1
|
Stone SH, Rathmell JC, Bader JE. Macrophages make "sense" of obesity-driven acidity in the TME. Cell Chem Biol 2024; 31:2021-2023. [PMID: 39706167 DOI: 10.1016/j.chembiol.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 11/21/2024] [Accepted: 11/21/2024] [Indexed: 12/23/2024]
Abstract
Obesity is a leading risk factor and a negative prognostic indicator for many cancers. In a recent issue of Science Immunology, Bagchi et al. identified that tumor-associated macrophages upregulate GPR65 in response to obesity-driven intratumor acidity resulting in reduced effector function to promote tumor growth.1.
Collapse
Affiliation(s)
- Spenser H Stone
- Department of Pathology Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jeffrey C Rathmell
- Department of Pathology Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jackie E Bader
- Department of Pathology Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
2
|
Liu Y, Yan N, Chen Q, Dong L, Li Y, Weng P, Wu Z, Pan D, Liu L, Farag MA, Wang L, Liu L. Research advances in citrus polyphenols: green extraction technologies, gut homeostasis regulation, and nano-targeted delivery system application. Crit Rev Food Sci Nutr 2024; 64:11493-11509. [PMID: 37552798 DOI: 10.1080/10408398.2023.2239350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Citrus polyphenols can modulate gut microbiota and such bi-directional interaction that can yield metabolites such as short-chain fatty acids (SCFAs) to aid in gut homeostasis. Such interaction provides citrus polyphenols with powerful prebiotic potential, contributing to guts' health status and metabolic regulation. Citrus polyphenols encompass unique polymethoxy flavonoids imparting non-polar nature that improve their bioactivities and ability to penetrate the blood-brain barrier. Green extraction technology targeting recovery of these polyphenols has received increasing attention due to its advantages of high extraction yield, short extraction time, low solvent consumption, and environmental friendliness. However, the low bioavailability of citrus polyphenols limits their applications in extraction from citrus by-products. Meanwhile, nano-encapsulation technology may serve as a promising approach to improve citrus polyphenols' bioavailability. As citrus polyphenols encompass multiple hydroxyl groups, they are potential to interact with bio-macromolecules such as proteins and polysaccharides in nano-encapsulated systems that can improve their bioavailability. This multifaceted review provides a research basis for the green and efficient extraction techniques of citrus polyphenols, as well as integrated mechanisms for its anti-inflammation, alleviating metabolic syndrome, and regulating gut homeostasis, which is more capitalized upon using nano-delivery systems as discussed in that review to maximize their health and food applications.
Collapse
Affiliation(s)
- Yahui Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Ning Yan
- Plant Functional Component Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Laoshan District, Qingdao, China
| | - Qin Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Lezhen Dong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Ying Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Peifang Weng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Zufang Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Lingyi Liu
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Mohamed A Farag
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Lei Wang
- School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou, China
| | - Lianliang Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
3
|
Tang Y, Chen Z, Zuo Q, Kang Y. Regulation of CD8+ T cells by lipid metabolism in cancer progression. Cell Mol Immunol 2024; 21:1215-1230. [PMID: 39402302 PMCID: PMC11527989 DOI: 10.1038/s41423-024-01224-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/22/2024] [Indexed: 11/02/2024] Open
Abstract
Dysregulation of lipid metabolism is a key characteristic of the tumor microenvironment, where tumor cells utilize lipids for proliferation, survival, metastasis, and evasion of immune surveillance. Lipid metabolism has become a critical regulator of CD8+ T-cell-mediated antitumor immunity, with excess lipids in the tumor microenvironment impeding CD8+ T-cell activities. Considering the limited efficacy of immunotherapy in many solid tumors, targeting lipid metabolism to enhance CD8+ T-cell effector functions could significantly improve immunotherapy outcomes. In this review, we examine recent findings on how lipid metabolic processes, including lipid uptake, synthesis, and oxidation, regulate CD8+ T cells within tumors. We also assessed the impact of different lipids on CD8+ T-cell-mediated antitumor immunity, with a particular focus on how lipid metabolism affects mitochondrial function in tumor-infiltrating CD8+ T cells. Furthermore, as cancer is a systemic disease, we examined systemic factors linking lipid metabolism to CD8+ T-cell effector function. Finally, we summarize current therapeutic approaches that target lipid metabolism to increase antitumor immunity and enhance immunotherapy. Understanding the molecular and functional interplay between lipid metabolism and CD8+ T cells offers promising therapeutic opportunities for cancer treatment.
Collapse
Affiliation(s)
- Yong Tang
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
- Ludwig Institute for Cancer Research Princeton Branch, Princeton, NJ, 08544, USA
| | - Ziqing Chen
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
- Ludwig Institute for Cancer Research Princeton Branch, Princeton, NJ, 08544, USA
| | - Qianying Zuo
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
- Ludwig Institute for Cancer Research Princeton Branch, Princeton, NJ, 08544, USA
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA.
- Ludwig Institute for Cancer Research Princeton Branch, Princeton, NJ, 08544, USA.
- Cancer Metabolism and Growth Program, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08903, USA.
| |
Collapse
|
4
|
Jin S, Zheng Y, Li D, Liu X, Zhu T, Wang S, Liu Z, Liu Y. Effect of genistein supplementation on microenvironment regulation of breast tumors in obese mice. Breast Cancer Res 2024; 26:147. [PMID: 39456028 PMCID: PMC11515845 DOI: 10.1186/s13058-024-01904-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Obesity is an important risk factor for breast cancer in women before and after menopause. Adipocytes, key mediators in the tumor microenvironment, play a pivotal role in the relationship between obesity with cancer. However, the potential of dietary components in modulating this relationship remains underexplored. Genistein, a soy-derived isoflavone, has shown promise in reducing breast cancer risk, attenuating obesity-associated inflammation, and improving insulin resistance. However, there are no reports examining whether genistein has the ability to reduce the effects of obesity on breast tumor development. In this study, we constructed a mammary tumor model in ovariectomized obese mice and examined the effects of genistein on body condition and tumor growth. Moreover, the effects of genistein on the tumor microenvironment were examined via experimental observation of peritumoral adipocytes and macrophages. In addition, we further investigated the effect of genistein on adipocyte and breast cancer cell crosstalk via coculture experiments. Our findings indicate that dietary genistein significantly alleviates obesity, systemic inflammation, and metabolic disorders induced by a high-fat diet in ovariectomized mice. Notably, it also inhibits tumor growth in vivo. The impact of genistein extends to the tumor microenvironment, where it reduces the production of cancer-associated adipocytes (CAAs) and the recruitment of M2d-subtype macrophages. In vitro, genistein mitigates the transition of adipocytes into CAAs and inhibits the expression of inflammatory factors by activating PPAR-γ pathway and degrading nuclear NF-κB. Furthermore, it impedes the acquisition of invasive properties and epithelial‒mesenchymal transition in breast cancer cells under CAA-induced inflammation, disrupting the Wnt3a/β-catenin pathway. Intriguingly, the PPAR-γ inhibitor T0070907 counteracted the effects of genistein in the coculture system, underscoring the specificity of its action. Our study revealed that genistein can mitigate the adverse effects of obesity on breast cancer by modulating the tumor microenvironment. These findings provide new insights into how genistein intake and a soy-based diet can reduce breast cancer risk.
Collapse
Affiliation(s)
- Shengzi Jin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yingce Zheng
- College of Life Sciences, Northeast Agricultural University, No. 600 Changjiang Road, Harbin, 150030, PR China
| | - Ding Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xingyao Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Tingting Zhu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shuang Wang
- College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, 311300, PR China
| | - Zhonghua Liu
- College of Life Sciences, Northeast Agricultural University, No. 600 Changjiang Road, Harbin, 150030, PR China.
| | - Yun Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, No. 600 Changjiang Road, Harbin, 150030, PR China.
| |
Collapse
|
5
|
Lam TK, Daschner P, Ishibe N, Wali A, Hall K, Czajkowski S, Mahabir S, Watson JM, Nebeling L, Ross S, Sauter E. Metabolic Dysregulation and Cancer Risk Program (MeDOC): a transdisciplinary approach to obesity-associated cancers. J Natl Cancer Inst 2024; 116:1555-1561. [PMID: 38885413 PMCID: PMC11461156 DOI: 10.1093/jnci/djae134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/20/2024] Open
Abstract
With the escalating prevalence of obesity, the association between obesity and cancer is a growing public health concern. Obesity will soon surpass tobacco smoking as the most important preventable cause of cancer. Obesity-driven mechanisms can alter cell functions to induce metabolic changes, chronic inflammation, and insulin resistance that are believed to contribute to cancer risk and development; yet the specific underlying biological mechanisms of obesity-related cancer development are largely unknown. The Metabolic Dysregulation and Cancer Risk Program: a transdisciplinary approach to obesity-associated cancers (MeDOC) is a trans-National Cancer Institute research initiative supported by the Division of Cancer Control and Population Sciences, the Division of Cancer Biology, the Division of Cancer Prevention, and the Center to Reduce Cancer Health Disparities. The overall purpose of the MeDOC Program is to advance our understanding of the underlying mechanisms that connect obesity, metabolic dysregulation, and increased obesity cancer risk as well as identify markers that will enhance cancer risk prediction, improve screening for high-risk individuals, and identify targets for preventive and therapeutic interventions for cancer interception or treatment. This report describes the funded research projects, the Coordinating Center, and the goals of the MeDOC program.
Collapse
Affiliation(s)
- Tram Kim Lam
- Division of Cancer Control and Population Sciences, National Cancer Institute, Rockville, MD, USA
| | - Phil Daschner
- Division of Cancer Biology, National Cancer Institute, Rockville, MD, USA
| | - Naoko Ishibe
- Division of Cancer Control and Population Sciences, National Cancer Institute, Rockville, MD, USA
| | - Anil Wali
- Center to Reduce Cancer Health Disparities, National Cancer Institute, Rockville, MD, USA
| | - Kara Hall
- Division of Cancer Control and Population Sciences, National Cancer Institute, Rockville, MD, USA
| | - Susan Czajkowski
- Division of Cancer Control and Population Sciences, National Cancer Institute, Rockville, MD, USA
| | - Somdat Mahabir
- Division of Cancer Control and Population Sciences, National Cancer Institute, Rockville, MD, USA
| | - Joanna M Watson
- Division of Cancer Biology, National Cancer Institute, Rockville, MD, USA
| | - Linda Nebeling
- Division of Cancer Control and Population Sciences, National Cancer Institute, Rockville, MD, USA
| | - Sharon Ross
- Division of Cancer Prevention, National Cancer Institute, Rockville, MD, USA
| | - Edward Sauter
- Division of Cancer Prevention, National Cancer Institute, Rockville, MD, USA
| |
Collapse
|
6
|
Liu J, Zhang W, Jin S, Zhang H, Xu Y, Xiong P, Qin X, Jia B. Plant-derived inducers in tumor differentiation therapy:A systematic review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155749. [PMID: 38763009 DOI: 10.1016/j.phymed.2024.155749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 02/27/2024] [Accepted: 05/14/2024] [Indexed: 05/21/2024]
Abstract
BACKGROUND Differentiation therapy, a highly regarded treatment method in tumor research, aims to induce tumor cells to differentiate back to normal cells, deviating from the malignant pathway and returning to a benign state. Its development relies on the continuous discovery of efficient and low-toxic differentiation inducers, including plant-derived active components that offer significant biological utilization and therapeutic potential. For this reason, the exploration of plant-derived inducers, particularly in their application in differentiation therapy, holds great promise in advancing cancer treatment strategies toward more effective and safer alternatives. PURPOSE This paper aims to provide a valuable reference for researchers seeking to identify natural, efficient, and low-toxic differentiation inducers from plants and highlights a promising research direction for the application of differentiation therapy in malignant tumor treatment. METHODS For the collection of pertinent information, an extensive search was conducted across diverse literature and electronic databases, including PubMed, ScienceDirect, Wiley, ACS, CNKI, Springer, Taylor & Francis, Web of Science, Google Scholar, and Baidu Scholar. This comprehensive approach aimed to retrieve and include all relevant literature from 1985 to 2023. Primary keywords such as "Natural medicinal plant," "Differentiation therapy," and "Differentiation inducer" were utilized, supplemented by secondary search terms including "Cancer," "Tumor," "Herbal medicine," "Induced differentiation," and "Cancer treatment." RESULTS This study systematically evaluated the application of plant-derived inducers in tumor-induced differentiation therapy. Through extensive literature review, specific plant components with confirmed differentiation-inducing properties were identified. Furthermore, potential molecular mechanisms underlying this process were outlined, shedding light on the future development of differentiation therapy in cancer treatment. CONCLUSION Plant-derived active components exhibit substantial biological utility and therapeutic potential. Delving deeper into the research on these components as differentiation inducers holds promise for the selection of novel cancer drugs and the unveiling of novel pathways for cancer treatment. These results emphasize the importance of continued exploration and in-depth research into natural, efficient, and low-toxic differentiation inducers from plants, which could significantly advance cancer treatment strategies. Moreover, the highlighted research direction underscores the relevance of differentiation therapy in the context of malignant tumor treatment, indicating its potential as a safer and more effective alternative in cancer therapy.
