1
|
Zhao Z, Qi HY, Li ZF, Wang LM, Wang JM, Tan FQ, Yang WX. Vangl2 regulates intercellular junctions by remodeling actin-based cytoskeleton through the Rock signaling pathway during spermatogenesis in Eriocheir sinensis. Int J Biol Macromol 2024; 279:135264. [PMID: 39226977 DOI: 10.1016/j.ijbiomac.2024.135264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/31/2024] [Accepted: 08/31/2024] [Indexed: 09/05/2024]
Abstract
As a key planar cell polarity protein, Van Gogh-like 2 (Vangl2) is essential for mammalian spermatogenesis. As a decapod crustacean, Eriocheir sinensis exhibits distinct spermatogenic processes due to its unique seminiferous tubule morphology and hemolymph-testis barrier (HTB). To determine whether Vangl2 performs analogous functions in E. sinensis, we identified the Es-Vangl2. Es-Vangl2 exhibited high expression and wide distribution in the testes, indicating its crucial involvement in spermatogenesis. Following targeted knockdown of Es-Vangl2in vivo, the structure of seminiferous tubules was disrupted, characterized by vacuolization of the germinal zone and obstruction of spermatozoon release. Concurrently, the integrity of the HTB was compromised, accompanied by reduced expression and aberrant localization of junction proteins. More importantly, the regulatory influence of Es-Vangl2 was manifested through modulating the organization of microfilaments, a process mediated by epidermal growth factor receptor pathway substrate 8 (Eps8). Further studies demonstrated that these phenotypes resulting from Es-Vangl2 knockdown were attributed to the inhibition of Rock signaling pathway activity, which was verified by the Es-Rock interference and Y27632 inhibition assays. In summary, the findings highlight the pivotal role of Es-Vangl2 in stabilizing HTB integrity by regulating Eps8-mediated actin remodeling through the Rock signaling pathway in the spermatogenesis of E. sinensis.
Collapse
Affiliation(s)
- Zhan Zhao
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hong-Yu Qi
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhen-Fang Li
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lan-Min Wang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jia-Ming Wang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Fu-Qing Tan
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
2
|
Harikumar H, van Royen ME, van Leenders GJ. 4D pathology: translating dynamic epithelial tubulogenesis to prostate cancer pathology. Histopathology 2024. [PMID: 39428716 DOI: 10.1111/his.15354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
The Gleason score is the gold standard for grading of prostate cancer (PCa) and is assessed by assigning specific grades to different microscopical growth patterns. Aside from the Gleason grades, individual growth patterns such as cribriform architecture were recently shown to have independent prognostic value for disease outcome. PCa grading is performed on static tissue samples collected at one point in time, whereas in vivo epithelial tumour structures are dynamically invading, branching and expanding into the surrounding stroma. Due to the lack of models that are able to track human PCa microscopical developments over time, our understanding of underlying tissue dynamics is sparse. We postulate that human PCa expansion utilizes embryonic and developmental tubulogenetic pathways. The aim of this study is to provide a comprehensive overview of developmental pathways of normal epithelial tubule formation, elongation, and branching, and relate those to the static microscopical PCa growth patterns observed in daily clinical practise. This study could provide a rationale for the discerned pathological interobserver variability and the clinical outcome differences between PCa growth patterns.
Collapse
Affiliation(s)
- Hridya Harikumar
- Department of Pathology, Erasmus MC Cancer Institute, University Medical Centre, Rotterdam, the Netherlands
| | - Martin E van Royen
- Department of Pathology, Erasmus MC Cancer Institute, University Medical Centre, Rotterdam, the Netherlands
| | - Geert Jlh van Leenders
- Department of Pathology, Erasmus MC Cancer Institute, University Medical Centre, Rotterdam, the Netherlands
| |
Collapse
|
3
|
Li P, Ma X, Huang D. Role of the lncRNA/Wnt signaling pathway in digestive system cancer: a literature review. Eur J Med Res 2024; 29:447. [PMID: 39218950 PMCID: PMC11367813 DOI: 10.1186/s40001-024-02033-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
The long noncoding RNA (lncRNA)/Wingless (Wnt) axis is often dysregulated in digestive system tumors impacting critical cellular processes. Abnormal expression of specific Wnt-related lncRNAs such as LINC01606 (promotes motility), SLCO4A1-AS1 (promotes motility), and SH3BP5-AS1 (induces chemoresistance), plays a crucial role in these malignancies. These lncRNAs are promising targets for cancer diagnosis and therapy, offering new treatment perspectives. The lncRNAs, NEF and GASL1, differentially expressed in plasma show diagnostic potential for esophageal squamous cell carcinoma and gastric cancer, respectively. Additionally, Wnt pathway inhibitors like XAV-939 have demonstrated preclinical efficacy, underscoring their therapeutic potential. This review comprehensively analyzes the lncRNA/Wnt axis, highlighting its impact on cell proliferation, motility, and chemoresistance. By elucidating the complex molecular mechanisms of the lncRNA/Wnt axis, we aim to identify potential therapeutic targets for digestive system tumors to pave the way for the development of targeted treatment strategies.
Collapse
Affiliation(s)
- Penghui Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471000, Henan, China.
| | - Xiao Ma
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Di Huang
- Department of Child Health Care, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| |
Collapse
|
4
|
Chuan J, Li W, Pan S, Jiang Z, Shi J, Yang Z. Progress in the development of modulators targeting Frizzleds. Pharmacol Res 2024; 206:107286. [PMID: 38936522 DOI: 10.1016/j.phrs.2024.107286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/08/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
The Frizzleds (FZDs) receptors on the cell surface belong to the class F of G protein-coupled receptors (GPCRs) which are the major receptors of WNT protein that mediates the classical WNT signaling pathway and other non-classical pathways. Besides, the FZDs also play a core role in tissue regeneration and tumor occurrence. With the structure and mechanism of FZDs activation becoming clearer, a series of FZDs modulators (inhibitors and agonists) have been developed, with the hope of bringing benefits to the treatment of cancer and degenerative diseases. Most of the FZDs inhibitors (small molecules, antibodies or designed protein inhibitors) block WNT signaling through binding to the cysteine-rich domain (CRD) of FZDs. Several small molecules impede FZDs activation by targeting to the third intracellular domain or the transmembrane domain of FZDs. However, three small molecules (FZM1.8, SAG1.3 and purmorphamine) activate the FZDs through direct interaction with the transmembrane domain. Another type of FZDs agonists are bivalent or tetravalent antibodies which activate the WNT signaling via inducing FZD-LRP5/6 heterodimerization. In this article, we reviewed the FZDs modulators reported in recent years, summarized the critical molecules' discovery processes and the elucidated relevant structural and pharmacological mechanisms. We believe the summaried molecular mechanisms of the relevant modulators could provide important guidance and reference for the future development of FZD modulators.
Collapse
Affiliation(s)
- Junlan Chuan
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Wei Li
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9, Section 4, Renmin South Road, Chengdu 610041, China; The University of Chinese Academy of Sciences, 380 Huaibeizhuang, Huairou District, Beijing 101408, China
| | - Shengliu Pan
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9, Section 4, Renmin South Road, Chengdu 610041, China; The University of Chinese Academy of Sciences, 380 Huaibeizhuang, Huairou District, Beijing 101408, China
| | - Zhongliang Jiang
- Hematology Department, Miller School of Medicine, University of Miami, USA
| | - Jianyou Shi
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| | - Zhenglin Yang
- Research Unit for Blindness Prevention, Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China; Jinfeng Laboratory, Chongqing, China.
| |
Collapse
|
5
|
Tümen D, Heumann P, Huber J, Hahn N, Macek C, Ernst M, Kandulski A, Kunst C, Gülow K. Unraveling Cancer's Wnt Signaling: Dynamic Control through Protein Kinase Regulation. Cancers (Basel) 2024; 16:2686. [PMID: 39123414 PMCID: PMC11312265 DOI: 10.3390/cancers16152686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Since the initial identification of oncogenic Wnt in mice and Drosophila, the Wnt signaling pathway has been subjected to thorough and extensive investigation. Persistent activation of Wnt signaling exerts diverse cancer characteristics, encompassing tumor initiation, tumor growth, cell senescence, cell death, differentiation, and metastasis. Here we review the principal signaling mechanisms and the regulatory influence of pathway-intrinsic and extrinsic kinases on cancer progression. Additionally, we underscore the divergences and intricate interplays of the canonical and non-canonical Wnt signaling pathways and their critical influence in cancer pathophysiology, exhibiting both growth-promoting and growth-suppressing roles across diverse cancer types.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Karsten Gülow
- Department of Internal Medicine I Gastroenterology, Hepatology, Endocrinology, Rheumatology, Immunology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (D.T.); (N.H.)
| |
Collapse
|
6
|
Wu X, Zhang Z, Qiu Z, Wu X, Chen J, Liu L, Liu X, Zhao S, Yang Y, Zhao Y. TNIK in disease: from molecular insights to therapeutic prospects. Apoptosis 2024:10.1007/s10495-024-01987-w. [PMID: 38853204 DOI: 10.1007/s10495-024-01987-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2024] [Indexed: 06/11/2024]
Abstract
TRAF2 and NCK interacting kinase (TNIK), a critical interacting protein kinase, is currently receiving wide attention. TNIK is found in various human body organs and tissues and participates in cell motility, proliferation, and differentiation. On the one hand, its aberrant expression is related to the onset and progression of numerous malignant tumors. On the other hand, TNIK is important in neuronal growth, proliferation, differentiation, and synaptic formation. Thus, the novel therapeutic strategies for targeting TNIK offer a promising direction for cancer, neurological or psychotic disorders. Here, we briefly summarized the biological information of TNIK, reviewed the role and regulatory mechanism in cancer and neuropsychiatric diseases, and introduced the research progress of inhibitors targeting TNIK. Taken together, this review hopes to contribute to the in-depth understanding of the function and regulatory mechanism of TNIK, which is of great significance for revealing the role of TNIK in the occurrence and treatment of diseases.
Collapse
Affiliation(s)
- Xue Wu
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Zhe Zhang
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
- Department of Cardiology, Faculty of Life Sciences and Medicine, Northwest University First Hospital, Northwest University, Xi'an, 710069, China
| | - Zhenye Qiu
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
- Department of Cardiology, Faculty of Life Sciences and Medicine, Northwest University First Hospital, Northwest University, Xi'an, 710069, China
| | - Xiaopeng Wu
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
- Department of Cardiology, Faculty of Life Sciences and Medicine, Northwest University First Hospital, Northwest University, Xi'an, 710069, China
| | - Junmin Chen
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
- Department of Cardiology, Faculty of Life Sciences and Medicine, Northwest University First Hospital, Northwest University, Xi'an, 710069, China
| | - Lu Liu
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
- Department of Cardiology, Faculty of Life Sciences and Medicine, Northwest University First Hospital, Northwest University, Xi'an, 710069, China
| | - Xiaoyi Liu
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
- Department of Cardiology, Faculty of Life Sciences and Medicine, Northwest University First Hospital, Northwest University, Xi'an, 710069, China
| | - Shiyan Zhao
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
- Department of Cardiology, Faculty of Life Sciences and Medicine, Northwest University First Hospital, Northwest University, Xi'an, 710069, China
| | - Yang Yang
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China.
- Department of Cardiology, Faculty of Life Sciences and Medicine, Northwest University First Hospital, Northwest University, Xi'an, 710069, China.
| | - Ye Zhao
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China.
| |
Collapse
|
7
|
Grither WR, Baker B, Morikis VA, Ilagan MXG, Fuh KC, Longmore GD. ROR2/Wnt5a Signaling Regulates Directional Cell Migration and Early Tumor Cell Invasion in Ovarian Cancer. Mol Cancer Res 2024; 22:495-507. [PMID: 38334461 PMCID: PMC11065611 DOI: 10.1158/1541-7786.mcr-23-0616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/12/2023] [Accepted: 02/06/2024] [Indexed: 02/10/2024]
Abstract
Adhesion to and clearance of the mesothelial monolayer are key early events in metastatic seeding of ovarian cancer. ROR2 is a receptor tyrosine kinase that interacts with Wnt5a ligand to activate noncanonical Wnt signaling and has been previously shown to be upregulated in ovarian cancer tissue. However, no prior study has evaluated the mechanistic role of ROR2 in ovarian cancer. Through a cellular high-throughput genetic screen, we independently identified ROR2 as a driver of ovarian tumor cell adhesion and invasion. ROR2 expression in ovarian tumor cells serves to drive directed cell migration preferentially toward areas of high Wnt5a ligand, such as the mesothelial lined omentum. In addition, ROR2 promotes ovarian tumor cell adhesion and clearance of a mesothelial monolayer. Depletion of ROR2, in tumor cells, reduces metastatic tumor burden in a syngeneic model of ovarian cancer. These findings support the role of ROR2 in ovarian tumor cells as a critical factor contributing to the early steps of metastasis. Therapeutic targeting of the ROR2/Wnt5a signaling axis could provide a means of improving treatment for patients with advanced ovarian cancer. IMPLICATIONS This study demonstrates that ROR2 in ovarian cancer cells is important for directed migration to the metastatic niche and provides a potential signaling axis of interest for therapeutic targeting in ovarian cancer.
Collapse
Affiliation(s)
- Whitney R. Grither
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Washington University, St. Louis, MO 63110, USA
| | - Breanna Baker
- Division of Oncology, Department of Medicine Washington University, St. Louis. MO 63110, USA
| | - Vasilios A. Morikis
- Division of Oncology, Department of Medicine Washington University, St. Louis. MO 63110, USA
| | - Ma. Xenia G. Ilagan
- High Throughput Screening Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Katherine C. Fuh
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology University of California, San Francisco, San Francisco, CA 94143 USA
| | - Gregory D. Longmore
- Division of Oncology, Department of Medicine Washington University, St. Louis. MO 63110, USA
- ICCE Institute, Washington University, St. Louis MO 63110, USA
| |
Collapse
|
8
|
An F, Song J, Chang W, Zhang J, Gao P, Wang Y, Xiao Z, Yan C. Research Progress on the Mechanism of the SFRP-Mediated Wnt Signalling Pathway Involved in Bone Metabolism in Osteoporosis. Mol Biotechnol 2024; 66:975-990. [PMID: 38194214 DOI: 10.1007/s12033-023-01018-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/01/2023] [Indexed: 01/10/2024]
Abstract
Osteoporosis (OP) is a metabolic bone disease linked to an elevated fracture risk, primarily stemming from disruptions in bone metabolism. Present clinical treatments for OP merely alleviate symptoms. Hence, there exists a pressing need to identify novel targets for the clinical treatment of OP. Research indicates that the Wnt signalling pathway is modulated by serum-secreted frizzled-related protein 5 (SFRP5), potentially serving as a pivotal regulator in bone metabolism disorders. Moreover, studies confirm elevated SFRP5 expression in OP, with SFRP5 overexpression leading to the downregulation of Wnt and β-catenin proteins in the Wnt signalling pathway, as well as the expression of osteogenesis-related marker molecules such as RUNX2, ALP, and OPN. Conversely, the opposite has been reported when SFRP5 is knocked out, suggesting that SFRP5 may be a key factor involved in the regulation of bone metabolism via the Wnt signalling axis. However, the molecular mechanisms underlying the action of SFRP5-induced OP have yet to be comprehensively elucidated. This review focusses on the molecular structure and function of SFRP5 and the potential molecular mechanisms of the SFRP5-mediated Wnt signalling pathway involved in bone metabolism in OP, providing reasonable evidence for the targeted therapy of SFRP5 for the prevention and treatment of OP.
