- PK Sciences, Translational Medicine, Novartis Biomedical Research, Cambridge, MA, USA
| | - Lekshmi Dharmarajan
- PK Sciences, Translational Medicine, Novartis Biomedical Research, Basel, Switzerland
| | - Dominik Hainzl
- PK Sciences, Translational Medicine, Novartis Biomedical Research, Cambridge, MA, USA
| | - Volker Engelhardt
- PK Sciences, Translational Medicine, Novartis Biomedical Research, Basel, Switzerland
| | - Helena Vostiarova
- PK Sciences, Translational Medicine, Novartis Biomedical Research, Basel, Switzerland
| | - John Davis
- PK Sciences, Translational Medicine, Novartis Biomedical Research, Cambridge, MA, USA
| | - Nicolas Ebel
- Oncology, Novartis Biomedical Research, Basel, Switzerland
| | - Kuno Wuersch
- Preclinical Safety, Novartis Biomedical Research, Basel, Switzerland
| | | | - Sherif Sharaby
- PK Sciences, Translational Medicine, Novartis Biomedical Research, East Hanover, NJ, USA
| | - Jeffrey D Kearns
- PK Sciences, Translational Medicine, Novartis Biomedical Research, Cambridge, MA, USA.
| |
Collapse
|
22
|
Tsumura R, Anzai T, Koga Y, Takashima H, Matsumura Y, Yasunaga M. Anti-tissue factor antibody conjugated with monomethyl auristatin E or deruxtecan in pancreatic cancer models. Cancer Sci 2024; 115:3986-3996. [PMID: 39322584 PMCID: PMC11611767 DOI: 10.1111/cas.16335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/19/2024] [Accepted: 08/26/2024] [Indexed: 09/27/2024] Open
Abstract
Antibody-drug conjugates (ADCs) have been recognized as a promising class of cancer therapeutics. Tissue factor (TF), an initiator of the blood coagulation pathway, has been investigated regarding its relationship with cancer, and several preclinical and clinical studies have presented data on anti-TF ADCs, including tisotumab vedotin, which was approved in 2021. However, the feasibility of other payloads in the design of anti-TF ADCs is still unclear because no reports have compared payloads with different cytotoxic mechanisms. For ADCs targeting other antigens, such as Her2, optimizing the payload is also an important issue in order to improve in vivo efficacy. In this study, we prepared humanized anti-TF Ab (clone.1084) conjugated with monomethyl auristatin E (MMAE) or deruxtecan (DXd), and evaluated the efficacy in several cell line- and patient-derived xenograft models of pancreatic cancer. As a result, optimizing the drug / Ab ratio was necessary for each payload in order to prevent pharmacokinetic deterioration and maximize delivery efficiency. In addition, MMAE-conjugated anti-TF ADC showed higher antitumor effects in tumors with strong and homogeneous TF expression, while DXd-conjugated anti-TF ADC was more effective in tumors with weak and heterogeneous TF expression. Analysis of a pancreatic cancer tissue array showed weak and heterogeneous TF expression in most TF-positive specimens, indicating that the response rate to pancreatic cancer might be higher for DXd- than MMAE-conjugated anti-TF ADC. Nevertheless, our findings indicated that optimizing the ADC payloads individually in each patient could maximize the potential of ADC therapeutics.
Collapse
Affiliation(s)
- Ryo Tsumura
- Division of Developmental TherapeuticsEPOC, National Cancer CenterKashiwaJapan
| | - Takahiro Anzai
- Division of Developmental TherapeuticsEPOC, National Cancer CenterKashiwaJapan
- Department of Chemistry and Materials ScienceNational Institute of Technology (KOSEN), Gunma CollegeMaebashiJapan
| | - Yoshikatsu Koga
- Division of Developmental TherapeuticsEPOC, National Cancer CenterKashiwaJapan
| | - Hiroki Takashima
- Division of Developmental TherapeuticsEPOC, National Cancer CenterKashiwaJapan
| | - Yasuhiro Matsumura
- Department of Immune MedicineNational Cancer Center Research InstituteTokyoJapan
- Research DivisionRIN Institute Inc.TokyoJapan
| | - Masahiro Yasunaga
- Division of Developmental TherapeuticsEPOC, National Cancer CenterKashiwaJapan
| |
Collapse
|
23
|
Xi M, Zhu J, Zhang F, Shen H, Chen J, Xiao Z, Huangfu Y, Wu C, Sun H, Xia G. Antibody-drug conjugates for targeted cancer therapy: Recent advances in potential payloads. Eur J Med Chem 2024; 276:116709. [PMID: 39068862 DOI: 10.1016/j.ejmech.2024.116709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
Antibody-drug conjugates (ADCs) represent a promising cancer therapy modality which specifically delivers highly toxic payloads to cancer cells through antigen-specific monoclonal antibodies (mAbs). To date, 15 ADCs have been approved and more than 100 ADC candidates have advanced to clinical trials for the treatment of various cancers. Among these ADCs, microtubule-targeting and DNA-damaging agents are at the forefront of payload development. However, several challenges including toxicity and drug resistance limit the potential of this modality. To tackle these issues, multiple innovative payloads such as immunomodulators and proteolysis targeting chimeras (PROTACs) are incorporated into ADCs to enable multimodal cancer therapy. In this review, we describe the mechanism of ADCs, highlight the importance of ADC payloads and summarize recent progresses of conventional and unconventional ADC payloads, trying to provide an insight into payload diversification as a key step in future ADC development.
Collapse
Affiliation(s)
- Meiyang Xi
- Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Shaoxing, 312000, China; College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Jingjing Zhu
- NovoCodex Biopharmaceuticals Co. Ltd., Shaoxing, 312090, China
| | - Fengxia Zhang
- NovoCodex Biopharmaceuticals Co. Ltd., Shaoxing, 312090, China
| | - Hualiang Shen
- Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Shaoxing, 312000, China; College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Jianhui Chen
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Ziyan Xiao
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Yanping Huangfu
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Chunlei Wu
- Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Shaoxing, 312000, China; College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Haopeng Sun
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China.
| | - Gang Xia
- NovoCodex Biopharmaceuticals Co. Ltd., Shaoxing, 312090, China
| |
Collapse
|
24
|
Cheng X, Li P, Jiang R, Meng E, Wu H. ADC: a deadly killer of platinum resistant ovarian cancer. J Ovarian Res 2024; 17:196. [PMID: 39367438 PMCID: PMC11451100 DOI: 10.1186/s13048-024-01523-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 09/25/2024] [Indexed: 10/06/2024] Open
Abstract
Platinum is a key component of ovarian cancer systemic therapy. However, most patients will eventually face a recurrence, leading to chemotherapy resistance, especially against platinum. For individuals with platinum-resistant ovarian cancer (PROC), treatment options are limited, and their survival prospects are grim. The emergence of antibody-drug conjugates (ADCs) shows promises as a future treatment for PROC. This review synthesizes current research on the effectiveness of ADCs in treating PROC. It encapsulates the advancements and clinical trials of novel ADCs that target specific antigens such as Folate Receptor alpha (FRα), MUC16, NaPi2b, Mesothelin, Dipeptidase 3(DPEP3), and human epidermal growth factor receptor 2 (HER2), as well as tissue factor, highlighting their potential anti-tumor efficacy and used in combination with other therapies. The ADCs landscape in ovarian cancer therapeutics is swiftly evolving, promising more potent and efficacious treatment avenues.
Collapse
Affiliation(s)
- Xu Cheng
- The Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing City, Jiangsu Province, China
| | - Ping Li
- The Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing City, Jiangsu Province, China
| | - Rongqi Jiang
- The Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing City, Jiangsu Province, China
| | - Enqing Meng
- The Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing City, Jiangsu Province, China
| | - Hao Wu
- The Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing City, Jiangsu Province, China.
| |
Collapse
|
25
|
Mathiot L, Baldini C, Letissier O, Hollebecque A, Bahleda R, Gazzah A, Smolenschi C, Sakkal M, Danlos FX, Henon C, Beshiri K, Goldschmidt V, Parisi C, Patrikidou A, Michot JM, Marabelle A, Postel-Vinay S, Bernard-Tessier A, Loriot Y, Ponce S, Champiat S, Ouali K. Exploring the Role of Target Expression in Treatment Efficacy of Antibody-Drug Conjugates (ADCs) in Solid Cancers: A Comprehensive Review. Curr Oncol Rep 2024; 26:1236-1248. [PMID: 39066847 DOI: 10.1007/s11912-024-01576-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2024] [Indexed: 07/30/2024]
Abstract
PURPOSE OF REVIEW Antibody-drug conjugates (ADCs) offer a promising path for cancer therapy, leveraging the specificity of monoclonal antibodies and the cytotoxicity of linked drugs. The success of ADCs hinges on precise targeting of cancer cells based on protein expression levels. This review explores the relationship between target protein expression and ADC efficacy in solid tumours, focusing on results of clinical trials conducted between January 2019 and May 2023. RECENT FINDINGS We hereby highlight approved ADCs, revealing their effectiveness even in low-expressing target populations. Assessing target expression poses challenges, owing to variations in scoring systems and biopsy types. Emerging methods, like digital image analysis, aim to standardize assessment. The complexity of ADC pharmacokinetics, tumour dynamics, and off-target effects emphasises the need for a balanced approach. This review underscores the importance of understanding target protein dynamics and promoting standardized evaluation methods in shaping the future of ADC-based cancer therapies.