Collapse
Affiliation(s)
- Junyu Liu
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Wei Zhang
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Shenrui Jin
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Hua Zhang
- Nanbu Hospital of County Chinese Medicine, Nanchong, Sichuan, 637399, China
| | - Yi Xu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Peiyu Xiong
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Xuhua Qin
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China.
| | - Bo Jia
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China.
| |
Collapse
|
7
|
Hao J, Jin R, Yi Y, Jiang X, Yu J, Xu Z, Schnicker NJ, Chimenti MS, Sugg SL, Li B. Development of a humanized anti-FABP4 monoclonal antibody for potential treatment of breast cancer. Breast Cancer Res 2024; 26:119. [PMID: 39054536 PMCID: PMC11270797 DOI: 10.1186/s13058-024-01873-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Breast cancer is the most common cancer in women diagnosed in the U.S. and worldwide. Obesity increases breast cancer risk without clear underlying molecular mechanisms. Our studies demonstrate that circulating adipose fatty acid binding protein (A-FABP, or FABP4) links obesity-induced dysregulated lipid metabolism and breast cancer risk, thus potentially offering a new target for breast cancer treatment. METHODS We immunized FABP4 knockout mice with recombinant human FABP4 and screened hybridoma clones with specific binding to FABP4. The potential effects of antibodies on breast cancer cells in vitro were evaluated using migration, invasion, and limiting dilution assays. Tumor progression in vivo was evaluated in various types of tumorigenesis models including C57BL/6 mice, Balb/c mice, and SCID mice. The phenotype and function of immune cells in tumor microenvironment were characterized with multi-color flow cytometry. Tumor stemness was detected by ALDH assays. To characterize antigen-antibody binding capacity, we determined the dissociation constant of selected anti-FABP4 antibodies via surface plasmon resonance. Further analyses in tumor tissue were performed using 10X Genomics Visium spatial single cell technology. RESULTS Herein, we report the generation of humanized monoclonal antibodies blocking FABP4 activity for breast cancer treatment in mouse models. One clone, named 12G2, which significantly reduced circulating levels of FABP4 and inhibited mammary tumor growth, was selected for further characterization. After confirming the therapeutic efficacy of the chimeric 12G2 monoclonal antibody consisting of mouse variable regions and human IgG1 constant regions, 16 humanized 12G2 monoclonal antibody variants were generated by grafting its complementary determining regions to selected human germline sequences. Humanized V9 monoclonal antibody showed consistent results in inhibiting mammary tumor growth and metastasis by affecting tumor cell mitochondrial metabolism. CONCLUSIONS Our current evidence suggests that targeting FABP4 with humanized monoclonal antibodies may represent a novel strategy for the treatment of breast cancer and possibly other obesity- associated diseases.
Collapse
Affiliation(s)
- Jiaqing Hao
- Department of Pathology, University of Iowa, 431 Newton Road, Iowa City, IA, 52242, USA
| | - Rong Jin
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yanmei Yi
- School of Basic Medical Sciences, Guangdong Medical University, Zhanjiang, China
| | - Xingshan Jiang
- Department of Pathology, University of Iowa, 431 Newton Road, Iowa City, IA, 52242, USA
| | - Jianyu Yu
- Department of Pathology, University of Iowa, 431 Newton Road, Iowa City, IA, 52242, USA
| | - Zhen Xu
- Protein and Crystallography Facility, University of Iowa, Iowa City, IA, USA
| | | | - Michael S Chimenti
- Iowa Institute of Human Genetics, University of Iowa, Iowa City, IA, USA
| | - Sonia L Sugg
- Department of Surgery, University of Iowa, Iowa City, IA, USA
| | - Bing Li
- Department of Pathology, University of Iowa, 431 Newton Road, Iowa City, IA, 52242, USA.
| |
Collapse
|
8
|
Khalifa A, Guijarro A, Nencioni A. Advances in Diet and Physical Activity in Breast Cancer Prevention and Treatment. Nutrients 2024; 16:2262. [PMID: 39064705 PMCID: PMC11279876 DOI: 10.3390/nu16142262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/07/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
There is currently a growing interest in diets and physical activity patterns that may be beneficial in preventing and treating breast cancer (BC). Mounting evidence indicates that indeed, the so-called Mediterranean diet (MedDiet) and regular physical activity likely both help reduce the risk of developing BC. For those who have already received a BC diagnosis, these interventions may decrease the risk of tumor recurrence after treatment and improve quality of life. Studies also show the potential of other dietary interventions, including fasting or modified fasting, calorie restriction, ketogenic diets, and vegan or plant-based diets, to enhance the efficacy of BC therapies. In this review article, we discuss the biological rationale for utilizing these dietary interventions and physical activity in BC prevention and treatment. We highlight published and ongoing clinical studies that have applied these lifestyle interventions to BC patients. This review offers valuable insights into the potential application of these dietary interventions and physical activity as complimentary therapies in BC management.
Collapse
Affiliation(s)
- Amr Khalifa
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy;
| | - Ana Guijarro
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy;
| | - Alessio Nencioni
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy;
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| |
Collapse
|
9
|
Bai X, Duan Z, Deng J, Zhang Z, Fu R, Zhu C, Fan D. Ginsenoside Rh4 inhibits colorectal cancer via the modulation of gut microbiota-mediated bile acid metabolism. J Adv Res 2024:S2090-1232(24)00265-0. [PMID: 38969093 DOI: 10.1016/j.jare.2024.06.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/15/2024] [Accepted: 06/30/2024] [Indexed: 07/07/2024] Open
Abstract
INTRODUCTION Dysbiosis of the gut microbiota is emerging as a pivotal factor in the pathogenesis of colorectal cancer (CRC). Ginsenoside Rh4 (Rh4) is an active compound isolated from ginseng with beneficial effects in modulating intestinal inflammation and gut microbiota dysbiosis, but how Rh4 regulates the gut microbiota to alleviate CRC remains underexplored. OBJECTIVES We investigated the impact of Rh4 on CRC and the mechanism of its action in inhibiting CRC via modulation of gut microbiota. METHODS We used the AOM/DSS model and employed transcriptomics, genomics and metabolomics techniques to explore the inhibitory impact of Rh4 on CRC. Furthermore, we employed experiments involving antibiotic treatment and fecal microbiota transplantation (FMT) to investigate the role of the gut microbiota. Finally, we elucidated the pivotal role of key functional bacteria and metabolites regulated by Rh4 in CRC. RESULTS Our research findings indicated that Rh4 repaired intestinal barrier damage caused by CRC, alleviated intestinal inflammation, and inhibited the development of CRC. Additionally, Rh4 inhibited CRC in a gut microbiota-dependent manner. Rh4 increased the diversity of gut microbiota, enriched the probiotic Akkermansia muciniphila (A. muciniphila), and alleviated gut microbiota dysbiosis caused by CRC. Subsequently, Rh4 regulated A. muciniphila-mediated bile acid metabolism. A. muciniphila promoted the production of UDCA by enhancing the activity of 7α-hydroxysteroid dehydrogenase (7α-HSDH). UDCA further activated FXR, modulated the TLR4-NF-κB signaling pathway, thus inhibiting the development of CRC. CONCLUSION Our results confirm that Rh4 inhibits CRC in a gut microbiota-dependent manner by modulating gut microbiota-mediated bile acid metabolism and promoting the production of UDCA, which further activates the FXR receptor and regulates the TLR4-NF-κB signaling pathway. Our results confirm that Rh4 has the potential to be used as a modulator of gut microbiota for preventing and treatment of CRC.
Collapse
Affiliation(s)
- Xue Bai
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710069, China
| | - Zhiguang Duan
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710069, China
| | - Jianjun Deng
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710069, China
| | - Zhuo Zhang
- Plastic and Cosmetic Maxillofacial Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, China
| | - Rongzhan Fu
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710069, China.
| | - Chenhui Zhu
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710069, China.
| | - Daidi Fan
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710069, China.
| |
Collapse
|
10
|
Awad MM, El-Gohary RM, Ibrahim S, Abdel Ghafar MT, Farghal EE, Aboalsoud A, El-Shaer RAA. Potential mitigating impact of a dipeptidyl peptidase-IV inhibitor, vildagliptin, on oxazolone-induced ulcerative colitis: Targeting the role of PI3K/AKT/mTOR and AMPK/Nrf2 signaling pathways. Int Immunopharmacol 2024; 133:112110. [PMID: 38652960 DOI: 10.1016/j.intimp.2024.112110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/28/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
Growing evidence suggests that phosphoinositide 3-kinase (PI3K) and adenosine monophosphate-activated protein kinase (AMPK) signaling cascades are critical in ulcerative colitis (UC) pathophysiology by influencing gut mucosal inflammation. Recently, the coloprotective properties of dipeptidyl peptidase-IV (DPP-IV) inhibitors have emerged. Thus, this study assessed for the first time the potential mitigating impact of a DPP-IV inhibitor, vildagliptin (Vilda), on oxazolone (OXZ)-induced colitis in rats, targeting the role of PI3K/AKT/mTOR and AMPK/Nrf2 pathways. Thirty-two adult Albino rats were divided into four groups: control, Vilda (10 mg/kg/day orally), OXZ (300 µL of 5 % OXZ in 50 % aqueous ethanol solution introduced once into the colon via catheter), and Vilda+OXZ. Inflammatory cytokines (interleukin 13, tumor necrosis factor-α, interleukin 10), oxidative/endoplasmic reticulum stress markers (myeloperoxidase, reduced glutathione, catalase, CHOP), mitochondrial reactive oxygen species, adenosine triphosphate levels, and mitochondrial transmembrane potential were estimated. p-AMPK, p-AKT, beclin-1, and SQSTM1 levels were immunoassayed. Nrf2, PI3K, and mTOR expression levels were quantified using the real-time polymerase chain reaction. Furthermore, p-NF-ĸBp65 and LC3II immunoreactivity were evaluated. Vilda administration effectively ameliorated OXZ-induced colitis, as evidenced by the reduced Disease Activity Index, macroscopic colon damage score, colon weight/length ratio, ulcer index, and histopathological and electron microscopic changes in the colon tissues. Vilda treatment also counteracted OXZ-triggered inflammation, oxidative/endoplasmic reticulum stress, mitochondrial dysfunction, and enhanced autophagy in the colon. Vilda substantially suppressed PI3K/AKT/mTOR and activated the AMPK/Nrf2 pathway. Vilda has potent coloprotective and anti-ulcerogenic properties, primarily attributed to its antiinflammatory, antioxidant, and modulatory impact on mitochondrial dysfunction and autophagy activity. These effects were mostly mediated by suppressing PI3K/AKT/mTOR and activating AMPK/Nrf2 signaling cascades, suggesting a potential role of Vilda in UC therapy.
