1
|
Abdelazeem KNM, Nguyen D, Corbo S, Darragh LB, Matsumoto MW, Van Court B, Neupert B, Yu J, Olimpo NA, Osborne DG, Gadwa J, Ross RB, Nguyen A, Bhatia S, Kapoor M, Friedman RS, Jacobelli J, Saviola AJ, Knitz MW, Pasquale EB, Karam SD. Manipulating the EphB4-ephrinB2 axis to reduce metastasis in HNSCC. Oncogene 2025; 44:130-146. [PMID: 39489818 PMCID: PMC11725500 DOI: 10.1038/s41388-024-03208-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/19/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
The EphB4-ephrinB2 signaling axis has been heavily implicated in metastasis across numerous cancer types. Our emerging understanding of the dichotomous roles that EphB4 and ephrinB2 play in head and neck squamous cell carcinoma (HNSCC) poses a significant challenge to rational drug design. We find that EphB4 knockdown in cancer cells enhances metastasis in preclinical HNSCC models by augmenting immunosuppressive cells like T regulatory cells (Tregs) within the tumor microenvironment. EphB4 inhibition in cancer cells also amplifies their ability to metastasize through increased expression of genes associated with hallmark pathways of metastasis along with classical and non-classical epithelial-mesenchymal transition. In contrast, vascular ephrinB2 knockout coupled with radiation therapy (RT) enhances anti-tumor immunity, reduces Treg accumulation into the tumor, and decreases metastasis. Notably, targeting the EphB4-ephrinB2 signaling axis with the engineered ligands ephrinB2-Fc-His and Fc-TNYL-RAW-GS reduces local tumor growth and distant metastasis in a preclinical model of HNSCC. Our data suggests that targeted inhibition of vascular ephrinB2 while avoiding inhibition of EphB4 in cancer cells could be a promising strategy to mitigate HNSCC metastasis.
Collapse
Affiliation(s)
- Khalid N M Abdelazeem
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
- Radiation Biology Research Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Diemmy Nguyen
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Sophia Corbo
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Laurel B Darragh
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Mike W Matsumoto
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Benjamin Van Court
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Brooke Neupert
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Justin Yu
- Department of Otolaryngology - Head and Neck Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Nicholas A Olimpo
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Douglas Grant Osborne
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jacob Gadwa
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Richard B Ross
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Alexander Nguyen
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Shilpa Bhatia
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Mohit Kapoor
- Krembil Research Institute, University Health Network, and University of Toronto, Toronto, ON, Canada
| | - Rachel S Friedman
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Barbara Davis Research Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jordan Jacobelli
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Barbara Davis Research Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Anthony J Saviola
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Center, Aurora, CO, USA
| | - Michael W Knitz
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Elena B Pasquale
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Sana D Karam
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA.
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
2
|
Zhang YJN, Xiao Y, Li ZZ, Bu LL. Immunometabolism in head and neck squamous cell carcinoma: Hope and challenge. Biochim Biophys Acta Mol Basis Dis 2024; 1871:167629. [PMID: 39689765 DOI: 10.1016/j.bbadis.2024.167629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 12/19/2024]
Abstract
Immunotherapy has improved the survival rate of patients with head and neck squamous cell carcinoma (HNSCC), but less than 20 % of them have a durable response to these treatments. Excessive local recurrence and lymph node metastasis ultimately lead to death, making the 5-year survival rate of HNSCC still not optimistic. Cell metabolism has become a key determinant of the viability and function of cancer cells and immune cells. In order to maintain the enormous anabolic demand, tumor cells choose a specialized metabolism different from non-transformed somatic cells, leading to changes in the tumor microenvironment (TME). In recent years, our understanding of immune cell metabolism and cancer cell metabolism has gradually increased, and we have begun to explore the interaction between cancer cell metabolism and immune cell metabolism in a way which is meaningful for treatment. Understanding the different metabolic requirements of different cells that constitute the immune response to HNSCC is beneficial for revealing metabolic heterogeneity and plasticity, thereby enhancing the effect of immunotherapy. In this review, we have concluded that the relevant metabolic processes that affect the function of immune cells in HNSCC TME and proposed our own opinions and prospects on how to use metabolic intervention to enhance anti-tumor immune responses.
Collapse
Affiliation(s)
- Yi-Jia-Ning Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Yao Xiao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Zi-Zhan Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Lin-Lin Bu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral & Maxillofacial - Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| |
Collapse
|
3
|
Van Court B, Ciccaglione M, Neupert B, Knitz MW, Maroney SP, Nguyen D, Abdelazeem KNM, Exner AA, Saviola AJ, Benninger RKP, Karam SD. Heterogeneous Kinetics of Nanobubble Ultrasound Contrast Agent and Angiogenic Signaling in Head and Neck Cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.22.614362. [PMID: 39386624 PMCID: PMC11463497 DOI: 10.1101/2024.09.22.614362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Recently developed nanobubble ultrasound contrast agents are a promising tool for imaging and drug delivery in tumors. To better understand their unusual kinetics, we implemented a novel pixel clustering analysis, which provides unique information by accounting for spatial heterogeneity. By combining ultrasound results with proteomics of the imaged tumors, we show that this analysis is highly predictive of protein expression and that specific types of nanobubble time-intensity curve are associated with upregulation of different metabolic pathways. We applied this method to study the effects of two proteins, EphB4 and ephrinB2, which control tumor angiogenesis through bidirectional juxtacrine signaling, in mouse models of head and neck cancer. We show that ephrinB2 expression by endothelial cells and EphB4 expression by cancer cells have similar effects on tumor vasculature, despite sometimes opposite effects on tumor growth. This implicates a cancer-cell-intrinsic effect of EphB4 forward signaling and not angiogenesis in EphB4's action as a tumor suppressor.
Collapse
|
4
|
Corbo S, Nguyen D, Bhatia S, Darragh LB, Abdelazeem KNM, Court BV, Olimpo NA, Gadwa J, Yu J, Hodgson C, Samedi V, Garcia ES, Siu L, Saviola A, Heasley LE, Knitz MW, Pasquale EB, Karam SD. The pro-tumoral and anti-tumoral roles of EphA4 on T regulatory cells and tumor associated macrophages during HNSCC tumor progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.13.607778. [PMID: 39211197 PMCID: PMC11361144 DOI: 10.1101/2024.08.13.607778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Head and Neck Squamous Cell Carcinoma (HNSCC) is a deadly cancer with poor response to targeted therapy, largely driven by an immunosuppressive tumor microenvironment (TME). Here we examine the immune-modulatory role of the receptor tyrosine kinase EphA4 in HNSCC progression. Within the TME, EphA4 is primarily expressed on regulatory T cells (Tregs) and macrophages. In contrast ephrinB2, an activating ligand of EphA4, is expressed in tumor blood vessels. Using genetically engineered mouse models, we show that EphA4 expressed in Tregs promotes tumor growth, whereas EphA4 expressed in monocytes inhibits tumor growth. In contrast, ephrinB2 knockout in blood vessels reduces both intratumoral Tregs and macrophages. A novel specific EphA4 inhibitor, APY-d3-PEG4, reverses the accelerated tumor growth we had previously reported with EphB4 cancer cell knockout. EphA4 knockout in macrophages not only enhanced their differentiation into M2 macrophage but also increased Treg suppressive activity. APY-d3-PEG4 reversed the accelerated growth seen in the EphA4 knockout of monocytes but conferred no additional benefit when EphA4 was knocked out on Tregs. Underscoring an EphA4-mediated interplay between Tregs and macrophages, we found that knockout of EphA4 in Tregs not only decreases their activation but also reduces tumor infiltration of pro-tumoral M2 macrophages. These data identify Tregs as a primary target of APY-d3-PEG4 and suggest a role for Tregs in regulating macrophage conversion. These data also support the possible anti-cancer therapeutic value of bispecific peptides or antibodies capable of promoting EphA4 blockade in Tregs but not macrophages. Significance EphA4 in regulatory T cells has a pro-tumoral effect while EphA4 in macrophages plays an anti-tumoral role underscoring the necessity of developing biologically rational therapeutics.
Collapse
|
5
|
David ET, Yousuf MS, Mei HR, Jain A, Krishnagiri S, Elahi H, Venkatesan R, Srikanth KD, Dussor G, Dalva MB, Price TJ. ephrin-B2 promotes nociceptive plasticity and hyperalgesic priming through EphB2-MNK-eIF4E signaling in both mice and humans. Pharmacol Res 2024; 206:107284. [PMID: 38925462 DOI: 10.1016/j.phrs.2024.107284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/21/2024] [Accepted: 06/22/2024] [Indexed: 06/28/2024]
Abstract
Ephrin-B-EphB signaling can promote pain through ligand-receptor interactions between peripheral cells, like immune cells expressing ephrin-Bs, and EphB receptors expressed by DRG neurons. Previous studies have shown increased ephrin-B2 expression in peripheral tissues like synovium of rheumatoid and osteoarthritis patients, indicating the clinical significance of this signaling. The primary goal of this study was to understand how ephrin-B2 acts on mouse and human DRG neurons, which express EphB receptors, to promote pain and nociceptor plasticity. We hypothesized that ephrin-B2 would promote nociceptor plasticity and hyperalgesic priming through MNK-eIF4E signaling, a critical mechanism for nociceptive plasticity induced by growth factors, cytokines and nerve injury. Both male and female mice developed dose-dependent mechanical hypersensitivity in response to ephrin-B2, and both sexes showed hyperalgesic priming when challenged with PGE2 injection either to the paw or the cranial dura. Acute nociceptive behaviors and hyperalgesic priming were blocked in mice lacking MNK1 (Mknk1 knockout mice) and by eFT508, a specific MNK inhibitor. Sensory neuron-specific knockout of EphB2 using Pirt-Cre demonstrated that ephrin-B2 actions require this receptor. In Ca2+-imaging experiments on cultured DRG neurons, ephrin-B2 treatment enhanced Ca2+ transients in response to PGE2 and these effects were absent in DRG neurons from MNK1-/- and EphB2-PirtCre mice. In experiments on human DRG neurons, ephrin-B2 increased eIF4E phosphorylation and enhanced Ca2+ responses to PGE2 treatment, both blocked by eFT508. We conclude that ephrin-B2 acts directly on mouse and human sensory neurons to induce nociceptor plasticity via MNK-eIF4E signaling, offering new insight into how ephrin-B signaling promotes pain.
