1
|
Daneshdoust D, Luo M, Li Z, Mo X, Alothman S, Kallakury B, Schlegel R, Zhang J, Guo D, Furth PA, Liu X, Li J. Unlocking Translational Potential: Conditionally Reprogrammed Cells in Advancing Breast Cancer Research. Cells 2023; 12:2388. [PMID: 37830602 PMCID: PMC10572051 DOI: 10.3390/cells12192388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/07/2023] [Accepted: 09/19/2023] [Indexed: 10/14/2023] Open
Abstract
Preclinical in vitro models play an important role in studying cancer cell biology and facilitating translational research, especially in the identification of drug targets and drug discovery studies. This is particularly relevant in breast cancer, where the global burden of disease is quite high based on prevalence and a relatively high rate of lethality. Predictive tools to select patients who will be responsive to invasive or morbid therapies (radiotherapy, chemotherapy, immunotherapy, and/or surgery) are relatively lacking. To be clinically relevant, a model must accurately replicate the biology and cellular heterogeneity of the primary tumor. Addressing these requirements and overcoming the limitations of most existing cancer cell lines, which are typically derived from a single clone, we have recently developed conditional reprogramming (CR) technology. The CR technology refers to a co-culture system of primary human normal or tumor cells with irradiated murine fibroblasts in the presence of a Rho-associated kinase inhibitor to allow the primary cells to acquire stem cell properties and the ability to proliferate indefinitely in vitro without any exogenous gene or viral transfection. This innovative approach fulfills many of these needs and offers an alternative that surpasses the deficiencies associated with traditional cancer cell lines. These CR cells (CRCs) can be reprogrammed to maintain a highly proliferative state and reproduce the genomic and histological characteristics of the parental tissue. Therefore, CR technology may be a clinically relevant model to test and predict drug sensitivity, conduct gene profile analysis and xenograft research, and undertake personalized medicine. This review discusses studies that have applied CR technology to conduct breast cancer research.
Collapse
Affiliation(s)
- Danyal Daneshdoust
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| | - Mingjue Luo
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| | - Zaibo Li
- Departments of Pathology, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA
| | - Xiaokui Mo
- Department of Biostatics and Bioinformatics, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA
| | - Sahar Alothman
- Departments of Oncology and Medicine, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Bhaskar Kallakury
- Departments of Pathology, Lombardi Comprehensive Cancer Center, Center for Cell Reprogramming, Georgetown University, Washington, DC 20057, USA
| | - Richard Schlegel
- Departments of Pathology, Lombardi Comprehensive Cancer Center, Center for Cell Reprogramming, Georgetown University, Washington, DC 20057, USA
| | - Junran Zhang
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
- Department of Radiation Oncology, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA
| | - Deliang Guo
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
- Department of Radiation Oncology, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA
| | - Priscilla A. Furth
- Departments of Oncology and Medicine, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Xuefeng Liu
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
- Departments of Pathology, Urology, and Radiation Oncology, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA
| | - Jenny Li
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
2
|
Ritter A, Kreis NN, Hoock SC, Solbach C, Louwen F, Yuan J. Adipose Tissue-Derived Mesenchymal Stromal/Stem Cells, Obesity and the Tumor Microenvironment of Breast Cancer. Cancers (Basel) 2022; 14:3908. [PMID: 36010901 PMCID: PMC9405791 DOI: 10.3390/cancers14163908] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/01/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
Breast cancer is the most frequently diagnosed cancer and a common cause of cancer-related death in women. It is well recognized that obesity is associated with an enhanced risk of more aggressive breast cancer as well as reduced patient survival. Adipose tissue is the major microenvironment of breast cancer. Obesity changes the composition, structure, and function of adipose tissue, which is associated with inflammation and metabolic dysfunction. Interestingly, adipose tissue is rich in ASCs/MSCs, and obesity alters the properties and functions of these cells. As a key component of the mammary stroma, ASCs play essential roles in the breast cancer microenvironment. The crosstalk between ASCs and breast cancer cells is multilateral and can occur both directly through cell-cell contact and indirectly via the secretome released by ASC/MSC, which is considered to be the main effector of their supportive, angiogenic, and immunomodulatory functions. In this narrative review, we aim to address the impact of obesity on ASCs/MSCs, summarize the current knowledge regarding the potential pathological roles of ASCs/MSCs in the development of breast cancer, discuss related molecular mechanisms, underline the possible clinical significance, and highlight related research perspectives. In particular, we underscore the roles of ASCs/MSCs in breast cancer cell progression, including proliferation and survival, angiogenesis, migration and invasion, the epithelial-mesenchymal transition, cancer stem cell development, immune evasion, therapy resistance, and the potential impact of breast cancer cells on ASCS/MSCs by educating them to become cancer-associated fibroblasts. We conclude that ASCs/MSCs, especially obese ASCs/MSCs, may be key players in the breast cancer microenvironment. Targeting these cells may provide a new path of effective breast cancer treatment.