Collapse
Affiliation(s)
- Laurent Mathiot
- Drug Development Department, Gustave Roussy Cancer Campus, Villejuif Cedex, France
| | - Capucine Baldini
- Drug Development Department, Gustave Roussy Cancer Campus, Villejuif Cedex, France
| | - Octave Letissier
- Drug Development Department, Gustave Roussy Cancer Campus, Villejuif Cedex, France
| | - Antoine Hollebecque
- Drug Development Department, Gustave Roussy Cancer Campus, Villejuif Cedex, France
| | - Rastislav Bahleda
- Drug Development Department, Gustave Roussy Cancer Campus, Villejuif Cedex, France
| | - Anas Gazzah
- Drug Development Department, Gustave Roussy Cancer Campus, Villejuif Cedex, France
| | - Cristina Smolenschi
- Drug Development Department, Gustave Roussy Cancer Campus, Villejuif Cedex, France
| | - Madona Sakkal
- Drug Development Department, Gustave Roussy Cancer Campus, Villejuif Cedex, France
| | - François-Xavier Danlos
- Drug Development Department, Gustave Roussy Cancer Campus, Villejuif Cedex, France
- Institut National de La Santé Et de La Recherche Médicale (INSERM) U1015, Villejuif, France
- Centre d'Investigations Cliniques Biothérapies Pour Une Immunisation in Situ (BIOTHERIS), INSERM, CIC1428, Villejuif, France
| | - Clémence Henon
- Drug Development Department, Gustave Roussy Cancer Campus, Villejuif Cedex, France
| | - Kristi Beshiri
- Drug Development Department, Gustave Roussy Cancer Campus, Villejuif Cedex, France
| | - Vincent Goldschmidt
- Drug Development Department, Gustave Roussy Cancer Campus, Villejuif Cedex, France
| | - Claudia Parisi
- Drug Development Department, Gustave Roussy Cancer Campus, Villejuif Cedex, France
| | - Anna Patrikidou
- Drug Development Department, Gustave Roussy Cancer Campus, Villejuif Cedex, France
| | - Jean-Marie Michot
- Drug Development Department, Gustave Roussy Cancer Campus, Villejuif Cedex, France
| | - Aurélien Marabelle
- Drug Development Department, Gustave Roussy Cancer Campus, Villejuif Cedex, France
| | - Sophie Postel-Vinay
- Drug Development Department, Gustave Roussy Cancer Campus, Villejuif Cedex, France
| | | | - Yohann Loriot
- Drug Development Department, Gustave Roussy Cancer Campus, Villejuif Cedex, France
- Institut National de La Santé Et de La Recherche Médicale (INSERM) U981, Villejuif, France
| | - Santiago Ponce
- Drug Development Department, Gustave Roussy Cancer Campus, Villejuif Cedex, France
| | - Stéphane Champiat
- Drug Development Department, Gustave Roussy Cancer Campus, Villejuif Cedex, France
- Institut National de La Santé Et de La Recherche Médicale (INSERM) U1015, Villejuif, France
- Centre d'Investigations Cliniques Biothérapies Pour Une Immunisation in Situ (BIOTHERIS), INSERM, CIC1428, Villejuif, France
| | - Kaïssa Ouali
- Drug Development Department, Gustave Roussy Cancer Campus, Villejuif Cedex, France.
| |
Collapse
|
26
|
Smidt JM, Märcher A, Skaanning MK, El-Chami K, Teodori L, Omer M, Kjems J, Gothelf KV. Dual-Targeting of the HER2 Cancer Receptor with an Antibody-Directed Enzyme and a Nanobody-Guided MMAE Prodrug Scaffold. Chembiochem 2024; 25:e202400437. [PMID: 38945824 DOI: 10.1002/cbic.202400437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/02/2024]
Abstract
Antibody-enzyme conjugates have shown potential as tissue-specific prodrug activators by antibody-directed enzyme prodrug therapy (ADEPT), but the approach met challenges clinically due to systemic drug release. Here, we report a novel dual-targeting ADEPT system (DuADEPT) which is based on active cancer receptor targeting of both a trastuzumab-sialidase conjugate (Tz-Sia) and a highly potent sialidase-activated monomethyl auristatin E (MMAE) prodrug scaffold. The scaffold is based on a four-way junction of the artificial nucleic acid analog acyclic (L)-threoninol nucleic acid ((L)-aTNA) which at the ends of its four arms carries one nanobody targeting HER2 and three copies of the prodrug. Dual-targeting of the constructs to two proximal epitopes of HER2 was shown by flow cytometry, and a dual-targeted enzymatic drug release assay revealed cytotoxicity upon prodrug activation specifically for HER2-positive cancer cells. The specific delivery and activation of prodrugs in this way could potentially be used to decrease systemic side effects and increase drug efficacy, and utilization of Tz-Sia provides an opportunity to combine the local chemotherapeutic effect of the DuADEPT with an anticancer immune response.
Collapse
Affiliation(s)
- Jakob Melgaard Smidt
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus, Denmark
| | - Anders Märcher
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus, Denmark
| | - Mads Koch Skaanning
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus, Denmark
| | - Kassem El-Chami
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus, Denmark
| | - Laura Teodori
- Interdisciplinary Nanoscience Center (iNANO) and Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus, Denmark
| | - Marjan Omer
- Interdisciplinary Nanoscience Center (iNANO) and Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus, Denmark
| | - Jørgen Kjems
- Interdisciplinary Nanoscience Center (iNANO) and Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus, Denmark
| | - Kurt V Gothelf
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus, Denmark
| |
Collapse
|
27
|
Persaud SP, Yelamali AR, Ritchey JK, DiPersio JF. Conditioning with anti-CD47 and anti-CD117 plus JAK inhibition enables toxic payload-free allogeneic transplantation. Blood Adv 2024; 8:4502-4506. [PMID: 38968137 PMCID: PMC11395768 DOI: 10.1182/bloodadvances.2023012457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/30/2024] [Accepted: 06/28/2024] [Indexed: 07/07/2024] Open
Affiliation(s)
- Stephen P. Persaud
- Division of Laboratory and Genomic Medicine, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Aditya R. Yelamali
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Julie K. Ritchey
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - John F. DiPersio
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
28
|
Hao JL, Li XY, Liu YT, Lang JX, Liu DJ, Zhang CD. Antibody-drug conjugates in gastric cancer: from molecular landscape to clinical strategies. Gastric Cancer 2024; 27:887-906. [PMID: 38963593 DOI: 10.1007/s10120-024-01529-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 06/25/2024] [Indexed: 07/05/2024]
Abstract
Antibody-drug conjugates (ADCs) represent a crucial component of targeted therapies in gastric cancer, potentially altering traditional treatment paradigms. Many ADCs have entered rigorous clinical trials based on biological theories and preclinical experiments. Modality trials have also been conducted in combination with monoclonal antibody therapies, chemotherapies, immunotherapies, and other treatments to enhance the efficacy of drug coordination effects. However, ADCs exhibit limitations in treating gastric cancer, including resistance triggered by their structure or other factors. Ongoing intensive researches and preclinical experiments are yielding improvements, while enhancements in drug development processes and concomitant diagnostics during the therapeutic period actively boost ADC efficacy. The optimal treatment strategy for gastric cancer patients is continually evolving. This review summarizes the clinical progress of ADCs in treating gastric cancer, analyzes the mechanisms of ADC combination therapies, discusses resistance patterns, and offers a promising outlook for future applications in ADC drug development and companion diagnostics.
Collapse
Affiliation(s)
- Jia-Lin Hao
- Central Laboratory, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China
| | - Xin-Yun Li
- Clinical Medicine, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China
| | - Yu-Tong Liu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110022, China
| | - Ji-Xuan Lang
- Department of Surgical Oncology, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China
| | - Di-Jie Liu
- Central Laboratory, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China
| | - Chun-Dong Zhang
- Central Laboratory, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China.
- Department of Surgical Oncology, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China.
| |
Collapse
|
29
|
Seki M, Satou A, Funato R, Tamaki T, Wada N, Nakada N, Matsumoto H, Nakazato I, Wada E, Sakurai K, Tsuzuki T, Karube K. Standardization of CD30 immunohistochemistry staining among three automated immunostaining platforms. Pathol Int 2024; 74:530-537. [PMID: 39171823 PMCID: PMC11551810 DOI: 10.1111/pin.13472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/29/2024] [Accepted: 08/02/2024] [Indexed: 08/23/2024]
Abstract
The identification of CD30 expression by immunohistochemistry is essential for the treatment of lymphomas using an antibody-drug conjugate targeting CD30. However, no standardized protocol for CD30 staining has been available. In this study, we compared three common automated immunostaining platforms {Bond III (B III), Dako Omnis (DO) and Ventana BenchMark ULTRA (VBMU)}. A primary antibody for CD30, the Ber-H2 clone, was diluted 50- to 400-fold for B III and DO, and ready-to-use antibody was used for VBMU. An enhancement step using a linker was introduced in all protocols. First, several candidate dilutions were selected for each platform by staining six cases. These candidate conditions were then confirmed with 60 cases of various types of peripheral T-cell lymphomas (PTCLs). The concordance rates of CD30 expression among platforms differed depending on cutoff values and antibody dilutions, except for anaplastic large cell lymphoma. The concordance rates among three platforms in the evaluation of "positive" or "negative" were 100% and 97% when the cutoff values were 1% and 10% respectively, if using 400-diluted antibody in B III and 100-diluted antibody in DO. This study demonstrated the feasibility of equalizing CD30 staining of PTCLs among different platforms by adjusting protocols.