Collapse
Affiliation(s)
- Marwa Mahmoud Awad
- Physiology Department, Faculty of Medicine, Tanta University, Tanta, Egypt.
| | - Rehab M El-Gohary
- Medical Biochemistry Department, Faculty of Medicine,Tanta University,Tanta, Egypt.
| | - Sarah Ibrahim
- Human Anatomy and Embryology Department, Faculty of Medicine, Tanta University, Tanta, Egypt.
| | | | - Eman E Farghal
- Clinical Pathology Department, Faculty of Medicine, Tanta University, Tanta, Egypt.
| | - Alshimaa Aboalsoud
- Pharmacology Depatrtment, Faculty of Medicine, Tanta University, Tanta, Egypt.
| | | |
Collapse
|
11
|
Yang X, Cheng J, Yin X, Ao T, He X, Yang Y, Lin Y, Chen Z. Metabolic Profiling for Unveiling Mechanisms of Kushenol F against Imiquimod-Induced Psoriasis with UHPLC/MS Analysis. Molecules 2024; 29:2410. [PMID: 38893287 PMCID: PMC11173924 DOI: 10.3390/molecules29112410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/26/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
Psoriasis is a common chronic immune-mediated inflammatory skin disorder. Sophora flavescens Alt. (S. flavescens) has been widely acknowledged in the prevention and treatment of psoriasis. Kushenol F (KSCF) is a natural isopentenyl flavonoid extracted from the root of S. flavescens. We aimed to investigate the effect and mechanism of KSCF on imiquimod (IMQ)-induced psoriasis-like skin lesions in mice. A mouse model of psoriasis was induced with 5% IMQ for 5 days, and the mice were given KSCF dermally for 5 days. Changes in skin morphology, the psoriasis area, the severity index (PASI), and inflammatory factors of psoriasis-like skin lesions were evaluated. Metabolites in the psoriasis-like skin lesions were analyzed with ultra-high-performance liquid chromatography/mass spectrometry followed by a multivariate statistical analysis to identify the differential metabolites and metabolic pathway. The results of the present study confirmed that KSCF significantly reduced PASI scores, epidermal thickening, and epidermal cell proliferation and differentiation. KSCF also reduced the levels of interleukin (IL)-1β, IL-6, IL-8, IL-17A, IL-22, IL-23, and tumor necrosis factor (TNF)-α in the injured skin tissues while increasing IL-10 content. KSCF significantly regulated metabolites in the skin samples, and a total of 161 significant metabolites were identified. These differential metabolites involved sphingolipid and linoleic acid metabolism and steroid hormone biosynthesis. Collectively, KSCF inhibited the inflammatory response to prevent IMQ-induced psoriasis-like skin lesions in mice by call-backing the levels of 161 endogenous metabolites and affecting their related metabolic pathways. KSCF has the potential to be developed as a topical drug for treating psoriasis symptoms.
Collapse
Affiliation(s)
- Xingxin Yang
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming 650500, China; (X.Y.); (X.Y.); (T.A.); (X.H.)
| | - Jiaoli Cheng
- Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming 650500, China;
| | - Xunqing Yin
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming 650500, China; (X.Y.); (X.Y.); (T.A.); (X.H.)
| | - Ting Ao
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming 650500, China; (X.Y.); (X.Y.); (T.A.); (X.H.)
| | - Xudong He
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming 650500, China; (X.Y.); (X.Y.); (T.A.); (X.H.)
| | - Yaqin Yang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311403, China
| | - Yuping Lin
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming 650500, China; (X.Y.); (X.Y.); (T.A.); (X.H.)
| | - Zhen Chen
- Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming 650500, China;
| |
Collapse
|
12
|
Ahmadi N, Ghavami M, Rashidi L, Gharachorloo M, Nateghi L. Effects of adding green tea extract on the oxidative stability and shelf life of sunflower oil during storage. Food Chem X 2024; 21:101168. [PMID: 38370306 PMCID: PMC10869276 DOI: 10.1016/j.fochx.2024.101168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/20/2024] Open
Abstract
This study aimed to compare different concentrations effect of green tea extract (GTE) (200, 400, and 800 ppm) with TBHQ (75 ppm) in extend the shelf-life of sunflower oil (SO) and to evaluate the protective effect of GTE on the oxidation of refined SO. The sample's peroxide value (PV), acidity value (AV), anisidine value (pAV), Totox value (TV), oxidative stability, and total phenol content (TPC) were analyzed at specific intervals during 12-month at 25 °C and 60-day at 60 °C. The optimum kinetic model corresponding to the first order for PV, TV, and pAV was obtained at 25, 35, and 45 °C. SO containing GTE (800 ppm) had a similar performance to TBHQ at 25 °C and 60 °C and possessed a longer shelf life than samples treated with TBHQ. Due to synthetic antioxidant's health risk and toxicity, GTE can be a good substitute for TBHQ in the edible oil industry.
Collapse
Affiliation(s)
- Nadia Ahmadi
- Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mehrdad Ghavami
- Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ladan Rashidi
- Research Center of Food Technology and Agricultural Products, Standard Research Institute (SRI), P.O. Box 31745-139, Karaj, Iran
| | - Maryam Gharachorloo
- Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Leila Nateghi
- Department of Food Science and Technology, Faculty of Agriculture, Varamin-Pishva Branch, Islamic Azad University, Varamin, Iran
| |
Collapse
|
13
|
Mazzola AM, Zammarchi I, Valerii MC, Spisni E, Saracino IM, Lanzarotto F, Ricci C. Gluten-Free Diet and Other Celiac Disease Therapies: Current Understanding and Emerging Strategies. Nutrients 2024; 16:1006. [PMID: 38613039 PMCID: PMC11013189 DOI: 10.3390/nu16071006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
A lifelong gluten-free diet (GFD) is the only treatment for celiac disease and other gluten-related disorders. Nevertheless, strict adherence to the GFD is often challenging due to concerns about social isolation, risk of gluten contaminations, high cost, poor quality and the taste of gluten-free products. Moreover, although the GFD is effective in achieving mucosal healing, it may lead to dietary imbalances due to nutrient deficiencies over a long period of time. To overcome these issues, several gluten-free wheat flours have been developed to create products that closely resemble their gluten-containing counterparts. Furthermore, given the critical importance of adhering to the GFD, it becomes essential to promote adherence and monitor possible voluntary or involuntary transgressions. Various methods, including clinical assessment, questionnaires, serology for celiac disease, duodenal biopsies and the detection of Gluten Immunogenic Peptides (GIPs) are employed for this purpose, but none are considered entirely satisfactory. Since adherence to the GFD poses challenges, alternative therapies should be implemented in the coming years to improve treatment efficacy and the quality of life of patients with celiac disease. The aim of this narrative review is to explore current knowledge of the GFD and investigate its future perspectives, focusing on technology advancements, follow-up strategies and insights into a rapidly changing future.
Collapse
Affiliation(s)
- Anna Maria Mazzola
- Gastroenterology Unit, Spedali Civili Hospital, 25123 Brescia, Italy; (A.M.M.); (I.Z.); (F.L.)
- Department of Internal Medicine and Medical Therapy, University of Pavia, 27100 Pavia, Italy
| | - Irene Zammarchi
- Gastroenterology Unit, Spedali Civili Hospital, 25123 Brescia, Italy; (A.M.M.); (I.Z.); (F.L.)
| | - Maria Chiara Valerii
- Unit of Translational Physiology and Nutrition, Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126 Bologna, Italy; (M.C.V.); (E.S.)
| | - Enzo Spisni
- Unit of Translational Physiology and Nutrition, Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126 Bologna, Italy; (M.C.V.); (E.S.)
| | - Ilaria Maria Saracino
- Microbiology Unit, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy;
| | - Francesco Lanzarotto
- Gastroenterology Unit, Spedali Civili Hospital, 25123 Brescia, Italy; (A.M.M.); (I.Z.); (F.L.)
| | - Chiara Ricci
- Gastroenterology Unit, Spedali Civili Hospital, 25123 Brescia, Italy; (A.M.M.); (I.Z.); (F.L.)
- Department of Experimental and Clinical Science, University of Brescia, 25123 Brescia, Italy
| |
Collapse
|
14
|
Xiao YL, Gong Y, Qi YJ, Shao ZM, Jiang YZ. Effects of dietary intervention on human diseases: molecular mechanisms and therapeutic potential. Signal Transduct Target Ther 2024; 9:59. [PMID: 38462638 PMCID: PMC10925609 DOI: 10.1038/s41392-024-01771-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 02/05/2024] [Accepted: 02/18/2024] [Indexed: 03/12/2024] Open
Abstract
Diet, serving as a vital source of nutrients, exerts a profound influence on human health and disease progression. Recently, dietary interventions have emerged as promising adjunctive treatment strategies not only for cancer but also for neurodegenerative diseases, autoimmune diseases, cardiovascular diseases, and metabolic disorders. These interventions have demonstrated substantial potential in modulating metabolism, disease trajectory, and therapeutic responses. Metabolic reprogramming is a hallmark of malignant progression, and a deeper understanding of this phenomenon in tumors and its effects on immune regulation is a significant challenge that impedes cancer eradication. Dietary intake, as a key environmental factor, can influence tumor metabolism. Emerging evidence indicates that dietary interventions might affect the nutrient availability in tumors, thereby increasing the efficacy of cancer treatments. However, the intricate interplay between dietary interventions and the pathogenesis of cancer and other diseases is complex. Despite encouraging results, the mechanisms underlying diet-based therapeutic strategies remain largely unexplored, often resulting in underutilization in disease management. In this review, we aim to illuminate the potential effects of various dietary interventions, including calorie restriction, fasting-mimicking diet, ketogenic diet, protein restriction diet, high-salt diet, high-fat diet, and high-fiber diet, on cancer and the aforementioned diseases. We explore the multifaceted impacts of these dietary interventions, encompassing their immunomodulatory effects, other biological impacts, and underlying molecular mechanisms. This review offers valuable insights into the potential application of these dietary interventions as adjunctive therapies in disease management.
Collapse
Affiliation(s)
- Yu-Ling Xiao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yue Gong
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ying-Jia Qi
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zhi-Ming Shao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yi-Zhou Jiang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
15
|
Dama A, Shpati K, Daliu P, Dumur S, Gorica E, Santini A. Targeting Metabolic Diseases: The Role of Nutraceuticals in Modulating Oxidative Stress and Inflammation. Nutrients 2024; 16:507. [PMID: 38398830 PMCID: PMC10891887 DOI: 10.3390/nu16040507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
The escalating prevalence of metabolic and cardiometabolic disorders, often characterized by oxidative stress and chronic inflammation, poses significant health challenges globally. As the traditional therapeutic approaches may sometimes fall short in managing these health conditions, attention is growing toward nutraceuticals worldwide; with compounds being obtained from natural sources with potential therapeutic beneficial effects being shown to potentially support and, in some cases, replace pharmacological treatments, especially for individuals who do not qualify for conventional pharmacological treatments. This review delves into the burgeoning field of nutraceutical-based pharmacological modulation as a promising strategy for attenuating oxidative stress and inflammation in metabolic and cardiometabolic disorders. Drawing from an extensive body of research, the review showcases various nutraceutical agents, such as polyphenols, omega-3 fatty acids, and antioxidants, which exhibit antioxidative and anti-inflammatory properties. All these can be classified as novel nutraceutical-based drugs that are capable of regulating pathways to mitigate oxidative-stress- and inflammation-associated metabolic diseases. By exploring the mechanisms through which nutraceuticals interact with oxidative stress pathways and immune responses, this review highlights their potential to restore redox balance and temper chronic inflammation. Additionally, the challenges and prospects of nutraceutical-based interventions are discussed, encompassing bioavailability enhancement, personalized treatment approaches, and clinical translation. Through a comprehensive analysis of the latest scientific reports, this article underscores the potential of nutraceutical-based pharmacological treatment modulation as a novel avenue to fight oxidative stress and inflammation in the complex landscape of metabolic disorders, particularly accentuating their impact on cardiovascular health.
Collapse
Affiliation(s)
- Aida Dama
- Department of Pharmacy, Faculty of Medical Sciences, Albanian University, 1017 Tirana, Albania; (A.D.); (K.S.); (P.D.)
| | - Kleva Shpati
- Department of Pharmacy, Faculty of Medical Sciences, Albanian University, 1017 Tirana, Albania; (A.D.); (K.S.); (P.D.)
| | - Patricia Daliu
- Department of Pharmacy, Faculty of Medical Sciences, Albanian University, 1017 Tirana, Albania; (A.D.); (K.S.); (P.D.)
| | - Seyma Dumur
- Department of Medical Biochemistry, Faculty of Medicine, Istanbul Atlas University, 34408 Istanbul, Türkiye;
| | - Era Gorica
- Department of Pharmacy, Faculty of Medical Sciences, Albanian University, 1017 Tirana, Albania; (A.D.); (K.S.); (P.D.)