Collapse
Affiliation(s)
- Andreas Ritter
- Obstetrics and Prenatal Medicine, Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany
| | | | | | | | | | - Juping Yuan
- Obstetrics and Prenatal Medicine, Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany
| |
Collapse
|
3
|
Comprehensive Analysis of the Expression and Prognostic Value of LMAN2 in HER2+ Breast Cancer. J Immunol Res 2022; 2022:7623654. [PMID: 35707004 PMCID: PMC9192310 DOI: 10.1155/2022/7623654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 03/28/2022] [Accepted: 04/01/2022] [Indexed: 11/23/2022] Open
Abstract
Lectin, Mannose Binding 2 (LMAN2) encodes a type I transmembrane lectin that shuttles between the plasma membrane, the Golgi apparatus, and the endoplasmic reticulum. However, its expression, prognosis, and function in invasive breast carcinoma remain unknown. Nine databases were consulted to evaluate LMAN2 expression and prognosis in breast cancer. The possible function of LMAN2 in breast cancer was investigated in the Human Cell Landscape (HCL) database, Gene Regulatory Network database (GRNdb), and CancerSEA database. Moreover, N6-methyladenosine (m6A) modifications were analyzed using the RMBase v2.0 and M6A2Target databases. Seven databases were then used to analyze the potential action mechanisms of LMAN2. Our findings suggest that LMAN2, which is expressed at a high level in breast cancer, is linked to an unfavorable prognosis. Therefore, LMAN2 has the potential to be utilized as a treatment target in breast cancer. Furthermore, the single-cell analysis illustrated that LMAN2 expression had a positive link to breast cancer stemness, proliferation, metastasis, and differentiation. Moreover, m6A modifications were found in the LMAN2 gene. Consequently, modifications to m6A methylation may influence LMAN2 expression, which is associated with the homologous recombination (HR) in its DNA damage repair pathway .
Collapse
|
4
|
Song Q, Liu L. Single-Cell RNA-Seq Technologies and Computational Analysis Tools: Application in Cancer Research. Methods Mol Biol 2022; 2413:245-255. [PMID: 35044670 DOI: 10.1007/978-1-0716-1896-7_23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The recent maturation of single-cell RNA sequencing (scRNA-seq) provides unique opportunities for researchers to uncover new and potentially unexpected biological discoveries and to understand the complexity of tissues by transcriptomic profiling in individual cells. This review introduces the latest scRNA-seq techniques and platforms as well as their advantages and disadvantages. Moreover, we review computational tools and pipelines for analyzing scRNA-seq data, and their applications in cancer research, highlighting the important role of scRNA-seq techniques in this area.
Collapse
Affiliation(s)
- Qianqian Song
- Department of Cancer Biology, Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, USA
| | - Liang Liu
- Department of Cancer Biology, Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, USA.