Collapse
Affiliation(s)
- Masafumi Seki
- Department of Pathology and Laboratory Medicine, Graduate School of MedicineNagoya UniversityNagoyaJapan
| | - Akira Satou
- Department of Surgical PathologyAichi Medical University HospitalNagakuteJapan
| | - Renji Funato
- Department of Pathology and Laboratory Medicine, Graduate School of MedicineNagoya UniversityNagoyaJapan
| | - Tomoko Tamaki
- Department of Diagnostic PathologyUniversity of the Ryukyus HospitalOkinawaJapan
| | - Naoki Wada
- Department of Diagnostic PathologyUniversity of the Ryukyus HospitalOkinawaJapan
- Department of Pathology and Oncology, Graduate School of MedicineUniversity of the RyukyusOkinawaJapan
| | | | | | - Iwao Nakazato
- Department of PathologyOkinawa Prefectural Nanbu Medical Center and Children's Medical CenterOkinawaJapan
| | - Eriko Wada
- Department of Surgical PathologyAichi Medical University HospitalNagakuteJapan
| | - Kaneko Sakurai
- Department of Surgical PathologyAichi Medical University HospitalNagakuteJapan
| | - Toyonori Tsuzuki
- Department of Surgical PathologyAichi Medical University HospitalNagakuteJapan
| | - Kennosuke Karube
- Department of Pathology and Laboratory Medicine, Graduate School of MedicineNagoya UniversityNagoyaJapan
| |
Collapse
|
30
|
Kametani Y, Ito R, Manabe Y, Kulski JK, Seki T, Ishimoto H, Shiina T. PBMC-engrafted humanized mice models for evaluating immune-related and anticancer drug delivery systems. Front Mol Biosci 2024; 11:1447315. [PMID: 39228913 PMCID: PMC11368775 DOI: 10.3389/fmolb.2024.1447315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/07/2024] [Indexed: 09/05/2024] Open
Abstract
Immune-related drug delivery systems (DDSs) in humanized mouse models are at the forefront of cancer research and serve as bridges between preclinical studies and clinical applications. These systems offer unique platforms for exploring new therapies and understanding their interactions with human cells and the immune system. Here, we focus on a DDS and a peripheral blood mononuclear cell (PBMC)-engrafted humanized mouse model that we recently developed, and consider some of the key components, challenges, and applications to advance these systems towards better cancer treatment on the basis of a better understanding of the immune response. Our DDS is unique and has a dual function, an anticancer effect and a capacity to fine-tune the immune reaction. The PBL-NOG-hIL-4-Tg mouse system is superior to other available humanized mouse systems for the development of such multifunctional DDSs because it supports the rapid reconstruction of an individual donor's immunity and avoids the onset of graft-versus-host disease.
Collapse
Affiliation(s)
- Yoshie Kametani
- Department of Molecular Life Science, Division of Basic Medical Science, Tokai University School of Medicine, Isehara, Japan
- Institute of Advanced Biosciences, Tokai University, Hiratsuka, Japan
| | - Ryoji Ito
- Central Institute for Experimental Medicine and Life Science (CIEM), Kawasaki, Japan
| | - Yoshiyuki Manabe
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka, Japan
| | - Jerzy K. Kulski
- Department of Molecular Life Science, Division of Basic Medical Science, Tokai University School of Medicine, Isehara, Japan
- Faculty of Health and Medical Sciences, School of Biomedical Science, The University of Western Australia, Crawley, WA, Australia
| | - Toshiro Seki
- Department of Internal Medicine, Division of Nephrology, Endocrinology, and Metabolism, Tokai University School of Medicine, Isehara, Japan
| | - Hitoshi Ishimoto
- Department of Obstetrics and Gynecology, Tokai University School of Medicine, Isehara, Japan
| | - Takashi Shiina
- Department of Molecular Life Science, Division of Basic Medical Science, Tokai University School of Medicine, Isehara, Japan
- Institute of Advanced Biosciences, Tokai University, Hiratsuka, Japan
| |
Collapse
|
31
|
Hu Y, Zhu Y, Qi D, Tang C, Zhang W. Trop2-targeted therapy in breast cancer. Biomark Res 2024; 12:82. [PMID: 39135109 PMCID: PMC11321197 DOI: 10.1186/s40364-024-00633-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/02/2024] [Indexed: 08/15/2024] Open
Abstract
Human trophoblastic cell surface antigen 2 (Trop2) is a glycoprotein, a cellular marker of trophoblastic and stem cells, and a calcium signaling transducer involved in several signaling pathways, leading to the proliferation, invasion, and metastasis of tumors. It is expressed at a low level in normal epithelial cells, but at a high level in many tumors, making it an ideal target for cancer therapy. According to previous literature, Trop2 is broadly expressed in all breast cancer subtypes, especially in triple negative breast cancer (TNBC). Several clinical trials have demonstrated the effectiveness of Trop2-targeted therapy in breast cancer. Sacituzumab govitecan (SG) is a Trop2-targeted antibody-drug conjugate (ADC) that has been approved for the treatment of metastatic TNBC and hormone receptor-positive (HR+) and human epidermal growth factor receptor 2-negative (HER2-) breast cancer. This article reviews the structure and function of Trop2, several major Trop2-targeted ADCs, other appealing novel Trop2-targeted agents and relevant clinical trials to provide a landscape of how Trop2-targeted treatments will develop in the future.
Collapse
Affiliation(s)
- Yixuan Hu
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Yinxing Zhu
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
- Department of Radiation Oncology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Dan Qi
- Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, China
| | - Cuiju Tang
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China.
| | - Wenwen Zhang
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China.
| |
Collapse
|
32
|
Johann F, Wöll S, Gieseler H. "Negative" Impact: The Role of Payload Charge in the Physicochemical Stability of Auristatin Antibody-Drug Conjugates. J Pharm Sci 2024; 113:2433-2442. [PMID: 38679233 DOI: 10.1016/j.xphs.2024.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
Antibody-drug conjugates (ADCs) tend to be less stable than their parent antibodies, which is often attributed to the hydrophobic nature of their drug payloads. This study investigated how the payload charge affects ADC stability by comparing two interchain cysteine ADCs that had matched drug-to-antibody ratios and identical linkers but differently charged auristatin payloads, vcMMAE (neutral) and vcMMAF (negative). Both ADCs exhibited higher aggregation than their parent antibody under shaking stress and thermal stress conditions. However, conjugation with vcMMAF increased the aggregation rates to a greater extent than conjugation with uncharged but more hydrophobic vcMMAE. Consistent with the payload logD values, ADC-vcMMAE showed the greatest increase in hydrophobicity but minor changes in charge compared with the parent antibody, as indicated by hydrophobic interaction chromatography and capillary electrophoresis data. In contrast, ADC-vcMMAF showed a decrease in net charge and isoelectric point along with an increase in charge heterogeneity. This charge alteration likely contributed to a reduced electrostatic repulsion and increased surface activity in ADC-vcMMAF, thus affecting its aggregation propensity. These findings suggest that not only the hydrophobicity of the payload, but also its charge should be considered as a critical factor affecting the stability of ADCs.
Collapse
Affiliation(s)
- Florian Johann
- Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Department of Pharmaceutical Technology and Biopharmacy, Freeze Drying Focus Group (FDFG), Cauerstraße 4, 91058 Erlangen, Germany; Merck KGaA, Global CMC Development, Frankfurter Straße 250, 64293 Darmstadt, Germany
| | - Steffen Wöll
- Merck KGaA, Global CMC Development, Frankfurter Straße 250, 64293 Darmstadt, Germany
| | - Henning Gieseler
- Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Department of Pharmaceutical Technology and Biopharmacy, Freeze Drying Focus Group (FDFG), Cauerstraße 4, 91058 Erlangen, Germany; GILYOS GmbH, Friedrich-Bergius-Ring 15, 97076 Würzburg, Germany.
| |
Collapse
|
33
|
Li JH, Liu L, Zhao XH. Precision targeting in oncology: The future of conjugated drugs. Biomed Pharmacother 2024; 177:117106. [PMID: 39013223 DOI: 10.1016/j.biopha.2024.117106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/25/2024] [Accepted: 07/07/2024] [Indexed: 07/18/2024] Open
Abstract
Coupled drugs, especially antibody-coupled drugs (ADCs), are a hot topic in oncology. As the development of ADCs has progressed, different coupling modes have emerged, inspired by their structural design have emerged. Technological advances have led to interweaving and collision of old and new concepts of coupled drugs, and have even challenged the concepts and techniques of coupled drugs at this stage. For example, antibody-oligonucleotide conjugates are a new class of chimeric biomolecules synthesized by coupling oligonucleotides with monoclonal antibodies through linkers, offering precise targeting and improved pharmacokinetic properties. This study aimed to elucidate the mechanism of action of coupled drugs and their current development status in antitumor therapy to provide better strategies for antitumor therapy.