Collapse
Affiliation(s)
- Fangyu An
- Teaching Experiment Training Center, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China
| | - Jiayi Song
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China
| | - Weirong Chang
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China
| | - Jie Zhang
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China
| | - Peng Gao
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China
| | - Yujie Wang
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China
| | - Zhipan Xiao
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China
| | - Chunlu Yan
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China.
| |
Collapse
|
9
|
Pećina-Šlaus N, Hrašćan R. Glioma Stem Cells-Features for New Therapy Design. Cancers (Basel) 2024; 16:1557. [PMID: 38672638 PMCID: PMC11049195 DOI: 10.3390/cancers16081557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
On a molecular level, glioma is very diverse and presents a whole spectrum of specific genetic and epigenetic alterations. The tumors are unfortunately resistant to available therapies and the survival rate is low. The explanation of significant intra- and inter-tumor heterogeneity and the infiltrative capability of gliomas, as well as its resistance to therapy, recurrence and aggressive behavior, lies in a small subset of tumor-initiating cells that behave like stem cells and are known as glioma cancer stem cells (GCSCs). They are responsible for tumor plasticity and are influenced by genetic drivers. Additionally, GCSCs also display greater migratory abilities. A great effort is under way in order to find ways to eliminate or neutralize GCSCs. Many different treatment strategies are currently being explored, including modulation of the tumor microenvironment, posttranscriptional regulation, epigenetic modulation and immunotherapy.
Collapse
Affiliation(s)
- Nives Pećina-Šlaus
- Laboratory of Neuro-Oncology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Šalata 12, 10000 Zagreb, Croatia
- Department of Biology, School of Medicine, University of Zagreb, Šalata 3, 10000 Zagreb, Croatia
| | - Reno Hrašćan
- Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia;
| |
Collapse
|
10
|
Girich AS. WntA and Wnt4 during the regeneration of internal organs in the holothurian Eupentacta fraudatrix. Genesis 2024; 62:e23562. [PMID: 37846177 DOI: 10.1002/dvg.23562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/18/2023]
Abstract
BACKGROUND Over the past few years, it has been established that wnt genes are involved in the regenerative processes of holothurians. The wnt4 gene was identified as one of the most active genes in Eupentacta fraudatrix regeneration using differential gene expression analysis and qPCR of individual genes. Also, the wntA gene was found in holothurians, which is present only in invertebrates and can perform unique functions. RESULTS In this regard, both these genes and proteins were studied in this work. During regeneration, the Wnt4 protein is found in the cells of the coelomic and ambulacral epithelium, retractor muscles, and radial nerves. Single cells with this protein are also found in the connective tissue of the developing aquapharyngeal bulb and in the hypoderm of the body wall. Cells with WntA are found exclusively in the hypoderm of the body wall. CONCLUSION We assume that both genes are involved in regeneration, but Wnt4 coordinates the formation of the epithelial tissue structure, while WntA maintains the state of the intercellular substance of the body wall.
Collapse
Affiliation(s)
- A S Girich
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| |
Collapse
|
11
|
Tai Y, Shang J. Wnt/β-catenin signaling pathway in the tumor progression of adrenocortical carcinoma. Front Endocrinol (Lausanne) 2024; 14:1260701. [PMID: 38269250 PMCID: PMC10806569 DOI: 10.3389/fendo.2023.1260701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/20/2023] [Indexed: 01/26/2024] Open
Abstract
Adrenocortical carcinoma (ACC) is an uncommon, aggressive endocrine malignancy with a high rate of recurrence, a poor prognosis, and a propensity for metastasis. Currently, only mitotane has received certification from both the US Food and Drug Administration (FDA) and the European Medicines Agency for the therapy of advanced ACC. However, treatment in the advanced periods of the disorders is ineffective and has serious adverse consequences. Completely surgical excision is the only cure but has failed to effectively improve the survival of advanced patients. The aberrantly activated Wnt/β-catenin pathway is one of the catalysts for adrenocortical carcinogenesis. Research has concentrated on identifying methods that can prevent the stimulation of the Wnt/β-catenin pathway and are safe and advantageous for patients in view of the absence of effective treatments and the frequent alteration of the Wnt/β-catenin pathway in ACC. Comprehending the complex connection between the development of ACC and Wnt/β-catenin signaling is essential for accurate pharmacological targets. In this review, we summarize the potential targets between adrenocortical carcinoma and the Wnt/β-catenin signaling pathway. We analyze the relevant targets of drugs or inhibitors that act on the Wnt pathway. Finally, we provide new insights into how drugs or inhibitors may improve the treatment of ACC.
Collapse
Affiliation(s)
- Yanghao Tai
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Taiyuan, China
| | - Jiwen Shang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Taiyuan, China
- Department of Ambulatory Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
12
|
Zhang M, Liu Q, Meng H, Duan H, Liu X, Wu J, Gao F, Wang S, Tan R, Yuan J. Ischemia-reperfusion injury: molecular mechanisms and therapeutic targets. Signal Transduct Target Ther 2024; 9:12. [PMID: 38185705 PMCID: PMC10772178 DOI: 10.1038/s41392-023-01688-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 08/29/2023] [Accepted: 10/18/2023] [Indexed: 01/09/2024] Open
Abstract
Ischemia-reperfusion (I/R) injury paradoxically occurs during reperfusion following ischemia, exacerbating the initial tissue damage. The limited understanding of the intricate mechanisms underlying I/R injury hinders the development of effective therapeutic interventions. The Wnt signaling pathway exhibits extensive crosstalk with various other pathways, forming a network system of signaling pathways involved in I/R injury. This review article elucidates the underlying mechanisms involved in Wnt signaling, as well as the complex interplay between Wnt and other pathways, including Notch, phosphatidylinositol 3-kinase/protein kinase B, transforming growth factor-β, nuclear factor kappa, bone morphogenetic protein, N-methyl-D-aspartic acid receptor-Ca2+-Activin A, Hippo-Yes-associated protein, toll-like receptor 4/toll-interleukine-1 receptor domain-containing adapter-inducing interferon-β, and hepatocyte growth factor/mesenchymal-epithelial transition factor. In particular, we delve into their respective contributions to key pathological processes, including apoptosis, the inflammatory response, oxidative stress, extracellular matrix remodeling, angiogenesis, cell hypertrophy, fibrosis, ferroptosis, neurogenesis, and blood-brain barrier damage during I/R injury. Our comprehensive analysis of the mechanisms involved in Wnt signaling during I/R reveals that activation of the canonical Wnt pathway promotes organ recovery, while activation of the non-canonical Wnt pathways exacerbates injury. Moreover, we explore novel therapeutic approaches based on these mechanistic findings, incorporating evidence from animal experiments, current standards, and clinical trials. The objective of this review is to provide deeper insights into the roles of Wnt and its crosstalk signaling pathways in I/R-mediated processes and organ dysfunction, to facilitate the development of innovative therapeutic agents for I/R injury.
Collapse
Affiliation(s)
- Meng Zhang
- The Collaborative Innovation Center, Jining Medical University, Jining, Shandong, 272067, China
| | - Qian Liu
- Clinical Medical College, Jining Medical University, Jining, Shandong, 272067, China
| | - Hui Meng
- Clinical Medical College, Jining Medical University, Jining, Shandong, 272067, China
| | - Hongxia Duan
- Clinical Medical College, Jining Medical University, Jining, Shandong, 272067, China
| | - Xin Liu
- Second Clinical Medical College, Jining Medical University, Jining, Shandong, 272067, China
| | - Jian Wu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Fei Gao
- The Collaborative Innovation Center, Jining Medical University, Jining, Shandong, 272067, China
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Shijun Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| | - Rubin Tan
- Department of Physiology, Basic medical school, Xuzhou Medical University, Xuzhou, 221004, China.
| | - Jinxiang Yuan
- The Collaborative Innovation Center, Jining Medical University, Jining, Shandong, 272067, China.
| |
Collapse
|
13
|
Song S, Cho B, Weiner AT, Nissen SB, Ojeda Naharros I, Sanchez Bosch P, Suyama K, Hu Y, He L, Svinkina T, Udeshi ND, Carr SA, Perrimon N, Axelrod JD. Protein phosphatase 1 regulates core PCP signaling. EMBO Rep 2023; 24:e56997. [PMID: 37975164 PMCID: PMC10702827 DOI: 10.15252/embr.202356997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/19/2023] Open
Abstract
Planar cell polarity (PCP) signaling polarizes epithelial cells within the plane of an epithelium. Core PCP signaling components adopt asymmetric subcellular localizations within cells to both polarize and coordinate polarity between cells. Achieving subcellular asymmetry requires additional effectors, including some mediating post-translational modifications of core components. Identification of such proteins is challenging due to pleiotropy. We used mass spectrometry-based proximity labeling proteomics to identify such regulators in the Drosophila wing. We identified the catalytic subunit of protein phosphatase1, Pp1-87B, and show that it regulates core protein polarization. Pp1-87B interacts with the core protein Van Gogh and at least one serine/threonine kinase, Dco/CKIε, that is known to regulate PCP. Pp1-87B modulates Van Gogh subcellular localization and directs its dephosphorylation in vivo. PNUTS, a Pp1 regulatory subunit, also modulates PCP. While the direct substrate(s) of Pp1-87B in control of PCP is not known, our data support the model that cycling between phosphorylated and unphosphorylated forms of one or more core PCP components may regulate acquisition of asymmetry. Finally, our screen serves as a resource for identifying additional regulators of PCP signaling.
Collapse
Affiliation(s)
- Song Song
- Department of PathologyStanford University School of MedicineStanfordCAUSA
- Present address:
GenScriptPiscatawayNJUSA
| | - Bomsoo Cho
- Department of PathologyStanford University School of MedicineStanfordCAUSA
| | - Alexis T Weiner
- Department of PathologyStanford University School of MedicineStanfordCAUSA
| | - Silas Boye Nissen
- Department of PathologyStanford University School of MedicineStanfordCAUSA
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW)University of CopenhagenCopenhagenDenmark
| | - Irene Ojeda Naharros
- Department of OphthalmologyUniversity of California, San FranciscoSan FranciscoCAUSA
| | | | - Kaye Suyama
- Department of PathologyStanford University School of MedicineStanfordCAUSA
| | - Yanhui Hu
- Department of Genetics, Blavatnik Institute, Harvard Medical SchoolHarvard UniversityBostonMAUSA
| | - Li He
- Department of Genetics, Blavatnik Institute, Harvard Medical SchoolHarvard UniversityBostonMAUSA
- Present address:
School of Life SciencesUniversity of Science and Technology of ChinaHefeiChina
| | | | | | | | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical SchoolHarvard UniversityBostonMAUSA
- Howard Hughes Medical InstituteBostonMAUSA
| | - Jeffrey D Axelrod
- Department of PathologyStanford University School of MedicineStanfordCAUSA
| |
Collapse
|
14
|
Wang X, Liu Y, Zhou M, Yu L, Si Z. m6A modified BACE1-AS contributes to liver metastasis and stemness-like properties in colorectal cancer through TUFT1 dependent activation of Wnt signaling. J Exp Clin Cancer Res 2023; 42:306. [PMID: 37986103 PMCID: PMC10661562 DOI: 10.1186/s13046-023-02881-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/01/2023] [Indexed: 11/22/2023] Open
Abstract
BACKGROUND Liver metastasis is one of the most important reasons for high mortality of colorectal cancer (CRC). Growing evidence illustrates that lncRNAs play a critical role in CRC liver metastasis. Here we described a novel function and mechanisms of BACE1-AS promoting CRC liver metastasis. METHODS qRT-PCR and in situ hybridization were performed to examine the BACE1-AS level in CRC. IGF2BP2 binding to m6A motifs in BACE1-AS was determined by RIP assay and S1m-tagged immunoprecipitation. Transwell assay and liver metastasis mice model experiments were performed to examine the metastasis capabilities of BACE1-AS knockout cells. Stemness-like properties was examined by tumor sphere assay and the expression of stemness biomarkers. Microarray data were acquired to analyze the signaling pathways involved in BACE1-AS promoting CRC metastasis. RESULTS BACE1-AS is the most up-regulated in metastatic CRC associated with unfavorable prognosis. Sequence blast revealed two m6A motifs in BACE1-AS. IGF2BP2 binding to these two m6A motifs is required for BACE1-AS boost in metastatic CRC. m6A modified BACE1-AS drives CRC cells migration and invasion and liver metastasis both in vitro and in vivo. Moreover, BACE1-AS maintains the stemness-like properties of CRC cells. Mechanically, BACE1-AS promoted TUFT1 expression by ceRNA network through miR-214-3p. CRC patients with such ceRNA network suffer poorer prognosis than ceRNA-negative patients. Depletion of TUFT1 mimics BACE1-AS loss. BACE1-AS activated Wnt signaling pathway in a TUFT1 dependent manner. BACE1-AS/miR-214-3p/TUFT1/Wnt signaling regulatory axis is essential for CRC liver metastasis. Pharmacologic inhibition of Wnt signaling pathway repressed liver metastasis and stemness-like features in BACE1-AS over-expressed CRC cells. CONCLUSION Our study demonstrated BACE1-AS as a novel target of IGF2BP2 through m6A modification. m6A modified BACE1-AS promotes CRC liver metastasis through TUFT1 dependent activation of Wnt signaling pathway. Thus, targeting BACE1-AS and its downstream Wnt signaling pathways may provide a new opportunity for metastatic CRC intervention and treatment.
Collapse
Affiliation(s)
- Xidi Wang
- Central Laboratory of the Medical Research Center, The First Affiliated Hospital of Ningbo University, 247 Renmin Road, Jiangbei District, Ningbo, 315020, P. R. China.