- Center for Cancer Genomics and Precision Oncology, Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, USA.
| |
Collapse
|
5
|
Mohamad SF, Gunawan A, Blosser R, Childress P, Aguilar-Perez A, Ghosh J, Hong JM, Liu J, Kanagasabapathy D, Kacena MA, Srour EF, Bruzzaniti A. Neonatal Osteomacs and Bone Marrow Macrophages Differ in Phenotypic Marker Expression and Function. J Bone Miner Res 2021; 36:1580-1593. [PMID: 33900648 DOI: 10.1002/jbmr.4314] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 04/13/2021] [Accepted: 04/17/2021] [Indexed: 01/27/2023]
Abstract
Osteomacs (OM) are specialized bone-resident macrophages that are a component of the hematopoietic niche and support bone formation. Also located in the niche are a second subset of macrophages, namely bone marrow-derived macrophages (BM Mφ). We previously reported that a subpopulation of OM co-express both CD166 and CSF1R, the receptor for macrophage colony-stimulating factor (MCSF), and that OM form more bone-resorbing osteoclasts than BM Mφ. Reported here are single-cell quantitative RT-PCR (qRT-PCR), mass cytometry (CyTOF), and marker-specific functional studies that further identify differences between OM and BM Mφ from neonatal C57Bl/6 mice. Although OM express higher levels of CSF1R and MCSF, they do not respond to MCSF-induced proliferation, in contrast to BM Mφ. Moreover, receptor activator of NF-κB ligand (RANKL), without the addition of MCSF, was sufficient to induce osteoclast formation in OM but not BM Mφ cultures. OM express higher levels of CD166 than BM Mφ, and we found that osteoclast formation by CD166-/- OM was reduced compared with wild-type (WT) OM, whereas CD166-/- BM Mφ showed enhanced osteoclast formation. CD110/c-Mpl, the receptor for thrombopoietin (TPO), was also higher in OM, but TPO did not alter OM-derived osteoclast formation, whereas TPO stimulated BM Mφ osteoclast formation. CyTOF analyses demonstrated OM uniquely co-express CD86 and CD206, markers of M1 and M2 polarized macrophages, respectively. OM performed equivalent phagocytosis in response to LPS or IL-4/IL-10, which induce polarization to M1 and M2 subtypes, respectively, whereas BM Mφ were less competent at phagocytosis when polarized to the M2 subtype. Moreover, in contrast to BM Mφ, LPS treatment of OM led to the upregulation of CD80, an M1 marker, as well as IL-10 and IL-6, known anti-inflammatory cytokines. Overall, these data reveal that OM and BM Mφ are distinct subgroups of macrophages, whose phenotypic and functional differences in proliferation, phagocytosis, and osteoclast formation may contribute physiological specificity during health and disease. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Safa F Mohamad
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Andrea Gunawan
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Rachel Blosser
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Paul Childress
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Alexandra Aguilar-Perez
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN, USA
| | - Joydeep Ghosh
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jung Min Hong
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN, USA
| | - Jianyun Liu
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Deepa Kanagasabapathy
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Melissa A Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Edward F Srour
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Angela Bruzzaniti
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN, USA
| |
Collapse
|
6
|
Yan X, Xie Y, Yang F, Hua Y, Zeng T, Sun C, Yang M, Huang X, Wu H, Fu Z, Li W, Jiao S, Yin Y. Comprehensive description of the current breast cancer microenvironment advancements via single-cell analysis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:142. [PMID: 33906694 PMCID: PMC8077685 DOI: 10.1186/s13046-021-01949-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 04/15/2021] [Indexed: 02/07/2023]
Abstract
Breast cancer is a heterogeneous disease with a complex microenvironment consisting of tumor cells, immune cells, fibroblasts and vascular cells. These cancer-associated cells shape the tumor microenvironment (TME) and influence the progression of breast cancer and the therapeutic responses in patients. The exact composition of the intra-tumoral cells is mixed as the highly heterogeneous and dynamic nature of the TME. Recent advances in single-cell technologies such as single-cell DNA sequencing (scDNA-seq), single-cell RNA sequencing (scRNA-seq) and mass cytometry have provided new insights into the phenotypic and functional diversity of tumor-infiltrating cells in breast cancer. In this review, we have outlined the recent progress in single-cell characterization of breast tumor ecosystems, and summarized the phenotypic diversity of intra-tumoral cells and their potential prognostic relevance.