Collapse
Affiliation(s)
- Eric T David
- University of Texas at Dallas, School of Behavioral and Brain Sciences, Department of Neuroscience, Center for Advanced Pain Studies, USA
| | - Muhammad Saad Yousuf
- University of Texas at Dallas, School of Behavioral and Brain Sciences, Department of Neuroscience, Center for Advanced Pain Studies, USA
| | - Hao-Ruei Mei
- University of Texas at Dallas, School of Behavioral and Brain Sciences, Department of Neuroscience, Center for Advanced Pain Studies, USA
| | - Ashita Jain
- University of Texas at Dallas, School of Behavioral and Brain Sciences, Department of Neuroscience, Center for Advanced Pain Studies, USA
| | - Sharada Krishnagiri
- University of Texas at Dallas, School of Behavioral and Brain Sciences, Department of Neuroscience, Center for Advanced Pain Studies, USA
| | - Hajira Elahi
- University of Texas at Dallas, School of Behavioral and Brain Sciences, Department of Neuroscience, Center for Advanced Pain Studies, USA
| | - Rupali Venkatesan
- University of Texas at Dallas, School of Behavioral and Brain Sciences, Department of Neuroscience, Center for Advanced Pain Studies, USA
| | - Kolluru D Srikanth
- Jefferson Synaptic Biology Center, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA; Tulane Brain Institute, Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70124, USA; Tulane Brain Institute, Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70124, USA
| | - Gregory Dussor
- University of Texas at Dallas, School of Behavioral and Brain Sciences, Department of Neuroscience, Center for Advanced Pain Studies, USA
| | - Matthew B Dalva
- Jefferson Synaptic Biology Center, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA; Tulane Brain Institute, Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70124, USA; Tulane Brain Institute, Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70124, USA
| | - Theodore J Price
- University of Texas at Dallas, School of Behavioral and Brain Sciences, Department of Neuroscience, Center for Advanced Pain Studies, USA.
| |
Collapse
|
6
|
Abdelazeem KN, Nguyen D, Corbo S, Darragh LB, Matsumoto MW, Court BV, Neupert B, Yu J, Olimpo NA, Osborne DG, Gadwa J, Ross RB, Nguyen A, Bhatia S, Kapoor M, Friedman RS, Jacobelli J, Saviola AJ, Knitz MW, Pasquale EB, Karam SD. Manipulating the EphB4-ephrinB2 axis to reduce metastasis in HNSCC. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.21.604518. [PMID: 39091728 PMCID: PMC11291065 DOI: 10.1101/2024.07.21.604518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
The EphB4-ephrinB2 signaling axis has been heavily implicated in metastasis across numerous cancer types. Our emerging understanding of the dichotomous roles that EphB4 and ephrinB2 play in head and neck squamous cell carcinoma (HNSCC) poses a significant challenge to rational drug design. We find that EphB4 knockdown in cancer cells enhances metastasis in preclinical HNSCC models by augmenting immunosuppressive cells like T regulatory cells (Tregs) within the tumor microenvironment. EphB4 inhibition in cancer cells also amplifies their ability to metastasize through increased expression of genes associated with epithelial mesenchymal transition and hallmark pathways of metastasis. In contrast, vascular ephrinB2 knockout coupled with radiation therapy (RT) enhances anti-tumor immunity, reduces Treg accumulation into the tumor, and decreases metastasis. Notably, targeting the EphB4-ephrinB2 signaling axis with the engineered EphB4 ligands EFNB2-Fc-His and Fc-TNYL-RAW-GS reduces local tumor growth and distant metastasis in a preclinical model of HNSCC. Our data suggest that targeted inhibition of vascular ephrinB2 while avoiding inhibition of EphB4 in cancer cells could be a promising strategy to mitigate HNSCC metastasis.
Collapse
Affiliation(s)
- Khalid N.M. Abdelazeem
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
- Radiation Biology Research Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Diemmy Nguyen
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Sophia Corbo
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Laurel B. Darragh
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Mike W. Matsumoto
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Benjamin Van Court
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Brooke Neupert
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Justin Yu
- Department of Otolaryngology - Head and Neck Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Nicholas A. Olimpo
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Douglas Grant Osborne
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jacob Gadwa
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Richard B. Ross
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Alexander Nguyen
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Shilpa Bhatia
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Mohit Kapoor
- Krembil Research Institute, University Health Network, and University of Toronto, Toronto, Ontario, Canada
| | - Rachel S. Friedman
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Barbara Davis Research Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jordan Jacobelli
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Barbara Davis Research Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Anthony J. Saviola
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Center, Aurora, CO, USA
| | - Michael W. Knitz
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Elena B. Pasquale
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Sana D. Karam
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
7
|
Ebrahim T, Ebrahim AS, Kandouz M. Diversity of Intercellular Communication Modes: A Cancer Biology Perspective. Cells 2024; 13:495. [PMID: 38534339 DOI: 10.3390/cells13060495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/27/2024] [Accepted: 03/10/2024] [Indexed: 03/28/2024] Open
Abstract
From the moment a cell is on the path to malignant transformation, its interaction with other cells from the microenvironment becomes altered. The flow of molecular information is at the heart of the cellular and systemic fate in tumors, and various processes participate in conveying key molecular information from or to certain cancer cells. For instance, the loss of tight junction molecules is part of the signal sent to cancer cells so that they are no longer bound to the primary tumors and are thus free to travel and metastasize. Upon the targeting of a single cell by a therapeutic drug, gap junctions are able to communicate death information to by-standing cells. The discovery of the importance of novel modes of cell-cell communication such as different types of extracellular vesicles or tunneling nanotubes is changing the way scientists look at these processes. However, are they all actively involved in different contexts at the same time or are they recruited to fulfill specific tasks? What does the multiplicity of modes mean for the overall progression of the disease? Here, we extend an open invitation to think about the overall significance of these questions, rather than engage in an elusive attempt at a systematic repertory of the mechanisms at play.
Collapse
Affiliation(s)
- Thanzeela Ebrahim
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Abdul Shukkur Ebrahim
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Mustapha Kandouz
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48202, USA
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48202, USA
| |
Collapse
|
8
|
Shirley CA, Chhabra G, Amiri D, Chang H, Ahmad N. Immune escape and metastasis mechanisms in melanoma: breaking down the dichotomy. Front Immunol 2024; 15:1336023. [PMID: 38426087 PMCID: PMC10902921 DOI: 10.3389/fimmu.2024.1336023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/24/2024] [Indexed: 03/02/2024] Open
Abstract
Melanoma is one of the most lethal neoplasms of the skin. Despite the revolutionary introduction of immune checkpoint inhibitors, metastatic spread, and recurrence remain critical problems in resistant cases. Melanoma employs a multitude of mechanisms to subvert the immune system and successfully metastasize to distant organs. Concerningly, recent research also shows that tumor cells can disseminate early during melanoma progression and enter dormant states, eventually leading to metastases at a future time. Immune escape and metastasis have previously been viewed as separate phenomena; however, accumulating evidence is breaking down this dichotomy. Recent research into the progressive mechanisms of melanoma provides evidence that dedifferentiation similar to classical epithelial to mesenchymal transition (EMT), genes involved in neural crest stem cell maintenance, and hypoxia/acidosis, are important factors simultaneously involved in immune escape and metastasis. The likeness between EMT and early dissemination, and differences, also become apparent in these contexts. Detailed knowledge of the mechanisms behind "dual drivers" simultaneously promoting metastatically inclined and immunosuppressive environments can yield novel strategies effective in disabling multiple facets of melanoma progression. Furthermore, understanding progression through these drivers may provide insight towards novel treatments capable of preventing recurrence arising from dormant dissemination or improving immunotherapy outcomes.
Collapse
Affiliation(s)
- Carl A Shirley
- Department of Dermatology, University of Wisconsin, Madison, WI, United States
| | - Gagan Chhabra
- Department of Dermatology, University of Wisconsin, Madison, WI, United States
| | - Deeba Amiri
- Department of Dermatology, University of Wisconsin, Madison, WI, United States
| | - Hao Chang
- Department of Dermatology, University of Wisconsin, Madison, WI, United States
- William S. Middleton Memorial Veterans Hospital, Madison, WI, United States
| | - Nihal Ahmad
- Department of Dermatology, University of Wisconsin, Madison, WI, United States
- William S. Middleton Memorial Veterans Hospital, Madison, WI, United States
| |
Collapse
|
9
|
Abstract
Evidence implicating Eph receptor tyrosine kinases and their ephrin ligands (that together make up the 'Eph system') in cancer development and progression has been accumulating since the discovery of the first Eph receptor approximately 35 years ago. Advances in the past decade and a half have considerably increased the understanding of Eph receptor-ephrin signalling mechanisms in cancer and have uncovered intriguing new roles in cancer progression and drug resistance. This Review focuses mainly on these more recent developments. I provide an update on the different mechanisms of Eph receptor-ephrin-mediated cell-cell communication and cell autonomous signalling, as well as on the interplay of the Eph system with other signalling systems. I further discuss recent advances in elucidating how the Eph system controls tumour expansion, invasiveness and metastasis, supports cancer stem cells, and drives therapy resistance. In addition to functioning within cancer cells, the Eph system also mediates the reciprocal communication between cancer cells and cells of the tumour microenvironment. The involvement of the Eph system in tumour angiogenesis is well established, but recent findings also demonstrate roles in immune cells, cancer-associated fibroblasts and the extracellular matrix. Lastly, I discuss strategies under evaluation for therapeutic targeting of Eph receptors-ephrins in cancer and conclude with an outlook on promising future research directions.
Collapse
Affiliation(s)
- Elena B Pasquale
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
10
|
Chaudhary RK, Patil P, Mateti UV, Alagundagi DB, Shetty V. Theranostic Potential of EFNB2 for Cetuximab Resistance in Head and Neck Cancer. Indian J Otolaryngol Head Neck Surg 2023; 75:1923-1936. [PMID: 37636764 PMCID: PMC10447808 DOI: 10.1007/s12070-023-03739-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 03/26/2023] [Indexed: 08/29/2023] Open
Abstract
Only 13% of head and neck cancer (HNC) patients respond to cetuximab therapy despite its target (EGFR) is expressed in about 80-90% of HNC patients. However, this problem remained unresolved till date despite of numerous efforts. Thus, the current study aimed to establish hub genes involved in cetuximab resistance via series of bioinformatics approach. The GSE21483 dataset was analysed for differentially expressed genes (DEGs) using GEO2R and enrichment analysis was carried out using DAVID. STRING 11.5 and Cytoscape 3.7.2 were used for protein-protein interactions and hub genes respectively. The significant hub genes (p < 0.05) were validated using ULCAN and Human protein atlas. Validated genes were further queried for tumor infiltration using TIMER2.0. Out of total 307 DEGs, 38 hub genes were identified of which IL1A, EFNB2, SPRR1A, ROBO1 and SOCS3 were the significant hub genes associated with both mRNA expression and overall survival. IL1A, ROBO1, and SOCS3 were found to be downregulated whereas EFNB2 and SPRR1A were found to be upregulated in our study. However, using UALCAN, we found that high expression of IL1A, EFNB2, SOCS3 negatively affects overall survival whereas high expression of SPRR1A and ROBO1 positively affects overall survival. Protein level for EFNB2 and SPRR1A expression was significant in tumor HNC tissue as compared to normal HNC tissue. EFNB2 was found to be a key regulator of CTX resistance among HNC patients. Targeting EFNB2 and associated PPI circuits might improve the response rate to CTX. Thus, EFNB2 has potential to be theranostic marker for CTX resistance. Supplementary Information The online version contains supplementary material available at 10.1007/s12070-023-03739-9.