- Health Science Center, Ningbo University, 818 Fenghua Road, Jiangbei District, Ningbo, 315211, P. R. China.
| | - Yu Liu
- Health Science Center, Ningbo University, 818 Fenghua Road, Jiangbei District, Ningbo, 315211, P. R. China
| | - Miao Zhou
- Central Laboratory of the Medical Research Center, The First Affiliated Hospital of Ningbo University, 247 Renmin Road, Jiangbei District, Ningbo, 315020, P. R. China
| | - Lei Yu
- Department of Colorectal Cancer Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, P. R. China
| | - Zizhen Si
- Health Science Center, Ningbo University, 818 Fenghua Road, Jiangbei District, Ningbo, 315211, P. R. China.
| |
Collapse
|
15
|
Pintor S, Lopez A, Flores D, Lozoya B, Soti B, Pokhrel R, Negrete J, Persans MW, Gilkerson R, Gunn B, Keniry M. FOXO1 promotes the expression of canonical WNT target genes in examined basal-like breast and glioblastoma multiforme cancer cells. FEBS Open Bio 2023; 13:2108-2123. [PMID: 37584250 PMCID: PMC10626282 DOI: 10.1002/2211-5463.13696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 08/04/2023] [Accepted: 08/14/2023] [Indexed: 08/17/2023] Open
Abstract
Basal-like breast cancer (BBC) and glioblastoma multiforme (GBM) are aggressive cancers associated with poor prognosis. BBC and GBM have stem cell-like gene expression signatures, which are in part driven by forkhead box O (FOXO) transcription factors. To gain further insight into the impact of FOXO1 in BBC, we treated BT549 cells with AS1842856 and performed RNA sequencing. AS1842856 binds to unphosphorylated FOXO1 and inhibits its ability to directly bind to DNA. Gene Set Enrichment Analysis indicated that a set of WNT pathway target genes, including lymphoid enhancer-binding factor 1 (LEF1) and transcription factor 7 (TCF7), were robustly induced after AS1842856 treatment. These same genes were also induced in GBM cell lines U87MG, LN18, LN229, A172, and DBTRG upon AS1842856 treatment. By contrast, follow-up RNA interference (RNAi) targeting of FOXO1 led to reduced LEF1 and TCF7 gene expression in BT549 and U87MG cells. In agreement with RNAi experiments, CRISPR Cas9-mediated FOXO1 disruption reduced the expression of canonical WNT genes LEF1 and TCF7 in U87MG cells. The loss of TCF7 gene expression in FOXO1 disruption mutants was restored by exogenous expression of the DNA-binding-deficient FOXO1-H215R. Therefore, FOXO1 induces TCF7 in a DNA-binding-independent manner, similar to other published FOXO1-activated genes such as TCF4 and hes family bHLH transcription factor 1. Our work demonstrates that FOXO1 promotes canonical WNT gene expression in examined BBC and GBM cells, similar to results found in Drosophila melanogaster, T-cell development, and murine acute myeloid leukemia models.
Collapse
Affiliation(s)
- Shania Pintor
- Department of BiologyThe University of Texas Rio Grande ValleyEdinburgTXUSA
| | - Alma Lopez
- Department of BiologyThe University of Texas Rio Grande ValleyEdinburgTXUSA
| | - David Flores
- Department of BiologyThe University of Texas Rio Grande ValleyEdinburgTXUSA
| | - Brianda Lozoya
- Department of BiologyThe University of Texas Rio Grande ValleyEdinburgTXUSA
| | - Bipul Soti
- Department of BiologyThe University of Texas Rio Grande ValleyEdinburgTXUSA
| | - Rishi Pokhrel
- Department of BiologyThe University of Texas Rio Grande ValleyEdinburgTXUSA
| | - Joaquin Negrete
- Department of BiologyThe University of Texas Rio Grande ValleyEdinburgTXUSA
| | - Michael W. Persans
- Department of BiologyThe University of Texas Rio Grande ValleyEdinburgTXUSA
| | - Robert Gilkerson
- Department of BiologyThe University of Texas Rio Grande ValleyEdinburgTXUSA
- Medical Laboratory SciencesThe University of Texas Rio Grande ValleyEdinburgTXUSA
| | - Bonnie Gunn
- Department of BiologyThe University of Texas Rio Grande ValleyEdinburgTXUSA
| | - Megan Keniry
- Department of BiologyThe University of Texas Rio Grande ValleyEdinburgTXUSA
| |
Collapse
|
16
|
Ma YQ, Zhang XY, Zhao SW, Li D, Cai MQ, Yang H, Wang XM, Xue H. Retinoic acid delays murine palatal shelf elevation by inhibiting Wnt5a-mediated noncanonical Wnt signaling and downstream Cdc-42/F-actin remodeling in mesenchymal cells. Birth Defects Res 2023; 115:1658-1673. [PMID: 37675882 DOI: 10.1002/bdr2.2244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 08/12/2023] [Accepted: 08/21/2023] [Indexed: 09/08/2023]
Abstract
BACKGROUND Mammalian palatal shelves erupted from maxillary prominences undergo vertical extention, transient elevation, and horizontal growth to fuse. Previous studies in mice reported that the retinoic acid (RA) contributed to cleft palate in high incidence by delaying the elevating procedure, but little was known about the underlying biological mechanisms. METHODS In this study, hematoxylin-eosin and immunofluorescence staining were employed to evaluate the phenotypes and the expression of related markers in the RA-treated mice model. In situ hybridization and RT-qPCR were used to detect the expression of genes involved in Wnt signaling pathway. The palatal mesenchymal cells were cultured in vitro, and stimulated with RA or CASIN, and co-treated with Foxy5. Wnt5a and Ccd42 expression were evaluated by immunofluorescence staining. Phalloidin was used to label the microfilament cytoskeleton (F-actin) in cultured cells. RESULTS We revealed that RA resulted in 100% incidence of cleft palate in mouse embryos, and the expression of genes responsible for Wnt5a-mediated noncanonical Wnt signal transduction were specifically downregulated in mesenchymal palatal shelves. The in vitro study of palatal mesenchymal cells indicated that RA treatment disrupted the organized remodeling of cytoskeleton, an indicative structure of cell migration regulated by the small Rho GTPase Cdc42. Moreover, we showed that the suppression of cytoskeleton and cell migration induced by RA was partially restored using the small molecule Foxy-5-mediated activation of Wnt5A, and this restoration was attenuated by CASIN (a selective GTPase Cdc42 inhibitor) again. CONCLUSIONS These data identified a crucial mechanism for Wnt5a-mediated noncanonical Wnt signaling in acting downstream of Rho GTPase Cdc42 to regulate cytoskeletal remodeling and cell migration during the process of palate elevation. Our study provided a new explanation for the cause of cleft palate induced by RA.
Collapse
Affiliation(s)
- Yan-Qing Ma
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing (No: 20JR10RA653 - ZDKF20210401), School of Stomatology, Lanzhou University, Lanzhou, Gansu Province, People's Republic of China
- Department of Orthodontics, School of Stomatology, Lanzhou University, Lanzhou, Gansu Province, People's Republic of China
| | - Xin-Yu Zhang
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing (No: 20JR10RA653 - ZDKF20210401), School of Stomatology, Lanzhou University, Lanzhou, Gansu Province, People's Republic of China
- Department of Orthodontics, School of Stomatology, Lanzhou University, Lanzhou, Gansu Province, People's Republic of China
| | - Shi-Wei Zhao
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing (No: 20JR10RA653 - ZDKF20210401), School of Stomatology, Lanzhou University, Lanzhou, Gansu Province, People's Republic of China
- Department of Orthodontics, School of Stomatology, Lanzhou University, Lanzhou, Gansu Province, People's Republic of China
| | - Dou Li
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing (No: 20JR10RA653 - ZDKF20210401), School of Stomatology, Lanzhou University, Lanzhou, Gansu Province, People's Republic of China
- Department of Orthodontics, School of Stomatology, Lanzhou University, Lanzhou, Gansu Province, People's Republic of China
| | - Min-Qin Cai
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing (No: 20JR10RA653 - ZDKF20210401), School of Stomatology, Lanzhou University, Lanzhou, Gansu Province, People's Republic of China
- Department of Orthodontics, School of Stomatology, Lanzhou University, Lanzhou, Gansu Province, People's Republic of China
| | - Hui Yang
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing (No: 20JR10RA653 - ZDKF20210401), School of Stomatology, Lanzhou University, Lanzhou, Gansu Province, People's Republic of China
- Department of Orthodontics, School of Stomatology, Lanzhou University, Lanzhou, Gansu Province, People's Republic of China
| | - Xiao-Ming Wang
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing (No: 20JR10RA653 - ZDKF20210401), School of Stomatology, Lanzhou University, Lanzhou, Gansu Province, People's Republic of China
- Department of Orthodontics, School of Stomatology, Lanzhou University, Lanzhou, Gansu Province, People's Republic of China
| | - Hui Xue
- Department of Stomatology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu Province, People's Republic of China
| |
Collapse
|
17
|
Costanza F, Papi G, Corrado S, Pontecorvi A. Case Report: Papillary thyroid carcinoma in Goltz-Gorlin syndrome. Front Endocrinol (Lausanne) 2023; 14:1243540. [PMID: 37859990 PMCID: PMC10582693 DOI: 10.3389/fendo.2023.1243540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/05/2023] [Indexed: 10/21/2023] Open
Abstract
Goltz-Gorlin syndrome (GGS), also known as focal dermal hypoplasia, is a rare X-linked disorder caused by pathogenic variants in the PORCN gene and characterized by several abnormalities, including skin and limb defects, papillomas in multiple organs, ocular malformations, and mild facial dysmorphism. To date, only approximately 300 cases have been described in the literature. A 16-year-old female patient, born with multiple congenital dysmorphisms consistent with GGS and confirmed by genetic exam, was referred to our outpatient clinic for the workup of a thyroid nodule. A thyroid ultrasound showed a bilateral nodular disease with a 17-mm large hypoechoic nodule in the right lobe. Cytological exam of fine needle aspiration biopsy was suspicious for malignancy. Thus, she underwent total thyroidectomy plus lymphadenectomy of the right central compartment. A histological exam disclosed a papillary thyroid carcinoma (PTC) with lymph node micrometastases. Radioiodine (131-Iodine) therapy was performed. At 3- and 6-month follow-up, the patient did not present either ultrasound or laboratory PTC recurrence. To our knowledge, we report the first case of PTC in a patient with GGS. Since thyroid cancer is rare among children and adolescents, we hypothesize that the PORCN pathogenic variant could be responsible for tumor susceptibility. We also provide an overview of the clinical findings on GGS patients already reported and discuss the possible pathogenetic mechanism that may underlie this rare condition, including the role of PORCN in tumor susceptibility.
Collapse
Affiliation(s)
- Flavia Costanza
- Endocrinology, Diabetology and Internal Medicine Unit, Catholic University of the Sacred Heart, Rome, Italy
| | - Giampaolo Papi
- Endocrinology, Diabetology and Internal Medicine Unit, Catholic University of the Sacred Heart, Rome, Italy
- Endocrinology Unit, Azienda USL Modena, Modena, Italy
| | - Stefania Corrado
- Department of Pathology and Laboratory Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Alfredo Pontecorvi
- Endocrinology, Diabetology and Internal Medicine Unit, Catholic University of the Sacred Heart, Rome, Italy
| |
Collapse
|
18
|
Wang XC, Tang YL, Liang XH. Tumour follower cells: A novel driver of leader cells in collective invasion (Review). Int J Oncol 2023; 63:115. [PMID: 37615176 PMCID: PMC10552739 DOI: 10.3892/ijo.2023.5563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/28/2023] [Indexed: 08/25/2023] Open
Abstract
Collective cellular invasion in malignant tumours is typically characterized by the cooperative migration of multiple cells in close proximity to each other. Follower cells are led away from the tumour by specialized leader cells, and both cell populations play a crucial role in collective invasion. Follower cells form the main body of the migration system and depend on intercellular contact for migration, whereas leader cells indicate the direction for the entire cell population. Although collective invasion can occur in epithelial and non‑epithelial malignant neoplasms, such as medulloblastoma and rhabdomyosarcoma, the present review mainly provided an extensive analysis of epithelial tumours. In the present review, the cooperative mechanisms of contact inhibition locomotion between follower and leader cells, where follower cells coordinate and direct collective movement through physical (mechanical) and chemical (signalling) interactions, is summarised. In addition, the molecular mechanisms of follower cell invasion and metastasis during remodelling and degradation of the extracellular matrix and how chemotaxis and lateral inhibition mediate follower cell behaviour were analysed. It was also demonstrated that follower cells exhibit genetic and metabolic heterogeneity during invasion, unlike leader cells.
Collapse
Affiliation(s)
- Xiao-Chen Wang
- Departments of Oral and Maxillofacial Surgery, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ya-Ling Tang
- Departments of Oral Pathology, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xin-Hua Liang
- Departments of Oral and Maxillofacial Surgery, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
19
|
Song S, Cho B, Weiner AT, Nissen SB, Naharros IO, Bosch PS, Suyama K, Hu Y, He L, Svinkina T, Udeshi ND, Carr SA, Perrimon N, Axelrod JD. Protein phosphatase 1 regulates core PCP signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.12.556998. [PMID: 37745534 PMCID: PMC10515792 DOI: 10.1101/2023.09.12.556998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
PCP signaling polarizes epithelial cells within the plane of an epithelium. Core PCP signaling components adopt asymmetric subcellular localizations within cells to both polarize and coordinate polarity between cells. Achieving subcellular asymmetry requires additional effectors, including some mediating post-translational modifications of core components. Identification of such proteins is challenging due to pleiotropy. We used mass spectrometry-based proximity labeling proteomics to identify such regulators in the Drosophila wing. We identified the catalytic subunit of Protein Phosphatase1, Pp1-87B, and show that it regulates core protein polarization. Pp1-87B interacts with the core protein Van Gogh and at least one Serine/Threonine kinase, Dco/CKIε, that is known to regulate PCP. Pp1-87B modulates Van Gogh subcellular localization and directs its dephosphorylation in vivo. PNUTS, a Pp1 regulatory subunit, also modulates PCP. While the direct substrate(s) of Pp1-87B in control of PCP is not known, our data support the model that cycling between phosphorylated and unphosphorylated forms of one or more core PCP components may regulate acquisition of asymmetry. Finally, our screen serves as a resource for identifying additional regulators of PCP signaling.