Collapse
Affiliation(s)
- Xueqi Yan
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yinghong Xie
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Fan Yang
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yijia Hua
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Tianyu Zeng
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Chunxiao Sun
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Mengzhu Yang
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xiang Huang
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Hao Wu
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Ziyi Fu
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Wei Li
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Shiping Jiao
- Department of Hepatobiliary Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210029, Jiangsu Province, China. .,Drum Tower Institute of clinical medicine, Nanjing University, Nanjing, 210029, Jiangsu Province, China.
| | - Yongmei Yin
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China. .,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
7
|
Bhat-Nakshatri P, Gao H, Sheng L, McGuire PC, Xuei X, Wan J, Liu Y, Althouse SK, Colter A, Sandusky G, Storniolo AM, Nakshatri H. A single-cell atlas of the healthy breast tissues reveals clinically relevant clusters of breast epithelial cells. CELL REPORTS MEDICINE 2021; 2:100219. [PMID: 33763657 PMCID: PMC7974552 DOI: 10.1016/j.xcrm.2021.100219] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 11/10/2020] [Accepted: 02/18/2021] [Indexed: 01/21/2023]
Abstract
Single-cell RNA sequencing (scRNA-seq) is an evolving technology used to elucidate the cellular architecture of adult organs. Previous scRNA-seq on breast tissue utilized reduction mammoplasty samples, which are often histologically abnormal. We report a rapid tissue collection/processing protocol to perform scRNA-seq of breast biopsies of healthy women and identify 23 breast epithelial cell clusters. Putative cell-of-origin signatures derived from these clusters are applied to analyze transcriptomes of ~3,000 breast cancers. Gene signatures derived from mature luminal cell clusters are enriched in ~68% of breast cancers, whereas a signature from a luminal progenitor cluster is enriched in ~20% of breast cancers. Overexpression of luminal progenitor cluster-derived signatures in HER2+, but not in other subtypes, is associated with unfavorable outcome. We identify TBX3 and PDK4 as genes co-expressed with estrogen receptor (ER) in the normal breasts, and their expression analyses in >550 breast cancers enable prognostically relevant subclassification of ER+ breast cancers.
Collapse
Affiliation(s)
- Poornima Bhat-Nakshatri
- Department of Surgery, Indiana University of School of Medicine, Indianapolis, IN 46202, USA
| | - Hongyu Gao
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA.,Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Liu Sheng
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA.,Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Patrick C McGuire
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Xiaoling Xuei
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jun Wan
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA.,Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yunlong Liu
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA.,Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sandra K Althouse
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Austyn Colter
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - George Sandusky
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Anna Maria Storniolo
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Harikrishna Nakshatri
- Department of Surgery, Indiana University of School of Medicine, Indianapolis, IN 46202, USA.,Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA.,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.,Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| |
Collapse
|
8
|
The Tumor Microenvironment as a Driving Force of Breast Cancer Stem Cell Plasticity. Cancers (Basel) 2020; 12:cancers12123863. [PMID: 33371274 PMCID: PMC7766255 DOI: 10.3390/cancers12123863] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/17/2020] [Accepted: 12/17/2020] [Indexed: 12/22/2022] Open