Collapse
Affiliation(s)
- Jia-He Li
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110022, People's Republic of China
| | - Lei Liu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China.
| | - Xi-He Zhao
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110022, People's Republic of China.
| |
Collapse
|
34
|
Jain S, Griffith JI, Porath KA, Rathi S, Le J, Pasa TI, Decker PA, Gupta SK, Hu Z, Carlson BL, Bakken K, Burgenske DM, Feldsien TM, Lefebvre DR, Vaubel RA, Eckel-Passow JE, Reilly EB, Elmquist WF, Sarkaria JN. Bystander Effects, Pharmacokinetics, and Linker-Payload Stability of EGFR-Targeting Antibody-Drug Conjugates Losatuxizumab Vedotin and Depatux-M in Glioblastoma Models. Clin Cancer Res 2024; 30:3287-3297. [PMID: 38743766 PMCID: PMC11292202 DOI: 10.1158/1078-0432.ccr-24-0426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/05/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
PURPOSE Antibody-drug conjugates (ADC) are targeted therapies with robust efficacy in solid cancers, and there is intense interest in using EGFR-specific ADCs to target EGFR-amplified glioblastoma (GBM). Given GBM's molecular heterogeneity, the bystander activity of ADCs may be important for determining treatment efficacy. In this study, the activity and toxicity of two EGFR-targeted ADCs with similar auristatin toxins, Losatuxizumab vedotin (ABBV-221) and Depatuxizumab mafodotin (Depatux-M), were compared in GBM patient-derived xenografts (PDX) and normal murine brain following direct infusion by convection-enhanced delivery (CED). EXPERIMENTAL DESIGN EGFRviii-amplified and non-amplified GBM PDXs were used to determine in vitro cytotoxicity, in vivo efficacy, and bystander activities of ABBV-221 and Depatux-M. Nontumor-bearing mice were used to evaluate the pharmacokinetics (PK) and toxicity of ADCs using LC-MS/MS and immunohistochemistry. RESULTS CED improved intracranial efficacy of Depatux-M and ABBV-221 in three EGFRviii-amplified GBM PDX models (Median survival: 125 to >300 days vs. 20-49 days with isotype control AB095). Both ADCs had comparable in vitro and in vivo efficacy. However, neuronal toxicity and CD68+ microglia/macrophage infiltration were significantly higher in brains infused with ABBV-221 with the cell-permeable monomethyl auristatin E (MMAE), compared with Depatux-M with the cell-impermeant monomethyl auristatin F. CED infusion of ABBV-221 into the brain or incubation of ABBV-221 with normal brain homogenate resulted in a significant release of MMAE, consistent with linker instability in the brain microenvironment. CONCLUSIONS EGFR-targeting ADCs are promising therapeutic options for GBM when delivered intratumorally by CED. However, the linker and payload for the ADC must be carefully considered to maximize the therapeutic window.
Collapse
Affiliation(s)
- Sonia Jain
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota.
| | - Jessica I. Griffith
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota.
| | - Kendra A. Porath
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota.
| | - Sneha Rathi
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota.
| | - Jiayan Le
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota.
| | - Tugce I. Pasa
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota.
| | - Paul A. Decker
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota.
| | - Shiv K. Gupta
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota.
| | - Zeng Hu
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota.
| | - Brett L. Carlson
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota.
| | - Katrina Bakken
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota.
| | | | | | | | - Rachael A. Vaubel
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota.
| | | | | | - William F. Elmquist
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota.
| | - Jann N. Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
35
|
Sun H, Wienkers LC, Lee A. Beyond cytotoxic potency: disposition features required to design ADC payload. Xenobiotica 2024; 54:442-457. [PMID: 39017706 DOI: 10.1080/00498254.2024.2381139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/13/2024] [Indexed: 07/18/2024]
Abstract
1. Antibody-drug conjugates (ADCs) have demonstrated impressive clinical usefulness in treating several types of cancer, with the notion of widening of the therapeutic index of the cytotoxic payload through the minimisation of the systemic toxicity. Therefore, choosing the most appropriate payload molecule is a particularly important part of the early design phase of ADC development, especially given the highly competitive environment ADCs find themselves in today.2. The focus of the current review is to describe critical attributes/considerations needed in the discovery and ultimately development of cytotoxic payloads in support of ADC design. In addition to potency, several key dispositional characteristics including solubility, permeability and bystander effect, pharmacokinetics, metabolism, and drug-drug interactions, are described as being an integral part of the integrated activities required in the design of clinically safe and useful ADC therapeutic agents.
Collapse
Affiliation(s)
- Hao Sun
- Clinical Pharmacology and Translational Sciences, Pfizer Oncology Division, Pfizer, Inc, Bothell, WA, USA
| | - Larry C Wienkers
- Clinical Pharmacology and Translational Sciences, Pfizer Oncology Division, Pfizer, Inc, Bothell, WA, USA
| | - Anthony Lee
- Clinical Pharmacology and Translational Sciences, Pfizer Oncology Division, Pfizer, Inc, Bothell, WA, USA
| |
Collapse
|
36
|
Medina Pérez VM, Baselga M, Schuhmacher AJ. Single-Domain Antibodies as Antibody-Drug Conjugates: From Promise to Practice-A Systematic Review. Cancers (Basel) 2024; 16:2681. [PMID: 39123409 PMCID: PMC11311928 DOI: 10.3390/cancers16152681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Antibody-drug conjugates (ADCs) represent potent cancer therapies that deliver highly toxic drugs to tumor cells precisely, thus allowing for targeted treatment and significantly reducing off-target effects. Despite their effectiveness, ADCs can face limitations due to acquired resistance and potential side effects. OBJECTIVES This study focuses on advances in various ADC components to improve both the efficacy and safety of these agents, and includes the analysis of several novel ADC formats. This work assesses whether the unique features of VHHs-such as their small size, enhanced tissue penetration, stability, and cost-effectiveness-make them a viable alternative to conventional antibodies for ADCs and reviews their current status in ADC development. METHODS Following PRISMA guidelines, this study focused on VHHs as components of ADCs, examining advancements and prospects from 1 January 2014 to 30 June 2024. Searches were conducted in PubMed, Cochrane Library, ScienceDirect and LILACS using specific terms related to ADCs and single-domain antibodies. Retrieved articles were rigorously evaluated, excluding duplicates and non-qualifying studies. The selected peer-reviewed articles were analyzed for quality and synthesized to highlight advancements, methods, payloads, and future directions in ADC research. RESULTS VHHs offer significant advantages for drug conjugation over conventional antibodies due to their smaller size and structure, which enhance tissue penetration and enable access to previously inaccessible epitopes. Their superior stability, solubility, and manufacturability facilitate cost-effective production and expand the range of targetable antigens. Additionally, some VHHs can naturally cross the blood-brain barrier or be easily modified to favor their penetration, making them promising for targeting brain tumors and metastases. Although no VHH-drug conjugates (nADC or nanoADC) are currently in the clinical arena, preclinical studies have explored various conjugation methods and linkers. CONCLUSIONS While ADCs are transforming cancer treatment, their unique mechanisms and associated toxicities challenge traditional views on bioavailability and vary with different tumor types. Severe toxicities, often linked to compound instability, off-target effects, and nonspecific blood cell interactions, highlight the need for better understanding. Conversely, the rapid distribution, tumor penetration, and clearance of VHHs could be advantageous, potentially reducing toxicity by minimizing prolonged exposure. These attributes make single-domain antibodies strong candidates for the next generation of ADCs, potentially enhancing both efficacy and safety.
Collapse
Affiliation(s)
- Víctor Manuel Medina Pérez
- Molecular Oncology Group, Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain;
| | - Marta Baselga
- Molecular Oncology Group, Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain;
| | - Alberto J. Schuhmacher
- Molecular Oncology Group, Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain;
- Fundación Aragonesa para la Investigación y el Desarrollo (ARAID), 50018 Zaragoza, Spain
| |
Collapse
|
37
|
Quintana J, Kang M, Hu H, Ng TSC, Wojtkiewicz GR, Scott E, Parangi S, Schuemann J, Weissleder R, Miller MA. Extended Pharmacokinetics Improve Site-Specific Prodrug Activation Using Radiation. ACS CENTRAL SCIENCE 2024; 10:1371-1382. [PMID: 39071065 PMCID: PMC11273447 DOI: 10.1021/acscentsci.4c00354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/10/2024] [Accepted: 06/10/2024] [Indexed: 07/30/2024]
Abstract
Radiotherapy is commonly used to treat cancer, and localized energy deposited by radiotherapy has the potential to chemically uncage prodrugs; however, it has been challenging to demonstrate prodrug activation that is both sustained in vivo and truly localized to tumors without affecting off-target tissues. To address this, we developed a series of novel phenyl-azide-caged, radiation-activated chemotherapy drug-conjugates alongside a computational framework for understanding corresponding pharmacokinetic and pharmacodynamic (PK/PD) behaviors. We especially focused on an albumin-bound prodrug of monomethyl auristatin E (MMAE) and found it blocked tumor growth in mice, delivered a 130-fold greater amount of activated drug to irradiated tumor versus unirradiated tissue, was 7.5-fold more efficient than a non albumin-bound prodrug, and showed no appreciable toxicity compared to free or cathepsin-activatable drugs. These data guided computational modeling of drug action, which indicated that extended pharmacokinetics can improve localized and cumulative drug activation, especially for payloads with low vascular permeability and diffusivity and particularly in patients receiving daily treatments of conventional radiotherapy for weeks. This work thus offers a quantitative PK/PD framework and proof-of-principle experimental demonstration of how extending prodrug circulation can improve its localized activity in vivo.