Collapse
Affiliation(s)
- Raushan Kumar Chaudhary
- Department of Pharmacy Practice, NGSM Institute of Pharmaceutical Sciences (NGSMIPS), Nitte (Deemed to be University), Deralakatte, Mangaluru, Karnataka 575018 India
| | - Prakash Patil
- Central Research Laboratory, K.S. Hegde Medical Academy (KSHEMA), Nitte (Deemed to be University), Deralakatte, Mangaluru, Karnataka 575018 India
| | - Uday Venkat Mateti
- Department of Pharmacy Practice, NGSM Institute of Pharmaceutical Sciences (NGSMIPS), Nitte (Deemed to be University), Deralakatte, Mangaluru, Karnataka 575018 India
| | - Dhananjay B. Alagundagi
- Central Research Laboratory, K.S. Hegde Medical Academy (KSHEMA), Nitte (Deemed to be University), Deralakatte, Mangaluru, Karnataka 575018 India
| | - Vijith Shetty
- Department of Medical Oncology, K.S. Hegde Medical Academy (KSHEMA), Justice K.S. Hegde Charitable Hospital, Nitte (Deemed to be University), Deralakatte, Mangaluru, Karnataka 575018 India
| |
Collapse
|
11
|
Van Court B, Neupert B, Nguyen D, Ross R, Knitz MW, Karam SD. Measurement of mouse head and neck tumors by automated analysis of CBCT images. Sci Rep 2023; 13:12033. [PMID: 37491456 PMCID: PMC10368694 DOI: 10.1038/s41598-023-39159-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/20/2023] [Indexed: 07/27/2023] Open
Abstract
Animal experiments are often used to determine effects of drugs and other biological conditions on cancer progression, but poor accuracy and reproducibility of established tumor measurement methods make results unreliable. In orthotopic mouse models of head and neck cancer, tumor volumes approximated from caliper measurements are conventionally used to compare groups, but geometrical challenges make the procedure imprecise. To address this, we developed software to better measure these tumors by automated analysis of cone-beam computed tomography (CBCT) scans. This allows for analyses of tumor shape and growth dynamics that would otherwise be too inaccurate to provide biological insight. Monitoring tumor growth by calipers and imaging in parallel, we find that caliper measurements of small tumors are weakly correlated with actual tumor volume and highly susceptible to experimenter bias. The method presented provides a unique window to sources of error in a foundational aspect of preclinical head and neck cancer research and a valuable tool to mitigate them.
Collapse
Affiliation(s)
- Benjamin Van Court
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, USA
| | - Brooke Neupert
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, USA
| | - Diemmy Nguyen
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, USA
| | - Richard Ross
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, USA
| | - Michael W Knitz
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, USA
| | - Sana D Karam
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, USA.
| |
Collapse
|
12
|
Gupta C, Sali AP, Jackovich A, Ma B, Sadeghi S, Quinn D, Gill P, Gill I. EphrinB2: Expression of a novel potential target in renal cell carcinoma. Indian J Urol 2023; 39:223-227. [PMID: 37575160 PMCID: PMC10419785 DOI: 10.4103/iju.iju_92_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/09/2023] [Accepted: 05/24/2023] [Indexed: 08/15/2023] Open
Abstract
Introduction Renal cell carcinoma (RCC) is primarily managed by surgery with the use of systemic targeted therapy in a metastatic setting. Newer targeted therapeutic options are evolving; Eph-ephrin is a potential new pathway. The therapeutic potential of targeting the EphB4-EphrinB2 pathway has been demonstrated in many solid tumors; however, its expression in RCC has only been evaluated in a few studies with limited cases. We herein determine the immunohistochemical expression of EphrinB2 in RCC. Methods A tissue microarray comprising 110 cases of different histological subtypes of RCC and 10 normal kidney tissues were stained with monoclonal anti-EphrinB2 antibody (Abcam, AB201512). The tumor and endothelial cells expressing the EphrinB2 were examined and its expression was correlated with sex, histological subtypes, and tumor nodes metastasis (TNM) stage. Results Twenty cases of urothelial carcinoma and two unsatisfactory conventional clear cell RCC cases were excluded, and EphrinB2 expression was interpreted in the remaining 88 tumors. EphrinB2 was expressed in 42 out of 88 tumors (47.7%) and was negative in the normal renal parenchyma. There was a statistically significant difference in the expression of EphrinB2 in males (55%) and females (32%). However, no such difference of expression was noted for the histological subtypes and the stages. Half (51%) of Stage 1 (n = 30) and Stage 2 (n = 11) tumors showed EphrinB2 positivity. Conclusions EphrinB2 is expressed in approximately half of RCC cases. EphrinB2 expression in the early stage cancer might indicate its induction as an early event.
Collapse
Affiliation(s)
- Chhavi Gupta
- Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Pathology, Karkinos Healthcare Private Limited, Navi Mumbai, Maharashtra, India
| | - Akash Pramod Sali
- Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Pathology, Karkinos Healthcare Private Limited, Navi Mumbai, Maharashtra, India
| | - Alexandra Jackovich
- Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Medicine, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Binyun Ma
- Department of Medicine, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sarmad Sadeghi
- Department of Medicine, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - David Quinn
- Department of Medicine, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Parkash Gill
- Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Medicine, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Inderbir Gill
- Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
13
|
Jiang H, Wang S, Liu Y, Zheng C, Chen L, Zheng K, Xu Z, Dai Y, Jin H, Cheng Z, Zou C, Fu L, Liu K, Ma X. Targeting EFNA1 suppresses tumor progression via the cMYC-modulated cell cycle and autophagy in esophageal squamous cell carcinoma. Discov Oncol 2023; 14:64. [PMID: 37160815 PMCID: PMC10169935 DOI: 10.1007/s12672-023-00664-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/19/2023] [Indexed: 05/11/2023] Open
Abstract
PURPOSE Esophageal squamous cell carcinoma (ESCC) remains one of the most common causes of cancer death due to the lack of effective therapeutic options. New targets and the targeted drugs are required to be identified and developed. METHODS Highly expressed genes in ESCA were identified using the edgeR package from public datasets. Immunostaining assay verified the high expression level of EFNA1 in ESCC. CCK-8, colony formation and wound healing assays were performed to examine the role of EFNA1 and EPHA2 in ESCC progression. Cell cycle was analyzed by flow cytometry and autophagy activation was determined by autophagolysosome formation using transmission electron microscopy. The small molecule targeting to EFNA1 was identified by molecular docking and the anti-tumor effects were verified by in vitro and in vivo models with radiation treatment. RESULTS EFNA1 was highly expressed in esophageal cancer and significantly associated with poor prognosis. Downregulation of EFNA1 remarkably inhibited cell proliferation and migration. Furthermore, decreased EFNA1 significantly suppressed the expression of cMYC along with its representative downstream genes involved in cell cycle, and activated autophagy. Similar effects on ESCC progression were obtained from knockdown of the corresponding receptor, EPHA2. The potential small molecule targeting to EFNA1, salvianolic acid A (SAA), could significantly suppress ESCC progression and increase the sensitivity to radiotherapy. CONCLUSION We revealed that EFNA1 facilitated the ESCC progression via the possible mechanism of activating cMYC-modulated cell proliferation and suppressing autophagy, and identified SAA as a potential drug targeting EFNA1, providing new options for the future treatments for ESCC patients.
Collapse
Affiliation(s)
- Houxiang Jiang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, Anhui, China
- Anhui Province Clinical Research Center for Critical Respiratory Medicine, Wuhu, 241001, Anhui, China
| | - Shaoxiang Wang
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Ying Liu
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College of Jinan University), Shenzhen, 518020, Guangdong, China
| | - Chaopan Zheng
- Department of Otolaryngology, Shenzhen People's Hospital (The Second Clinical Medical College of Jinan University), Shenzhen, 518020, Guangdong, China
| | - Lipeng Chen
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College of Jinan University), Shenzhen, 518020, Guangdong, China
| | - Kai Zheng
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Zhenyu Xu
- Precision Medicine Center, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, Anhui, China
| | - Yong Dai
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College of Jinan University), Shenzhen, 518020, Guangdong, China
| | - Hongtao Jin
- Department of Pathology, Shenzhen People's Hospital (The Second Clinical Medical College of Jinan University), Shenzhen, 518020, Guangdong, China
| | - Zhiqiang Cheng
- Department of Pathology, Shenzhen People's Hospital (The Second Clinical Medical College of Jinan University), Shenzhen, 518020, Guangdong, China
| | - Chang Zou
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College of Jinan University), Shenzhen, 518020, Guangdong, China
- School of Medicine, Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, 518172, Guangdong, China
| | - Li Fu
- Department of Pharmacology, Shenzhen University School of Medicine, Shenzhen, 518060, Guangdong, China.
| | - Kaisheng Liu
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College of Jinan University), Shenzhen, 518020, Guangdong, China.
| | - Xiaoshi Ma
- Department of Urology, Shenzhen People's Hospital (The Second Clinical Medical College of Jinan University), Shenzhen, 518020, Guangdong, China.
| |
Collapse
|
14
|
Lin Z, Huang K, Guo H, Jia M, Sun Q, Chen X, Wu J, Yao Q, Zhang P, Vakal S, Zou Z, Gao H, Ci L, Chen J, Guo W. Targeting ZDHHC9 potentiates anti-programmed death-ligand 1 immunotherapy of pancreatic cancer by modifying the tumor microenvironment. Biomed Pharmacother 2023; 161:114567. [PMID: 36963362 DOI: 10.1016/j.biopha.2023.114567] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/26/2023] Open
Abstract
Immune checkpoint blockade (ICB) therapy targeting the programmed death 1/programmed death-ligand 1 (PD-1/PD-L1) axis has achieved considerable success in treating a wide range of cancers. However, most patients with pancreatic cancer remain resistant to ICB. Moreover, there is a lack of optimal biomarkers for the prediction of response to this therapy. Palmitoylation is mediated by a family of 23 S-acyltransferases, termed zinc finger Asp-His-His-Cys-type palmitoyltransferases (ZDHHC), which precisely control various cancer-related protein functions and represent promising drug targets for cancer therapy. Here, we revealed that tumor cell-intrinsic ZDHHC9 was overexpressed in pancreatic cancer tissues and associated with impaired anti-tumor immunity. In syngeneic pancreatic tumor models, the knockdown of ZDHHC9 expression suppressed tumor progression and prolonged survival time of mice by modifying the immunosuppressive ('cold') to proinflammatory ('hot') tumor microenvironment. Furthermore, ZDHHC9 deficiency sensitized anti-PD-L1 immunotherapy mainly in a CD8+ T cell dependent manner. Lastly, we employed the ZDHHC9-siRNA nanoparticle system to efficiently silence ZDHHC9 in pancreatic tumors. Collectively, our findings indicate that ZDHHC9 overexpression in pancreatic tumors is a mechanism involved in the inhibition of host anti-tumor immunity and highlight the importance of inactivating ZDHHC9 as an effective immunotherapeutic strategy and booster for anti-PD-L1 therapy against pancreatic cancer.