Abstract
Simple Summary Breast cancer stem cells are a subset of transformed cells that sustain tumor growth and can metastasize to secondary organs. Since metastasis accounts for most cancer deaths, it is of paramount importance to understand the cellular and molecular mechanisms that regulate this subgroup of cells. The tumor microenvironment (TME) is the habitat in which transformed cells evolve, and it is composed by many different cell types and the extracellular matrix (ECM). A body of evidence strongly indicates that microenvironmental cues modulate stemness in breast cancer, and that the coevolution of the TME and cancer stem cells determine the fate of breast tumors. In this review, we summarize the studies providing links between the TME and the breast cancer stem cell phenotype and we discuss their specific interactions with immune cell subsets, stromal cells, and the ECM. Abstract Tumor progression involves the co-evolution of transformed cells and the milieu in which they live and expand. Breast cancer stem cells (BCSCs) are a specialized subset of cells that sustain tumor growth and drive metastatic colonization. However, the cellular hierarchy in breast tumors is rather plastic, and the capacity to transition from one cell state to another depends not only on the intrinsic properties of transformed cells, but also on the interplay with their niches. It has become evident that the tumor microenvironment (TME) is a major player in regulating the BCSC phenotype and metastasis. The complexity of the TME is reflected in its number of players and in the interactions that they establish with each other. Multiple types of immune cells, stromal cells, and the extracellular matrix (ECM) form an intricate communication network with cancer cells, exert a highly selective pressure on the tumor, and provide supportive niches for BCSC expansion. A better understanding of the mechanisms regulating these interactions is crucial to develop strategies aimed at interfering with key BCSC niche factors, which may help reducing tumor heterogeneity and impair metastasis.
Collapse
|
9
|
González-Silva L, Quevedo L, Varela I. Tumor Functional Heterogeneity Unraveled by scRNA-seq Technologies. Trends Cancer 2020; 6:13-19. [PMID: 31952776 DOI: 10.1016/j.trecan.2019.11.010] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 11/08/2019] [Accepted: 11/26/2019] [Indexed: 01/01/2023]
Abstract
Effective cancer treatment has been precluded by the presence of various forms of intratumoral complexity that drive treatment resistance and metastasis. Recent single-cell sequencing technologies are significantly facilitating the characterization of tumor internal architecture during disease progression. New applications and advances occurring at a fast pace predict an imminent broad application of these technologies in many research areas. As occurred with next-generation sequencing (NGS) technologies, once applied to clinical samples across tumor types, single-cell sequencing technologies could trigger an exponential increase in knowledge of the molecular pathways involved in cancer progression and contribute to the improvement of cancer treatment.
Collapse
Affiliation(s)
- Laura González-Silva
- Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria - CSIC, Santander, Spain
| | - Laura Quevedo
- Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria - CSIC, Santander, Spain
| | - Ignacio Varela
- Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria - CSIC, Santander, Spain.
| |
Collapse
|
10
|
Prasad M, Kumar B, Bhat-Nakshatri P, Anjanappa M, Sandusky G, Miller KD, Storniolo AM, Nakshatri H. Dual TGFβ/BMP Pathway Inhibition Enables Expansion and Characterization of Multiple Epithelial Cell Types of the Normal and Cancerous Breast. Mol Cancer Res 2019; 17:1556-1570. [PMID: 30992305 DOI: 10.1158/1541-7786.mcr-19-0165] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/18/2019] [Accepted: 04/12/2019] [Indexed: 12/30/2022]
Abstract