Collapse
Affiliation(s)
- Song Song
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Present Address: GenScript, 860 Centennial Avenue, Piscataway, NJ, 08854, USA
| | - Bomsoo Cho
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alexis T. Weiner
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Silas Boye Nissen
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen N, Denmark
| | - Irene Ojeda Naharros
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA 94143-3120, USA
| | - Pablo Sanchez Bosch
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kaye Suyama
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yanhui Hu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Li He
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Harvard University, Boston, MA 02115, USA
- Present Address: School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | | | | | | | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Harvard University, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Boston, MA 02138, USA
| | - Jeffrey D. Axelrod
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
20
|
Hapach LA, Wang W, Schwager SC, Pokhriyal D, Fabiano ED, Reinhart-King CA. Phenotypically sorted highly and weakly migratory triple negative breast cancer cells exhibit migratory and metastatic commensalism. Breast Cancer Res 2023; 25:102. [PMID: 37649089 PMCID: PMC10468890 DOI: 10.1186/s13058-023-01696-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 08/09/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Intratumor heterogeneity is a well-established hallmark of cancer that impedes cancer research, diagnosis, and treatment. Previously, we phenotypically sorted human breast cancer cells based on migratory potential. When injected into mice, highly migratory cells were weakly metastatic and weakly migratory cells were highly metastatic. The purpose of this study was to determine whether these weakly and highly migratory cells interact with each other in vitro or in vivo. METHODS To assess the relationship between heterogeneity in cancer cell migration and metastatic fitness, MDA-MB-231 and SUM159PT triple negative breast cancer cells were phenotypically sorted into highly migratory and weakly migratory subpopulations and assayed separately and in a 1:1 mixture in vitro and in vivo for metastatic behaviors. Unpaired, two-tailed Student's t-tests, Mann-Whitney tests, ordinary, one-way ANOVAs, and Kruskal-Wallis H tests were performed as appropriate with p < 0.05 as the cutoff for statistical significance. RESULTS When highly and weakly migratory cells are co-seeded in mixed spheroids, the weakly migratory cells migrated farther than weakly migratory only spheroids. In mixed spheroids, leader-follower behavior occurred with highly migratory cells leading the weakly migratory cells in migration strands. When cell suspensions of highly migratory, weakly migratory, or a 1:1 mixture of both subpopulations were injected orthotopically into mice, both the mixed cell suspensions and weakly migratory cells showed significant distal metastasis, but the highly migratory cells did not metastasize significantly to any location. Notably, significantly more distal metastasis was observed in mice injected with the 1:1 mixture compared to either subpopulation alone. CONCLUSIONS This study suggests that weakly migratory cells interact with highly migratory cells in a commensal fashion resulting in increased migration and metastasis. Together, these findings indicate that cancer cell subpopulation migration ability does not correlate with metastatic potential and that cooperation between highly migratory and weakly migratory subpopulations can enhance overall metastatic fitness.
Collapse
Affiliation(s)
- Lauren A Hapach
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37212, USA
| | - Wenjun Wang
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37212, USA
| | - Samantha C Schwager
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37212, USA
| | - Devika Pokhriyal
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Emily D Fabiano
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37212, USA
| | | |
Collapse
|
21
|
Liu X, Jiang L, Zhang W, Zhang J, Luan X, Zhan Y, Wang T, Da J, Liu L, Zhang S, Guo Y, Zhang K, Wang Z, Miao N, Xie X, Liu P, Li Y, Jin H, Zhang B. Fam20c regulates the calpain proteolysis system through phosphorylating Calpasatatin to maintain cell homeostasis. J Transl Med 2023; 21:417. [PMID: 37370126 DOI: 10.1186/s12967-023-04275-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND The family with sequence similarity 20-member C (FAM20C) kinase, a Golgi casein kinase, which is responsible for phosphorylating the majority of the extracellular phosphoproteins within S-x-E/pS motifs, and is fundamentally associated with multiple biological processes to maintain cell proliferation, biomineralization, migration, adhesion, and phosphate homeostasis. In dissecting how FAM20C regulates downstream molecules and potential mechanisms, however, there are multiple target molecules of FAM20C, particularly many phenomena remain elusive, such as changes in cell-autonomous behaviors, incompatibility in genotypes and phenotypes, and others. METHODS Here, assay for transposase-accessible chromatin using sequencing (ATAC-seq), RNA sequencing (RNA-seq), proteomics, and phosphoproteomics were performed in Fam20c-dificient osteoblasts and to facilitate an integrated analysis and determine the impact of chromatin accessibility, genomic expression, protein alterations, signaling pathway, and post translational modifcations. RESULTS By combining ATAC-seq and RNA-seq, we identified TCF4 and Wnt signaling pathway as the key regulators in Fam20c-dificient cells. Further, we showed Calpastatin/Calpain proteolysis system as a novel target axis for FAM20C to regulate cell migration and F-actin cytoskeleton by integrated analysis of proteomics and phosphoproteomics. Furthermore, Calpastatin/Calpain proteolysis system could negatively regulate the Wnt signaling pathway. CONCLUSION These observations implied that Fam20c knockout osteoblasts would cause cell homeostatic imbalance, involving changes in multiple signaling pathways in the conduction system.
Collapse
Affiliation(s)
- Xinpeng Liu
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Lili Jiang
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Pediatric Dentistry, School of Stomatology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenxuan Zhang
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiahui Zhang
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Stomatology and Dental Hygiene, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Xinrui Luan
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuanbo Zhan
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Periodontology and Oral Mucosa, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tuo Wang
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Junlong Da
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lixue Liu
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shujian Zhang
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuyao Guo
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Kai Zhang
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Zhiping Wang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Nan Miao
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Periodontology and Oral Mucosa, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaohua Xie
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Stomatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Peihong Liu
- Department of Stomatology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ying Li
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Han Jin
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Bin Zhang
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
- Heilongjiang Academy of Medical Sciences, Harbin, China.
| |
Collapse
|
22
|
Qu W, Yan Y, Gerrish K, Scappini E, Tucker CJ, Dixon D, Merrick BA. Chronic PFOA exposure in vitro causes acquisition of multiple tumor cell characteristics in rat liver cells. Toxicol In Vitro 2023; 89:105577. [PMID: 36849026 PMCID: PMC10427995 DOI: 10.1016/j.tiv.2023.105577] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 02/09/2023] [Accepted: 02/18/2023] [Indexed: 02/27/2023]
Abstract
Perfluorooctanoic acid (PFOA) is tumorigenic in rats and mice and potentially tumorigenic in humans. Here, we studied long-term PFOA exposure with an in vitro transformation model using the rat liver epithelial cell, TRL 1215. Cells were cultured in 10 μM (T10), 50 μM (T50) and 100 μM (T100) PFOA for 38 weeks and compared to passage-matched control cells. T100 cells showed morphological changes, loss of cell contact inhibition, formation of multinucleated giant and spindle-shaped cells. T10, T50, and T100 cells showed increased LC50 values 20%, 29% to 35% above control with acute PFOA treatment, indicating a resistance to PFOA toxicity. PFOA-treated cells showed increases in Matrix metalloproteinase-9 secretion, cell migration, and developed more and larger colonies in soft agar. Microarray data showed Myc pathway activation at T50 and T100, associating Myc upregulation with PFOA-induced morphological transformation. Western blot confirmed that PFOA produced significant increases in c-MYC protein expression in a time- and concentration-related manner. Tumor invasion indicators MMP-2 and MMP-9, cell cycle regulator cyclin D1, and oxidative stress protein GST were all significantly overexpressed in T100 cells. Taken together, chronic in vitro PFOA exposure produced multiple cell characteristics of malignant progression and differential gene expression changes suggestive of rat liver cell transformation.
Collapse
Affiliation(s)
- Wei Qu
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences (NIEHS), 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA.
| | - Yitang Yan
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences (NIEHS), 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Kevin Gerrish
- Molecular Genomics Core Laboratory, NIEHS, 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Erica Scappini
- Fluorescence Microscopy and Imaging Center, Signal Transduction Laboratory, NIEHS, 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Charles J Tucker
- Fluorescence Microscopy and Imaging Center, Signal Transduction Laboratory, NIEHS, 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Darlene Dixon
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences (NIEHS), 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA
| | - B Alex Merrick
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences (NIEHS), 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA
| |
Collapse
|
23
|
VanderVorst K, Dreyer CA, Hatakeyama J, Bell GRR, Learn JA, Berg AL, Hernandez M, Lee H, Collins SR, Carraway KL. Vangl-dependent Wnt/planar cell polarity signaling mediates collective breast carcinoma motility and distant metastasis. Breast Cancer Res 2023; 25:52. [PMID: 37147680 PMCID: PMC10163820 DOI: 10.1186/s13058-023-01651-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 04/23/2023] [Indexed: 05/07/2023] Open
Abstract
BACKGROUND In light of the growing appreciation for the role of collective cell motility in metastasis, a deeper understanding of the underlying signaling pathways will be critical to translating these observations to the treatment of advanced cancers. Here, we examine the contribution of Wnt/planar cell polarity (Wnt/PCP), one of the non-canonical Wnt signaling pathways and defined by the involvement of the tetraspanin-like proteins Vangl1 and Vangl2, to breast tumor cell motility, collective cell invasiveness and mammary tumor metastasis. METHODS Vangl1 and Vangl2 knockdown and overexpression and Wnt5a stimulation were employed to manipulate Wnt/PCP signaling in a battery of breast cancer cell lines representing all breast cancer subtypes, and in tumor organoids from MMTV-PyMT mice. Cell migration was assessed by scratch and organoid invasion assays, Vangl protein subcellular localization was assessed by confocal fluorescence microscopy, and RhoA activation was assessed in real time by fluorescence imaging with an advanced FRET biosensor. The impact of Wnt/PCP suppression on mammary tumor growth and metastasis was assessed by determining the effect of conditional Vangl2 knockout on the MMTV-NDL mouse mammary tumor model. RESULTS We observed that Vangl2 knockdown suppresses the motility of all breast cancer cell lines examined, and overexpression drives the invasiveness of collectively migrating MMTV-PyMT organoids. Vangl2-dependent RhoA activity is localized in real time to a subpopulation of motile leader cells displaying a hyper-protrusive leading edge, Vangl protein is localized to leader cell protrusions within leader cells, and actin cytoskeletal regulator RhoA is preferentially activated in the leader cells of a migrating collective. Mammary gland-specific knockout of Vangl2 results in a striking decrease in lung metastases in MMTV-NDL mice, but does not impact primary tumor growth characteristics. CONCLUSIONS We conclude that Vangl-dependent Wnt/PCP signaling promotes breast cancer collective cell migration independent of breast tumor subtype and facilitates distant metastasis in a genetically engineered mouse model of breast cancer. Our observations are consistent with a model whereby Vangl proteins localized at the leading edge of leader cells in a migrating collective act through RhoA to mediate the cytoskeletal rearrangements required for pro-migratory protrusion formation.
Collapse
Affiliation(s)
- Kacey VanderVorst
- Department of Biochemistry and Molecular Medicine and University of California Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Courtney A Dreyer
- Department of Biochemistry and Molecular Medicine and University of California Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Jason Hatakeyama
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - George R R Bell
- Department of Microbiology and Molecular Genetics, University of California Davis, Davis, CA, USA
| | - Julie A Learn
- Department of Biochemistry and Molecular Medicine and University of California Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Anastasia L Berg
- Department of Biochemistry and Molecular Medicine and University of California Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Maria Hernandez
- Department of Biochemistry and Molecular Medicine and University of California Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Hyun Lee
- Department of Biochemistry and Molecular Medicine and University of California Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Sean R Collins
- Department of Microbiology and Molecular Genetics, University of California Davis, Davis, CA, USA
| | - Kermit L Carraway
- Department of Biochemistry and Molecular Medicine and University of California Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, USA.
| |
Collapse
|
24
|
Yang Q, Qin T, An T, Wu H, Xu G, Xiang J, Lei K, Zhang S, Xia J, Su G, Wang D, Xue M, Kong L, Zhang W, Wu S, Li Y. Novel PORCN inhibitor WHN-88 targets Wnt/β-catenin pathway and prevents the growth of Wnt-driven cancers. Eur J Pharmacol 2023; 945:175628. [PMID: 36858339 DOI: 10.1016/j.ejphar.2023.175628] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 03/03/2023]
Abstract
Wnt/β-catenin signaling pathway is a classical and crucial oncogenic pathway in many carcinomas, and Porcupine (PORCN) is an O-acyltransferase, which is indispensable and highly specific for catalyzing palmitoylation of Wnt ligands and facilitating their secretion and biofunction. Targeting PORCN provides a promising approach to specifically cure Wnt-driven cancers from the root. In this study, we designed series of pyridonyl acetamide compounds, and discovered a novel PORCN inhibitor WHN-88 with a unique di-iodinated pyridone structural fragment, which is significantly different from the reported inhibitors. We demonstrated that WHN-88 effectively abolished palmitoylation of Wnt ligands and prevented their secretion and the subsequent Wnt/β-catenin signaling transduction. Further experiments showed that, at well-tolerated doses, WHN-88 remarkably suppressed the spontaneous occurrence and growth of MMTV-Wnt1 murine breast tumors. Consistently, WHN-88 also notably restrained the progress of xenografted Wnt-driven human tumors, including PA-1 teratocarcinoma with high autocrine Wnt signaling and Aspc-1 pancreatic carcinoma with Wnt-sensitizing RNF43 mutation. Additionally, we disclosed that WHN-88 inhibited cancer cell stemness obviously. Together, we verified WHN-88 is a novel PORCN inhibitor with potent efficacy against the Wnt-driven cancers. Our findings enriched the structural types of PORCN inhibitors, and facilitated the development and application of PORCN inhibiting therapy in clinic.
Collapse
Affiliation(s)
- Qihong Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tong Qin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China
| | - Tao An
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, China
| | - Hongna Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China
| | - Gang Xu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Pharmacy, Yunnan University, Kunming, 650091, China
| | - Jin Xiang
- State Key Laboratory of Functions and Applications of Medicinal Plants/School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 550025, China
| | - Kangfan Lei
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China
| | - Shaohua Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Pharmacy, Yunnan University, Kunming, 650091, China
| | - Jie Xia
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China
| | - Guifeng Su
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Pharmacy, Yunnan University, Kunming, 650091, China
| | - Dan Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Pharmacy, Yunnan University, Kunming, 650091, China
| | - Minggao Xue
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Pharmacy, Yunnan University, Kunming, 650091, China
| | - Lingmei Kong
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Pharmacy, Yunnan University, Kunming, 650091, China
| | - Wenxuan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China.
| | - Song Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China.
| | - Yan Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Pharmacy, Yunnan University, Kunming, 650091, China.
| |
Collapse
|
25
|
Katanaev VL, Baldin A, Denisenko TV, Silachev DN, Ivanova AE, Sukhikh GT, Jia L, Ashrafyan LA. Cells of the tumor microenvironment speak the Wnt language. Trends Mol Med 2023; 29:468-480. [PMID: 37045723 DOI: 10.1016/j.molmed.2023.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/20/2023] [Accepted: 03/20/2023] [Indexed: 04/14/2023]
Abstract
Wnt signaling plays numerous functions in cancer, from primary transformation and tumor growth to metastasis. In addition to these cancer cell-intrinsic functions, Wnt signaling emerges to critically control cross-communication among cancer cells and the tumor microenvironment (TME). Here, we summarize the evidence that not only multiple cancer cell types, but also cells constituting the TME 'speak the Wnt language'. Fibroblasts, macrophages, endothelia, and lymphocytes all use the Wnt language to convey messages to and from cancer cells and among themselves; these messages are important for tumor progression and fate. Decoding this language will advance our understanding of tumor biology and unveil novel therapeutic avenues.