- Center for Translational and Experimental Cardiology, University Hospital Zürich and University of Zürich, Wagistrasse 12, Schlieren, 8952 Zurich, Switzerland
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| |
Collapse
|
16
|
Sevela S, Meisnerova E, Vecka M, Vavrova L, Rychlikova J, Lenicek M, Vitek L, Novakova O, Novak F. High Dose Fish Oil Added to Various Lipid Emulsions Normalizes Superoxide Dismutase 1 Activity in Home Parenteral Nutrition Patients. Nutrients 2024; 16:485. [PMID: 38398809 PMCID: PMC10891535 DOI: 10.3390/nu16040485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
(1) Objectives: Intestinal failure in home parenteral nutrition patients (HPNPs) results in oxidative stress and liver damage. This study investigated how a high dose of fish oil (FO) added to various lipid emulsions influences antioxidant status and liver function markers in HPNPs. (2) Methods: Twelve HPNPs receiving Smoflipid for at least 3 months were given FO (Omegaven) for a further 4 weeks. Then, the patients were randomized to subsequently receive Lipoplus and ClinOleic for 6 weeks or vice versa plus 4 weeks of Omegaven after each cycle in a crossover design. Twelve age- and sex-matched healthy controls (HCs) were included. (3) Results: Superoxide dismutase (SOD1) activity and oxidized-low-density lipoprotein concentration were higher in all baseline HPN regimens compared to HCs. The Omegaven lowered SOD1 compared to baseline regimens and thus normalized it toward HCs. Lower paraoxonase 1 activity and fibroblast growth factor 19 (FGF19) concentration and, on the converse, higher alkaline phosphatase activity and cholesten concentration were observed in all baseline regimens compared to HCs. A close correlation was observed between FGF19 and SOD1 in baseline regimens. (4) Conclusions: An escalated dose of FO normalized SOD1 activity in HPNPs toward that of HCs. Bile acid metabolism was altered in HPNPs without signs of significant cholestasis and not affected by Omegaven.
Collapse
Affiliation(s)
- Stanislav Sevela
- 4th Department of Internal Medicine, 1st Faculty of Medicine and General University Hospital, Charles University, 128 08 Prague, Czech Republic (E.M.); (M.V.); (L.V.); (J.R.); (L.V.)
| | - Eva Meisnerova
- 4th Department of Internal Medicine, 1st Faculty of Medicine and General University Hospital, Charles University, 128 08 Prague, Czech Republic (E.M.); (M.V.); (L.V.); (J.R.); (L.V.)
| | - Marek Vecka
- 4th Department of Internal Medicine, 1st Faculty of Medicine and General University Hospital, Charles University, 128 08 Prague, Czech Republic (E.M.); (M.V.); (L.V.); (J.R.); (L.V.)
| | - Lucie Vavrova
- 4th Department of Internal Medicine, 1st Faculty of Medicine and General University Hospital, Charles University, 128 08 Prague, Czech Republic (E.M.); (M.V.); (L.V.); (J.R.); (L.V.)
| | - Jana Rychlikova
- 4th Department of Internal Medicine, 1st Faculty of Medicine and General University Hospital, Charles University, 128 08 Prague, Czech Republic (E.M.); (M.V.); (L.V.); (J.R.); (L.V.)
| | - Martin Lenicek
- Institute of Medical Biochemistry and Laboratory Diagnostics, 1st Faculty of Medicine and General University Hospital, Charles University, 128 08 Prague, Czech Republic;
| | - Libor Vitek
- 4th Department of Internal Medicine, 1st Faculty of Medicine and General University Hospital, Charles University, 128 08 Prague, Czech Republic (E.M.); (M.V.); (L.V.); (J.R.); (L.V.)
- Institute of Medical Biochemistry and Laboratory Diagnostics, 1st Faculty of Medicine and General University Hospital, Charles University, 128 08 Prague, Czech Republic;
| | - Olga Novakova
- Department of Physiology, Faculty of Science, Charles University, 128 00 Prague, Czech Republic;
- Institute of Physiology, Academy of Sciences of the Czech Republic, 142 20 Prague, Czech Republic
| | - Frantisek Novak
- 4th Department of Internal Medicine, 1st Faculty of Medicine and General University Hospital, Charles University, 128 08 Prague, Czech Republic (E.M.); (M.V.); (L.V.); (J.R.); (L.V.)
| |
Collapse
|
17
|
Tanaka I, Yano Y, Mori M, Manabe S, Fukuo K. Impact of serum eicosapentaenoic acid/arachidonic acid ratio on overall survival in lung cancer patients treated with pembrolizumab: a pilot study. Sci Rep 2024; 14:1384. [PMID: 38228757 PMCID: PMC10792072 DOI: 10.1038/s41598-024-51967-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 01/11/2024] [Indexed: 01/18/2024] Open
Abstract
This pilot study analyzed the dietary patterns of patients with non-small cell lung cancer undergoing initial pembrolizumab, an immune checkpoint inhibitor (ICI), treatment in the month before treatment. Serum fatty acid fractions and their associations with ICI treatment efficacy were also investigated. The results showed that long-term survivors (those who survived for ≥ 3 years) consumed significantly more seafood than short-term survivors (those who survived for < 3 years). Furthermore, the serum levels of eicosapentaenoic acid (EPA) as well as the ratio of EPA to arachidonic acid (EPA/AA) were higher in the long-term survivors than those in the short-term survivors. The group with a high serum EPA/AA ratio had a significantly higher overall survival rate after ICI treatment than the group with a low serum EPA/AA ratio. In conclusion, higher dietary seafood consumption may improve OS in lung cancer patients treated with ICI and the serum EPA/AA ratio may be a useful biomarker for determining the efficacy of ICI treatment. Thus, supplements that increase the serum EPA/AA ratio could serve as new nutritional interventions for enhancing the efficacy of ICI treatment. However, further large-scale case and intervention studies are required.
Collapse
Affiliation(s)
- Ikue Tanaka
- Department of Food Sciences and Nutrition Major, Graduate School of Human Environmental Science, Mukogawa Women's University, Nishinomiya, Japan
| | - Yukihiro Yano
- Department of Thoracic Oncology, National Hospital Organization, NHO Osaka Toneyama Medical Center, Toyonaka, Japan
| | - Masahide Mori
- Department of Thoracic Oncology, National Hospital Organization, NHO Osaka Toneyama Medical Center, Toyonaka, Japan
| | - Satoru Manabe
- Department of Nutrition, National Hospital Organization, NHO Osaka Toneyama Medical Center, Toyonaka, Japan
| | - Keisuke Fukuo
- Department of Food Sciences and Nutrition Major, Graduate School of Human Environmental Science, Mukogawa Women's University, Nishinomiya, Japan.
- Research Institute for Nutrition Sciences, Mukogawa Women's University, Nishinomiya, Japan.
| |
Collapse
|
18
|
Lech MA, Warpechowski M, Wojszel A, Rentflejsz J, Świętek M, Wojszel ZB. Vitamin D Status among Patients Admitted to a Geriatric Ward-Are Recommendations for Preventing Its Deficiency Effective Enough? Nutrients 2024; 16:193. [PMID: 38257086 PMCID: PMC10819869 DOI: 10.3390/nu16020193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/01/2024] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Despite a decade of available recommendations aimed at preventing vitamin D (VD) deficiency in Poland, the efficacy of these measures among community-dwelling older individuals remains inconsistent. The PolSenior2 study provided valuable insights into VD status among community-dwelling older individuals in Poland. However, it is important to note that this research did not include the elderly living in care institutions. Therefore, our study concentrates on evaluating VD status in older patients admitted to a geriatrics ward to indirectly assess their adherence to existing recommendations and preventive actions in this particular setting (whether they translate into health-promoting behaviors (i.e., taking vitamin D supplements) and whether the recommended, optimal 25(OH)D concentration values are achieved). This approach offers a comprehensive understanding of VD status in a previously understudied population. We aimed to evaluate VD status in patients aged 70 and above within the geriatrics ward, exploring its association with age, sex, BMI, and the use of VD supplements. The study involved the measurement of serum VD concentration in 240 individuals. Of these participants, 177 (73.8%) were women, and 193 (80.4%) were over 75 years old. The median 25(OH)D concentration was found to be 22.95 (IQR, 13.7-33.0) ng/mL. Notably, profound deficiency (<10 ng/mL) was noted in 15% of the participants, while 67.5% exhibited VD inadequacy (<30 ng/mL). It is worth mentioning that only 18.3% of individuals took VD supplements preadmission. Insufficiency was more prevalent in nonsupplemented individuals (70.9% vs. 52.3%, p = 0.02) and those with a BMI ≥30 kg/m2 (76.2% vs. 59.2%, p = 0.007). The logistic regression model demonstrated that obese patients had over two times higher odds of VD inadequacy (OR = 2.21, p = 0.0074), as did nonsupplemented individuals (OR = 2.23, p = 0.0187). The high prevalence of VD deficiency and inadequacy in geriatric ward admissions emphasizes the urgent need for targeted interventions and enhanced education for older adults, caregivers, and physicians to improve adherence to preventive supplementation practices.
Collapse
Affiliation(s)
- Maksymilian Adam Lech
- Interdisciplinary Student Scientific Society, Department of Geriatrics, Medical University of Bialystok, 15-471 Bialystok, Poland; (M.A.L.); (M.W.); (A.W.)
| | - Marcin Warpechowski
- Interdisciplinary Student Scientific Society, Department of Geriatrics, Medical University of Bialystok, 15-471 Bialystok, Poland; (M.A.L.); (M.W.); (A.W.)
| | - Aleksandra Wojszel
- Interdisciplinary Student Scientific Society, Department of Geriatrics, Medical University of Bialystok, 15-471 Bialystok, Poland; (M.A.L.); (M.W.); (A.W.)
| | - Justyna Rentflejsz
- Doctoral School, Medical University of Bialystok, 15-089 Bialystok, Poland;
- Department of Geriatrics, Medical University of Bialystok, 15-471 Bialystok, Poland
- Department of Geriatrics and Internal Medicine, Hospital of the Ministry of Interior in Bialystok, 15-471 Bialystok, Poland;
| | - Marta Świętek
- Department of Geriatrics and Internal Medicine, Hospital of the Ministry of Interior in Bialystok, 15-471 Bialystok, Poland;
| | - Zyta Beata Wojszel
- Department of Geriatrics, Medical University of Bialystok, 15-471 Bialystok, Poland
- Department of Geriatrics and Internal Medicine, Hospital of the Ministry of Interior in Bialystok, 15-471 Bialystok, Poland;
| |
Collapse
|
19
|
Kapoor A, Hafeez A, Kushwaha P. Nanocarrier Mediated Intranasal Drug Delivery Systems for the Management of Parkinsonism: A Review. Curr Drug Deliv 2024; 21:709-725. [PMID: 37365787 DOI: 10.2174/1567201820666230523114259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/09/2023] [Accepted: 02/27/2023] [Indexed: 06/28/2023]
Abstract
The transport of drugs to the brain becomes a key concern when treating disorders of the central nervous system. Parkinsonism is one of the major concerns across the world populations, which causes difficulty in coordination and balance. However, the blood-brain barrier is a significant barrier to achieving optimal brain concentration through oral, transdermal, and intravenous routes of administration. The intranasal route with nanocarrier-based formulations has shown potential for managing Parkinsonism disorder (PD). Direct delivery to the brain through the intranasal route is possible via the olfactory and trigeminal pathways using drug-loaded nanotechnology-based drug delivery systems. The critical analysis of reported works demonstrates dose reduction, brain targeting, safety, effectiveness, and stability for drug-loaded nanocarriers. The important aspects of intranasal drug delivery, PD details, and nanocarrier-based intranasal formulations in PD management with a discussion of physicochemical characteristics, cell line studies, and animal studies are the major topics in this review. Patent reports and clinical investigations are summarized in the last sections.