Collapse
Affiliation(s)
- Zhiqing Lin
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, 325000, China
| | - Keke Huang
- Department of Ophthalmology, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China
| | - Hui Guo
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, 325000, China
| | - Manli Jia
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, 325000, China
| | - Qiuqin Sun
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, 325000, China
| | - Xuhao Chen
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, 325000, China
| | - Jianmin Wu
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Qingqing Yao
- Institute of Advanced Materials for Nano-Bio Applications, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Peng Zhang
- Shenzhen Key Laboratory of E.N.T., Institute of E.N.T. and Longgang E.N.T. hospital, Shenzhen, Guangdong, 518000, China
| | - Sergii Vakal
- Structural Bioinformatics Lab, Department of Biochemistry, Åbo Akademi University, Turku, Southwest Finland, 20100, Finland
| | - Zhengzhi Zou
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, 510631, China
| | - Haiyao Gao
- Shanghai Model Organisms Center, Inc., Shanghai Engineering Research Center for Model Organisms, Shanghai, 200000, China
| | - Lei Ci
- Shanghai Model Organisms Center, Inc., Shanghai Engineering Research Center for Model Organisms, Shanghai, 200000, China
| | - Jiangfan Chen
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, 325000, China.
| | - Wei Guo
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
15
|
Zhou L, Wang C. Diagnosis and prognosis prediction model for digestive system tumors based on immunologic gene sets. Front Oncol 2023; 13:1107532. [PMID: 36937448 PMCID: PMC10020235 DOI: 10.3389/fonc.2023.1107532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/17/2023] [Indexed: 03/06/2023] Open
Abstract
According to 2020 global cancer statistics, digestive system tumors (DST) are ranked first in both incidence and mortality. This study systematically investigated the immunologic gene set (IGS) to discover effective diagnostic and prognostic biomarkers. Gene set variation (GSVA) analysis was used to calculate enrichment scores for 4,872 IGSs in patients with digestive system tumors. Using the machine learning algorithm XGBoost to build a classifier that distinguishes between normal samples and cancer samples, it shows high specificity and sensitivity on both the validation set and the overall dataset (area under the receptor operating characteristic curve [AUC]: validation set = 0.993, overall dataset = 0.999). IGS-based digestive system tumor subtypes (IGTS) were constructed using a consistent clustering approach. A risk prediction model was developed using the Least Absolute Shrinkage and Selection Operator (LASSO) method. DST is divided into three subtypes: subtype 1 has the best prognosis, subtype 3 is the second, and subtype 2 is the worst. The prognosis model constructed using nine gene sets can effectively predict prognosis. Prognostic models were significantly associated with tumor mutational burden (TMB), tumor immune microenvironment (TIME), immune checkpoints, and somatic mutations. A composite nomogram was constructed based on the risk score and the patient's clinical information, with a well-fitted calibration curve (AUC = 0.762). We further confirmed the reliability and validity of the diagnostic and prognostic models using other cohorts from the Gene Expression Omnibus database. We identified diagnostic and prognostic models based on IGS that provide a strong basis for early diagnosis and effective treatment of digestive system tumors.
Collapse
Affiliation(s)
- Lin Zhou
- School of Information Science and Technology, University of Science and Technology of China, Hefei, Anhui, China
| | - Chunyu Wang
- School of Biological and Environmental Engineering, Chaohu University, Chaohu, Anhui, China
- *Correspondence: Chunyu Wang,
| |
Collapse
|
16
|
Daly RJ, Scott AM, Klein O, Ernst M. Enhancing therapeutic anti-cancer responses by combining immune checkpoint and tyrosine kinase inhibition. Mol Cancer 2022; 21:189. [PMID: 36175961 PMCID: PMC9523960 DOI: 10.1186/s12943-022-01656-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/19/2022] [Indexed: 11/10/2022] Open
Abstract
Over the past decade, immune checkpoint inhibitor (ICI) therapy has been established as the standard of care for many types of cancer, but the strategies employed have continued to evolve. Recently, much clinical focus has been on combining targeted therapies with ICI for the purpose of manipulating the immune setpoint. The latter concept describes the equilibrium between factors that promote and those that suppress anti-cancer immunity. Besides tumor mutational load and other cancer cell-intrinsic determinants, the immune setpoint is also governed by the cells of the tumor microenvironment and how they are coerced by cancer cells to support the survival and growth of the tumor. These regulatory mechanisms provide therapeutic opportunities to intervene and reduce immune suppression via application of small molecule inhibitors and antibody-based therapies against (receptor) tyrosine kinases and thereby improve the response to ICIs. This article reviews how tyrosine kinase signaling in the tumor microenvironment can promote immune suppression and highlights how therapeutic strategies directed against specific tyrosine kinases can be used to lower the immune setpoint and elicit more effective anti-tumor immunity.
Collapse
Affiliation(s)
- Roger J Daly
- Cancer Program, Monash Biomedicine Discovery Institute, Monash University, 23 Innovation Walk, Clayton, VIC, 3800, Australia.
- Department of Biochemistry & Molecular Biology, Monash University, 23 Innovation Walk, Clayton, VIC, 3800, Australia.
| | - Andrew M Scott
- Department of Biochemistry & Molecular Biology, Monash University, 23 Innovation Walk, Clayton, VIC, 3800, Australia
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, 145 Studley Rd, Melbourne-Heidelberg, VIC, 3084, Australia
- Department of Molecular Imaging & Therapy, Austin Health, and Faculty of Medicine, University of Melbourne, 145 Studley Rd, Melbourne-Heidelberg, VIC, 3084, Australia
| | - Oliver Klein
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, 145 Studley Rd, Melbourne-Heidelberg, VIC, 3084, Australia
| | - Matthias Ernst
- Department of Biochemistry & Molecular Biology, Monash University, 23 Innovation Walk, Clayton, VIC, 3800, Australia.
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, 145 Studley Rd, Melbourne-Heidelberg, VIC, 3084, Australia.
| |
Collapse
|
17
|
Kono M, Saito S, Egloff AM, Allen CT, Uppaluri R. The mouse oral carcinoma (MOC) model: A 10-year retrospective on model development and head and neck cancer investigations. Oral Oncol 2022; 132:106012. [PMID: 35820346 PMCID: PMC9364442 DOI: 10.1016/j.oraloncology.2022.106012] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/02/2022] [Indexed: 11/21/2022]
Abstract
Preclinical models of cancer have long been paramount to understanding tumor development and advancing the treatment of cancer. Creating preclinical models that mimic the complexity and heterogeneity of human tumors is a key challenge in the advancement of cancer therapy. About ten years ago, we created the mouse oral carcinoma (MOC) cell line models that were derived from 7, 12-dimethylbenz(a) anthracene (DMBA)-induced mouse oral squamous cell cancers. This model has been used in numerous investigations, including studies on tumor biology and therapeutics. We have seen remarkable progress in cancer immunology in recent years, and these cell lines, which are syngeneic to C57BL/6 background, have also been used to study the anti-tumor immune response. Herein, we aim to review the MOC model from its development and characterization to its use in non-immunological and immunological preclinical head and neck squamous cell carcinoma (HNSCC) studies. Integrating and refining these MOC model studies and extending findings to other systems will provide crucial insights for translational approaches aimed at improving head and neck cancer treatment.
Collapse
Affiliation(s)
- Michihisa Kono
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States; Department of Otolaryngology - Head and Neck Surgery, Asahikawa Medical University, Asahikawa, Japan.
| | - Shin Saito
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States; Department of Otolaryngology - Head and Neck Surgery, Keio University School of Medicine, Tokyo, Japan.
| | - Ann Marie Egloff
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States; Department of Surgery/Otolaryngology, Brigham and Women's Hospital, United States.
| | - Clint T Allen
- Section on Translational Tumor Immunology, National Institutes on Deafness and Communication Disorders, NIH, Bethesda, MD, United States.
| | - Ravindra Uppaluri
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States; Department of Surgery/Otolaryngology, Brigham and Women's Hospital, United States.
| |
Collapse
|
18
|
Bhatia S, Nguyen D, Darragh LB, Van Court B, Sharma J, Knitz MW, Piper M, Bukkapatnam S, Gadwa J, Bickett TE, Bhuvane S, Corbo S, Wu B, Lee Y, Fujita M, Joshi M, Heasley LE, Ferris RL, Rodriguez O, Albanese C, Kapoor M, Pasquale EB, Karam SD. EphB4 and ephrinB2 act in opposition in the head and neck tumor microenvironment. Nat Commun 2022; 13:3535. [PMID: 35725568 PMCID: PMC9209511 DOI: 10.1038/s41467-022-31124-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/06/2022] [Indexed: 01/14/2023] Open
Abstract
Differential outcomes of EphB4-ephrinB2 signaling offers formidable challenge for the development of cancer therapeutics. Here, we interrogate the effects of targeting EphB4 and ephrinB2 in head and neck squamous cell carcinoma (HNSCC) and within its microenvironment using genetically engineered mice, recombinant constructs, pharmacologic agonists and antagonists. We observe that manipulating the EphB4 intracellular domain on cancer cells accelerates tumor growth and angiogenesis. EphB4 cancer cell loss also triggers compensatory upregulation of EphA4 and T regulatory cells (Tregs) influx and their targeting results in reversal of accelerated tumor growth mediated by EphB4 knockdown. EphrinB2 knockout on cancer cells and vasculature, on the other hand, results in maximal tumor reduction and vascular normalization. We report that EphB4 agonism provides no additional anti-tumoral benefit in the absence of ephrinB2. These results identify ephrinB2 as a tumor promoter and its receptor, EphB4, as a tumor suppressor in HNSCC, presenting opportunities for rational drug design.