Collapse
Affiliation(s)
- Jeremy
M. Quintana
- Center
for Systems Biology, Massachusetts General
Hospital Research Institute, Boston, Massachusetts 02114, United States
- Department
of Radiology, Massachusetts General Hospital
and Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Mikyung Kang
- Center
for Systems Biology, Massachusetts General
Hospital Research Institute, Boston, Massachusetts 02114, United States
- Department
of Radiology, Massachusetts General Hospital
and Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Huiyu Hu
- Center
for Systems Biology, Massachusetts General
Hospital Research Institute, Boston, Massachusetts 02114, United States
- Department
of Surgery, Massachusetts General Hospital
and Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Thomas S. C. Ng
- Center
for Systems Biology, Massachusetts General
Hospital Research Institute, Boston, Massachusetts 02114, United States
- Department
of Radiology, Massachusetts General Hospital
and Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Gregory R. Wojtkiewicz
- Center
for Systems Biology, Massachusetts General
Hospital Research Institute, Boston, Massachusetts 02114, United States
| | - Ella Scott
- Center
for Systems Biology, Massachusetts General
Hospital Research Institute, Boston, Massachusetts 02114, United States
| | - Sareh Parangi
- Department
of Surgery, Massachusetts General Hospital
and Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Jan Schuemann
- Department
of Radiation Oncology, Massachusetts General
Hospital and Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Ralph Weissleder
- Center
for Systems Biology, Massachusetts General
Hospital Research Institute, Boston, Massachusetts 02114, United States
- Department
of Radiology, Massachusetts General Hospital
and Harvard Medical School, Boston, Massachusetts 02114, United States
- Department
of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Miles A. Miller
- Center
for Systems Biology, Massachusetts General
Hospital Research Institute, Boston, Massachusetts 02114, United States
- Department
of Radiology, Massachusetts General Hospital
and Harvard Medical School, Boston, Massachusetts 02114, United States
| |
Collapse
|
38
|
Adhikari P, Li G, Go M, Mandikian D, Rafidi H, Ng C, Anifa S, Johnson K, Bao L, Hernandez Barry H, Rowntree R, Agard N, Wu C, Chou KJ, Zhang D, Kozak KR, Pillow TH, Lewis GD, Yu SF, Boswell CA, Sadowsky JD. On Demand Bioorthogonal Switching of an Antibody-Conjugated SPECT Probe to a Cytotoxic Payload: from Imaging to Therapy. J Am Chem Soc 2024; 146:19088-19100. [PMID: 38946086 DOI: 10.1021/jacs.4c03529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Antibody-drug conjugates (ADCs) for the treatment of cancer aim to achieve selective delivery of a cytotoxic payload to tumor cells while sparing normal tissue. In vivo, multiple tumor-dependent and -independent processes act on ADCs and their released payloads to impact tumor-versus-normal delivery, often resulting in a poor therapeutic window. An ADC with a labeled payload would make synchronous correlations between distribution and tissue-specific pharmacological effects possible, empowering preclinical and clinical efforts to improve tumor-selective delivery; however, few methods to label small molecules without destroying their pharmacological activity exist. Herein, we present a bioorthogonal switch approach that allows a radiolabel attached to an ADC payload to be removed tracelessly at will. We exemplify this approach with a potent DNA-damaging agent, the pyrrolobenzodiazepine (PBD) dimer, delivered as an antibody conjugate targeted to lung tumor cells. The radiometal chelating group, DOTA, was attached via a novel trans-cyclooctene (TCO)-caged self-immolative para-aminobenzyl (PAB) linker to the PBD, stably attenuating payload activity and allowing tracking of biodistribution in tumor-bearing mice via SPECT-CT imaging (live) or gamma counting (post-mortem). Following TCO-PAB-DOTA reaction with tetrazines optimized for extra- and intracellular reactivity, the label was removed to reveal the unmodified PBD dimer capable of inducing potent tumor cell killing in vitro and in mouse xenografts. The switchable antibody radio-drug conjugate (ArDC) we describe integrates, but decouples, the two functions of a theranostic given that it can serve as a diagnostic for payload delivery in the labeled state, but can be switched on demand to a therapeutic agent (an ADC).
Collapse
Affiliation(s)
- Pragya Adhikari
- Genentech Inc., South San Francisco, California 94080, United States
| | - Guangmin Li
- Genentech Inc., South San Francisco, California 94080, United States
| | - MaryAnn Go
- Genentech Inc., South San Francisco, California 94080, United States
| | | | - Hanine Rafidi
- Genentech Inc., South San Francisco, California 94080, United States
| | - Carl Ng
- Genentech Inc., South San Francisco, California 94080, United States
| | - Sagana Anifa
- Genentech Inc., South San Francisco, California 94080, United States
| | - Kevin Johnson
- Genentech Inc., South San Francisco, California 94080, United States
| | - Linda Bao
- Genentech Inc., South San Francisco, California 94080, United States
| | | | - Rebecca Rowntree
- Genentech Inc., South San Francisco, California 94080, United States
| | - Nicholas Agard
- Genentech Inc., South San Francisco, California 94080, United States
| | - Cong Wu
- Genentech Inc., South San Francisco, California 94080, United States
| | - Kang-Jye Chou
- Genentech Inc., South San Francisco, California 94080, United States
| | - Donglu Zhang
- Genentech Inc., South San Francisco, California 94080, United States
| | - Katherine R Kozak
- Genentech Inc., South San Francisco, California 94080, United States
| | - Thomas H Pillow
- Genentech Inc., South San Francisco, California 94080, United States
| | - Gail D Lewis
- Genentech Inc., South San Francisco, California 94080, United States
| | - Shang-Fan Yu
- Genentech Inc., South San Francisco, California 94080, United States
| | - C Andrew Boswell
- Genentech Inc., South San Francisco, California 94080, United States
| | - Jack D Sadowsky
- Genentech Inc., South San Francisco, California 94080, United States
| |
Collapse
|
39
|
Wang J, Liu Y, Zhang Q, Li W, Feng J, Wang X, Fang J, Han Y, Xu B. Disitamab vedotin, a HER2-directed antibody-drug conjugate, in patients with HER2-overexpression and HER2-low advanced breast cancer: a phase I/Ib study. Cancer Commun (Lond) 2024; 44:833-851. [PMID: 38940019 PMCID: PMC11260767 DOI: 10.1002/cac2.12577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 05/02/2024] [Accepted: 05/27/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Disitamab vedotin (DV; RC48-ADC) is an antibody-drug conjugate comprising a human epidermal growth factor receptor 2 (HER2)-directed antibody, linker and monomethyl auristatin E. Preclinical studies have shown that DV demonstrated potent antitumor activity in preclinical models of breast, gastric, and ovarian cancers with different levels of HER2 expression. In this pooled analysis, we report the safety and efficacy of DV in patients with HER2-overexpression and HER2-low advanced breast cancer (ABC). METHODS In the phase I dose-escalation study (C001 CANCER), HER2-overexpression ABC patients received DV at doses of 0.5-2.5 mg/kg once every two weeks (Q2W) until unacceptable toxicity or progressive disease. The dose range, safety, and pharmacokinetics (PK) were determined. The phase Ib dose-range and expansion study (C003 CANCER) enrolled two cohorts: HER2-overexpression ABC patients receiving DV at doses of 1.5-2.5 mg/kg Q2W, with the recommended phase 2 dose (RP2D) determined, and HER2-low ABC patients receiving DV at doses of 2.0 mg/kg Q2W to explore the efficacy and safety of DV in HER2-low ABC. RESULTS Twenty-four patients with HER2-overexpression ABC in C001 CANCER, 46 patients with HER2-overexpression ABC and 66 patients with HER2-low ABC in C003 CANCER were enrolled. At 2.0 mg/kg RP2D Q2W, the confirmed objective response rates were 42.9% (9/21; 95% confidence interval [CI]: 21.8%-66.0%) and 33.3% (22/66; 95% CI: 22.2%-46.0%), with median progression-free survival (PFS) of 5.7 months (95% CI: 5.3-8.4 months) and 5.1 months (95% CI: 4.1-6.6 months) for HER2-overexpression and HER2-low ABC, respectively. Common (≥5%) grade 3 or higher treatment-emergent adverse events included neutrophil count decreased (17.6%), gamma-glutamyl transferase increased (13.2%), asthenia (11.0%), white blood cell count decreased (9.6%), peripheral neuropathy such as hypoesthesia (5.9%) and neurotoxicity (0.7%), and pain (5.9%). CONCLUSION DV demonstrated promising efficacy in HER2-overexpression and HER2-low ABC, with a favorable safety profile at 2.0 mg/kg Q2W.