Collapse
Affiliation(s)
- Vladimir L Katanaev
- Translational Research Centre in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland; Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690090 Vladivostok, Russia; College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian 350108, China.
| | - Alexey Baldin
- Translational Research Centre in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland; Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 4 Akademika Oparina Str., Moscow 117997, Russia
| | - Tatiana V Denisenko
- Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 4 Akademika Oparina Str., Moscow 117997, Russia
| | - Denis N Silachev
- Translational Research Centre in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland; Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 4 Akademika Oparina Str., Moscow 117997, Russia; Department of Functional Biochemistry of Biopolymers, A.N. Belozersky Research Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
| | - Anna E Ivanova
- Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 4 Akademika Oparina Str., Moscow 117997, Russia
| | - Gennadiy T Sukhikh
- Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 4 Akademika Oparina Str., Moscow 117997, Russia
| | - Lee Jia
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian 350108, China
| | - Lev A Ashrafyan
- Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 4 Akademika Oparina Str., Moscow 117997, Russia
| |
Collapse
|
26
|
Gu S, Liu F, Xie X, Ding M, Wang Z, Xing X, Xiao T, Sun X. β-Sitosterol blocks the LEF-1-mediated Wnt/β-catenin pathway to inhibit proliferation of human colon cancer cells. Cell Signal 2023; 104:110585. [PMID: 36603684 DOI: 10.1016/j.cellsig.2022.110585] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/15/2022] [Accepted: 12/31/2022] [Indexed: 01/04/2023]
Abstract
OBJECTIVES This study aimed to investigate the LEF-1-mediated Wnt/β-catenin pathway for its biological functions and prognostic value in colon cancer (CC). Furthermore, the potential molecular mechanism of β-sitosterol in CC was investigated in vitro. METHODS Clinical information and gene expression profiles from CC patients were obtained based on Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases. In addition, we applied R software "Limma" package for the differential analysis of LEF-1 between cancer and para-carcinoma tissue samples. Kaplan-Meier (KM) survival analysis was adopted for analyzing whether LEF-1 was of prognostic significance. Moreover, gene set enrichment analysis (GSEA) was adopted for pathway enrichment analysis and visualization. In addition, CCK8, plate cloning, scratch and high-content screening (HCS) imaging assays were performed to examine the therapeutic efficacy of β-sitosterol in human CC HCT116 cells. siRNA technology was employed to knock down LEF1 expression in HCT116 cells. qRT-PCR and Western-blot (WB) analysis were carried out to analyze the HCT-116 mRNA and protein expression levels, respectively. RESULTS LEF-1 was up-regulated within CC and acted as an oncogenic gene. LEF-1 up-regulation predicted the dismal prognostic outcome and activated the Wnt/β-catenin pathway. β-sitosterol effectively suppressed HCT116 cells proliferation and invasion. For the mechanism underlying β-sitosterol, β-sitosterol was found to significantly down-regulate LEF-1 gene and protein expression and disrupt Wnt/β-catenin pathway transmission in HCT116 cells. After suppressing LEF-1 expression, its downstream targets including C-myc, Survivin and CCND1 were also down-regulated. CONCLUSION According to our results, LEF-1 down-regulation can effectively block Wnt/β-catenin pathway, inhibit CC cell growth and migration. Collectively, β-sitosterol can be used to treat CC, which can provide anti-tumor activity by targeting LEF-1.
Collapse
Affiliation(s)
- Shengliang Gu
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Fahui Liu
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Xueheng Xie
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China; Key Laboratory of efficacy evaluation of Chinese Medicine against Glycolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing 100193, China
| | - Meng Ding
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Zhen Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China; Key Laboratory of efficacy evaluation of Chinese Medicine against Glycolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing 100193, China
| | - Xiaoyan Xing
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China; Key Laboratory of efficacy evaluation of Chinese Medicine against Glycolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing 100193, China.
| | - Tianbao Xiao
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China; Key Laboratory of efficacy evaluation of Chinese Medicine against Glycolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing 100193, China.
| |
Collapse
|
27
|
Dong B, Simonson L, Vold S, Oldham E, Barten L, Ahmad N, Chang H. FZD6 Promotes Melanoma Cell Invasion but Not Proliferation by Regulating Canonical Wnt Signaling and Epithelial‒Mesenchymal Transition. J Invest Dermatol 2023; 143:621-629.e6. [PMID: 36368445 PMCID: PMC10292634 DOI: 10.1016/j.jid.2022.09.658] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 08/09/2022] [Accepted: 09/21/2022] [Indexed: 11/11/2022]
Abstract
FZD6 is a key gene that controls tissue polarity during development. Increasing evidence suggests that it also plays active roles in various cancers. In this study, we show that FZD6 is overexpressed in multiple melanoma cell lines and human samples. Knockdown or knockout of FZD6 does not affect cell proliferation but significantly reduces the invasive ability of melanoma cells. In addition, we have found that knockout of Fzd6 dramatically reduces lung metastasis in the Pten/BRaf mouse model of melanoma. Mechanistic studies in vitro and in vivo reveal a surprising involvement of canonical Wnt signaling and epithelial‒mesenchymal pathway in the FZD6-mediated invasive phenotype. Together, our study supports a promoter role of FZD6 in melanoma progression.
Collapse
Affiliation(s)
- Bo Dong
- Department of Dermatology, The School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA; Program in Genetics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Laura Simonson
- Department of Dermatology, The School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Samantha Vold
- Department of Dermatology, The School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ethan Oldham
- Department of Dermatology, The School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Lillian Barten
- Department of Dermatology, The School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Nihal Ahmad
- Department of Dermatology, The School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA; William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, USA
| | - Hao Chang
- Department of Dermatology, The School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA; Program in Genetics, University of Wisconsin-Madison, Madison, Wisconsin, USA; William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, USA.
| |
Collapse
|
28
|
Boudra R, Patenall BL, King S, Wang D, Best SA, Ko JY, Xu S, Padilla MG, Schmults CD, Barthel SR, Lian CG, Ramsey MR. PRMT1 Inhibition Selectively Targets BNC1-Dependent Proliferation, but not Migration in Squamous Cell Carcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.27.533164. [PMID: 37034732 PMCID: PMC10081292 DOI: 10.1101/2023.03.27.533164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Squamous Cell Carcinoma (SCC) develops in stratified epithelial tissues and demonstrates frequent alterations in transcriptional regulators. We sought to discover SCC-specific transcriptional programs and identified the transcription factor Basonuclin 1 (BNC1) as highly expressed in SCC compared to other tumor types. RNA-seq and ChIP-seq analysis identified pro-proliferative genes activated by BNC1 in SCC cells and keratinocytes. Inhibition of BNC1 in SCC cells suppressed proliferation and increased migration via FRA1. In contrast, BNC1 reduction in keratinocytes caused differentiation, which was abrogated by IRF6 knockdown, leading to increased migration. Protein interactome analysis identified PRMT1 as a co-activator of BNC1-dependent proliferative genes. Inhibition of PRMT1 resulted in a dose-dependent reduction in SCC cell proliferation without increasing migration. Importantly, therapeutic inhibition of PRMT1 in SCC xenografts significantly reduced tumor size, resembling functional effects of BNC1 knockdown. Together, we identify BNC1-PRMT1 as an SCC-lineage specific transcriptional axis that promotes cancer growth, which can be therapeutically targeted to inhibit SCC tumorigenesis.
Collapse
|
29
|
Konopelski Snavely SE, Srinivasan S, Dreyer CA, Tan J, Carraway KL, Ho HYH. Non-canonical WNT5A-ROR signaling: New perspectives on an ancient developmental pathway. Curr Top Dev Biol 2023; 153:195-227. [PMID: 36967195 PMCID: PMC11042798 DOI: 10.1016/bs.ctdb.2023.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
Deciphering non-canonical WNT signaling has proven to be both fascinating and challenging. Discovered almost 30 years ago, non-canonical WNT ligands signal independently of the transcriptional co-activator β-catenin to regulate a wide range of morphogenetic processes during development. The molecular and cellular mechanisms that underlie non-canonical WNT function, however, remain nebulous. Recent results from various model systems have converged to define a core non-canonical WNT pathway consisting of the prototypic non-canonical WNT ligand, WNT5A, the receptor tyrosine kinase ROR, the seven transmembrane receptor Frizzled and the cytoplasmic scaffold protein Dishevelled. Importantly, mutations in each of these signaling components cause Robinow syndrome, a congenital disorder characterized by profound tissue morphogenetic abnormalities. Moreover, dysregulation of the pathway has also been linked to cancer metastasis. As new knowledge concerning the WNT5A-ROR pathway continues to grow, modeling these mutations will likely provide crucial insights into both the physiological regulation of the pathway and the etiology of WNT5A-ROR-driven diseases.
Collapse
Affiliation(s)
- Sara E Konopelski Snavely
- Department of Cell Biology and Human Anatomy, University of California Davis, School of Medicine, Davis, CA, United States
| | - Srisathya Srinivasan
- Department of Cell Biology and Human Anatomy, University of California Davis, School of Medicine, Davis, CA, United States
| | - Courtney A Dreyer
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, School of Medicine, Sacramento, CA, United States
| | - Jia Tan
- Department of Cell Biology and Human Anatomy, University of California Davis, School of Medicine, Davis, CA, United States
| | - Kermit L Carraway
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, School of Medicine, Sacramento, CA, United States
| | - Hsin-Yi Henry Ho
- Department of Cell Biology and Human Anatomy, University of California Davis, School of Medicine, Davis, CA, United States.
| |
Collapse
|
30
|
Minaya MA, Mahali S, Iyer AK, Eteleeb AM, Martinez R, Huang G, Budde J, Temple S, Nana AL, Seeley WW, Spina S, Grinberg LT, Harari O, Karch CM. Conserved gene signatures shared among MAPT mutations reveal defects in calcium signaling. Front Mol Biosci 2023; 10:1051494. [PMID: 36845551 PMCID: PMC9948093 DOI: 10.3389/fmolb.2023.1051494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 01/13/2023] [Indexed: 02/11/2023] Open
Abstract
Introduction: More than 50 mutations in the MAPT gene result in heterogeneous forms of frontotemporal lobar dementia with tau inclusions (FTLD-Tau). However, early pathogenic events that lead to disease and the degree to which they are common across MAPT mutations remain poorly understood. The goal of this study is to determine whether there is a common molecular signature of FTLD-Tau. Methods: We analyzed genes differentially expressed in induced pluripotent stem cell-derived neurons (iPSC-neurons) that represent the three major categories of MAPT mutations: splicing (IVS10 + 16), exon 10 (p.P301L), and C-terminal (p.R406W) compared with isogenic controls. The genes that were commonly differentially expressed in MAPT IVS10 + 16, p.P301L, and p.R406W neurons were enriched in trans-synaptic signaling, neuronal processes, and lysosomal function. Many of these pathways are sensitive to disruptions in calcium homeostasis. One gene, CALB1, was significantly reduced across the three MAPT mutant iPSC-neurons and in a mouse model of tau accumulation. We observed a significant reduction in calcium levels in MAPT mutant neurons compared with isogenic controls, pointing to a functional consequence of this disrupted gene expression. Finally, a subset of genes commonly differentially expressed across MAPT mutations were also dysregulated in brains from MAPT mutation carriers and to a lesser extent in brains from sporadic Alzheimer disease and progressive supranuclear palsy, suggesting that molecular signatures relevant to genetic and sporadic forms of tauopathy are captured in a dish. The results from this study demonstrate that iPSC-neurons capture molecular processes that occur in human brains and can be used to pinpoint common molecular pathways involving synaptic and lysosomal function and neuronal development, which may be regulated by disruptions in calcium homeostasis.
Collapse
Affiliation(s)
- Miguel A. Minaya
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, United States
| | - Sidhartha Mahali
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, United States
| | - Abhirami K. Iyer
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, United States
| | - Abdallah M. Eteleeb
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, United States
| | - Rita Martinez
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, United States
| | - Guangming Huang
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, United States
| | - John Budde
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, United States
| | - Sally Temple
- Neural Stem Cell Institute, Rensselaer, NY, United States
| | - Alissa L. Nana
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - William W. Seeley
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Salvatore Spina
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Lea T. Grinberg
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
- Department of Pathology, University of Sao Paulo, Sao Paulo, Brazil
| | - Oscar Harari
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, United States
- Hope Center for Neurological Disorders, Washington University in St Louis, St Louis, MO, United States
- NeuroGenomics and Informatics Center, Washington University in St Louis, St Louis, MO, United States
| | - Celeste M. Karch
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, United States
- Hope Center for Neurological Disorders, Washington University in St Louis, St Louis, MO, United States
- NeuroGenomics and Informatics Center, Washington University in St Louis, St Louis, MO, United States
| |
Collapse
|
31
|
Castillo-Azofeifa D, Wald T, Reyes EA, Gallagher A, Schanin J, Vlachos S, Lamarche-Vane N, Bomidi C, Blutt S, Estes MK, Nystul T, Klein OD. A DLG1-ARHGAP31-CDC42 axis is essential for the intestinal stem cell response to fluctuating niche Wnt signaling. Cell Stem Cell 2023; 30:188-206.e6. [PMID: 36640764 PMCID: PMC9922544 DOI: 10.1016/j.stem.2022.12.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 10/13/2022] [Accepted: 12/12/2022] [Indexed: 01/15/2023]
Abstract
A central factor in the maintenance of tissue integrity is the response of stem cells to variations in the levels of niche signals. In the gut, intestinal stem cells (ISCs) depend on Wnt ligands for self-renewal and proliferation. Transient increases in Wnt signaling promote regeneration after injury or in inflammatory bowel diseases, whereas constitutive activation of this pathway leads to colorectal cancer. Here, we report that Discs large 1 (Dlg1), although dispensable for polarity and cellular turnover during intestinal homeostasis, is required for ISC survival in the context of increased Wnt signaling. RNA sequencing (RNA-seq) and genetic mouse models demonstrated that DLG1 regulates the cellular response to increased canonical Wnt ligands. This occurs via the transcriptional regulation of Arhgap31, a GTPase-activating protein that deactivates CDC42, an effector of the non-canonical Wnt pathway. These findings reveal a DLG1-ARHGAP31-CDC42 axis that is essential for the ISC response to increased niche Wnt signaling.