Collapse
Affiliation(s)
- Shilpa Bhatia
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Diemmy Nguyen
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Laurel B Darragh
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Benjamin Van Court
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Jaspreet Sharma
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Michael W Knitz
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Miles Piper
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Sanjana Bukkapatnam
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Jacob Gadwa
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Thomas E Bickett
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Shiv Bhuvane
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Sophia Corbo
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Brian Wu
- Krembil Research Institute, University Health Network and University of Toronto, Toronto, ON, Canada
| | - Yichien Lee
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Mayumi Fujita
- Department of Dermatology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Molishree Joshi
- Department of Pharmacology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Lynn E Heasley
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Robert L Ferris
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Olga Rodriguez
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Christopher Albanese
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Mohit Kapoor
- Krembil Research Institute, University Health Network and University of Toronto, Toronto, ON, Canada
| | - Elena B Pasquale
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Sana D Karam
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
19
|
Malla RR, Vasudevaraju P, Vempati RK, Rakshmitha M, Merchant N, Nagaraju GP. Regulatory T cells: Their role in triple-negative breast cancer progression and metastasis. Cancer 2022; 128:1171-1183. [PMID: 34990009 DOI: 10.1002/cncr.34084] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/29/2021] [Accepted: 12/08/2021] [Indexed: 01/09/2023]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive and immunogenic subtype of breast cancer. This tumorigenicity is independent of hormonal or HER2 pathways because of a lack of respective receptor expression. TNBC is extremely prone to drug resistance and early recurrence because of T-regulatory cell (Treg) infiltration into the tumor microenvironment (TME) in addition to other mechanisms like genomic instability. Tumor-infiltrating Tregs interact with both tumor and stromal cells as well as extracellular matrix components in the TME and induce an immune-suppressive phenotype. Hence, treatment of TNBC with conventional therapies remains challenging. Understanding the protective mechanism of Tregs in shielding TNBC from antitumor immune responses in the TME will pave the way for developing novel, immune-based therapeutics. The current review focuses on the role of tumor-infiltrating Tregs in tumor progression and metabolic reprogramming of the TME. The authors have extended their focus to oncotargeting Treg-mediated immune suppression in breast cancer. Because of its potential role in the TME, modulating Treg activity may provide a novel strategic intervention to combat TNBC. Both under laboratory conditions and in clinical trials, currently available anticancer drugs and natural therapeutics as potential agents for targeting Tregs are explored.
Collapse
Affiliation(s)
- Rama Rao Malla
- Cancer Biology Laboratory, Department of Biochemistry and Bioinformatics, Institute of Science, Gandhi Institute of Technology and Management (Deemed to be University), Visakhapatnam, India.,Department of Biochemistry and Bioinformatics, Institute of Science, Gandhi Institute of Technology and Management (Deemed to be University), Visakhapatnam, India
| | - Padmaraju Vasudevaraju
- Department of Biochemistry and Bioinformatics, Institute of Science, Gandhi Institute of Technology and Management (Deemed to be University), Visakhapatnam, India
| | - Rahul Kumar Vempati
- Department of Biochemistry and Bioinformatics, Institute of Science, Gandhi Institute of Technology and Management (Deemed to be University), Visakhapatnam, India
| | - Marni Rakshmitha
- Department of Biochemistry and Bioinformatics, Institute of Science, Gandhi Institute of Technology and Management (Deemed to be University), Visakhapatnam, India
| | - Neha Merchant
- Department of Bioscience and Biotechnology, Banasthali University, Jaipur, India
| | | |
Collapse
|
20
|
Qiao Y, Liu C, Zhang X, Zhou Q, Li Y, Xu Y, Gao Z, Xu Y, Kong L, Yang A, Mei M, Ren Y, Wang X, Zhou X. PD-L2 based immune signature confers poor prognosis in HNSCC. Oncoimmunology 2021; 10:1947569. [PMID: 34377590 PMCID: PMC8344752 DOI: 10.1080/2162402x.2021.1947569] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
PD-L2 expression is an important predictor of anti-PD-1 therapy efficacy in patients with head and neck squamous cell carcinoma (HNSCC). However, whether the PD-L2-based immune signature can serve as a prognostic biomarker for patients with HNSCC remains unclear. Here, we reported that PD-L2 was positively stained in 62.7% of tumors, which was more than twice as that of PD-L1, and in 61.4% of patients with PD-L1-negative tumors. Survival tree analysis (STA) revealed that PD-L2high was an independent predictor of poor overall survival (OS). Six patterns were generated from STA, demonstrating that patients with PD-L2lowCD3high were associated with an improved median OS of 72 months and prognostic index (PI) of -3.95 (95% CI, -5.14 to -2.76), whereas patients with PD-L2highCD3lowCD8low to a median OS of 10 months and PI of 1.43 (95% CI, 0.56 to 2.30). Analysis of single-cell RNA sequencing showed that PD-L2 expression was associated with IL-6 expression. We confirmed that IL-6 augments PD-L2 expression in HNSCC cell lines. The PD-L2-based immune signature can serve as an effective biomarker for anti-PD-1 therapy. In addition, PD-L2 may serve as a potential immunotherapeutic target, and we propose anti-IL6 therapy in the adjuvant setting for patients with HNSCC with high PD-L2 expression.
Collapse
Affiliation(s)
- Yu Qiao
- Department of Maxillofacial and Otorhinolaryngology Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, National Clinical Research Center of Cancer, Tianjin, China
| | - Chao Liu
- Department of Maxillofacial and Otorhinolaryngology Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, National Clinical Research Center of Cancer, Tianjin, China
| | - Xiaoyue Zhang
- Department of Maxillofacial and Otorhinolaryngology Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, National Clinical Research Center of Cancer, Tianjin, China
| | - Qianqian Zhou
- Department of Maxillofacial and Otorhinolaryngology Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, National Clinical Research Center of Cancer, Tianjin, China
| | - Yatian Li
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yini Xu
- Department of Maxillofacial and Otorhinolaryngology Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, National Clinical Research Center of Cancer, Tianjin, China
| | - Zhenyue Gao
- Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yiqi Xu
- Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Lingping Kong
- Department of Oncology, Tianjin Medical University General Hospital, Tianjin, China
| | - Aifeng Yang
- Department of Second General Surgery, Shuangyashan People's Hospital, Heilongjiang, China
| | - Mei Mei
- Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yu Ren
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xudong Wang
- Department of Maxillofacial and Otorhinolaryngology Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, National Clinical Research Center of Cancer, Tianjin, China
| | - Xuan Zhou
- Department of Maxillofacial and Otorhinolaryngology Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, National Clinical Research Center of Cancer, Tianjin, China
| |
Collapse
|
21
|
miR-130-3p Promotes MTX-Induced Immune Killing of Hepatocellular Carcinoma Cells by Targeting EPHB4. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:4650794. [PMID: 34336153 PMCID: PMC8324363 DOI: 10.1155/2021/4650794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/25/2021] [Accepted: 07/12/2021] [Indexed: 11/18/2022]
Abstract
The vast majority of primary hepatocellular cancer is hepatocellular carcinomas (HCCs). Currently, HCC is one of the more common cancers in humans, and it has a high mortality and disability rate. Mitoxantrone (MTX) is an antitumor drug that can block type II topoisomerase. It has been reported that immunogenic cell death evoked by MTX can induce the discharge of damage associated with molecular patterns (DAMPs) and subsequently influence immune cell infiltration in the tumor microenvironment. High mobilities aggregation box 1 (HMGB1) is the prototypical extracellular DAMP. Many cellular processes have been reported to involve EPHB4 receptor tyrosine kinases, but the relation of DAMP and EPHB4 is uncertain. In this research, we assessed the impact of miR-130-3p by Edu incorporation test on cell proliferation, and we have proven its impact on HCC cell migration through Transwell and wound healing tests. Flow cytometry was applied to study its influence on apoptosis. Luciferase report test was integrated in detecting the miR-130-3p target gene. The influence of miR-130-3p on the manifestation of classical DAMPs was studied, such as HMGB1, ATP, and Calreticulin. A coculture experiment was carried out to further confirm its effects on immune cell infiltration. The result displayed that miR-130-3p overexpression considerably facilitates apoptosis and suppresses the migration or proliferation of HCC cells. EPHB4 was confirmed as the target gene of miR-130-3p. Overexpression of this target gene promotes emission of Calreticulin, ATP, and HMGB1 and subsequently promotes DCs maturation and proliferation of CD4+ T cells. In summary, our results demonstrated that miR-130-3p inhibits HCC cell proliferation and migration by targeting EPHB4 and promotes drug-induced immunogenic cell death.
Collapse
|
22
|
Zhu T, Ma Z, Wang H, Wei D, Wang B, Zhang C, Fu L, Li Z, Yu G. Immune-Related Long Non-coding RNA Signature and Clinical Nomogram to Evaluate Survival of Patients Suffering Esophageal Squamous Cell Carcinoma. Front Cell Dev Biol 2021; 9:641960. [PMID: 33748133 PMCID: PMC7969885 DOI: 10.3389/fcell.2021.641960] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 01/26/2021] [Indexed: 12/13/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) turns out to be one of the most prevalent cancer types, leading to a relatively high mortality among worldwide sufferers. In this study, gene microarray data of ESCC patients were obtained from the GEO database, with the samples involved divided into a training set and a validation set. Based on the immune-related differential long non-coding RNAs (lncRNAs) we identified, a prognostic eight-lncRNA-based risk signature was constructed following regression analyses. Then, the predictive capacity of the model was evaluated in the training set and validation set using survival curves and receiver operation characteristic curves. In addition, univariate and multivariate regression analyses based on clinical information and the model-based risk score also demonstrated the ability of the risk score in independently determining the prognosis of patients. Besides, based on the CIBERSORT tool, the abundance of immune infiltrates in tumor samples was scored, and a significant difference was presented between the high- and low- risk groups. Correlation analysis with immune checkpoints (PD1, PDL1, and CTLA4) indicated that the eight-lncRNA signature–based risk score was negatively correlated with PD1 expression, suggesting that the eight-lncRNA signature may have an effect in immunotherapy for ESCC. Finally, GO annotation was performed for the differential mRNAs that were co-expressed with the eight lncRNAs, and it was uncovered that they were remarkably enriched in immune-related biological functions. These results suggested that the eight-lncRNA signature–based risk model could be employed as an independent biomarker for ESCC prognosis and might play a part in evaluating the response of ESCC to immunotherapy with immune checkpoint blockade.