Collapse
Affiliation(s)
- Jiayu Wang
- Department of Medical OncologyCancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingP. R. China
| | - Yunjiang Liu
- Breast CenterThe Fourth Hospital of Hebei Medical UniversityShijiazhuangHebeiP. R. China
| | - Qingyuan Zhang
- Department of Breast MedicineHarbin Medical University Cancer HospitalHarbinHeilongjiangP. R. China
| | - Wei Li
- Department of Medical OncologyThe First Hospital of Jilin UniversityChangchunJilinP. R. China
| | - Jifeng Feng
- Department of Medical OncologyJiangsu Cancer HospitalNanjingJiangsuP. R. China
| | - Xiaojia Wang
- Department of Breast MedicineZhejiang Cancer HospitalHangzhouZhejiangP. R. China
| | - Jianmin Fang
- School of Life Science and TechnologyTongji UniversityShanghaiP. R. China
| | - Yiqun Han
- Department of Medical OncologyCancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingP. R. China
| | - Binghe Xu
- Department of Medical OncologyCancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingP. R. China
| |
Collapse
|
40
|
Kwon WA, Lee SY, Jeong TY, Kim HH, Lee MK. Antibody-Drug Conjugates in Urothelial Cancer: From Scientific Rationale to Clinical Development. Cancers (Basel) 2024; 16:2420. [PMID: 39001482 PMCID: PMC11240765 DOI: 10.3390/cancers16132420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/19/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
Antibody-drug conjugates (ADCs) have been a significant advancement in cancer therapy, particularly for urothelial cancer (UC). These innovative treatments, originally developed for hematological malignancies, use target-specific monoclonal antibodies linked to potent cytotoxic agents. This rational drug design efficiently delivers cancer cell-killing agents to cells expressing specific surface proteins, which are abundant in UC owing to their high antigen expression. UC is an ideal candidate for ADC therapy, as it enhances on-target efficacy while mitigating systemic toxicity. In recent years, considerable progress has been made in understanding the biology and mechanisms of tumor progression in UC. However, despite the introduction of immune checkpoint inhibitors, advanced UC is characterized by rapid progression and poor survival rates. Targeted therapies that have been developed include the anti-nectin 4 ADC enfortumab vedotin and the fibroblast growth factor receptor inhibitor erdafitinib. Enfortumab vedotin has shown efficacy in prospective studies in patients with advanced UC, alone and in combination with pembrolizumab. The anti-Trop-2 ADC sacituzumab govitecan has also demonstrated effectiveness in single-armed studies. This review highlights the mechanism of action of ADCs, their application in mono- and combination therapies, primary mechanisms of resistance, and future perspectives for their clinical use in UC treatment. ADCs have proven to be an increasingly vital component of the therapeutic landscape for urothelial carcinoma, filling a gap in the treatment of this progressive disease.
Collapse
Affiliation(s)
- Whi-An Kwon
- Department of Urology, Hanyang University College of Medicine, Myongji Hospital, Goyang 10475, Gyeonggi-do, Republic of Korea
| | - Seo-Yeon Lee
- Department of Urology, Myongji Hospital, Goyang 10475, Gyeonggi-do, Republic of Korea
| | - Tae Yoong Jeong
- Department of Urology, Myongji Hospital, Goyang 10475, Gyeonggi-do, Republic of Korea
| | - Hyeon Hoe Kim
- Department of Urology, Myongji Hospital, Goyang 10475, Gyeonggi-do, Republic of Korea
| | - Min-Kyung Lee
- Department of Internal Medicine, Hanyang University College of Medicine, Myongji Hospital, Goyang 10475, Gyeonggi-do, Republic of Korea
| |
Collapse
|
41
|
Koukoutzeli C, Trapani D, Ascione L, Kotteas E, Marra A, Criscitiello C, Curigliano G. Use of Antibody-Drug Conjugates in the Early Setting of Breast Cancer. Clin Med Insights Oncol 2024; 18:11795549241260418. [PMID: 38894701 PMCID: PMC11185006 DOI: 10.1177/11795549241260418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
Antibody-drug conjugates (ADCs) are anticancer agents with the capacity to selectively deliver their payloads to cancer cells. Antibody-drug conjugates consist of a monoclonal antibody backbone connected by a linker to cytotoxic payloads. Antibody-drug conjugate effect occurs either by directly targeting cancer cells via membrane antigen or through "bystander effect." Antibody-drug conjugates have demonstrated efficacy against various types of tumors, including breast cancer. Ado-trastuzumab emtansine is presently the only approved ADC for the treatment of breast cancer in the early setting, while several ADCs are now approved for metastatic breast cancer. Due to the transformative impact that several ADCs have reported in the setting of advanced breast cancer, researchers are now testing more of such compounds in the early setting, to portend benefits to patients through highly potent anticancer drugs. Ongoing trials hold the potential to transform treatment protocols for early breast cancer in the near future. These trials are aiming at evaluating different treatment modulation approaches, as informed by breast cancer risk of recurrence, including toward treatment de-escalation. Efforts are provided in ongoing clinical trials to identify the patients who will benefit most, to pursue paradigms of precision medicine with the novel ADCs. This review focuses on the potential role of ADCs in early breast cancer, providing an overview of the latest progress in their development and how they are implemented in ongoing clinical trials.
Collapse
Affiliation(s)
- Chrysanthi Koukoutzeli
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy
| | - Dario Trapani
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy
- Department of Oncology and Haemato-Oncology (DIPO), University of Milan, Milan, Italy
| | - Liliana Ascione
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy
- Department of Oncology and Haemato-Oncology (DIPO), University of Milan, Milan, Italy
| | - Elias Kotteas
- Oncology Unit, 3rd Department of Internal Medicine, Sotiria General Hospital and Athens School of Medicine, Athens, Greece
| | - Antonio Marra
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy
| | - Carmen Criscitiello
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy
- Department of Oncology and Haemato-Oncology (DIPO), University of Milan, Milan, Italy
| | - Giuseppe Curigliano
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy
- Department of Oncology and Haemato-Oncology (DIPO), University of Milan, Milan, Italy
| |
Collapse
|
42
|
Lan Y, Zhao J, Zhao F, Li J, Li X. Partial response to trastuzumab deruxtecan (DS8201) following progression in HER2-amplified breast cancer with pulmonary metastases managed with disitamab vedotin (RC48): a comprehensive case report and literature review. Front Oncol 2024; 14:1338661. [PMID: 38952555 PMCID: PMC11215061 DOI: 10.3389/fonc.2024.1338661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/27/2024] [Indexed: 07/03/2024] Open
Abstract
Breast cancer remains one of the predominant malignancies worldwide. In the context of inoperable advanced or metastatic human epidermal growth factor receptor 2 (HER2)-positive breast cancer, systemic management primarily relies on HER2-targeting monoclonal antibodies. With the successful development of anti-HER2 antibody-drug conjugates (ADCs), these agents have been increasingly integrated into therapeutic regimens for metastatic breast cancer. Here, we present the case of a 42-year-old female patient with HER2-positive pulmonary metastatic breast cancer who underwent an extensive treatment protocol. This protocol included chemotherapy, radiation therapy, hormonal therapy, surgical intervention on the breast, and anti-HER2 therapies. The anti-HER2 therapies involved both singular and dual targeting strategies using trastuzumab and the ADC disitamab vedotin (RC48) over an 8-year period. After experiencing disease progression following HER2-targeted therapy with RC48, the patient achieved noticeable partial remission through a therapeutic regimen that combined trastuzumab deruxtecan (DS8201) and tislelizumab. The data suggest a promising role for DS8201 in managing advanced stages of HER2-amplified metastatic breast cancer, especially in cases that demonstrate progression after initial HER2-directed therapies using ADCs. Furthermore, its combination with anti-PD-1 agents enhances therapeutic efficacy by augmenting the anti-tumoral immune response.
Collapse
Affiliation(s)
- Yanfang Lan
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jiahui Zhao
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Fangrui Zhao
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Juanjuan Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xiangpan Li
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
43
|
Huang Z, Braunstein Z, Chen J, Wei Y, Rao X, Dong L, Zhong J. Precision Medicine in Rheumatic Diseases: Unlocking the Potential of Antibody-Drug Conjugates. Pharmacol Rev 2024; 76:579-598. [PMID: 38622001 DOI: 10.1124/pharmrev.123.001084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/25/2024] [Accepted: 04/09/2024] [Indexed: 04/17/2024] Open
Abstract
In the era of precision medicine, antibody-drug conjugates (ADCs) have emerged as a cutting-edge therapeutic strategy. These innovative compounds combine the precision of monoclonal antibodies with the potent cell-killing or immune-modulating abilities of attached drug payloads. This unique strategy not only reduces off-target toxicity but also enhances the therapeutic effectiveness of drugs. Beyond their well established role in oncology, ADCs are now showing promising potential in addressing the unmet needs in the therapeutics of rheumatic diseases. Rheumatic diseases, a diverse group of chronic autoimmune diseases with varying etiologies, clinical presentations, and prognoses, often demand prolonged pharmacological interventions, creating a pressing need for novel, efficient, and low-risk treatment options. ADCs, with their ability to precisely target the immune components, have emerged as a novel therapeutic strategy in this context. This review will provide an overview of the core components and mechanisms behind ADCs, a summary of the latest clinical trials of ADCs for the treatment of rheumatic diseases, and a discussion of the challenges and future prospects faced by the development of next-generation ADCs. SIGNIFICANCE STATEMENT: There is a lack of efficient and low-risk targeted therapeutics for rheumatic diseases. Antibody-drug conjugates, a class of cutting-edge therapeutic drugs, have emerged as a promising targeted therapeutic strategy for rheumatic disease. Although there is limited literature summarizing the progress of antibody-drug conjugates in the field of rheumatic disease, updating the advancements in this area provides novel insights into the development of novel antirheumatic drugs.