Collapse
Affiliation(s)
- David Castillo-Azofeifa
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA, USA; Department of Regenerative Medicine, Genentech, Inc., South San Francisco, CA, USA
| | - Tomas Wald
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Efren A Reyes
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA, USA; Department of Pharmaceutical Chemistry and TETRAD Program, University of California, San Francisco, San Francisco, CA, USA
| | - Aaron Gallagher
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Julia Schanin
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Stephanie Vlachos
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA
| | - Nathalie Lamarche-Vane
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada; Department of Anatomy and Cell Biology, McGill University, Montréal, QC, Canada
| | - Carolyn Bomidi
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Sarah Blutt
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Mary K Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Todd Nystul
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA
| | - Ophir D Klein
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA, USA; Department of Pediatrics and Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA; Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
32
|
Stoletov K, Sanchez S, Gorroño I, Rabano M, Vivanco MDM, Kypta R, Lewis JD. Intravital imaging of Wnt/β-catenin and ATF2-dependent signalling pathways during tumour cell invasion and metastasis. J Cell Sci 2023; 136:286293. [PMID: 36621522 PMCID: PMC10022745 DOI: 10.1242/jcs.260285] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 12/13/2022] [Indexed: 01/10/2023] Open
Abstract
Wnt signalling has been implicated as a driver of tumour cell metastasis, but less is known about which branches of Wnt signalling are involved and when they act in the metastatic cascade. Here, using a unique intravital imaging platform and fluorescent reporters, we visualised β-catenin/TCF-dependent and ATF2-dependent signalling activities during human cancer cell invasion, intravasation and metastatic lesion formation in the chick embryo host. We found that cancer cells readily shifted between states of low and high canonical Wnt activity. Cancer cells that displayed low Wnt canonical activity showed higher invasion and intravasation potential in primary tumours and in metastatic lesions. In contrast, cancer cells showing low ATF2-dependent activity were significantly less invasive both at the front of primary tumours and in metastatic lesions. Simultaneous visualisation of both these reporters using a double-reporter cell line confirmed their complementary activities in primary tumours and metastatic lesions. These findings might inform the development of therapies that target different branches of Wnt signalling at specific stages of metastasis.
Collapse
Affiliation(s)
- Konstantin Stoletov
- Department of Oncology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Saray Sanchez
- Centre for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain
| | - Irantzu Gorroño
- Centre for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain
| | - Miriam Rabano
- Centre for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain
| | - Maria D M Vivanco
- Centre for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain
| | - Robert Kypta
- Centre for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain.,Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK
| | - John D Lewis
- Department of Oncology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| |
Collapse
|
33
|
Yang S, Gao W, Wang H, Zhang X, Mi Y, Ding Y, Geng C, Zhang J, Cheng M, Li S. Role of PAX2 in breast cancer verified by bioinformatics analysis and in vitro validation. ANNALS OF TRANSLATIONAL MEDICINE 2023; 11:58. [PMID: 36819548 PMCID: PMC9929765 DOI: 10.21037/atm-22-6360] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/06/2023] [Indexed: 01/30/2023]
Abstract
Background Breast cancer (BC) is the most frequently diagnosed cancer in women and the second most common cancer among newly diagnosed cancers worldwide. Studies have shown that paired box 2 (PAX2) participates in the tumorigenesis of some cancer cells, but its role in BC is still unclear. Methods Transcriptome expression profiles and clinicopathological information of BC were downloaded from The Cancer Genome Atlas (TCGA) database to explore the expression level and prognostic value of PAX2. Gene set enrichment analysis (GSEA) and functional enrichment analysis were performed to investigate the functions and pathways of PAX2. Moreover, real-time reverse transcriptase-polymerase chain reaction (RT-qPCR) was used to determine the expression of PAX2 in BC tissues, and the predictive value of PAX2 in clinical samples was assessed. Cell Counting Kit-8 (CCK-8) assay was used to evaluate cell growth. The migration and invasive capacities of cells were assessed by wound healing assay and Transwell assay. Results PAX2 was upregulated in the TCGA-BC datasets. GSEA suggested that PAX2 may be involved in the regulation of signaling pathways such as MAPK. Moreover, PAX2 was overexpressed in BC tissues, and PAX2 expression was associated with tumor size and lymph node metastasis. PAX2 deficiency could promote the growth, migration, and invasion of BC cells. Conclusions Upregulation of PAX2 inhibited BC cell growth, migration, and invasion, making PAX2 a potential therapeutic target for BC.
Collapse
Affiliation(s)
- Shan Yang
- Breast Center Department, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Wei Gao
- Breast Center Department, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Haoqi Wang
- Breast Center Department, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xi Zhang
- Breast Center Department, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yunzhe Mi
- Breast Center Department, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yawen Ding
- Clinical Laboratory, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Cuizhi Geng
- Breast Center Department, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jie Zhang
- Department of Plastic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Meng Cheng
- Breast Center Department, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Sainan Li
- Breast Center Department, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
34
|
Zhu Y, Li X. Advances of Wnt Signalling Pathway in Colorectal Cancer. Cells 2023; 12:cells12030447. [PMID: 36766788 PMCID: PMC9913588 DOI: 10.3390/cells12030447] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/25/2023] [Accepted: 01/28/2023] [Indexed: 01/31/2023] Open
Abstract
Colorectal cancer (CRC) represents one of the most common cancers worldwide, with a high mortality rate despite the decreasing incidence and new diagnostic and therapeutic strategies. CRC arises from both epidemiologic and molecular backgrounds. In addition to hereditary factor and genetic mutations, the strongly varying incidence of CRC is closely linked to chronic inflammatory disorders of the intestine and terrible dietary habits. The Wnt signalling pathway is a complex regulatory network that is implicated in many CRC physiological processes, including cancer occurrence, development, prognosis, invasion, and metastasis. It is currently believed to include classical Wnt/β-catenin, Wnt/PCP, and Wnt/Ca2+. In this review, we summarise the recent mechanisms and potential regulators of the three branches of the Wnt signalling pathway in CRC.
Collapse
Affiliation(s)
- Yaoyao Zhu
- Marine College, Shandong University, Weihai 264200, China
| | - Xia Li
- Marine College, Shandong University, Weihai 264200, China
- Shandong Kelun Pharmaceutical Co., Ltd., Binzhou 256600, China
- Correspondence: ; Tel.: +86-0531-8838-2612
| |
Collapse
|
35
|
Jiang L, Sun YJ, Song XH, Sun YY, Yang WY, Li J, Wu YJ. Ivermectin inhibits tumor metastasis by regulating the Wnt/β-catenin/integrin β1/FAK signaling pathway. Am J Cancer Res 2022; 12:4502-4519. [PMID: 36381328 PMCID: PMC9641399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 09/01/2022] [Indexed: 06/16/2023] Open
Abstract
Tumor metastasis is the major cause of cancer mortality; therefore, it is imperative to discover effective therapeutic drugs for anti-metastasis therapy. In the current study, we investigated whether ivermectin (IVM), an FDA-approved antiparasitic drug, could prevent cancer metastasis. Colorectal and breast cancer cell lines and a cancer cell-derived xenograft tumor metastasis model were used to investigate the anti-metastasis effect of IVM. Our results showed that IVM significantly inhibited the motility of cancer cells in vitro and tumor metastasis in vivo. Mechanistically, IVM suppressed the expressions of the migration-related proteins via inhibiting the activation of Wnt/β-catenin/integrin β1/FAK and the downstream signaling cascades. Our findings indicated that IVM was capable of suppressing tumor metastasis, which provided the rationale on exploring the potential clinical application of IVM in the prevention and treatment of cancer metastasis.
Collapse
Affiliation(s)
- Lu Jiang
- Laboratory of Molecular Toxicology, Institute of Zoology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Chinese Academy of SciencesBeijing 100101, China
- Henan University of Chinese MedicineZhengzhou 450046, Henan, China
| | - Ying-Jian Sun
- Department of Veterinary Medicine, Beijing University of AgricultureBeijing 102206, China
| | - Xiao-Hua Song
- Laboratory of Molecular Toxicology, Institute of Zoology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Chinese Academy of SciencesBeijing 100101, China
| | - Yan-Yan Sun
- Laboratory of Molecular Toxicology, Institute of Zoology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Chinese Academy of SciencesBeijing 100101, China
| | - Wen-Yao Yang
- Laboratory of Molecular Toxicology, Institute of Zoology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Chinese Academy of SciencesBeijing 100101, China
| | - Jing Li
- Laboratory of Molecular Toxicology, Institute of Zoology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Chinese Academy of SciencesBeijing 100101, China
| | - Yi-Jun Wu
- Laboratory of Molecular Toxicology, Institute of Zoology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Chinese Academy of SciencesBeijing 100101, China
| |
Collapse
|
36
|
Lu L, Hu W, Liu B, Yang T. Insights into Circulating Tumor Cell Clusters: A Barometer for Treatment Effects and Prognosis for Prostate Cancer Patients. Cancers (Basel) 2022; 14:cancers14163985. [PMID: 36010983 PMCID: PMC9406494 DOI: 10.3390/cancers14163985] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/09/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Circulating tumor cells (CTCs) are a promising biomarker for the risk of prostate cancer aggressiveness and metastasis and play a role in the processes of tumor migration and metastasis. CTC clusters, which have different physical and biological properties from individual CTCs, are collections of tumor cells and non-malignant cells, resulting in greater metastatic potential. Therefore, this review aims to summarize the current knowledge of CTC clusters in metastasis as well as related biological properties and to suggest possibilities for their usage in diagnostic and therapeutic practice. Abstract Prostate cancer (PCa) exhibits high cellular heterogeneity across patients. Therefore, there is an urgent need for more real-time and accurate detection methods, in both prognosis and treatment in clinical settings. Circulating tumor cell (CTC) clusters, a population of tumor cells and non-malignant cells in the blood of patients with tumors, are a promising non-invasive tool for screening PCa progression and identifying potential benefit groups. CTC clusters are associated with tumor metastasis and possess stem-like characteristics, which are likely attributable to epithelial–mesenchymal transition (EMT). Additionally, these biological properties of CTC clusters, particularly androgen receptor V7, have indicated the potential to reflect curative effects, guide treatment modalities, and predict prognosis in PCa patients. Here, we discuss the role of CTC clusters in the mechanisms underlying PCa metastasis and clinical applications, with the aim of informing more appropriate clinical decisions, and ultimately, improving the overall survival of PCa patients.
Collapse
Affiliation(s)
- Linyao Lu
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
| | - Wei Hu
- Department of Urology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
| | - Bingli Liu
- Department of Orthopedics, Shanghai Pudong New Area People’s Hospital, Shanghai 201299, China
- Correspondence: (B.L.); (T.Y.); Tel./Fax: +86-21-2050-9000 (B.L.); +86-21-6803-6506 (T.Y.)
| | - Tao Yang
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
- Correspondence: (B.L.); (T.Y.); Tel./Fax: +86-21-2050-9000 (B.L.); +86-21-6803-6506 (T.Y.)
| |
Collapse
|
37
|
Daulat AM, Wagner MS, Audebert S, Kowalczewska M, Ariey-Bonnet J, Finetti P, Bertucci F, Camoin L, Borg JP. The serine/threonine kinase MINK1 directly regulates the function of promigratory proteins. J Cell Sci 2022; 135:276338. [PMID: 35971817 DOI: 10.1242/jcs.259347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 08/08/2022] [Indexed: 11/20/2022] Open
Abstract
Upregulation of the developmental Wnt/planar cell polarity pathway is observed in many cancers and is associated with cancer development. We recently showed that PRICKLE1, a core Wnt/PCP component, is a poor-prognosis marker in triple negative breast cancer (TNBC). PRICKLE1 is phosphorylated by the serine/threonine kinase MINK1 and contributes to TNBC cell motility and invasiveness. However, the identity of MINK1 substrates and the role of MINK1 enzymatic activity in this process remain to be addressed. We performed a phosphoproteomic strategy and identified MINK1 substrates including LL5β. LL5β anchors microtubules at the cell cortex through its association with CLASPs to trigger focal adhesion disassembly. LL5β is phosphorylated by MINK1 promoting its interaction with CLASPs. Using a kinase inhibitor, we demonstrate that the enzymatic activity of MINK1 is involved in the protein complex assembly and localization, and cell migration. Analysis of gene expression data show that the concomitant up-regulation of PRICKLE1 and LL5β mRNA levels encoding MINK1 substrates is associated with a poor metastasis-free survival in TNBC patients. Altogether, our results suggest that MINK1 may represent a potential target in TNBC.
Collapse
Affiliation(s)
- Avais M Daulat
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Equipe labellisée Ligue 'Cell polarity, Cell signaling and Cancer', Marseille, France
| | - Mônica S Wagner
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Equipe labellisée Ligue 'Cell polarity, Cell signaling and Cancer', Marseille, France
| | - Stéphane Audebert
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, Marseille, France
| | - Malgorzata Kowalczewska
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Equipe labellisée Ligue 'Cell polarity, Cell signaling and Cancer', Marseille, France
| | - Jeremy Ariey-Bonnet
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Equipe Biologie Structurale et Chimie-Biologie Intégrée, Marseille, France
| | - Pascal Finetti
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Equipe labellisée Ligue 'Predictive Oncology', Marseille, France
| | - François Bertucci
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Equipe labellisée Ligue 'Predictive Oncology', Marseille, France
| | - Luc Camoin
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, Marseille, France
| | - Jean-Paul Borg
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Equipe labellisée Ligue 'Cell polarity, Cell signaling and Cancer', Marseille, France.,Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, Marseille, France.,Institut universitaire de France, France
| |
Collapse
|
38
|
Free SR, Carraway KL. Platelets in Hematogenous Breast Cancer Metastasis: Partners in Crime. Breast Cancer 2022. [DOI: 10.36255/exon-publications-breast-cancer-platelets] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
39
|
Siegl F, Vecera M, Roskova I, Smrcka M, Jancalek R, Kazda T, Slaby O, Sana J. The Significance of MicroRNAs in the Molecular Pathology of Brain Metastases. Cancers (Basel) 2022; 14:cancers14143386. [PMID: 35884446 PMCID: PMC9322877 DOI: 10.3390/cancers14143386] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/07/2022] [Accepted: 07/10/2022] [Indexed: 12/07/2022] Open
Abstract
Brain metastases are the most frequent intracranial tumors in adults and the cause of death in almost one-fourth of cases. The incidence of brain metastases is steadily increasing. The main reason for this increase could be the introduction of new and more efficient therapeutic strategies that lead to longer survival but, at the same time, cause a higher risk of brain parenchyma infiltration. In addition, the advances in imaging methodology, which provide earlier identification of brain metastases, may also be a reason for the higher recorded number of patients with these tumors. Metastasis is a complex biological process that is still largely unexplored, influenced by many factors and involving many molecules. A deeper understanding of the process will allow the discovery of more effective diagnostic and therapeutic approaches that could improve the quality and length of patient survival. Recent studies have shown that microRNAs (miRNAs) are essential molecules that are involved in specific steps of the metastatic cascade. MiRNAs are endogenously expressed small non-coding RNAs that act as post-transcriptional regulators of gene expression and thus regulate most cellular processes. The dysregulation of these molecules has been implicated in many cancers, including brain metastases. Therefore, miRNAs represent promising diagnostic molecules and therapeutic targets in brain metastases. This review summarizes the current knowledge on the importance of miRNAs in brain metastasis, focusing on their involvement in the metastatic cascade and their potential clinical implications.