Functional modeling of normal breast epithelial hierarchy and stromal-epithelial cell interactions have been difficult due to inability to obtain sufficient stem-progenitor-mature epithelial and stromal cells. Recently reported epithelial reprogramming assay has partially overcome this limitation, but cross-contamination of cells from the feeder layer is a concern. The purpose of this study was to develop a feeder-layer-independent and inexpensive method to propagate multiple cell types from limited tissue resources. Cells obtained after enzymatic digestion of tissues collected at surgery or by core-needle biopsies were plated on tissue culture dishes precoated with laminin-5-rich-conditioned media from the rat bladder tumor cell line 804G and a defined growth media with inhibitors of ROCK, TGFβ, and BMP signaling. Cells were characterized by flow cytometry, mammosphere assay, 3D cultures, and xenograft studies. Cells from the healthy breasts included CD10+/EpCAM- basal/myoepithelial, CD49f+/EpCAM+ luminal progenitor, CD49f-/EpCAM+ mature luminal, CD73+/EpCAM+/CD90- rare endogenous pluripotent somatic stem, CD73+/CD90+/EpCAM-, estrogen receptor alpha-expressing ALCAM (CD166)+/EpCAM+, and ALDFLUOR+ stem/luminal progenitor subpopulations. Epithelial cells were luminal (KRT19+), basal (KRT14+), or dual-positive luminal/basal hybrid cells. While breast cells derived from BRCA1, BRCA2, and PALB2 mutation carriers did not display unique characteristics, cells from women with breast cancer-protective alleles showed enhanced differentiation. Cells could also be propagated from primary tumors and metastasis of breast, ovarian, and pancreatic cancer-neuroendocrine subtype. Xenograft studies confirmed tumorigenic properties of tumor-derived cells. IMPLICATIONS: Our method expands the scope of individualized studies of patient-derived cells and provides resources to model epithelial-stromal interactions under normal and pathologic conditions.
Collapse
Affiliation(s)
- Mayuri Prasad
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Brijesh Kumar
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | | | - Manjushree Anjanappa
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - George Sandusky
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Kathy D Miller
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Anna Maria Storniolo
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Harikrishna Nakshatri
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana. .,Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana.,Roudebush VA Medical Center, Indianapolis, Indiana
| |
Collapse
|
11
|
Davies AE, Albeck JG. Microenvironmental Signals and Biochemical Information Processing: Cooperative Determinants of Intratumoral Plasticity and Heterogeneity. Front Cell Dev Biol 2018; 6:44. [PMID: 29732370 PMCID: PMC5921997 DOI: 10.3389/fcell.2018.00044] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 04/03/2018] [Indexed: 12/25/2022] Open
Abstract
Intra-tumor cellular heterogeneity is a major challenge in cancer therapy. Tumors are composed of multiple phenotypic subpopulations that vary in their ability to initiate metastatic tumors and in their sensitivity to chemotherapy. In many cases, cells can transition between these subpopulations, not by genetic mutation, but instead through reversible changes in signal transduction or gene expression programs. This plasticity begins at the level of the microenvironment where local autocrine and paracrine signals, exosomes, tumor–stroma interactions, and extracellular matrix (ECM) composition create a signaling landscape that varies over space and time. The integration of this complex array of signals engages signaling pathways that control gene expression. The resulting modulation of gene expression programs causes individual cells to sample a wide array of phenotypic states that support tumor growth, dissemination, and therapeutic resistance. In this review, we discuss how information flows dynamically within the microenvironmental landscape to inform cell state decisions and to create intra-tumoral heterogeneity. We address the role of plasticity in the acquisition of transient and prolonged drug resistant states and discuss how targeted pharmacological modification of the signaling landscape may be able to constrain phenotypic plasticity, leading to improved treatment responses.