Collapse
Affiliation(s)
- Zhiwen Huang
- Departments of Rheumatology and Immunology (Z.H., Y.W., L.D., J.Z.) and Cardiology (X.R.), Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China; Wexner Medical Center, The Ohio State University, Columbus, Ohio (Z.B.); Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China (J.C.); Key Laboratory of Vascular Aging (HUST), Ministry of Education, Wuhan, China (J.Z.); and Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.Z.)
| | - Zachary Braunstein
- Departments of Rheumatology and Immunology (Z.H., Y.W., L.D., J.Z.) and Cardiology (X.R.), Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China; Wexner Medical Center, The Ohio State University, Columbus, Ohio (Z.B.); Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China (J.C.); Key Laboratory of Vascular Aging (HUST), Ministry of Education, Wuhan, China (J.Z.); and Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.Z.)
| | - Jun Chen
- Departments of Rheumatology and Immunology (Z.H., Y.W., L.D., J.Z.) and Cardiology (X.R.), Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China; Wexner Medical Center, The Ohio State University, Columbus, Ohio (Z.B.); Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China (J.C.); Key Laboratory of Vascular Aging (HUST), Ministry of Education, Wuhan, China (J.Z.); and Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.Z.)
| | - Yingying Wei
- Departments of Rheumatology and Immunology (Z.H., Y.W., L.D., J.Z.) and Cardiology (X.R.), Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China; Wexner Medical Center, The Ohio State University, Columbus, Ohio (Z.B.); Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China (J.C.); Key Laboratory of Vascular Aging (HUST), Ministry of Education, Wuhan, China (J.Z.); and Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.Z.)
| | - Xiaoquan Rao
- Departments of Rheumatology and Immunology (Z.H., Y.W., L.D., J.Z.) and Cardiology (X.R.), Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China; Wexner Medical Center, The Ohio State University, Columbus, Ohio (Z.B.); Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China (J.C.); Key Laboratory of Vascular Aging (HUST), Ministry of Education, Wuhan, China (J.Z.); and Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.Z.)
| | - Lingli Dong
- Departments of Rheumatology and Immunology (Z.H., Y.W., L.D., J.Z.) and Cardiology (X.R.), Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China; Wexner Medical Center, The Ohio State University, Columbus, Ohio (Z.B.); Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China (J.C.); Key Laboratory of Vascular Aging (HUST), Ministry of Education, Wuhan, China (J.Z.); and Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.Z.)
| | - Jixin Zhong
- Departments of Rheumatology and Immunology (Z.H., Y.W., L.D., J.Z.) and Cardiology (X.R.), Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China; Wexner Medical Center, The Ohio State University, Columbus, Ohio (Z.B.); Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China (J.C.); Key Laboratory of Vascular Aging (HUST), Ministry of Education, Wuhan, China (J.Z.); and Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.Z.)
| |
Collapse
|
44
|
Kang M, Quintana J, Hu H, Teixeira VC, Olberg S, Banla LI, Rodriguez V, Hwang WL, Schuemann J, Parangi S, Weissleder R, Miller MA. Sustained and Localized Drug Depot Release Using Radiation-Activated Scintillating Nanoparticles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312326. [PMID: 38389502 PMCID: PMC11161319 DOI: 10.1002/adma.202312326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/31/2024] [Indexed: 02/24/2024]
Abstract
Clinical treatment of cancer commonly incorporates X-ray radiation therapy (XRT), and developing spatially precise radiation-activatable drug delivery strategies may improve XRT efficacy while limiting off-target toxicities associated with systemically administered drugs. Nevertheless, achieving this has been challenging thus far because strategies typically rely on radical species with short lifespans, and the inherent nature of hypoxic and acidic tumor microenvironments may encourage spatially heterogeneous effects. It is hypothesized that the challenge could be bypassed by using scintillating nanoparticles that emit light upon X-ray absorption, locally forming therapeutic drug depots in tumor tissues. Thus a nanoparticle platform (Scintillating nanoparticle Drug Depot; SciDD) that enables the local release of cytotoxic payloads only after activation by XRT is developed, thereby limiting off-target toxicity. As a proof-of-principle, SciDD is used to deliver a microtubule-destabilizing payload MMAE (monomethyl auristatin E). With as little as a 2 Gy local irradiation to tumors, MMAE payloads are released effectively to kill tumor cells. XRT-mediated drug release is demonstrated in multiple mouse cancer models and showed efficacy over XRT alone (p < 0.0001). This work shows that SciDD can act as a local drug depot with spatiotemporally controlled release of cancer therapeutics.
Collapse
Affiliation(s)
- Mikyung Kang
- Center for Systems Biology, Massachusetts General Hospital Research Institute, 185 Cambridge Street, Suite 5.210, Boston, MA, 02114, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 185 Cambridge Street, Suite 5.210, Boston, MA, 02114, USA
- School of Health and Environmental Science, College of Health Science, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul, 02841, Republic of Korea
| | - Jeremy Quintana
- Center for Systems Biology, Massachusetts General Hospital Research Institute, 185 Cambridge Street, Suite 5.210, Boston, MA, 02114, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 185 Cambridge Street, Suite 5.210, Boston, MA, 02114, USA
| | - Huiyu Hu
- Center for Systems Biology, Massachusetts General Hospital Research Institute, 185 Cambridge Street, Suite 5.210, Boston, MA, 02114, USA
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, White 506, Boston, MA, 02114, USA
| | - Verônica C Teixeira
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, 13083-970, Brazil
| | - Sven Olberg
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Leou Ismael Banla
- Center for Systems Biology, Massachusetts General Hospital Research Institute, 185 Cambridge Street, Suite 5.210, Boston, MA, 02114, USA
- Harvard Radiation Oncology Program, Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Victoria Rodriguez
- Center for Systems Biology, Massachusetts General Hospital Research Institute, 185 Cambridge Street, Suite 5.210, Boston, MA, 02114, USA
| | - William L Hwang
- Center for Systems Biology, Massachusetts General Hospital Research Institute, 185 Cambridge Street, Suite 5.210, Boston, MA, 02114, USA
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Jan Schuemann
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Sareh Parangi
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, White 506, Boston, MA, 02114, USA
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital Research Institute, 185 Cambridge Street, Suite 5.210, Boston, MA, 02114, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 185 Cambridge Street, Suite 5.210, Boston, MA, 02114, USA
- Department of Systems Biology, Harvard Medical School, 200 Longwood Ave, Boston, MA, 02115, USA
| | - Miles A Miller
- Center for Systems Biology, Massachusetts General Hospital Research Institute, 185 Cambridge Street, Suite 5.210, Boston, MA, 02114, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 185 Cambridge Street, Suite 5.210, Boston, MA, 02114, USA
| |
Collapse
|
45
|
Rubahamya B, Dong S, Thurber GM. Clinical translation of antibody drug conjugate dosing in solid tumors from preclinical mouse data. SCIENCE ADVANCES 2024; 10:eadk1894. [PMID: 38820153 PMCID: PMC11141632 DOI: 10.1126/sciadv.adk1894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 04/29/2024] [Indexed: 06/02/2024]
Abstract
Antibody drug conjugates (ADCs) have made impressive strides in the clinic in recent years with 11 Food and Drug Administration approvals, including 6 for the treatment of patients with solid tumors. Despite this success, the development of new agents remains challenging with a high failure rate in the clinic. Here, we show that current approved ADCs for the treatment of patients with solid tumors can all show substantial efficacy in some mouse models when administered at a similar weight-based [milligrams per kilogram (mg/kg)] dosing in mice that is tolerated in the clinic. Mechanistically, equivalent mg/kg dosing results in a similar drug concentration in the tumor and a similar tissue penetration into the tumor due to the unique delivery features of ADCs. Combined with computational approaches, which can account for the complex distribution within the tumor microenvironment, these scaling concepts may aid in the evaluation of new agents and help design therapeutics with maximum clinical efficacy.
Collapse
Affiliation(s)
- Baron Rubahamya
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shujun Dong
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Greg M. Thurber
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
46
|
Yu J, Li M, Liu X, Wu S, Li R, Jiang Y, Zheng J, Li Z, Xin K, Xu Z, Li S, Chen X. Implementation of antibody-drug conjugates in HER2-positive solid cancers: Recent advances and future directions. Biomed Pharmacother 2024; 174:116522. [PMID: 38565055 DOI: 10.1016/j.biopha.2024.116522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/21/2024] [Accepted: 03/28/2024] [Indexed: 04/04/2024] Open
Abstract
In recent decades, there has been a surge in the approval of monoclonal antibodies for treating a wide range of hematological and solid malignancies. These antibodies exhibit exceptional precision in targeting the surface antigens of tumors, heralding a groundbreaking approach to cancer therapy. Nevertheless, monoclonal antibodies alone do not show sufficient lethality against cancerous cells compared to chemotherapy. Consequently, a new class of anti-tumor medications, known as antibody-drug conjugates (ADCs), has been developed to bridge the divide between monoclonal antibodies and cytotoxic drugs, enhancing their therapeutic potential. ADCs are chemically synthesized by binding tumor-targeting monoclonal antibodies with cytotoxic payloads through linkers that are susceptible to cleavage by intracellular proteases. They combined the accurate targeting of monoclonal antibodies with the potent efficacy of cytotoxic chemotherapy drugs while circumventing systemic toxicity and boasting superior lethality over standalone targeted drugs. The human epidermal growth factor receptor (HER) family, which encompasses HER1 (also known as EGFR), HER2, HER3, and HER4, plays a key role in regulating cellular proliferation, survival, differentiation, and migration. HER2 overexpression in various tumors is one of the most frequently targeted antigens for ADC therapy in HER2-positive cancers. HER2-directed ADCs have emerged as highly promising treatment modalities for patients with HER2-positive cancers. This review focuses on three approved anti-HER2 ADCs (T-DM1, DS-8201a, and RC48) and reviews ongoing clinical trials and failed trials based on anti-HER2 ADCs. Finally, we address the notable challenges linked to ADC development and underscore potential future avenues for tackling these hurdles.