Collapse
Affiliation(s)
- Ting Zhu
- Department of Thoracic Surgery, Shaoxing People's Hospital, Shaoxing, China
| | - Zhifeng Ma
- Department of Thoracic Surgery, Shaoxing People's Hospital, Shaoxing, China
| | - Haiyong Wang
- Department of Thoracic Surgery, Shaoxing People's Hospital, Shaoxing, China
| | - Desheng Wei
- Department of Thoracic Surgery, Shaoxing People's Hospital, Shaoxing, China
| | - Bin Wang
- Department of Thoracic Surgery, Shaoxing People's Hospital, Shaoxing, China
| | - Chu Zhang
- Department of Thoracic Surgery, Shaoxing People's Hospital, Shaoxing, China
| | - Linhai Fu
- Department of Thoracic Surgery, Shaoxing People's Hospital, Shaoxing, China
| | - Zhupeng Li
- Department of Thoracic Surgery, Shaoxing People's Hospital, Shaoxing, China
| | - Guangmao Yu
- Department of Thoracic Surgery, Shaoxing People's Hospital, Shaoxing, China
| |
Collapse
|
23
|
Serkova NJ, Glunde K, Haney CR, Farhoud M, De Lille A, Redente EF, Simberg D, Westerly DC, Griffin L, Mason RP. Preclinical Applications of Multi-Platform Imaging in Animal Models of Cancer. Cancer Res 2021; 81:1189-1200. [PMID: 33262127 PMCID: PMC8026542 DOI: 10.1158/0008-5472.can-20-0373] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/10/2020] [Accepted: 11/25/2020] [Indexed: 11/16/2022]
Abstract
In animal models of cancer, oncologic imaging has evolved from a simple assessment of tumor location and size to sophisticated multimodality exploration of molecular, physiologic, genetic, immunologic, and biochemical events at microscopic to macroscopic levels, performed noninvasively and sometimes in real time. Here, we briefly review animal imaging technology and molecular imaging probes together with selected applications from recent literature. Fast and sensitive optical imaging is primarily used to track luciferase-expressing tumor cells, image molecular targets with fluorescence probes, and to report on metabolic and physiologic phenotypes using smart switchable luminescent probes. MicroPET/single-photon emission CT have proven to be two of the most translational modalities for molecular and metabolic imaging of cancers: immuno-PET is a promising and rapidly evolving area of imaging research. Sophisticated MRI techniques provide high-resolution images of small metastases, tumor inflammation, perfusion, oxygenation, and acidity. Disseminated tumors to the bone and lung are easily detected by microCT, while ultrasound provides real-time visualization of tumor vasculature and perfusion. Recently available photoacoustic imaging provides real-time evaluation of vascular patency, oxygenation, and nanoparticle distributions. New hybrid instruments, such as PET-MRI, promise more convenient combination of the capabilities of each modality, enabling enhanced research efficacy and throughput.
Collapse
Affiliation(s)
- Natalie J Serkova
- Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
- Animal Imaging Shared Resource, University of Colorado Cancer Center, Aurora, Colorado
| | - Kristine Glunde
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology, and the Sydney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Chad R Haney
- Center for Advanced Molecular Imaging, Northwestern University, Evanston, Illinois
| | | | | | | | - Dmitri Simberg
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - David C Westerly
- Animal Imaging Shared Resource, University of Colorado Cancer Center, Aurora, Colorado
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Lynn Griffin
- Department of Radiology, Veterinary Teaching Hospital, Colorado State University, Fort Collins, Colorado
| | - Ralph P Mason
- Department of Radiology, University of Texas Southwestern, Dallas, Texas
| |
Collapse
|
24
|
Oh ST, Yang KJ, Bae JM, Park HJ, Yoo DS, Park YM. The differential expression of EPHB4 and ephrin B2 in cutaneous squamous cell carcinoma according to the grade of tumor differentiation: a clinicopathological study. Int J Dermatol 2021; 60:736-741. [PMID: 33598934 DOI: 10.1111/ijd.15445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 12/23/2020] [Accepted: 01/11/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND EPHB4 and its ligand, ephrin B2, which are receptor tyrosine kinases of the erythropoietin-producing hepatocellular (EPH) family, are known to be linked to several human cancers. The aim of this study was to investigate their expression patterns in cutaneous squamous cell carcinoma (CSCC) in association with tumor differentiation and other variable clinical characteristics. MATERIALS AND METHODS Immunohistochemical staining for EPHB4 and ephrin B2 was performed in 32 cases of CSCC with different histologic grades. The clinical characteristics and histologic grades of CSCC were evaluated in association with EPHB4 and ephrin B2 expression patterns. RESULTS EPHB4 and ephrin B2 expression levels were significantly inversely proportional to the grade of differentiation of CSCC (P < 0.001 and P < 0.001, respectively). CONCLUSION These results indicated that EPHB4 and ephrin B2 can be useful markers for poorly differentiated CSCC.
Collapse
Affiliation(s)
- Shin Taek Oh
- Department of Dermatology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Keum Jin Yang
- Clinical Research Institute, Daejeon St. Mary's Hospital, Daejeon, Korea
| | | | - Hyun Jeong Park
- Department of Dermatology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Dong Soo Yoo
- Department of Dermatology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Young Min Park
- Department of Dermatology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
25
|
Janes PW, Vail ME, Ernst M, Scott AM. Eph Receptors in the Immunosuppressive Tumor Microenvironment. Cancer Res 2020; 81:801-805. [PMID: 33177063 DOI: 10.1158/0008-5472.can-20-3047] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/08/2020] [Accepted: 11/06/2020] [Indexed: 11/16/2022]
Abstract
The tumor microenvironment (TME) promotes tumor development via complex intercellular signaling, aiding tumor growth and suppressing immunity. Eph receptors (Eph) and their ephrin ligands control cell interactions during normal development, and reemerge in tumors and the TME, where they are implicated in invasion, metastasis, and angiogenesis. Recent studies also indicate roles for Ephs in suppressing immune responses by controlling tumor interactions with innate and adaptive immune cells within the TME. Accordingly, inhibiting these functions can promote immune response and efficacy of immune checkpoint inhibition. This research highlights Ephs as potential targets to enhance efficacy of immune-based therapies in patients with cancer.
Collapse
Affiliation(s)
- Peter W Janes
- Tumour Targeting Program, Olivia Newton-John Cancer Institute/La Trobe University School of Cancer Medicine, Victoria, Melbourne, Australia.
| | - Mary E Vail
- Tumour Targeting Program, Olivia Newton-John Cancer Institute/La Trobe University School of Cancer Medicine, Victoria, Melbourne, Australia
| | - Matthias Ernst
- Cancer and Inflammation Program, Olivia Newton-John Cancer Institute/La Trobe University School of Cancer Medicine, Victoria, Melbourne, Australia
| | - Andrew M Scott
- Tumour Targeting Program, Olivia Newton-John Cancer Institute/La Trobe University School of Cancer Medicine, Victoria, Melbourne, Australia
| |
Collapse
|
26
|
Krisnawan VE, Stanley JA, Schwarz JK, DeNardo DG. Tumor Microenvironment as a Regulator of Radiation Therapy: New Insights into Stromal-Mediated Radioresistance. Cancers (Basel) 2020; 12:cancers12102916. [PMID: 33050580 PMCID: PMC7600316 DOI: 10.3390/cancers12102916] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/09/2020] [Accepted: 10/09/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Cancer is multifaceted and consists of more than just a collection of mutated cells. These cancerous cells reside along with other non-mutated cells in an extracellular matrix which together make up the tumor microenvironment or tumor stroma. The composition of the tumor microenvironment plays an integral role in cancer initiation, progression, and response to treatments. In this review, we discuss how the tumor microenvironment regulates the response and resistance to radiation therapy and what targeted agents have been used to combat stromal-mediated radiation resistance. Abstract A tumor is a complex “organ” composed of malignant cancer cells harboring genetic aberrations surrounded by a stroma comprised of non-malignant cells and an extracellular matrix. Considerable evidence has demonstrated that components of the genetically “normal” tumor stroma contribute to tumor progression and resistance to a wide array of treatment modalities, including radiotherapy. Cancer-associated fibroblasts can promote radioresistance through their secreted factors, contact-mediated signaling, downstream pro-survival signaling pathways, immunomodulatory effects, and cancer stem cell-generating role. The extracellular matrix can govern radiation responsiveness by influencing oxygen availability and controlling the stability and bioavailability of growth factors and cytokines. Immune status regarding the presence of pro- and anti-tumor immune cells can regulate how tumors respond to radiation therapy. Furthermore, stromal cells including endothelial cells and adipocytes can modulate radiosensitivity through their roles in angiogenesis and vasculogenesis, and their secreted adipokines, respectively. Thus, to successfully eradicate cancers, it is important to consider how tumor stroma components interact with and regulate the response to radiation. Detailed knowledge of these interactions will help build a preclinical rationale to support the use of stromal-targeting agents in combination with radiotherapy to increase radiosensitivity.
Collapse
Affiliation(s)
- Varintra E. Krisnawan
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA;
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jennifer A. Stanley
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA; (J.A.S.); (J.K.S.)
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Julie K. Schwarz
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA; (J.A.S.); (J.K.S.)
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David G. DeNardo
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA;
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
- Correspondence:
| |
Collapse
|
27
|
Schuch LF, Silveira FM, Wagner VP, Borgato GB, Rocha GZ, Castilho RM, Vargas PA, Martins MD. Head and neck cancer patient-derived xenograft models - A systematic review. Crit Rev Oncol Hematol 2020; 155:103087. [PMID: 32992152 DOI: 10.1016/j.critrevonc.2020.103087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/12/2020] [Accepted: 08/14/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Patient-derived xenograft (PDX) involve the direct surgical transfer of fresh human tumor samples to immunodeficient mice. This systematic review aimed to identify publications of head and neck cancer PDX (HNC-PDX) models, describing the main methodological characteristics and outcomes. METHODS An electronic search was undertaken in four databases, including publications having used HNC-PDX. Data were analyzed descriptively. RESULTS 63 articles were yielded. The nude mouse was one most commonly animal model used (38.8 %), and squamous cell carcinoma accounted for the majority of HNC-PDX (80.6 %). Tumors were mostly implanted in the flank (86.3 %), and the latency period ranged from 30 to 401 days. The successful rate ranged from 17 % to 100 %. Different drugs and pathways were identified. CONCLUSION HNC-PDX appears to significantly recapitulate the morphology of the original HNC and represents a valuable method in translational research for the assessment of the in vivo effect of novel therapies for HNC.