Collapse
Affiliation(s)
- Archita Kapoor
- Faculty of Pharmacy, Integral University, Lucknow- 226026, India
| | - Abdul Hafeez
- Faculty of Pharmacy, Integral University, Lucknow- 226026, India Lucknow India
| | - Poonam Kushwaha
- Faculty of Pharmacy, Integral University, Lucknow- 226026, India
| |
Collapse
|
20
|
Ma W, Liang Z, He B, Wu Y, Chen Y, He Z, Chen B, Lin X, Luo L. Changes in the characteristic volatile aromatic compounds in tuna cooking liquid during fermentation and deodorization by Lactobacillus plantarum RP26 and Cyberlindnera fabianii JGM9-1. Food Chem X 2023; 20:100900. [PMID: 38144760 PMCID: PMC10739757 DOI: 10.1016/j.fochx.2023.100900] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 12/26/2023] Open
Abstract
Tuna cooking liquid has unpleasant aroma. In our previous studies, Cyberlindnera fabianii JGM9-1 and Lactobacillus plantarum RP26 demonstrated the ability to degrade this unpleasant aroma. However, the mechanism of microbial deodorization remains unclear. In this study, tuna cooking liquid was fermented using JGM9-1 alone, RP26 alone, and a combination of both strains. Changes in volatile aromatic compounds during fermentation were analyzed using HS-SPME-GC/MS. The unpleasant aroma of tuna cooking liquid were nine characteristic aromatic compounds associated with fishy, stinky, and greasy aromas. Furthermore, we found that the fermentation of microbes removed these unpleasant aromatic compounds and replaced them with pleasant aromatic compounds that contributed to fruity, grassy, and floral aromas. Finally, we screened 21 strong pairwise correlations between the production and consumption of characteristic volatile aromatic compounds by RP26 and JGM9-1, through HCA, VIP, OAV and Spearman's pairwise correlation analysis. These results help to clarify the metabolic mechanisms of microbial deodorization in tuna cooking liquid.
Collapse
Affiliation(s)
- Wenjing Ma
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
- Fujian Key Laboratory of Agricultural Products (Food) Processing, Fuzhou, Fujian, China
| | - Zhangcheng Liang
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
- Fujian Key Laboratory of Agricultural Products (Food) Processing, Fuzhou, Fujian, China
- Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian, China
| | - Bing He
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
- Fujian Key Laboratory of Agricultural Products (Food) Processing, Fuzhou, Fujian, China
| | - Yuxi Wu
- Fujian Key Laboratory of Agricultural Products (Food) Processing, Fuzhou, Fujian, China
| | - Yan Chen
- Fuzhou Hongdong Foods Co., Ltd, Fuzhou, Fujian, China
- Fujian Shenlan Biotechnology Co., Ltd, Fuzhou, Fujian, China
| | - Zhigang He
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
- Fujian Key Laboratory of Agricultural Products (Food) Processing, Fuzhou, Fujian, China
- Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian, China
| | - Bingyan Chen
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
- Fujian Key Laboratory of Agricultural Products (Food) Processing, Fuzhou, Fujian, China
- Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian, China
| | - Xiaozi Lin
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
- Fujian Key Laboratory of Agricultural Products (Food) Processing, Fuzhou, Fujian, China
- Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian, China
| | - Lianyu Luo
- Fuzhou Hongdong Foods Co., Ltd, Fuzhou, Fujian, China
- Fujian Shenlan Biotechnology Co., Ltd, Fuzhou, Fujian, China
| |
Collapse
|
21
|
Ciernikova S, Sevcikova A, Mladosievicova B, Mego M. Microbiome in Cancer Development and Treatment. Microorganisms 2023; 12:24. [PMID: 38257851 PMCID: PMC10819529 DOI: 10.3390/microorganisms12010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/13/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
Targeting the microbiome, microbiota-derived metabolites, and related pathways represents a significant challenge in oncology. Microbiome analyses have confirmed the negative impact of cancer treatment on gut homeostasis, resulting in acute dysbiosis and severe complications, including massive inflammatory immune response, mucosal barrier disruption, and bacterial translocation across the gut epithelium. Moreover, recent studies revealed the relationship between an imbalance in the gut microbiome and treatment-related toxicity. In this review, we provide current insights into the role of the microbiome in tumor development and the impact of gut and tumor microbiomes on chemo- and immunotherapy efficacy, as well as treatment-induced late effects, including cognitive impairment and cardiotoxicity. As discussed, microbiota modulation via probiotic supplementation and fecal microbiota transplantation represents a new trend in cancer patient care, aiming to increase bacterial diversity, alleviate acute and long-term treatment-induced toxicity, and improve the response to various treatment modalities. However, a more detailed understanding of the complex relationship between the microbiome and host can significantly contribute to integrating a microbiome-based approach into clinical practice. Determination of causal correlations might lead to the identification of clinically relevant diagnostic and prognostic microbial biomarkers. Notably, restoration of intestinal homeostasis could contribute to optimizing treatment efficacy and improving cancer patient outcomes.
Collapse
Affiliation(s)
- Sona Ciernikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia;
| | - Aneta Sevcikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia;
| | - Beata Mladosievicova
- Institute of Pathological Physiology, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia;
| | - Michal Mego
- 2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, 833 10 Bratislava, Slovakia;
| |
Collapse
|
22
|
Giambra V, Pagliari D, Rio P, Totti B, Di Nunzio C, Bosi A, Giaroni C, Gasbarrini A, Gambassi G, Cianci R. Gut Microbiota, Inflammatory Bowel Disease, and Cancer: The Role of Guardians of Innate Immunity. Cells 2023; 12:2654. [PMID: 37998389 PMCID: PMC10669933 DOI: 10.3390/cells12222654] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023] Open
Abstract
Inflammatory bowel diseases (IBDs) are characterized by a persistent low-grade inflammation that leads to an increased risk of colorectal cancer (CRC) development. Several factors are implicated in this pathogenetic pathway, such as innate and adaptive immunity, gut microbiota, environment, and xenobiotics. At the gut mucosa level, a complex interplay between the immune system and gut microbiota occurs; a disequilibrium between these two factors leads to an alteration in the gut permeability, called 'leaky gut'. Subsequently, an activation of several inflammatory pathways and an alteration of gut microbiota composition with a proliferation of pro-inflammatory bacteria, known as 'pathobionts', take place, leading to a further increase in inflammation. This narrative review provides an overview on the principal Pattern Recognition Receptors (PRRs), including Toll-like receptors (TLRs) and NOD-like receptors (NLRs), focusing on their recognition mechanisms, signaling pathways, and contributions to immune responses. We also report the genetic polymorphisms of TLRs and dysregulation of NLR signaling pathways that can influence immune regulation and contribute to the development and progression of inflammatory disease and cancer.
Collapse
Affiliation(s)
- Vincenzo Giambra
- Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy; (V.G.); (B.T.); (C.D.N.)
| | - Danilo Pagliari
- Medical Officer of the Carabinieri Corps, Health Service of the Carabinieri General Headquarters, 00197 Rome, Italy;
| | - Pierluigi Rio
- Department of Translational Medicine and Surgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy; (P.R.); (A.G.); (G.G.)
| | - Beatrice Totti
- Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy; (V.G.); (B.T.); (C.D.N.)
| | - Chiara Di Nunzio
- Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy; (V.G.); (B.T.); (C.D.N.)
| | - Annalisa Bosi
- Department of Medicine and Technological Innovation, University of Insubria, via H Dunant 5, 21100 Varese, Italy; (A.B.); (C.G.)
| | - Cristina Giaroni
- Department of Medicine and Technological Innovation, University of Insubria, via H Dunant 5, 21100 Varese, Italy; (A.B.); (C.G.)
| | - Antonio Gasbarrini
- Department of Translational Medicine and Surgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy; (P.R.); (A.G.); (G.G.)
| | - Giovanni Gambassi
- Department of Translational Medicine and Surgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy; (P.R.); (A.G.); (G.G.)
| | - Rossella Cianci
- Department of Translational Medicine and Surgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy; (P.R.); (A.G.); (G.G.)
| |
Collapse
|
23
|
Garcia C, Andersen CJ, Blesso CN. The Role of Lipids in the Regulation of Immune Responses. Nutrients 2023; 15:3899. [PMID: 37764683 PMCID: PMC10535783 DOI: 10.3390/nu15183899] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/30/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
Lipid metabolism plays a major role in the regulation of the immune system. Exogenous (dietary and microbial-derived) and endogenous (non-microbial-derived) lipids play a direct role in regulating immune cell activation, differentiation and expansion, and inflammatory phenotypes. Understanding the complexities of lipid-immune interactions may have important implications for human health, as certain lipids or immune pathways may be beneficial in circumstances of acute infection yet detrimental in chronic inflammatory diseases. Further, there are key differences in the lipid effects between specific immune cell types and location (e.g., gut mucosal vs. systemic immune cells), suggesting that the immunomodulatory properties of lipids may be tissue-compartment-specific, although the direct effect of dietary lipids on the mucosal immune system warrants further investigation. Importantly, there is recent evidence to suggest that lipid-immune interactions are dependent on sex, metabolic status, and the gut microbiome in preclinical models. While the lipid-immune relationship has not been adequately established in/translated to humans, research is warranted to evaluate the differences in lipid-immune interactions across individuals and whether the optimization of lipid-immune interactions requires precision nutrition approaches to mitigate or manage disease. In this review, we discuss the mechanisms by which lipids regulate immune responses and the influence of dietary lipids on these processes, highlighting compelling areas for future research.
Collapse
Affiliation(s)
| | | | - Christopher N. Blesso
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA; (C.G.); (C.J.A.)
| |
Collapse
|
24
|
McIntyre CL, Temesgen A, Lynch L. Diet, nutrient supply, and tumor immune responses. Trends Cancer 2023; 9:752-763. [PMID: 37400315 DOI: 10.1016/j.trecan.2023.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 07/05/2023]
Abstract
Nutrients are essential for cell function. Immune cells operating in the complex tumor microenvironment (TME), which has a unique nutrient composition, face challenges of adapting their metabolism to support effector functions. We discuss the impact of nutrient availability on immune function in the tumor, competition between immune cells and tumor cells for nutrients, and how this is altered by diet. Understanding which diets can promote antitumor immune responses could open a new era of treatment, where dietary modifications can be used as an adjunct to boost the success of existing cancer therapies.
Collapse
Affiliation(s)
- Claire L McIntyre
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ayantu Temesgen
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lydia Lynch
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
25
|
Gao G, Zhou J, Wang H, Ke L, Zhou J, Ding Y, Ding W, Zhang S, Rao P. Fish oil nano-emulsion kills macrophage: Ferroptosis triggered by catalase-catalysed superoxide eruption. Food Chem 2023; 408:135249. [PMID: 36566546 DOI: 10.1016/j.foodchem.2022.135249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 12/09/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
Fish oil is increasingly utilised in the form of nano-emulsion as a nutrient and function fortifier. The nano-emulsions exceptionally high content of polyunsaturated fatty acids and electron donors at the oil/water interface provide an ideal site of the redox reaction. Here we report that a vigorous superoxide production in the fish oil nano-emulsion was catalysed by mammalian catalase in acellular and cellular systems. The resulting superoxide increased cytosolic reactive oxygen species (ROS) and membrane lipid peroxidation of murine macrophage, which eventually causes fatal oxidative damages. Cell death, was significantly inhibited by a catalase-specific inhibitor 3-Amino-1,2,4-triazole (3-AT), was via ferroptosis and not apoptosis. The ferroptosis was independent of free iron or glutathione peroxidase suppression. Our findings discovered a hidden health risk of the widely acclaimed fish oil emulsion, suggesting a novel cellular damage mechanism caused by dietary unsaturated fats on the alimentary tract mucosa.