Collapse
Affiliation(s)
- Jiazheng Yu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, People's Republic of China
| | - Mingyang Li
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, People's Republic of China
| | - Xiandong Liu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, People's Republic of China
| | - Siyu Wu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, People's Republic of China
| | - Rong Li
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, People's Republic of China
| | - Yuanhong Jiang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, People's Republic of China
| | - Jianyi Zheng
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, People's Republic of China
| | - Zeyu Li
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, People's Republic of China
| | - Kerong Xin
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, People's Republic of China
| | - Zhenqun Xu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, People's Republic of China.
| | - Shijie Li
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, People's Republic of China.
| | - Xiaonan Chen
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, People's Republic of China.
| |
Collapse
|
47
|
Gitto SB, Whicker M, Davies G, Kumar S, Kinneer K, Xu H, Lewis A, Mamidi S, Medvedev S, Kim H, Anderton J, Tang EJ, Ferman B, Coats S, Wilkinson RW, Brown E, Powell DJ, Simpkins F. A B7-H4-Targeting Antibody-Drug Conjugate Shows Antitumor Activity in PARPi and Platinum-Resistant Cancers with B7-H4 Expression. Clin Cancer Res 2024; 30:1567-1581. [PMID: 37882675 PMCID: PMC11034955 DOI: 10.1158/1078-0432.ccr-23-1079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/21/2023] [Accepted: 10/24/2023] [Indexed: 10/27/2023]
Abstract
PURPOSE Platinum and PARP inhibitors (PARPi) demonstrate activity in breast and ovarian cancers, but drug resistance ultimately emerges. Here, we examine B7-H4 expression in primary and recurrent high-grade serous ovarian carcinoma (HGSOC) and the activity of a B7-H4-directed antibody-drug conjugate (B7-H4-ADC), using a pyrrolobenzodiazepine-dimer payload, in PARPi- and platinum-resistant HGSOC patient-derived xenograft (PDX) models. EXPERIMENTAL DESIGN B7-H4 expression was quantified by flow cytometry and IHC. B7-H4-ADC efficacy was tested against multiple cell lines in vitro and PDX in vivo. The effect of B7-H4-ADC on cell cycle, DNA damage, and apoptosis was measured using flow cytometry. RESULTS B7-H4 is overexpressed in 92% of HGSOC tumors at diagnosis (n = 12), persisted in recurrent matched samples after platinum treatment, and was expressed at similar levels across metastatic sites after acquired multi-drug resistance (n = 4). Treatment with B7-H4-ADC resulted in target-specific growth inhibition of multiple ovarian and breast cancer cell lines. In platinum- or PARPi-resistant ovarian cancer cells, B7-H4-ADC significantly decreased viability and colony formation while increasing cell-cycle arrest and DNA damage, ultimately leading to apoptosis. Single-dose B7-H4-ADC led to tumor regression in 65.5% of breast and ovarian PDX models (n = 29), with reduced activity in B7-H4 low or negative models. In PARPi and platinum-resistant HGSOC PDX models, scheduled B7-H4-ADC dosing led to sustained tumor regression and increased survival. CONCLUSIONS These data support B7-H4 as an attractive ADC target for treatment of drug-resistant HGSOC and provide evidence for activity of an ADC with a DNA-damaging payload in this population. See related commentary by Veneziani et al., p. 1434.
Collapse
Affiliation(s)
- Sarah B. Gitto
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Margaret Whicker
- Penn Ovarian Cancer Research Center, Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA 19104 USA
| | | | - Sushil Kumar
- Penn Ovarian Cancer Research Center, Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA 19104 USA
| | | | - Haineng Xu
- Penn Ovarian Cancer Research Center, Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA 19104 USA
| | | | | | - Sergey Medvedev
- Penn Ovarian Cancer Research Center, Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Hyoung Kim
- Penn Ovarian Cancer Research Center, Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA 19104 USA
| | | | - E. Jessica Tang
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Benjamin Ferman
- Penn Ovarian Cancer Research Center, Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA 19104 USA
| | | | | | - Eric Brown
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Daniel J. Powell
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
- Penn Ovarian Cancer Research Center, Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Fiona Simpkins
- Penn Ovarian Cancer Research Center, Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA 19104 USA
| |
Collapse
|
48
|
Zheng Y, Xu R, Cheng H, Tai W. Mono-amino acid linkers enable highly potent small molecule-drug conjugates by conditional release. Mol Ther 2024; 32:1048-1060. [PMID: 38369752 PMCID: PMC11163218 DOI: 10.1016/j.ymthe.2024.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/18/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024] Open
Abstract
The endosome cleavable linkers have been widely employed by antibody-drug conjugates and small molecule-drug conjugates (SMDCs) to control the accurate release of payloads. An effective linker should provide stability in systemic circulation but efficient payload release at its targeted tumor sites. This conflicting requirement always leads to linker design with increasing structural complexity. Balance of the effectiveness and structural complexity presents a linker design challenge. Here, we explored the possibility of mono-amino acid as so far the simplest cleavable linker (X-linker) for SMDC-based auristatin delivery. Within a diverse set of X-linkers, the SMDCs differed widely in bioactivity, with one (Asn-linker) having significantly improved potency (IC50 = 0.1 nM) and fast response to endosomal cathepsin B cleavage. Notably, this SMDC, once grafted with effector protein fragment crystallizable (Fc), demonstrated a profound in vivo therapeutic effect in aspects of targetability, circulation half-life (t1/2 = 73 h), stability, and anti-tumor efficacy. On the basis of these results, we believe that this mono-amino acid linker, together with the new SMDC-Fc scaffold, has significant potential in targeted delivery application.
Collapse
Affiliation(s)
- Yan Zheng
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei 430071, China
| | - Ruolin Xu
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei 430071, China
| | - Hong Cheng
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei 430071, China
| | - Wanyi Tai
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei 430071, China.
| |
Collapse
|
49
|
Chen X, Zeng C. Pioneering the Way: The Revolutionary Potential of Antibody-Drug Conjugates in NSCLC. Curr Treat Options Oncol 2024; 25:556-584. [PMID: 38520605 DOI: 10.1007/s11864-024-01196-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2024] [Indexed: 03/25/2024]
Abstract
OPINION STATEMENT Despite targeted therapy and immunotherapy being recognized as established frontline treatments for advanced non-small cell lung cancer (NSCLC), the unavoidable development of resistance and disease progression poses ongoing challenges. Antibody-drug conjugates (ADCs) offer a potent treatment option for NSCLC through the specific delivery of cytotoxic agents to tumor cells that display distinct antigens. This review delves into the latest evidence regarding promising ADC agents for NSCLC, focusing on their targets, effectiveness, and safety assessments. Additionally, our study provides insights into managing toxicities, identifying biomarkers, devising methods to counter resistance mechanisms, tackling prevailing challenges, and outlining prospects for the clinical implementation of these innovative ADCs and combination regimens in NSCLC.
Collapse
Affiliation(s)
- Xiehui Chen
- Department of Geriatric Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, China
| | - Changchun Zeng
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, China.
| |
Collapse
|
50
|
Hobson AD. The medicinal chemistry evolution of antibody-drug conjugates. RSC Med Chem 2024; 15:809-831. [PMID: 38516594 PMCID: PMC10953486 DOI: 10.1039/d3md00674c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/22/2024] [Indexed: 03/23/2024] Open
Abstract
Antibody-drug conjugates (ADCs) comprise 3 components of wildly differing sizes: antibody (150 000 Da), linker (typically <500 Da) and payload (typically <500 Da). While the drug-linker makes up only a small percent of the ADC it has a disproportionately massive impact on all aspects of the ADC. Replacing maleimide with bromoacetamide (BrAc) affords stable attachment of the linker to the antibody cysteine, supports total flexibility for linker design and affords a more homogenous ADC. Optimisation of the protease cleavable dipeptide reduces aggregation, facilitates moderation of the physicochemical properties of the ADC and enables long-term stability to facilitate subcutaneous self-administration. Payloads are designed specifically to afford the optimal ADC. Structural information and SAR guide design to improve both potency and selectivity to the small molecule target improving the therapeutic index of resulting ADCs. Minimising the solvent exposed hydrophobic surface area improves the drug-like properties of the ADC, the realisation that the attachment heteroatom can be more than just the site for linker attachment as it can also drive potency and selectivity of the payload and the adoption of a prodrug strategy at project initiation are key areas that medicinal chemistry drives. For an optimal ADC the symbiotic relationship of the three structurally disparate components requires they all function in unison and medicinal chemistry has a huge role to ensure this happens.
Collapse
Affiliation(s)
- Adrian D Hobson
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester Massachusetts 01605 USA
| |
Collapse
|