Collapse
Affiliation(s)
- Lauren F Schuch
- Department of Oral Diagnosis, Piracicaba Dental School, Universidade de Campinas, Piracicaba, SP, Brazil
| | - Felipe M Silveira
- Department of Oral Diagnosis, Piracicaba Dental School, Universidade de Campinas, Piracicaba, SP, Brazil
| | - Vivian P Wagner
- Department of Oral Diagnosis, Piracicaba Dental School, Universidade de Campinas, Piracicaba, SP, Brazil
| | - Gabriell B Borgato
- Department of Oral Diagnosis, Piracicaba Dental School, Universidade de Campinas, Piracicaba, SP, Brazil
| | - Guilherme Z Rocha
- Department of Oral Diagnosis, Piracicaba Dental School, Universidade de Campinas, Piracicaba, SP, Brazil
| | - Rogerio M Castilho
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, 48109-1078, United States; Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Pablo A Vargas
- Department of Oral Diagnosis, Piracicaba Dental School, Universidade de Campinas, Piracicaba, SP, Brazil
| | - Manoela D Martins
- Department of Oral Diagnosis, Piracicaba Dental School, Universidade de Campinas, Piracicaba, SP, Brazil; Department of Oral Pathology, School of Dentistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
28
|
Ono T, Azuma K, Kawahara A, Kakuma T, Sato F, Akiba J, Tanaka N, Abe T, Chitose SI, Umeno H. Predictive value of CD8/FOXP3 ratio combined with PD-L1 expression for radiosensitivity in patients with squamous cell carcinoma of the larynx receiving definitive radiation therapy. Head Neck 2020; 42:3518-3530. [PMID: 32808399 DOI: 10.1002/hed.26416] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 06/24/2020] [Accepted: 07/28/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Little is known about immune-related radiosensitivity in patients with squamous cell carcinoma of the larynx (SCC-L) treated with radiation therapy (RT). METHODS We retrospectively reviewed 91 patients with SCC-L treated with RT or chemoradiation therapy and performed immunohistochemical examination to analyze PD-L1 level on tumor cells, CD4+ tumor-infiltrating lymphocytes (TILs), CD8+ TIL, and FOXP3+ TIL using pretreated biopsy specimens. The association between these immune-related parameters and radiosensitivity was evaluated. RESULTS Multivariate analyses showed that high CD8/FOXP3 ratio combined with negative PD-L1 expression was an independent and significant favorable predictive factor for local control, compared with the other groups. CONCLUSIONS We showed that high CD8/FOXP3 ratio combined with negative PD-L1 expression might be a useful biomarker of radiosensitivity in patients with SCC-L receiving definitive RT. We propose that coassessment of CD8/FOXP3 ratio and PD-L1 expression level in tumor cells can help predict potential radiosensitivity in patients with SCC-L.
Collapse
Affiliation(s)
- Takeharu Ono
- Department of Otolaryngology-Head and Neck Surgery, Kurume University School of Medicine, Kurume, Japan
| | - Koichi Azuma
- Division of Respirology, Neurology, and Rheumatology, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Akihiko Kawahara
- Department of Diagnostic Pathology, Kurume University Hospital, Kurume, Japan
| | - Tatsuyuki Kakuma
- Biostatistics Center, Kurume University School of Medicine, Kurume, Japan
| | - Fumihiko Sato
- Department of Otolaryngology-Head and Neck Surgery, Kurume University School of Medicine, Kurume, Japan
| | - Jun Akiba
- Department of Diagnostic Pathology, Kurume University Hospital, Kurume, Japan
| | - Norimitsu Tanaka
- Department of Radiology, Kurume University School of Medicine, Kurume, Japan
| | - Toshi Abe
- Department of Radiology, Kurume University School of Medicine, Kurume, Japan
| | - Shun-Ichi Chitose
- Department of Otolaryngology-Head and Neck Surgery, Kurume University School of Medicine, Kurume, Japan
| | - Hirohito Umeno
- Department of Otolaryngology-Head and Neck Surgery, Kurume University School of Medicine, Kurume, Japan
| |
Collapse
|
29
|
Zhu M, Gong Z, Wu Q, Su Q, Yang T, Yu R, Xu R, Zhang Y. Homoharringtonine suppresses tumor proliferation and migration by regulating EphB4-mediated β-catenin loss in hepatocellular carcinoma. Cell Death Dis 2020; 11:632. [PMID: 32801343 PMCID: PMC7429962 DOI: 10.1038/s41419-020-02902-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/06/2020] [Indexed: 11/08/2022]
Abstract
Overexpressed EphB4 conduce to tumor development and is regarded as a potential anticancer target. Homoharringtonine (HHT) has been approved for hematologic malignancies treatment, but its effect on hepatocellular carcinoma (HCC) has not been studied. This study elucidated HHT could restrain the proliferation and migration of HCC via an EphB4/β-catenin-dependent manner. We found that the antiproliferative activity of HHT in HCC cells and tumor xenograft was closely related to EphB4 expression. In HepG2, Hep3B and SMMC-7721 cells, EphB4 overexpression or EphrinB2 Fc stimulation augmented HHT-induced inhibitory effect on cell growth and migration ability, and such effect was abrogated when EphB4 was knocked down. The similar growth inhibitory effect of HHT was observed in SMMC-7721 and EphB4+/SMMC-7721 cells xenograft in vivo. Preliminary mechanistic investigation indicated that HHT directly bound to EphB4 and suppressed its expression. Data obtained from HCC patients revealed increased β-catenin expression and a positive correlation between EphB4 expression and β-catenin levels. HHT-induced EphB4 suppression promoted the phosphorylation and loss of β-catenin, which triggered regulation of β-catenin downstream signaling related to migration, resulting in the reversion of EMT in TGF-β-induced HepG2 cells. Collectively, this study provided a groundwork for HHT as an effective antitumor agent for HCC in an EphB4/β-catenin-dependent manner.
Collapse
Affiliation(s)
- Man Zhu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No. 76, Yanta Weststreet, #54, 710061, Xi'an, Shaanxi, P.R. China
| | - Zhengyan Gong
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No. 76, Yanta Weststreet, #54, 710061, Xi'an, Shaanxi, P.R. China
| | - Qing Wu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No. 76, Yanta Weststreet, #54, 710061, Xi'an, Shaanxi, P.R. China
| | - Qi Su
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No. 76, Yanta Weststreet, #54, 710061, Xi'an, Shaanxi, P.R. China
| | - Tianfeng Yang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No. 76, Yanta Weststreet, #54, 710061, Xi'an, Shaanxi, P.R. China
| | - Runze Yu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No. 76, Yanta Weststreet, #54, 710061, Xi'an, Shaanxi, P.R. China
| | - Rui Xu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No. 76, Yanta Weststreet, #54, 710061, Xi'an, Shaanxi, P.R. China
| | - Yanmin Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No. 76, Yanta Weststreet, #54, 710061, Xi'an, Shaanxi, P.R. China.
| |
Collapse
|
30
|
Dong Y, Han Y, Huang Y, Jiang S, Huang Z, Chen R, Yu Z, Yu K, Zhang S. PD-L1 Is Expressed and Promotes the Expansion of Regulatory T Cells in Acute Myeloid Leukemia. Front Immunol 2020; 11:1710. [PMID: 32849603 PMCID: PMC7412746 DOI: 10.3389/fimmu.2020.01710] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 06/26/2020] [Indexed: 12/13/2022] Open
Abstract
Intratumoral accumulation of CD4+CD25+Foxp3+ regulatory T (Treg) cells occurs in acute myeloid leukemia (AML), but little is known about the role of tumor cells themselves in this process. Here, we showed that an immune checkpoint PD-L1 expressed by AML cells promoted the conversion and expansion of Treg cells sustaining high expression of Foxp3 and PD-1 as well as a suppressive function. Furthermore, an AML cell line HEL overexpressed PD-L1 promoted the conversion and expansion of Treg cells and CD4+PD-1+Foxp3+ T (PD-1+Treg) cells from the conventional CD4+ T cells. CD4+CD25highPD-1+ T cells secreted more IL-10 production than CD4+CD25highPD-1− T cells. IL-35, another cytokine secreted by Treg cells, promoted the proliferation of HL-60 cells and enhanced chemoresistance to cytarabine. Blockade of PD-1 signaling using anti-PD-L1 antibody dramatically impaired the generation of Treg cells and sharply retarded the progression of a murine AML model injected with C1498 cells. The frequency of intratumoral PD-1+ Treg cells was capable of predicting patient survival in patients with AML. In conclusion, our data suggest that PD-L1 expression by AML cells may directly drive Treg cell expansion as a mechanism of immune evasion and the frequency of PD-1+ Treg cells is a potential prognostic predictor in patients with AML.
Collapse
Affiliation(s)
- Yuqing Dong
- Wenzhou Key Laboratory of Hematology, Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yixiang Han
- Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yisha Huang
- Wenzhou Key Laboratory of Hematology, Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Songfu Jiang
- Wenzhou Key Laboratory of Hematology, Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ziyang Huang
- Wenzhou Key Laboratory of Hematology, Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Rongrong Chen
- Wenzhou Key Laboratory of Hematology, Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhijie Yu
- Wenzhou Key Laboratory of Hematology, Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kang Yu
- Wenzhou Key Laboratory of Hematology, Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shenghui Zhang
- Wenzhou Key Laboratory of Hematology, Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Division of Clinical Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
31
|
EphrinB2 expression in prostate adenocarcinoma: Implications for targeted therapy. Pathol Res Pract 2020; 216:152967. [PMID: 32362422 DOI: 10.1016/j.prp.2020.152967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/26/2020] [Accepted: 04/11/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND Prostate cancer is managed by surgery, androgen deprivation and cytotoxic chemotherapy. Targeted therapy is emerging as an important pillar in cancer therapeutics, however, efficacy in prostate cancer has been limited. Eph-ephrin is a novel pathway that is upregulated in prostate cancer and promotes the initiation and progression of cancer. The aim of this study was to determine the immunohistochemical expression of ephrinB2 in prostate adenocarcinoma. METHODS A tissue microarray comprising of prostate adenocarcinoma of different grade groups was stained with a monoclonal anti-ephrinB2 antibody (Abcam, AB201512). The tumor and endothelial cells expressing the ephrinB2 positivity were noted. The statistical analysis was performed to determine the difference in expression based on grade groups and the TNM stage. RESULTS EphrinB2 was expressed in 40 out of 72 cases (55.5 %) of prostate adenocarcinoma and was predominantly negative in the normal prostatic tissue. There was no significant difference in the expression of ephrinB2 in various grade groups (p = 0.7) or stages (p = 0.6). CONCLUSIONS EphrinB2 is expressed in a significant number of prostate adenocarcinoma regardless of grade and stage. Hence, there is a potential to target this molecule in the low-grade tumors with localized disease as well as high grade, high volume tumors with metastatic disease.