Collapse
Affiliation(s)
- Guanzhen Gao
- Food Nutrition Science Centre, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
| | - Jingru Zhou
- Food Nutrition Science Centre, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
| | - Huiqin Wang
- Food Nutrition Science Centre, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
| | - Lijing Ke
- Food Nutrition Science Centre, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, China.
| | - Jianwu Zhou
- Food Nutrition Science Centre, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
| | - Yanan Ding
- Food Nutrition Science Centre, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
| | - Wei Ding
- Food Nutrition Science Centre, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
| | - Suyun Zhang
- Food Nutrition Science Centre, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
| | - Pingfan Rao
- Food Nutrition Science Centre, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
| |
Collapse
|
26
|
Barber TM, Kabisch S, Pfeiffer AFH, Weickert MO. The Effects of the Mediterranean Diet on Health and Gut Microbiota. Nutrients 2023; 15:2150. [PMID: 37432307 DOI: 10.3390/nu15092150] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/25/2023] [Accepted: 04/29/2023] [Indexed: 07/12/2023] Open
Abstract
The Mediterranean Diet (MD) is plant-based and consists of multiple daily portions of vegetables, fruit, cereals, and olive oil. Although there are challenges with isolating the MD from the typical Mediterranean lifestyle and culture (including prolonged 'social' meals and siestas), much evidence supports the health benefits of the MD that include improved longevity, reduced metabolic risk of Diabetes Mellitus, obesity, and Metabolic Syndrome, reduced risk of malignancy and cardiovascular disease, and improved cognitive function. The MD is also associated with characteristic modifications to gut microbiota, mediated through its constituent parts (primarily dietary fibres, extra virgin olive oil, and polyunsaturated fatty acids [including ω-3]). These include enhanced growth of species that produce short-chain fatty acids (butyrate), such as Clostridium leptum and Eubacterium rectale, enhanced growth of Bifidobacteria, Bacteroides, and Faecalibacterium prausnitzii species, and reduced growth of Firmicutes and Blautia species. Such changes in gut microbiota are known to be associated favourably with inflammatory and oxidative status, propensity for malignancy and overall metabolic health. A key challenge for the future is to explore the extent to which the health benefits of the MD are mediated by such changes to gut microbiota. The MD confers both health and environmental benefits. Adoption of the MD should perhaps be encouraged and facilitated more generally and not just restricted to populations from Mediterranean regions. However, there are key challenges to this approach that include limited perennial availability of the constituent parts of the MD in some non-Mediterranean regions, intolerability of a high-fibre diet for some people, and potential cultural disconnects that juxtapose some traditional (including Western) diets with the MD.
Collapse
Affiliation(s)
- Thomas M Barber
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire, Clifford Bridge Road, Coventry CV2 2DX, UK
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV2 2DX, UK
- NIHR CRF Human Metabolism Research Unit, University Hospitals Coventry and Warwickshire, Clifford Bridge Road, Coventry CV2 2DX, UK
| | - Stefan Kabisch
- Department of Endocrinology, Diabetes and Nutrition, Campus Benjamin Franklin, Charité University Medicine, Hindenburgdamm 30, 12203 Berlin, Germany
- Deutsches Zentrum für Diabetesforschung e.V., Geschäftsstelle am Helmholtz-Zentrum München, Ingolstädter Landstraße, 85764 Neuherberg, Germany
| | - Andreas F H Pfeiffer
- Department of Endocrinology, Diabetes and Nutrition, Campus Benjamin Franklin, Charité University Medicine, Hindenburgdamm 30, 12203 Berlin, Germany
- Deutsches Zentrum für Diabetesforschung e.V., Geschäftsstelle am Helmholtz-Zentrum München, Ingolstädter Landstraße, 85764 Neuherberg, Germany
| | - Martin O Weickert
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire, Clifford Bridge Road, Coventry CV2 2DX, UK
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV2 2DX, UK
- NIHR CRF Human Metabolism Research Unit, University Hospitals Coventry and Warwickshire, Clifford Bridge Road, Coventry CV2 2DX, UK
- Centre for Sport, Exercise and Life Sciences, Faculty of Health & Life Sciences, Coventry University, Coventry CV2 2DX, UK
| |
Collapse
|
27
|
Papa V, Li Pomi F, Borgia F, Vaccaro M, Pioggia G, Gangemi S. Immunosenescence and Skin: A State of Art of Its Etiopathogenetic Role and Crucial Watershed for Systemic Implications. Int J Mol Sci 2023; 24:ijms24097956. [PMID: 37175661 PMCID: PMC10178319 DOI: 10.3390/ijms24097956] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/23/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Immunosenescence is a complex multifactorial phenomenon consisting of wide-ranging remodeling of the immune system during the life span, resulting in an age-related qualitative-quantitative decline of immune cells and cytokines. A growing body of evidence in the international literature is highlighting the etiopathogenetic role of skin immunosenescence in the onset of various dermatologic conditions. Skin immunosenescence also serves as an interesting watershed for the onset of system-wide conditions in the context of allergic inflammation. Moreover, in recent years, an increasingly emerging and fascinating etiopathogenetic parallelism has been observed between some mechanisms of immunosenescence, both at cutaneous and systemic sites. This would help to explain the occurrence of apparently unconnected comorbidities. Throughout our review, we aim to shed light on emerging immunosenescent mechanisms shared between dermatologic disorders and other organ-specific diseases in the context of a more extensive discussion on the etiopathogenetic role of skin immunosenescence. A promising future perspective would be to focus on better understanding the mutual influence between skin and host immunity, as well as the influence of high inter-individual variability on immunosenescence/inflammaging. This can lead to a more comprehensive "immunobiographic" definition of each individual.
Collapse
Affiliation(s)
- Vincenzo Papa
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy
| | - Federica Li Pomi
- Section of Dermatology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| | - Francesco Borgia
- Section of Dermatology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| | - Mario Vaccaro
- Section of Dermatology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| | - Giovanni Pioggia
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 98164 Messina, Italy
| | - Sebastiano Gangemi
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy
| |
Collapse
|
28
|
Agostini D, Gervasi M, Ferrini F, Bartolacci A, Stranieri A, Piccoli G, Barbieri E, Sestili P, Patti A, Stocchi V, Donati Zeppa S. An Integrated Approach to Skeletal Muscle Health in Aging. Nutrients 2023; 15:nu15081802. [PMID: 37111021 PMCID: PMC10141535 DOI: 10.3390/nu15081802] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
A decline in muscle mass and function represents one of the most problematic changes associated with aging, and has dramatic effects on autonomy and quality of life. Several factors contribute to the inexorable process of sarcopenia, such as mitochondrial and autophagy dysfunction, and the lack of regeneration capacity of satellite cells. The physiologic decline in muscle mass and in motoneuron functionality associated with aging is exacerbated by the sedentary lifestyle that accompanies elderly people. Regular physical activity is beneficial to most people, but the elderly need well-designed and carefully administered training programs that improve muscle mass and, consequently, both functional ability and quality of life. Aging also causes alteration in the gut microbiota composition associated with sarcopenia, and some advances in research have elucidated that interventions via the gut microbiota-muscle axis have the potential to ameliorate the sarcopenic phenotype. Several mechanisms are involved in vitamin D muscle atrophy protection, as demonstrated by the decreased muscular function related to vitamin D deficiency. Malnutrition, chronic inflammation, vitamin deficiencies, and an imbalance in the muscle-gut axis are just a few of the factors that can lead to sarcopenia. Supplementing the diet with antioxidants, polyunsaturated fatty acids, vitamins, probiotics, prebiotics, proteins, kefir, and short-chain fatty acids could be potential nutritional therapies against sarcopenia. Finally, a personalized integrated strategy to counteract sarcopenia and maintain the health of skeletal muscles is suggested in this review.
Collapse
Affiliation(s)
- Deborah Agostini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Marco Gervasi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Fabio Ferrini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Alessia Bartolacci
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Alessandro Stranieri
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Giovanni Piccoli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Elena Barbieri
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Piero Sestili
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Antonino Patti
- Sport and Exercise Sciences Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, 90128 Palermo, Italy
| | - Vilberto Stocchi
- Department of Human Science for Promotion of Quality of Life, Università Telematica San Raffaele, 00166 Rome, Italy
| | - Sabrina Donati Zeppa
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| |
Collapse
|
29
|
Carlucci CD, Hui Y, Chumanevich AP, Robida PA, Fuseler JW, Sajish M, Nagarkatti P, Nagarkatti M, Oskeritzian CA. Resveratrol Protects against Skin Inflammation through Inhibition of Mast Cell, Sphingosine Kinase-1, Stat3 and NF-κB p65 Signaling Activation in Mice. Int J Mol Sci 2023; 24:6707. [PMID: 37047680 PMCID: PMC10095068 DOI: 10.3390/ijms24076707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/30/2023] [Accepted: 04/01/2023] [Indexed: 04/07/2023] Open
Abstract
Inflammation is pathogenic to skin diseases, including atopic dermatitis (AD) and eczema. Treatment for AD remains mostly symptomatic with newer but costly options, tainted with adverse side effects. There is an unmet need for safe therapeutic and preventative strategies for AD. Resveratrol (R) is a natural compound known for its anti-inflammatory properties. However, animal and human R studies have yielded contrasting results. Mast cells (MCs) are innate immune skin-resident cells that initiate the development of inflammation and progression to overt disease. R's effects on MCs are also controversial. Using a human-like mouse model of AD development consisting of a single topical application of antigen ovalbumin (O) for 7 days, we previously established that the activation of MCs by a bioactive sphingolipid metabolite sphingosine-1-phosphate (S1P) initiated substantial skin remodeling compared to controls. Here, we show that daily R application normalized O-mediated epidermal thickening, ameliorated cell infiltration, and inhibited skin MC activation and chemokine expression. We unraveled R's multiple mechanisms of action, including decreased activation of the S1P-producing enzyme, sphingosine kinase 1 (SphK1), and of transcription factors Signal Transducer and Activator of Transcription 3 (Stat3) and NF-κBp65, involved in chemokine production. Thus, R may be poised for protection against MC-driven pathogenic skin inflammation.
Collapse
Affiliation(s)
- Christopher D Carlucci
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| | - Yvonne Hui
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| | - Alena P Chumanevich
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| | - Piper A Robida
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| | - John W Fuseler
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| | - Mathew Sajish
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Prakash Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| | - Carole A Oskeritzian
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| |
Collapse
|
30
|
Spagnuolo L, Della Posta S, Fanali C, Dugo L, De Gara L. Chemical Composition of Hazelnut Skin Food Waste and Protective Role against Advanced Glycation End-Products (AGEs) Damage in THP-1-Derived Macrophages. Molecules 2023; 28:molecules28062680. [PMID: 36985650 PMCID: PMC10054400 DOI: 10.3390/molecules28062680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/09/2023] [Accepted: 03/12/2023] [Indexed: 03/18/2023] Open
Abstract
Glycation and the accumulation of advanced glycation end-products (AGEs) are known to occur during aging, diabetes and neurodegenerative diseases. Increased glucose or methylglyoxal (MGO) levels in the blood of diabetic patients result in increased AGEs. A diet rich in bioactive food compounds, like polyphenols, has a protective effect. The aim of this work is to evaluate the capacity of hazelnut skin polyphenolic extract to protect THP-1-macrophages from damage induced by AGEs. The main polyphenolic subclass was identified and quantified by means of HPLC/MS and the Folin–Ciocalteu method. AGEs derived from incubation of bovine serum albumin (BSA) and MGO were characterized by fluorescence. Cell viability measurement was performed to evaluate the cytotoxic effect of the polyphenolic extract in macrophages. Reactive oxygen species’ (ROS) production was assessed by the H2-DCF-DA assay, the inflammatory response by real-time PCR for gene expression, and the ELISA assay for protein quantification. We have shown that the polyphenolic extract protected cell viability from damage induced by AGEs. After treatment with AGEs, macrophages expressed high levels of pro-inflammatory cytokines and ROS, whereas in co-treatment with polyphenol extract there was a reduction in either case. Our study suggests that hazelnut skin polyphenol-rich extracts have positive effects and could be further investigated for nutraceutical applications.
Collapse
Affiliation(s)
| | | | | | - Laura Dugo
- Correspondence: ; Tel.: +39-06-22541-9470
| | | |
Collapse
|
31
|
Theinel MH, Nucci MP, Alves AH, Dias OFM, Mamani JB, Garrigós MM, Oliveira FA, Rego GNA, Valle NME, Cianciarullo G, Gamarra LF. The Effects of Omega-3 Polyunsaturated Fatty Acids on Breast Cancer as a Preventive Measure or as an Adjunct to Conventional Treatments. Nutrients 2023; 15:nu15061310. [PMID: 36986040 PMCID: PMC10052714 DOI: 10.3390/nu15061310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/10/2023] Open
Abstract
In order to understand how omega-3 polyunsaturated fatty acid (ω-3 PUFA) supplements affect breast cancer prevention and treatment, a systematic review of articles published in the last 5 years in two databases was performed. Of the 679 articles identified, only 27 were included and examined based on five topics, taking into account: the induction type of the breast cancer used in animal models; the characteristics of the induction model by cell transplantation; the experimental design of the ω-3 supplementation—combined or not with a treatment antitumor drug; the fatty acids (FAs) composition used; the analysis of the studies’ outcomes. There are diverse and well-established animal models of breast cancer in the literature, with very relevant histological and molecular similarities depending on the specific objective of the study, such as whether the method of tumor induction was transgenic, by cell transplantation, or by oncogenic drugs. The analyses of outcomes were mainly focused on monitoring tumor growth, body/tumor weight, and molecular, genetic, or histological analyses, and few studies evaluated latency, survival, or metastases. The best results occurred when supplementation with ω-3 PUFA was associated with antitumor drugs, especially in the analysis of metastases and volume/weight of tumors or when the supplementation was started early and maintained for a long time. However, the beneficial effect of ω-3 PUFA supplementation when not associated with an antitumor agent remains unclear.