Collapse
Affiliation(s)
- Frantisek Siegl
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic; (F.S.); (M.V.); (O.S.)
| | - Marek Vecera
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic; (F.S.); (M.V.); (O.S.)
| | - Ivana Roskova
- Department of Neurosurgery, University Hospital Brno and Faculty of Medicine of Masaryk University, 625 00 Brno, Czech Republic; (I.R.); (M.S.)
| | - Martin Smrcka
- Department of Neurosurgery, University Hospital Brno and Faculty of Medicine of Masaryk University, 625 00 Brno, Czech Republic; (I.R.); (M.S.)
| | - Radim Jancalek
- Department of Neurosurgery, St. Annes University Hospital Brno and Faculty of Medicine of Masaryk University, 656 91 Brno, Czech Republic;
| | - Tomas Kazda
- Department of Radiation Oncology, Masaryk Memorial Cancer Institute and Faculty of Medicine of Masaryk University, 656 53 Brno, Czech Republic;
| | - Ondrej Slaby
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic; (F.S.); (M.V.); (O.S.)
- Department of Biology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
| | - Jiri Sana
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic; (F.S.); (M.V.); (O.S.)
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute and Faculty of Medicine of Masaryk University, 656 53 Brno, Czech Republic
- Department of Pathology, University Hospital Brno, 625 00 Brno, Czech Republic
- Correspondence: ; Tel.: +420-549-495-246
| |
Collapse
|
40
|
Zhou Q, Liu Y, Feng R, Zhang W. NUCB2: roles in physiology and pathology. J Physiol Biochem 2022; 78:603-617. [PMID: 35678998 DOI: 10.1007/s13105-022-00895-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 05/10/2022] [Indexed: 11/30/2022]
Abstract
Nucleobindin2 (NUCB2) is a member of nucleobindin family which was first found in the nucleus of the hypothalamus, and had a relationship in diet and energy homeostasis. Its location in normal tissues such as stomach and islet further confirms that it plays a vital role in the regulation of physiological functions of the body. Besides, NUCB2 participates in tumorigenesis through activating various signal-pathways, more and more studies indicate that NUCB2 might impact tumor progression by promoting or inhibiting proliferation, apoptosis, autophagy, metastasis, and invasion of tumor cells. In this review, we comprehensively stated NUCB2's expression and functions, and introduced the role of NUCB2 in physiology and pathology and its mechanism. What is more, pointed out the potential direction of future research.
Collapse
Affiliation(s)
- Qing Zhou
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, People's Republic of China
| | - Ying Liu
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, People's Republic of China
| | - Ranran Feng
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, People's Republic of China
| | - Wenling Zhang
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China. .,Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, People's Republic of China.
| |
Collapse
|
41
|
D'Arcy C, Zimmermann CC, Espinoza-Sanchez NA, Greve B, Schmidt A, Kiesel L, von Wahlde MK, Götte M. The heparan sulphate proteoglycan Syndecan-1 (CD138) regulates tumour progression in a 3D model of ductal carcinoma in situ of the breast. IUBMB Life 2022; 74:955-968. [PMID: 35587107 DOI: 10.1002/iub.2623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 04/25/2022] [Indexed: 11/07/2022]
Abstract
Ductal carcinoma in situ (DCIS) is a form of breast cancer that is restricted to the lactiferous ducts and has not yet invaded the surrounding breast tissue. Dysregulation of the transmembrane heparan sulphate proteoglycan Syndecan-1 (Sdc-1) plays a role in tumour progression of invasive breast cancer (IBC). In DCIS, Sdc-1, c-Met and E-cadherin are part of a proangiogenic expression signature. In this study, we employed a siRNA knockdown approach in the DCIS model cell line MCF10A DCIS.com to investigate a potential connection between Sdc-1 and epithelial mesenchymal transition (EMT), proteolysis and the Rho kinase pathway. Analysis of gene expression data of the TNMplot.com database revealed that Sdc-1 expression was higher in primary breast tumours compared to metastases. The impact of Sdc-1-depletion on the cellular phenotype was investigated in a Matrigel-based three-dimensional cell culture model. Sdc-1 depletion resulted in the formation of larger spheroids and the formation of invasive protrusions. Application of matrix metalloproteinase (MMP) and Rho kinase inhibitors could block the Sdc-1-induced phenotype. qPCR analysis of Sdc-1-depleted cells in two-dimensional culture revealed upregulated expression of the EMT-markers CDH1, FN-1, CLDN1, the proteolysis markers MMP3, and MMP9, and HPSE, while MMP2, VIM and ROCK-2 were downregulated. Immunocytochemistry confirmed upregulation of MMP9 and fibronectin, the latter being particular prominent after ROCK inhibition. STRING analysis confirmed an interaction of the investigated gene products at the protein level. Our results suggest that diminished Sdc-1 expression plays a role in DCIS progression to IBC through deregulation of proteolytic factors and a partial EMT.
Collapse
Affiliation(s)
- Christopher D'Arcy
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| | | | - Nancy Adriana Espinoza-Sanchez
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany.,Department of Radiotherapy-Radiooncology, Department of Radiotherapy and Radiooncology, University Hospital Münster, Münster, Germany
| | - Burkhard Greve
- Department of Radiotherapy-Radiooncology, Department of Radiotherapy and Radiooncology, University Hospital Münster, Münster, Germany
| | - Annika Schmidt
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| | - Ludwig Kiesel
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| | | | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| |
Collapse
|
42
|
Luan H, He Y, Zhang T, Su Y, Zhou L. The identification of liver metastasis- and prognosis-associated genes in pancreatic ductal adenocarcinoma. BMC Cancer 2022; 22:463. [PMID: 35477379 PMCID: PMC9047343 DOI: 10.1186/s12885-022-09577-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 04/18/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is an often fatal malignancy with an extremely low survival rate. Liver metastasis, which causes high mortality, is the most common recurring metastasis for PDAC. However, the mechanisms underlying this liver metastasis and associated candidate biomarkers are unknown. METHODS We performed mRNA profiling comparisons in 8 primary tumors (T) and 12 liver metastases (M) samples using the Gene Expression Omnibus (GEO) database. After determining differentially expressed genes (DEG), gene ontology (GO), pathway enrichment and protein-protein interaction (PPI) network analyses were performed to determine DEG functions. Then, Cytoscape was used to screen out significant hub genes, after which their clinical relevance was investigated using The Cancer Genome Atlas (TCGA) resources. Furthermore, prognosis-associated gene expression was validated using Oncomine and TCGA database. Lastly, associations between prognosis-associated genes, immune cells and immunological checkpoint genes were evaluated using the Tumor Immune Estimation Resource (TIMER). RESULTS In total, 102 genes were related to liver metastasis and predominantly involved in cell migration, motility, and adhesion. Using Cytoscape, this number was narrowed down to 16 hub genes. Elevated mRNA expression levels for two of these genes, SPARC (P = 0.019) and TPM1 (P = 0.037) were significantly correlated with poor disease prognosis. For the remaining 14, expression was not related to overall patient survival. SPARC had higher expression in patients with metastatic PDAC than those with non-metastatic PDAC in TCGA dataset. SPARC and TPM1 levels were also positively correlated with the immune infiltration of specific cell types. Additionally, both genes exhibited strong co-expression associations with immune checkpoint genes. CONCLUSIONS Combined, we suggest SPARC has high potential as biomarker to predict liver metastasis during PDAC. Additionally, both SPARC and TPM1 appeared to recruit and regulate immune-infiltrating cells during these pathophysiological processes.
Collapse
Affiliation(s)
- Hong Luan
- Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110001, People's Republic of China
| | - Ye He
- Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110001, People's Republic of China
| | - Tuo Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110001, People's Republic of China
| | - Yanna Su
- Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110001, People's Republic of China
| | - Liping Zhou
- Department of Post Graduation Training, The First Affiliated Hospital of China Medical University, No. 155, Nanjingbei Street, Heping District, Shenyang, Liaoning Province, 110001, People's Republic of China.
| |
Collapse
|
43
|
Selvaggi F, Catalano T, Cotellese R, Aceto GM. Targeting Wnt/β-Catenin Pathways in Primary Liver Tumours: From Microenvironment Signaling to Therapeutic Agents. Cancers (Basel) 2022; 14:cancers14081912. [PMID: 35454818 PMCID: PMC9024538 DOI: 10.3390/cancers14081912] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/31/2022] [Accepted: 04/02/2022] [Indexed: 12/17/2022] Open
Abstract
Primary liver cancers (PLCs) are steadily increasing in incidence and mortality in the world. They have a poor prognosis due to their silent nature, late discovery and resistance to common chemotherapy. At present, there are limited treatment alternatives, and the understanding of PLC molecular aspects is essential to develop more efficient drugs and therapeutic surgical and loco-regional strategies. A clear causal link with liver damage, inflammation, and regeneration has been found in the occurrence of PLC over the last few decades. Physiologically, Wingless/It (Wnt)-β-catenin signaling plays a key role in liver development, metabolic zonation and regeneration. Loss of functional homeostasis of this pathway appears to be a major driver of carcinogenesis in the liver parenchyma. In the hepatic microenvironment, molecular deregulations that exceed the Wnt signaling biological capacity can induce tumor initiation and progression. Indeed, somatic mutations are identified in key components of canonical and non-canonical Wnt signaling and in PLCs and precancerous lesions. In this review, the altered functions of Wnt/β-catenin signaling are considered in human PLCs, with emphasis on hepatocellular carcinomas (HCC), cholangiocarcinomas (CCA) and hepatoblastomas (HB). Based on recent literature, we also focused on liver cancerogenesis through Wnt deregulation. An overview of preclinical and clinical studies on approved and experimental drugs, targeting the Wnt/β-catenin cascade in PLCs, is proposed. In addition, the clinical implication of molecule inhibitors that have been shown to possess activity against the Wnt pathway in association with conventional surgical and loco-regional therapies are reviewed.
Collapse
Affiliation(s)
- Federico Selvaggi
- Unit of General Surgery, Ospedale Floraspe Renzetti, 66034 Lanciano, Chieti, Italy;
| | - Teresa Catalano
- Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125 Messina, Italy;
| | - Roberto Cotellese
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy;
- Villa Serena Foundation for Research, 65013 Città Sant’Angelo, Pescara, Italy
| | - Gitana Maria Aceto
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy;
- Correspondence:
| |
Collapse
|
44
|
Cho B, Song S, Wan JY, Axelrod JD. Prickle isoform participation in distinct polarization events in the Drosophila eye. PLoS One 2022; 17:e0262328. [PMID: 35148314 PMCID: PMC8836327 DOI: 10.1371/journal.pone.0262328] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 12/22/2021] [Indexed: 11/19/2022] Open
Abstract
Planar cell polarity (PCP) signaling regulates several polarization events during development of ommatidia in the Drosophila eye, including directing chirality by polarizing a cell fate choice and determining the direction and extent of ommatidial rotation. The pksple isoform of the PCP protein Prickle is known to participate in the R3/R4 cell fate decision, but the control of other polarization events and the potential contributions of the three Pk isoforms have not been clarified. Here, by characterizing expression and subcellular localization of individual isoforms together with re-analyzing isoform specific phenotypes, we show that the R3/R4 fate decision, its coordination with rotation direction, and completion of rotation to a final ±90° rotation angle are separable polarization decisions with distinct Pk isoform requirements and contributions. Both pksple and pkpk can enforce robust R3/R4 fate decisions, but only pksple can correctly orient them along the dorsal-ventral axis. In contrast, pksple and pkpk can fully and interchangeably sustain coordination of rotation direction and rotation to completion. We propose that expression dynamics and competitive interactions determine isoform participation in these processes. We propose that the selective requirement for pksple to orient the R3/R4 decision and their interchangeability for coordination and completion of rotation reflects their previously described differential interaction with the Fat/Dachsous system which is known to be required for orientation of R3/R4 decisions but not for coordination or completion of rotation.
Collapse
Affiliation(s)
- Bomsoo Cho
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Song Song
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Joy Y. Wan
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Jeffrey D. Axelrod
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States of America
- * E-mail:
| |
Collapse
|
45
|
Catalano T, D’Amico E, Moscatello C, Di Marcantonio MC, Ferrone A, Bologna G, Selvaggi F, Lanuti P, Cotellese R, Curia MC, Lattanzio R, Aceto GM. Oxidative Distress Induces Wnt/β-Catenin Pathway Modulation in Colorectal Cancer Cells: Perspectives on APC Retained Functions. Cancers (Basel) 2021; 13:6045. [PMID: 34885156 PMCID: PMC8656656 DOI: 10.3390/cancers13236045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/25/2021] [Accepted: 11/27/2021] [Indexed: 01/10/2023] Open
Abstract
Colorectal cancer (CRC) is a multistep process that arises in the colic tissue microenvironment. Oxidative stress plays a role in mediating CRC cell survival and progression, as well as promoting resistance to therapies. CRC progression is associated with Wnt/β-Catenin signaling dysregulation and loss of proper APC functions. Cancer recurrence/relapse has been attributed to altered ROS levels, produced in a cancerous microenvironment. The effect of oxidative distress on Wnt/β-Catenin signaling in the light of APC functions is unclear. This study evaluated the effect of H2O2-induced short-term oxidative stress in HCT116, SW480 and SW620 cells with different phenotypes of APC and β-Catenin. The modulation and relationship of APC with characteristic molecules of Wnt/β-Catenin were assessed in gene and protein expression. Results indicated that CRC cells, even when deprived of growth factors, under acute oxidative distress conditions by H2O2 promote β-Catenin expression and modulate cytoplasmic APC protein. Furthermore, H2O2 induces differential gene expression depending on the cellular phenotype and leading to favor both Wnt/Catenin-dependent and -independent signaling. The exact mechanism by which oxidative distress can affect Wnt signaling functions will require further investigation to reveal new scenarios for the development of therapeutic approaches for CRC, in the light of the conserved functions of APC.