Collapse
|
32
|
Georgescu SR, Tampa M, Mitran CI, Mitran MI, Caruntu C, Caruntu A, Lupu M, Matei C, Constantin C, Neagu M. Tumour Microenvironment in Skin Carcinogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1226:123-142. [PMID: 32030681 DOI: 10.1007/978-3-030-36214-0_10] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Tumour microenvironment is a complex system comprising cells and molecules that will provide the necessary conditions for tumour development and progression. Cells residing in the tumour microenvironment gain specific phenotypes and specific functions that are pro-tumorigenic. Tumour progression is in fact a combination between tumour cell characteristics and its interplay with tumour microenvironment. This dynamic network will allow tumour cells to grow, migrate and invade tissues. In the present chapter, we are highlighting some traits that characterise tumour microenvironment in basal cell carcinoma, squamous cell carcinoma and cutaneous melanoma. In skin cancers, there are some common tumour microenvironment characteristics such as the presence of tumour-associated macrophages and regulatory T lymphocytes that are non-tumour cells promoting tumorigenesis. There are also skin cancer type differences in terms of tumour microenvironment characteristics. Thus, markers such as macrophage migration inhibitory factor in melanoma or the extraordinary diverse genetic make-up in the cancer-associated fibroblasts associated to squamous cell carcinoma are just a few of specific traits in skin cancer types. New technological advances for evaluation of tumour environment are presented. Thus, non-invasive skin imaging techniques such as reflectance confocal microscopy can evaluate skin tumour inflammatory infiltrates for density and cellular populations. Analysing tumour micromedium in depth may offer new insights into cancer therapy and identify new therapy targets.
Collapse
Affiliation(s)
- Simona Roxana Georgescu
- "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania.,"Victor Babes" Clinical Hospital for Infectious Diseases, Bucharest, Romania
| | - Mircea Tampa
- "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania. .,"Victor Babes" Clinical Hospital for Infectious Diseases, Bucharest, Romania.
| | - Cristina Iulia Mitran
- "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania.,"Cantacuzino" National Medico-Military Institute for Research and Development, Bucharest, Romania
| | - Madalina Irina Mitran
- "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania.,"Cantacuzino" National Medico-Military Institute for Research and Development, Bucharest, Romania
| | - Constantin Caruntu
- "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania. .,Department of Dermatology, "Prof. N. Paulescu" National Institute of Diabetes, Nutrition and Metabolic Diseases, Bucharest, Romania.
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, "Carol Davila" Central Military Emergency Hospital, Bucharest, Romania.,Faculty of Medicine, Department of Preclinical Sciences, "Titu Maiorescu" University, Bucharest, Romania
| | - Mihai Lupu
- Department of Dermatology, MEDAS Medical Center, Bucharest, Romania
| | - Clara Matei
- "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Carolina Constantin
- Immunology Department, "Victor Babes" National Institute of Pathology, Bucharest, Romania.,Colentina Clinical Hospital, Bucharest, Romania
| | - Monica Neagu
- Immunology Department, "Victor Babes" National Institute of Pathology, Bucharest, Romania. .,Colentina Clinical Hospital, Bucharest, Romania. .,Faculty of Biology, University of Bucharest, Bucharest, Romania.
| |
Collapse
|
33
|
Abstract
Eph receptor (Eph) and ephrin signaling regulate fundamental developmental processes through both forward and reverse signaling triggered upon cell-cell contact. In vertebrates, they are both classified into classes A and B, and some representatives have been identified in many metazoan groups, where their expression and functions have been well studied. We have extended previous phylogenetic analyses and examined the presence of Eph and ephrins in the tree of life to determine their origin and evolution. We have found that 1) premetazoan choanoflagellates may already have rudimental Eph/ephrin signaling as they have an Eph-/ephrin-like pair and homologs of downstream-signaling genes; 2) both forward- and reverse-downstream signaling might already occur in Porifera since sponges have most genes involved in these types of signaling; 3) the nonvertebrate metazoan Eph is a type-B receptor that can bind ephrins regardless of their membrane-anchoring structure, glycosylphosphatidylinositol, or transmembrane; 4) Eph/ephrin cross-class binding is specific to Gnathostomata; and 5) kinase-dead Eph receptors can be traced back to Gnathostomata. We conclude that Eph/ephrin signaling is of older origin than previously believed. We also examined the presence of protein domains associated with functional characteristics and the appearance and conservation of downstream-signaling pathways to understand the original and derived functions of Ephs and ephrins. We find that the evolutionary history of these gene families points to an ancestral function in cell-cell interactions that could contribute to the emergence of multicellularity and, in particular, to the required segregation of cell populations.
Collapse
Affiliation(s)
- Aida Arcas
- Instituto de Neurociencias (CSIC-UMH), Avda, San Juan de Alicante, Spain
| | - David G Wilkinson
- Neural Development Laboratory, The Francis Crick Institute, London, United Kingdom
| | - M Ángela Nieto
- Instituto de Neurociencias (CSIC-UMH), Avda, San Juan de Alicante, Spain
| |
Collapse
|
34
|
Sato S, Vasaikar S, Eskaros A, Kim Y, Lewis JS, Zhang B, Zijlstra A, Weaver AM. EPHB2 carried on small extracellular vesicles induces tumor angiogenesis via activation of ephrin reverse signaling. JCI Insight 2019; 4:132447. [PMID: 31661464 DOI: 10.1172/jci.insight.132447] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/23/2019] [Indexed: 12/19/2022] Open
Abstract
Angiogenesis is a key process that allows nutrient uptake and cellular trafficking and is coopted in cancer to enable tumor growth and metastasis. Recently, extracellular vesicles (EVs) have been shown to promote angiogenesis; however, it is unclear what unique features EVs contribute to the process. Here, we studied the role of EVs derived from head and neck squamous cell carcinoma (HNSCC) in driving tumor angiogenesis. Small EVs (SEVs), in the size range of exosomes (50-150 nm), induced angiogenesis both in vitro and in vivo. Proteomic analysis of HNSCC SEVs revealed the cell-to-cell signaling receptor ephrin type B receptor 2 (EPHB2) as a promising candidate cargo to promote angiogenesis. Analysis of patient data further identified EPHB2 overexpression in HNSCC tumors to be associated with poor patient prognosis and tumor angiogenesis, especially in the context of overexpression of the exosome secretion regulator cortactin. Functional experiments revealed that EPHB2 expression in SEVs regulated angiogenesis both in vitro and in vivo and that EPHB2 carried by SEVs stimulates ephrin-B reverse signaling, inducing STAT3 phosphorylation. A STAT3 inhibitor greatly reduced SEV-induced angiogenesis. These data suggest a model in which EVs uniquely promote angiogenesis by transporting Eph transmembrane receptors to nonadjacent endothelial cells to induce ephrin reverse signaling.
Collapse
Affiliation(s)
- Shinya Sato
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Suhas Vasaikar
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Adel Eskaros
- Department of Pathology, Microbiology and Immunology, and
| | - Young Kim
- Department of Otolaryngology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - James S Lewis
- Department of Pathology, Microbiology and Immunology, and
| | - Bing Zhang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | | | - Alissa M Weaver
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.,Department of Pathology, Microbiology and Immunology, and
| |
Collapse
|
35
|
Yang S, Liu T, Cheng Y, Bai Y, Liang G. Immune cell infiltration as a biomarker for the diagnosis and prognosis of digestive system cancer. Cancer Sci 2019; 110:3639-3649. [PMID: 31605436 PMCID: PMC6890448 DOI: 10.1111/cas.14216] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/14/2019] [Accepted: 09/19/2019] [Indexed: 12/24/2022] Open
Abstract
The digestive system cancers are aggressive cancers with the highest mortality worldwide. In this study, we undertook a systematic investigation of the tumor immune microenvironment to identify diagnostic and prognostic biomarkers. The fraction of 22 immune cell types of patients were estimated using CIBERSORT. The least absolute shrinkage and selection operator (LASSO) analysis was carried out to identify important immune predictors. By comparing immune cell compositions in 801 tumor samples and 46 normal samples, we constructed the diagnostic immune score (DIS), showing high specificity and sensitivity in the training (area under the receiver operating characteristic curve [AUC] = 0.929), validation (AUC = 0.935), and different cancer type cohorts (AUC > 0.70 for all). We also established the prognostic immune score (PIS), which was an effective prognostic factor for relapse‐free survival in training, validation, and entire cohorts (P < .05). In addition, PIS provided a higher net benefit than TNM stage. A composite nomogram was built based on PIS and patients' clinical information with well‐fitted calibration curves (c‐index = 0.84). We further used other cohorts from Gene Expression Omnibus databases and obtained similar results, confirming the reliability and validity of the DIS and PIS. In addition, the unsupervised clustering analysis using immune cell proportions revealed 6 immune subtypes, suggesting that the immune types defined as having relatively high levels of M0 or/and M1 macrophages were the high‐risk subtypes of relapse. In conclusion, this study comprehensively analyzed the tumor immune microenvironment and identified DIS and PIS for digestive system cancers.
Collapse
Affiliation(s)
- Sheng Yang
- School of Public Health, Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, China
| | - Tong Liu
- School of Public Health, Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, China
| | - Yanping Cheng
- School of Public Health, Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, China
| | - Yunfei Bai
- School of Biological Sciences and Medical Engineering, State Key Laboratory of Bioelectronics, Southeast University, Nanjing, China
| | - Geyu Liang
- School of Public Health, Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, China
| |
Collapse
|
36
|
Wang HC, Chan LP, Cho SF. Targeting the Immune Microenvironment in the Treatment of Head and Neck Squamous Cell Carcinoma. Front Oncol 2019; 9:1084. [PMID: 31681613 PMCID: PMC6803444 DOI: 10.3389/fonc.2019.01084] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/01/2019] [Indexed: 12/31/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a highly aggressive solid tumor, with a 5-year mortality rate of ~50%. The development of immunotherapies has improved the survival of patients with HNSCC, but, the long-term prognosis of patients with recurrent or metastatic HNSCC remains poor. HNSCC is characterized by intratumoral infiltration of regulatory T cells, dysfunctional natural killer cells, an elevated Treg/CD8+ T cell ratio, and increased programmed cell death ligand 1 protein on tumor cells. This leads to an immunocompromised niche in favor of the proliferation and treatment resistance of cancer cells. To achieve an improved treatment response, several potential combination strategies, such as increasing the neoantigens for antigen presentation and therapeutic agents targeting components of the tumor microenvironment, have been explored and have shown promising results in preclinical studies. In addition, large-scale bioinformatic studies have also identified possible predictive biomarkers of HNSCC. As immunotherapy has shown survival benefits in recent HNSCC clinical trials, a comprehensive investigation of immune cells and immune-related factors/cytokines and the immune profiling of tumor cells during the development of HNSCC may provide more insights into the complex immune microenvironment and thus, facilitate the development of novel immunotherapeutic agents.
Collapse
Affiliation(s)
- Hui-Ching Wang
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Leong-Perng Chan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Otolaryngology-Head and Neck Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shih-Feng Cho
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
37
|
Karam SD, Raben D. Radioimmunotherapy for the treatment of head and neck cancer. Lancet Oncol 2019; 20:e404-e416. [DOI: 10.1016/s1470-2045(19)30306-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 03/19/2019] [Accepted: 03/25/2019] [Indexed: 12/27/2022]
|