Collapse
Affiliation(s)
| | - Mariana P. Nucci
- LIM44–Hospital das Clínicas da Faculdade Medicina da Universidade de São Paulo, São Paulo 05403-000, Brazil
| | | | | | | | | | | | | | | | | | - Lionel F. Gamarra
- Hospital Israelita Albert Einstein, São Paulo 05652-000, Brazil
- Correspondence: ; Tel.: +55-11-2151-0243
| |
Collapse
|
32
|
Chioma OS, Mallott E, Shah-Gandhi B, Wiggins Z, Langford M, Lancaster AW, Gelbard A, Wu H, Johnson JE, Lancaster L, Wilfong EM, Crofford LJ, Montgomery CG, Van Kaer L, Bordenstein S, Newcomb DC, Drake WP. Low Gut Microbial Diversity Augments Estrogen-Driven Pulmonary Fibrosis in Female-Predominant Interstitial Lung Disease. Cells 2023; 12:766. [PMID: 36899902 PMCID: PMC10000459 DOI: 10.3390/cells12050766] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/19/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
Although profibrotic cytokines, such as IL-17A and TGF-β1, have been implicated in the pathogenesis of interstitial lung disease (ILD), the interactions between gut dysbiosis, gonadotrophic hormones and molecular mediators of profibrotic cytokine expression, such as the phosphorylation of STAT3, have not been defined. Here, through chromatin immunoprecipitation sequencing (ChIP-seq) analysis of primary human CD4+ T cells, we show that regions within the STAT3 locus are significantly enriched for binding by the transcription factor estrogen receptor alpha (ERa). Using the murine model of bleomycin-induced pulmonary fibrosis, we found significantly increased regulatory T cells compared to Th17 cells in the female lung. The genetic absence of ESR1 or ovariectomy in mice significantly increased pSTAT3 and IL-17A expression in pulmonary CD4+ T cells, which was reduced after the repletion of female hormones. Remarkably, there was no significant reduction in lung fibrosis under either condition, suggesting that factors outside of ovarian hormones also contribute. An assessment of lung fibrosis among menstruating females in different rearing environments revealed that environments favoring gut dysbiosis augment fibrosis. Furthermore, hormone repletion following ovariectomy further augmented lung fibrosis, suggesting pathologic interactions between gonadal hormones and gut microbiota in relation to lung fibrosis severity. An analysis of female sarcoidosis patients revealed a significant reduction in pSTAT3 and IL-17A levels and a concomitant increase in TGF-β1 levels in CD4+ T cells compared to male sarcoidosis patients. These studies reveal that estrogen is profibrotic in females and that gut dysbiosis in menstruating females augments lung fibrosis severity, supporting a critical interaction between gonadal hormones and gut flora in lung fibrosis pathogenesis.
Collapse
Affiliation(s)
- Ozioma S. Chioma
- Departments of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Elizabeth Mallott
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Binal Shah-Gandhi
- Departments of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - ZaDarreyal Wiggins
- Departments of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Madison Langford
- Departments of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | - Alexander Gelbard
- Otolaryngology-Head and Neck Surgery, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Hongmei Wu
- Otolaryngology-Head and Neck Surgery, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Joyce E. Johnson
- Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Lisa Lancaster
- Departments of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Erin M. Wilfong
- Departments of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Leslie J. Crofford
- Departments of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Courtney G. Montgomery
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Luc Van Kaer
- Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Seth Bordenstein
- Department of Biology and Entomology, Pennsylvania State University, College Station, PA 16801, USA
| | - Dawn C. Newcomb
- Departments of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Wonder Puryear Drake
- Departments of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| |
Collapse
|
33
|
Relationship between Being Overweight and Clinical Outcomes of Ablation Therapy for Hepatocellular Carcinoma under Ultrasound Guidance: A Retrospective Analysis. Cancers (Basel) 2023; 15:cancers15041289. [PMID: 36831630 PMCID: PMC9953948 DOI: 10.3390/cancers15041289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
This study aimed to investigate the effect of being overweight on the outcome of ablation therapy for patients with early-stage hepatocellular carcinoma (HCC). This retrospective study included 198 patients with HCC who underwent radiofrequency ablation or microwave ablation at Gunma Saiseikai Maebashi Hospital between April 2017 and December 2021. We divided the patients into two groups based on their body mass index (BMI): overweight (BMI ≥ 25 kg/m2, n = 74 (37.4%)) and non-overweight (BMI < 25 kg/m2, n = 124 (62.6%)). The technical success rates (TSRs) in the first session were 78.4% and 90.3% in overweight and non-overweight patients, respectively, with a significant difference (p = 0.03). Additional ablation therapy for residual tumors was required in 15 (20.3%) overweight and 11 (8.9%) non-overweight patients (p = 0.03), resulting in 95.9% and 99.2% TSRs at the final session, respectively, without a significant difference (p = 0.3). While local tumor progression and distant recurrence rates were not significantly different between the two groups, overall survival was better in overweight patients than in non-overweight patients (p < 0.001). Despite the potential adverse impact of being overweight on public health problems, the present findings showed the relationship between being overweight and improved survival. The negative aspects of being overweight might remain as minor technical issues in HCC patients receiving ablation therapy.
Collapse
|
34
|
Chioma OS, Mallott E, Shah-Gandhi B, Wiggins Z, Langford M, Lancaster AW, Gelbard A, Wu H, Johnson JE, Lancaster L, Wilfong EM, Crofford LJ, Montgomery CG, Van Kaer L, Bordenstein S, Newcomb DC, Drake WP. Low Gut Microbial Diversity Augments Estrogen-driven Pulmonary Fibrosis in Female-Predominant Interstitial Lung Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.15.528630. [PMID: 36824732 PMCID: PMC9948999 DOI: 10.1101/2023.02.15.528630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Although profibrotic cytokines such as IL-17A and TGF-β1 have been implicated in interstitial lung disease (ILD) pathogenesis, interactions between gut dysbiosis, gonadotrophic hormones and molecular mediators of profibrotic cytokine expression, such as phosphorylation of STAT3, have not been defined. Here we show by chromatin immunoprecipitation sequencing (ChIP-seq) analysis of primary human CD4+ T cells that regions within the STAT3 locus are significantly enriched for binding by the transcription factor estrogen receptor alpha (ERa). Using the murine model of bleomycin-induced pulmonary fibrosis, we found significantly increased regulatory T cells compared to Th17 cells in the female lung. Genetic absence of ESR1 or ovariectomy in mice significantly increased pSTAT3 and IL-17A expression in pulmonary CD4+ T cells, which was reduced after repletion of female hormones. Remarkably, there was no significant reduction in lung fibrosis under either condition, suggesting that factors outside of ovarian hormones also contribute. Assessment of lung fibrosis among menstruating females in different rearing environments revealed that environments favoring gut dysbiosis augment fibrosis. Furthermore, hormone repletion following ovariectomy further augmented lung fibrosis, suggesting pathologic interactions between gonadal hormones and gut microbiota on lung fibrosis severity. Analysis in female sarcoidosis patients revealed a significant reduction in pSTAT3 and IL-17A levels and a concomitant increase in TGF-β1 levels in CD4+ T cells, compared to male sarcoidosis patients. These studies reveal that estrogen is profibrotic in females and that gut dysbiosis in menstruating females augments lung fibrosis severity, supporting a critical interaction between gonadal hormones and gut flora in lung fibrosis pathogenesis.
Collapse
|
35
|
Moderating Gut Microbiome/Mitochondrial Axis in Oxazolone Induced Ulcerative Colitis: The Evolving Role of β-Glucan and/or, Aldose Reductase Inhibitor, Fidarestat. Int J Mol Sci 2023; 24:ijms24032711. [PMID: 36769034 PMCID: PMC9917140 DOI: 10.3390/ijms24032711] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
A mechanistic understanding of the dynamic interactions between the mitochondria and the gut microbiome is thought to offer innovative explanations for many diseases and thus provide innovative management approaches, especially in GIT-related autoimmune diseases, such as ulcerative colitis (UC). β-Glucans, important components of many nutritious diets, including oats and mushrooms, have been shown to exhibit a variety of biological anti-inflammatory and immune-modulating actions. Our research study sought to provide insight into the function of β-glucan and/or fidarestat in modifying the microbiome/mitochondrial gut axis in the treatment of UC. A total of 50 Wistar albino male rats were grouped into five groups: control, UC, β-Glucan, Fidarestat, and combined treatment groups. All the groups were tested for the presence of free fatty acid receptors 2 and 3 (FFAR-2 and -3) and mitochondrial transcription factor A (TFAM) mRNA gene expressions. The reactive oxygen species (ROS), mitochondrial membrane potential (MMP), and ATP content were found. The trimethylamine N-oxide (TMAO) and short-chain fatty acid (SCFA) levels were also examined. Nuclear factor kappa β (NF-kβ), nuclear factor (erythroid-2)-related factor 2 (Nrf2) DNA binding activity, and peroxisome proliferator-activated receptor gamma co-activator-1 (PGC-1) were identified using the ELISA method. We observed a substantial increase FFAR-2, -3, and TFAM mRNA expression after the therapy. Similar increases were seen in the ATP levels, MMP, SCFA, PGC-1, and Nrf2 DNA binding activity. The levels of ROS, TMAO, and NF-kβ, on the other hand, significantly decreased. Using β-glucan and fidarestat together had unique therapeutic benefits in treating UC by focusing on the microbiota/mitochondrial axis, opening up a new avenue for a potential treatment for such a complex, multidimensional illness.
Collapse
|
36
|
Jin R, Hao J, Yu J, Wang P, Sauter ER, Li B. Role of FABP5 in T Cell Lipid Metabolism and Function in the Tumor Microenvironment. Cancers (Basel) 2023; 15:657. [PMID: 36765614 PMCID: PMC9913835 DOI: 10.3390/cancers15030657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
To evade immune surveillance, tumors develop a hostile microenvironment that inhibits anti-tumor immunity. Recent immunotherapy breakthroughs that target the reinvigoration of tumor-infiltrating T lymphocytes (TIL) have led to unprecedented success in treating some cancers that are resistant to conventional therapy, suggesting that T cells play a pivotal role in anti-tumor immunity. In the hostile tumor microenvironment (TME), activated T cells are known to mainly rely on aerobic glycolysis to facilitate their proliferation and anti-tumor function. However, TILs usually exhibit an exhausted phenotype and impaired anti-tumor activity due to the limited availability of key nutrients (e.g., glucose) in the TME. Given that different T cell subsets have unique metabolic pathways which determine their effector function, this review introduces our current understanding of T cell development, activation signals and metabolic pathways. Moreover, emerging evidence suggests that fatty acid binding protein 5 (FABP5) expression in T cells regulates T cell lipid metabolism and function. We highlight how FABP5 regulates fatty acid uptake and oxidation, thus shaping the survival and function of different T cell subsets in the TME.
Collapse
Affiliation(s)
- Rong Jin
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY 40202, USA
- NHC Key Laboratory of Medical Immunology, Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Jiaqing Hao
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY 40202, USA
- Department of Pathology, University of Iowa, Iowa City, IA 52242, USA
| | - Jianyu Yu
- Department of Pathology, University of Iowa, Iowa City, IA 52242, USA
| | - Pingzhang Wang
- NHC Key Laboratory of Medical Immunology, Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Edward R. Sauter
- Division of Cancer Prevention, National Institutes of Health/National Cancer Institute, Bethesda, MD 20892, USA
| | - Bing Li
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY 40202, USA
- Department of Pathology, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
37
|
De Martino M, Daviaud C, Hajjar E, Vanpouille-Box C. Fatty acid metabolism and radiation-induced anti-tumor immunity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 376:121-141. [PMID: 36997267 DOI: 10.1016/bs.ircmb.2023.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Fatty acid metabolic reprogramming has emerged as a major regulator of anti-tumor immune responses with large body of evidence that demonstrate its ability to impact the differentiation and function of immune cells. Therefore, depending on the metabolic cues that stem in the tumor microenvironment, the tumor fatty acid metabolism can tilt the balance of inflammatory signals to either promote or impair anti-tumor immune responses. Oxidative stressors such as reactive oxygen species generated from radiation therapy can rewire the tumor energy supply, suggesting that radiation therapy can further perturb the energy metabolism of a tumor by promoting fatty acid production. In this review, we critically discuss the network of fatty acid metabolism and how it regulates immune response especially in the context of radiation therapy.