Collapse
Affiliation(s)
- Teresa Catalano
- Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125 Messina, Italy;
| | - Emira D’Amico
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (E.D.); (C.M.); (F.S.); (R.C.); (M.C.C.)
| | - Carmelo Moscatello
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (E.D.); (C.M.); (F.S.); (R.C.); (M.C.C.)
| | - Maria Carmela Di Marcantonio
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (M.C.D.M.); (R.L.)
| | - Alessio Ferrone
- Department of Medicine and Aging Sciences, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (A.F.); (G.B.); (P.L.)
| | - Giuseppina Bologna
- Department of Medicine and Aging Sciences, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (A.F.); (G.B.); (P.L.)
- Center for Advanced Studies and Technology (C.A.S.T.), University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Federico Selvaggi
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (E.D.); (C.M.); (F.S.); (R.C.); (M.C.C.)
- Unit of General Surgery, Ospedale Floraspe Renzetti, Lanciano, 66034 Chieti, Italy
| | - Paola Lanuti
- Department of Medicine and Aging Sciences, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (A.F.); (G.B.); (P.L.)
- Center for Advanced Studies and Technology (C.A.S.T.), University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Roberto Cotellese
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (E.D.); (C.M.); (F.S.); (R.C.); (M.C.C.)
- Villa Serena Foundation for Research, Via Leonardo Petruzzi, 65013 Città Sant’Angelo, Italy
| | - Maria Cristina Curia
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (E.D.); (C.M.); (F.S.); (R.C.); (M.C.C.)
| | - Rossano Lattanzio
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (M.C.D.M.); (R.L.)
- Center for Advanced Studies and Technology (C.A.S.T.), University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Gitana Maria Aceto
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (E.D.); (C.M.); (F.S.); (R.C.); (M.C.C.)
| |
Collapse
|
46
|
Dreyer CA, VanderVorst K, Free S, Rowson-Hodel A, Carraway KL. The role of membrane mucin MUC4 in breast cancer metastasis. Endocr Relat Cancer 2021; 29:R17-R32. [PMID: 34726614 PMCID: PMC8697635 DOI: 10.1530/erc-21-0083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/01/2021] [Indexed: 11/08/2022]
Abstract
A major barrier to the emergence of distant metastases is the survival of circulating tumor cells (CTCs) within the vasculature. Lethal stressors, including shear forces from blood flow, anoikis arising from cellular detachment, and exposure to natural killer cells, combine to subvert the ability of primary tumor cells to survive and ultimately seed distant lesions. Further attenuation of this rate-limiting process via therapeutic intervention offers a very attractive opportunity for improving cancer patient outcomes, in turn prompting the need for a deeper understanding of the molecular and cellular mechanisms underlying CTC viability. MUC4 is a very large and heavily glycosylated protein expressed at the apical surfaces of the epithelia of a variety of tissues, is involved in cellular growth signaling and adhesiveness, and contributes to the protection and lubrication of cellular linings. Analysis of patient-matched breast tumor specimens has demonstrated that MUC4 protein levels are upregulated in metastatic lesions relative to primary tumor among all breast tumor subtypes, pointing to a possible selective advantage for MUC4 overexpression in metastasis. Analysis of a genetically engineered mouse model of HER2-positive breast cancer has demonstrated that metastatic efficiency is markedly suppressed with Muc4 deletion and Muc4-knockout tumor cells are poorly associated with platelets and white blood cells known to support CTC viability. In this review, we discuss the diverse roles of MUC4 in tumor progression and metastasis and propose that intervening in MUC4 intercellular interactions with binding partners on blood-borne aggregating cells could potentially thwart breast cancer metastatic efficiency.
Collapse
Affiliation(s)
| | | | | | | | - Kermit L. Carraway
- To whom correspondence should be addressed: Kermit Carraway, Research Building III, Room 1100B, 4645 2nd Avenue, Sacramento, CA 95817, P: (916) 734-3114,
| |
Collapse
|
47
|
Teles RHG, Yano RS, Villarinho NJ, Yamagata AS, Jaeger RG, Meybohm P, Burek M, Freitas VM. Advances in Breast Cancer Management and Extracellular Vesicle Research, a Bibliometric Analysis. Curr Oncol 2021; 28:4504-4520. [PMID: 34898576 PMCID: PMC8628791 DOI: 10.3390/curroncol28060382] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/01/2021] [Accepted: 11/04/2021] [Indexed: 12/21/2022] Open
Abstract
Extracellular vesicles transport variable content and have crucial functions in cell–cell communication. The role of extracellular vesicles in cancer is a current hot topic, and no bibliometric study has ever analyzed research production regarding their role in breast cancer and indicated the trends in the field. In this way, we aimed to investigate the trends in breast cancer management involved with extracellular vesicle research. Articles were retrieved from Scopus, including all the documents published concerning breast cancer and extracellular vesicles. We analyzed authors, journals, citations, affiliations, and keywords, besides other bibliometric analyses, using R Studio version 3.6.2. and VOSviewer version 1.6.0. A total of 1151 articles were retrieved, and as the main result, our analysis revealed trending topics on biomarkers of liquid biopsy, drug delivery, chemotherapy, autophagy, and microRNA. Additionally, research related to extracellular vesicles in breast cancer has been focused on diagnosis, treatment, and mechanisms of action of breast tumor-derived vesicles. Future studies are expected to explore the role of extracellular vesicles on autophagy and microRNA, besides investigating the application of extracellular vesicles from liquid biopsies for biomarkers and drug delivery, enabling the development and validation of therapeutic strategies for specific cancers.
Collapse
Affiliation(s)
- Ramon Handerson Gomes Teles
- Laboratory of Tumor Microenvironment, Department of Cell and Developmental Biology, Institute of Biomedical Sciences (ICB), University of São Paulo, São Paulo 05508-000, Brazil; (R.S.Y.); (N.J.V.); (A.S.Y.); (R.G.J.); (V.M.F.)
- Correspondence: ; Tel.: +55-16-98205-9151
| | - Rafael Sussumu Yano
- Laboratory of Tumor Microenvironment, Department of Cell and Developmental Biology, Institute of Biomedical Sciences (ICB), University of São Paulo, São Paulo 05508-000, Brazil; (R.S.Y.); (N.J.V.); (A.S.Y.); (R.G.J.); (V.M.F.)
| | - Nicolas Jones Villarinho
- Laboratory of Tumor Microenvironment, Department of Cell and Developmental Biology, Institute of Biomedical Sciences (ICB), University of São Paulo, São Paulo 05508-000, Brazil; (R.S.Y.); (N.J.V.); (A.S.Y.); (R.G.J.); (V.M.F.)
| | - Ana Sayuri Yamagata
- Laboratory of Tumor Microenvironment, Department of Cell and Developmental Biology, Institute of Biomedical Sciences (ICB), University of São Paulo, São Paulo 05508-000, Brazil; (R.S.Y.); (N.J.V.); (A.S.Y.); (R.G.J.); (V.M.F.)
| | - Ruy Gastaldoni Jaeger
- Laboratory of Tumor Microenvironment, Department of Cell and Developmental Biology, Institute of Biomedical Sciences (ICB), University of São Paulo, São Paulo 05508-000, Brazil; (R.S.Y.); (N.J.V.); (A.S.Y.); (R.G.J.); (V.M.F.)
| | - Patrick Meybohm
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Würzburg, 97080 Würzburg, Germany; (P.M.); (M.B.)
| | - Malgorzata Burek
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Würzburg, 97080 Würzburg, Germany; (P.M.); (M.B.)
| | - Vanessa Morais Freitas
- Laboratory of Tumor Microenvironment, Department of Cell and Developmental Biology, Institute of Biomedical Sciences (ICB), University of São Paulo, São Paulo 05508-000, Brazil; (R.S.Y.); (N.J.V.); (A.S.Y.); (R.G.J.); (V.M.F.)
| |
Collapse
|
48
|
Fang X, Shrestha SM, Ren L, Shi R. Biological and clinical implications of metastasis-associated circular RNAs in oesophageal squamous cell carcinoma. FEBS Open Bio 2021; 11:2870-2887. [PMID: 34510785 PMCID: PMC8564336 DOI: 10.1002/2211-5463.13297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 08/29/2021] [Accepted: 09/10/2021] [Indexed: 12/20/2022] Open
Abstract
Oesophageal squamous cell carcinoma (OSCC) is a prevalent malignancy with high morbidity and mortality as a result of early metastasis and poor prognosis. Metastasis is a multistep process, involving various signalling pathways. Circular RNAs (circRNAs) are a class of covalently closed noncoding RNAs, the aberrant expression of which is reported to be involved in several biological events, including cell transformation, proliferation, migration, invasion, apoptosis and metastasis. Several studies have reported interactions between circRNAs and metastasis-associated signalling pathways. The abundance, stability and highly specific expression of candidate circRNAs make them potential biomarkers and therapeutic targets in OSCC. In this review article, we comprehensively describe metastasis-related circRNAs and their interactions with epithelial-mesenchymal transition-associated molecules. We also describe the molecular mechanisms and clinical relevance of circRNAs in OSCC progression and metastasis.
Collapse
Affiliation(s)
- Xin Fang
- Medical CollegeSoutheast UniversityNanjingChina
| | | | - Li‐Hua Ren
- Medical CollegeSoutheast UniversityNanjingChina
- Department of GastroenterologyZhongda HospitalAffiliated Hospital of Southeast UniversityNanjingChina
| | - Rui‐hua Shi
- Medical CollegeSoutheast UniversityNanjingChina
- Department of GastroenterologyZhongda HospitalAffiliated Hospital of Southeast UniversityNanjingChina
| |
Collapse
|
49
|
Kuang L, Jiang Y, Li C, Jiang Y. WW Domain-Containing E3 Ubiquitin Protein Ligase 1: A Self-Disciplined Oncoprotein. Front Cell Dev Biol 2021; 9:757493. [PMID: 34712671 PMCID: PMC8545989 DOI: 10.3389/fcell.2021.757493] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/21/2021] [Indexed: 11/13/2022] Open
Abstract
WW domain-containing E3 ubiquitin protein ligase 1 (WWP1) is a member of C2-WW-HECT E3 ligase family. Although it may execute carcinostatic actions in some scenarios, WWP1 functions as an oncoprotein under most circumstances. Here, we comprehensively review reports on regulation of WWP1 and its roles in tumorigenesis. We summarize the WWP1-mediated ubiquitinations of diverse proteins and the signaling pathways they involved, as well as the mechanisms how they affect cancer formation and progression. According to our analysis of database, in combination with previous reports, we come to a conclusion that WWP1 expression is augmented in various cancers. Gene amplification, as well as expression regulation mediated by molecules such as non-coding RNAs, may account for the increased mRNA level of WWP1. Regulation of enzymatic activity is another important facet to upregulate WWP1-mediated ubiquitinations. Based on the published data, we conclude that WWP1 employs interactions between multiple domains to autoinhibit its polyubiquitination activity in a steady state. Association of some substrates can partially release certain autoinhibition-related domains and make WWP1 have a moderate activity of polyubiquitination. Some cancer-related mutations can fully disrupt the inhibitory interactions and make WWP1 hyperactive. High expression level or hyperactivation of WWP1 may abnormally enhance polyubiquitinations of some oncoproteins or tumor suppressors, such as ΔNp63α, PTEN and p27, and ultimately promote cell proliferation, survival, migration and invasion in tumorigenesis. Given the dysregulation and oncogenic functions of WWP1 in some cancer types, it is promising to explore some therapeutic inhibitors to tune down its activity.
Collapse
Affiliation(s)
- Linghan Kuang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Yunhui Jiang
- Pathology Department, The Second People's Hospital of Jingmen, Jingmen, China
| | - Chenghua Li
- Center of Growth, Metabolism and Aging, Key Laboratory of Biological Resources and Ecological Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yongmei Jiang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| |
Collapse
|
50
|
Radaszkiewicz T, Nosková M, Gömöryová K, Vondálová Blanářová O, Radaszkiewicz KA, Picková M, Víchová R, Gybeľ T, Kaiser K, Demková L, Kučerová L, Bárta T, Potěšil D, Zdráhal Z, Souček K, Bryja V. RNF43 inhibits WNT5A-driven signaling and suppresses melanoma invasion and resistance to the targeted therapy. eLife 2021; 10:65759. [PMID: 34702444 PMCID: PMC8550759 DOI: 10.7554/elife.65759] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 09/28/2021] [Indexed: 12/30/2022] Open
Abstract
RNF43 is an E3 ubiquitin ligase and known negative regulator of WNT/β-catenin signaling. We demonstrate that RNF43 is also a regulator of noncanonical WNT5A-induced signaling in human cells. Analysis of the RNF43 interactome using BioID and immunoprecipitation showed that RNF43 can interact with the core receptor complex components dedicated to the noncanonical Wnt pathway such as ROR1, ROR2, VANGL1, and VANGL2. RNF43 triggers VANGL2 ubiquitination and proteasomal degradation and clathrin-dependent internalization of ROR1 receptor and inhibits ROR2 activation. These activities of RNF43 are physiologically relevant and block pro-metastatic WNT5A signaling in melanoma. RNF43 inhibits responses to WNT5A, which results in the suppression of invasive properties of melanoma cells. Furthermore, RNF43 prevented WNT5A-assisted development of resistance to BRAF V600E and MEK inhibitors. Next, RNF43 acted as melanoma suppressor and improved response to targeted therapies in vivo. In line with these findings, RNF43 expression decreases during melanoma progression and RNF43-low patients have a worse prognosis. We conclude that RNF43 is a newly discovered negative regulator of WNT5A-mediated biological responses that desensitizes cells to WNT5A.
Collapse
Affiliation(s)
- Tomasz Radaszkiewicz
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Michaela Nosková
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Kristína Gömöryová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Olga Vondálová Blanářová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | | | - Markéta Picková
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic.,Department of Cytokinetics, Institute of Biophysics CAS, Brno, Czech Republic.,International Clinical Research Center FNUSA-ICRC, Brno, Czech Republic
| | - Ráchel Víchová
- Department of Cytokinetics, Institute of Biophysics CAS, Brno, Czech Republic
| | - Tomáš Gybeľ
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Karol Kaiser
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Lucia Demková
- Laboratory of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Bratislava, Slovakia
| | - Lucia Kučerová
- Laboratory of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Bratislava, Slovakia
| | - Tomáš Bárta
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic.,Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - David Potěšil
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Zbyněk Zdráhal
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Karel Souček
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic.,Department of Cytokinetics, Institute of Biophysics CAS, Brno, Czech Republic.,International Clinical Research Center FNUSA-ICRC, Brno, Czech Republic
| | - Vítězslav Bryja
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic.,Department of Cytokinetics, Institute of Biophysics CAS, Brno, Czech Republic
| |
Collapse
|