Collapse
Affiliation(s)
- Alexander E Davies
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA, United States
| | - John G Albeck
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
12
|
Colacino JA, Azizi E, Brooks MD, Harouaka R, Fouladdel S, McDermott SP, Lee M, Hill D, Madden J, Boerner J, Cote ML, Sartor MA, Rozek LS, Wicha MS. Heterogeneity of Human Breast Stem and Progenitor Cells as Revealed by Transcriptional Profiling. Stem Cell Reports 2018; 10:1596-1609. [PMID: 29606612 PMCID: PMC5995162 DOI: 10.1016/j.stemcr.2018.03.001] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 02/28/2018] [Accepted: 03/01/2018] [Indexed: 01/10/2023] Open
Abstract
During development, the mammary gland undergoes extensive remodeling driven by stem cells. Breast cancers are also hierarchically organized and driven by cancer stem cells characterized by CD44+CD24low/− or aldehyde dehydrogenase (ALDH) expression. These markers identify mesenchymal and epithelial populations both capable of tumor initiation. Less is known about these populations in non-cancerous mammary glands. From RNA sequencing, ALDH+ and ALDH−CD44+CD24− human mammary cells have epithelial-like and mesenchymal-like characteristics, respectively, with some co-expressing ALDH+ and CD44+CD24− by flow cytometry. At the single-cell level, these cells have the greatest mammosphere-forming capacity and express high levels of stemness and epithelial-to-mesenchymal transition-associated genes including ID1, SOX2, TWIST1, and ZEB2. We further identify single ALDH+ cells with a hybrid epithelial/mesenchymal phenotype that express genes associated with aggressive triple-negative breast cancers. These results highlight single-cell analyses to characterize tissue heterogeneity, even in marker-enriched populations, and identify genes and pathways that define this heterogeneity. Isolation and RNA-seq of ALDH+ and CD44+CD24− breast cells Unlike in cancer, there is substantial overlap in ALDH+ and CD44+CD24− populations Single-cell analysis of ALDH+ cells identifies unexpected subpopulation structure Hybrid epithelial/mesenchymal ALDH+ cells have a cancer-like expression signature
Collapse
Affiliation(s)
- Justin A Colacino
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA; Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA; Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA.
| | - Ebrahim Azizi
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA; Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Michael D Brooks
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA; Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Ramdane Harouaka
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA; Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Shamileh Fouladdel
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA; Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Sean P McDermott
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA; Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Michael Lee
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - David Hill
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Julie Madden
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Julie Boerner
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Michele L Cote
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA; Population Sciences and Health Disparities Program, Karmanos Cancer Institute, Detroit, MI, USA
| | - Maureen A Sartor
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA; Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Laura S Rozek
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA; Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Max S Wicha
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA; Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
13
|
Abstract
Multiple mechanisms of epigenetic control that include DNA methylation, histone modification, noncoding RNAs, and mitotic gene bookmarking play pivotal roles in stringent gene regulation during lineage commitment and maintenance. Experimental evidence indicates that bivalent chromatin domains, i.e., genome regions that are marked by both H3K4me3 (activating) and H3K27me3 (repressive) histone modifications, are a key property of pluripotent stem cells. Bivalency of developmental genes during the G1 phase of the pluripotent stem cell cycle contributes to cell fate decisions. Recently, some cancer types have been shown to exhibit partial recapitulation of bivalent chromatin modifications that are lost along with pluripotency, suggesting a mechanism by which cancer cells reacquire properties that are characteristic of undifferentiated, multipotent cells. This bivalent epigenetic control of oncofetal gene expression in cancer cells may offer novel insights into the onset and progression of cancer and may provide specific and selective options for diagnosis as well as for therapeutic intervention.
Collapse
|
14
|
Wang L, Livak KJ, Wu CJ. High-dimension single-cell analysis applied to cancer. Mol Aspects Med 2017; 59:70-84. [PMID: 28823596 DOI: 10.1016/j.mam.2017.08.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 08/10/2017] [Accepted: 08/16/2017] [Indexed: 12/14/2022]
Abstract
High-dimension single-cell technology is transforming our ability to study and understand cancer. Numerous studies and reviews have reported advances in technology development. The biological insights gleaned from single-cell technology about cancer biology are less reviewed. Here we focus on research studies that illustrate novel aspects of cancer biology that bulk analysis could not achieve, and discuss the fresh insights gained from the application of single-cell technology across basic and clinical cancer studies.
Collapse
Affiliation(s)
- Lili Wang
- Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA.
| | - Kenneth J Livak
- Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA.
| | - Catherine J Wu
- Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA.
| |
Collapse
|