Collapse
|
38
|
Liang S, Mijatovic J, Li A, Koemel N, Nasir R, Toniutti C, Bell-Anderson K, Skilton M, O’Leary F. Dietary Patterns and Non-Communicable Disease Biomarkers: A Network Meta-Analysis and Nutritional Geometry Approach. Nutrients 2022; 15:76. [PMID: 36615733 PMCID: PMC9824098 DOI: 10.3390/nu15010076] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/17/2022] [Accepted: 12/18/2022] [Indexed: 12/28/2022] Open
Abstract
Quantitative rankings of multiple dietary patterns for their effects on non-communicable disease (NCD) biomarkers is lacking and would inform primary prevention strategies. Accordingly, a network meta-analysis (NMA) was conducted to compare and rank the effects of different dietary patterns on NCD biomarkers, and associations of dietary patterns’ underlying macronutrient composition with NCD biomarkers were determined by a nutritional geometry approach. Randomised controlled trials (RCTs) were eligible for inclusion if they enrolled healthy participants, employed food-based dietary pattern interventions without energy restriction, and reported NCD biomarker outcomes. NCD biomarkers were included as an outcome if ≥10 trials were available. A systematic search of five electronic databases identified 4008 records. Sixty-eight articles from 59 RCTs reporting lipids, glycemic, and inflammatory biomarkers were included for quantitative syntheses. Risk-of-bias was predominantly categorized as low or having some concerns, and confidence-of-evidence low. Relative to western habitual diet, the Mediterranean, Dietary Approaches to Stop Hypertension (DASH), dietary guidelines-based, plant-based, and low-fat diets reduced low-density lipoprotein cholesterol (mean difference range: −0.29 to −0.17 mmol/L), total cholesterol (−0.36 to −0.24 mmol/L), and apolipoprotein B (−0.11 to −0.07 g/L) (all p < 0.05); the Paleo, plant-based and dietary guidelines-based diets reduced homeostasis model assessment of insulin resistance (−0.95 to −0.35, all p < 0.05). No dietary pattern ranked consistently highest. The Paleo diet received the highest all-outcomes-combined average Surface Under the Cumulative Ranking Curve value (67%), followed by DASH (62%) and Mediterranean diets (57%), whereas western habitual diet was lowest (36%). Our findings were independent of macronutrient composition, highlighting the significance of dietary pattern-level analysis.
Collapse
Affiliation(s)
- Shuang Liang
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Jovana Mijatovic
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Ang Li
- Centre for Health Policy, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Nicholas Koemel
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Reeja Nasir
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Clémence Toniutti
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Kim Bell-Anderson
- The Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
- Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Michael Skilton
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
- Sydney Institute for Women, Children and Their Families, Sydney Local Health District, Sydney, NSW 2050, Australia
| | - Fiona O’Leary
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
- The Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
39
|
Hao J, Jin R, Zeng J, Hua Y, Yorek MS, Liu L, Mandal A, Li J, Zheng H, Sun Y, Yi Y, Yin D, Zheng Q, Li X, Ng CK, Rouchka EC, Egilmez NK, Jabbari A, Li B. Consumption of fish oil high-fat diet induces murine hair loss via epidermal fatty acid binding protein in skin macrophages. Cell Rep 2022; 41:111804. [PMID: 36516778 PMCID: PMC10193786 DOI: 10.1016/j.celrep.2022.111804] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/06/2022] [Accepted: 11/18/2022] [Indexed: 12/15/2022] Open
Abstract
Fats are essential in healthy diets, but how dietary fats affect immune cell function and overall health is not well understood. Mimicking human high-fat diets (HFDs), which are rich in different fatty acid (FA) components, we fed mice various HFDs from different fat sources, including fish oil and cocoa butter. Mice consuming the fish oil HFD exhibit a hair-loss phenotype. Further studies show that omega-3 (n-3) FAs in fish oil promote atypical infiltration of CD207- (langerin-) myeloid macrophages in skin dermis, which induce hair loss through elevated TNF-α signaling. Mechanistically, epidermal fatty acid binding protein (E-FABP) is demonstrated to play an essential role in inducing TNF-α-mediated hair loss by activating the n-3 FA/ROS/IL-36 signaling pathway in dermal resident macrophages. Absence of E-FABP abrogates fish oil HFD-induced murine hair loss. Altogether, these findings support a role for E-FABP as a lipid sensor mediating n-3 FA-regulated macrophage function and skin health.
Collapse
Affiliation(s)
- Jiaqing Hao
- Department of Pathology, University of Iowa, 431 Newton Road, Iowa City, IA, USA; Department of Microbiology and Immunology, University of Louisville, Louisville, KY, USA
| | - Rong Jin
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, USA; NHC Key Laboratory of Medical Immunology, Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Jun Zeng
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, USA; School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yuan Hua
- Department of Pathology, University of Iowa, 431 Newton Road, Iowa City, IA, USA; Department of Microbiology and Immunology, University of Louisville, Louisville, KY, USA
| | - Matthew S Yorek
- Department of Pathology, University of Iowa, 431 Newton Road, Iowa City, IA, USA
| | - Lianliang Liu
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, USA; College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Anita Mandal
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, USA
| | - Junling Li
- Department of Radiology, University of Louisville, Louisville, KY, USA
| | - Huaiyu Zheng
- Department of Radiology, University of Louisville, Louisville, KY, USA
| | - Yanwen Sun
- Department of Pathology, University of Iowa, 431 Newton Road, Iowa City, IA, USA; Department of Microbiology and Immunology, University of Louisville, Louisville, KY, USA
| | - Yanmei Yi
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, USA; Department of Histology and Embryology, Guangdong Medical University, Zhanjiang, China
| | - Di Yin
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, USA; School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Qi Zheng
- Bioinformatics and Biostatistics, Department of Public Health, University of Louisville, Louisville, KY, USA
| | - Xiaohong Li
- Kentucky Biomedical Research Infrastructure Network Bioinformatics Core, Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY, USA
| | - Chin K Ng
- Department of Radiology, University of Louisville, Louisville, KY, USA
| | - Eric C Rouchka
- Kentucky Biomedical Research Infrastructure Network Bioinformatics Core, Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY, USA; Department of Computer Science and Engineering, University of Louisville, Louisville, KY, USA
| | - Nejat K Egilmez
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, USA
| | - Ali Jabbari
- Department of Dermatology, University of Iowa, Iowa City, IA, USA; Iowa City VA Medical Center, Iowa City, IA, USA
| | - Bing Li
- Department of Pathology, University of Iowa, 431 Newton Road, Iowa City, IA, USA; Department of Microbiology and Immunology, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
40
|
Li Y, Qin C, Dong L, Zhang X, Wu Z, Liu L, Yang J, Liu L. Whole grain benefit: synergistic effect of oat phenolic compounds and β-glucan on hyperlipidemia via gut microbiota in high-fat-diet mice. Food Funct 2022; 13:12686-12696. [PMID: 36398593 DOI: 10.1039/d2fo01746f] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Increasing evidence has confirmed that whole grain oats are effective in regulating hyperlipidemia. However, which specific ingredient is crucial remains unclear. This study focused on which whole grain components, oat phenolic compounds (OPC) or oat β-glucan (OBG), can regulate lipid metabolism and gut microbiota. The experiment unveiled that OPC and/or OBG not only reduced the body weight and fasting blood glucose (FBG) but also regulated serum and hepatic lipid levels in high-fat-diet (HFD) fed mice. There was no significant difference in the regulatory effects of OPC and OBG (p > 0.05). The combination of OPC and OBG (OPC + OBG) significantly decreased the body weight (p < 0.01) and reduced the blood glucose (p < 0.01) and lipid profile levels (p < 0.01). The real-time quantitative PCR (RT-qPCR) study revealed that OPC + OBG significantly altered mRNA expression related to lipid metabolism. Histopathological analysis showed that OPC + OBG improved liver lipid deposition as well as liver oxidative stress (p < 0.05). In addition, OPC + OBG combination regulated the gut microbiota community phenotype and increased probiotics. OPC + OBG significantly increased the abundance of Bacteroidetes and reduced the abundance of Firmicutes (p < 0.05) compared with the OPC and OBG fed mice. In conclusion, OPC + OBG has a synergistic effect in alleviating hyperlipidemia via lipid metabolism and gut microbiota composition. This finding also provided a potential justification for the advantages of whole grains in preventing hyperlipidemia.
Collapse
Affiliation(s)
- Ying Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China.
| | - Chuan Qin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China.
| | - Lezhen Dong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China.
| | - Xin Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China.
| | - Zufang Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China.
| | - Lingyi Liu
- Department of food science and technology, University of Lincoln, Nebraska, USA
| | - Junsi Yang
- Department of food science and technology, University of Lincoln, Nebraska, USA
| | - Lianliang Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China.
| |
Collapse
|
41
|
High Endogenously Synthesized N-3 Polyunsaturated Fatty Acids in Fat-1 Mice Attenuate High-Fat Diet-Induced Insulin Resistance by Inhibiting NLRP3 Inflammasome Activation via Akt/GSK-3β/TXNIP Pathway. Molecules 2022; 27:molecules27196384. [PMID: 36234919 PMCID: PMC9570616 DOI: 10.3390/molecules27196384] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/14/2022] [Accepted: 09/21/2022] [Indexed: 01/15/2023] Open
Abstract
High-fat (HF) diets and low-grade chronic inflammation contribute to the development of insulin resistance and type 2 diabetes (T2D), whereas n-3 polyunsaturated fatty acids (PUFAs), due to their anti-inflammatory effects, protect against insulin resistance. Interleukin (IL)-1β is implicated in insulin resistance, yet how n-3 PUFAs modulate IL-1β secretion and attenuate HF diet-induced insulin resistance remains elusive. In this study, a HF diet activated NLRP3 inflammasome via inducing reactive oxygen species (ROS) generation and promoted IL-1β production primarily from adipose tissue preadipocytes, but not from adipocytes and induced insulin resistance in wild type (WT) mice. Interestingly, endogenous synthesized n-3 polyunsaturated fatty acids (PUFAs) reversed this process in HF diet-fed fat-1 transgenic mice although the HF diet induced higher weight gain in fat-1 mice, compared with the control diet. Mechanistically, palmitic acid (PA), the main saturated fatty acid in an HF diet inactivated AMPK and led to decreased GSK-3β phosphorylation, at least partially through reducing Akt activity, which ultimately blocked the Nrf2/Trx1 antioxidant pathway and induced TXNIP cytoplasm translocation and NLRP3 inflammasome activation, whereas docosahexaenoic acid (DHA), the most abundant n-3 PUFA in fat-1 adipose tissue, reversed this process via inducing Akt activation. Our GSK-3β shRNA knockdown study further revealed that GSK-3β played a pivot role between the upstream AMPK/Akt pathway and downstream Nrf2/Trx1/TXNIP pathway. Given that NLRP3 inflammasome is implicated in the development of most inflammatory diseases, our results suggest the potential of n-3 PUFAs in the prevention or adjuvant treatment of NLRP3 inflammasome-driven diseases.
Collapse
|
42
|
Westheim AJF, Stoffels LM, Dubois LJ, van Bergenhenegouwen J, van Helvoort A, Langen RCJ, Shiri-Sverdlov R, Theys J. Fatty Acids as a Tool to Boost Cancer Immunotherapy Efficacy. Front Nutr 2022; 9:868436. [PMID: 35811951 PMCID: PMC9260274 DOI: 10.3389/fnut.2022.868436] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/11/2022] [Indexed: 12/12/2022] Open
Abstract
Although immunotherapy represents one of the most potent therapeutic anti-cancer approaches, only a limited number of patients shows clinical benefit. Recent evidence suggests that patients' nutritional status plays a major role in immunotherapy outcome. Fatty acids are essential in a balanced diet and well-known to influence the immune response. Moreover, short-chain fatty acids (SCFAs) show beneficial effects in metabolic disorders as well as in cancer and polyunsaturated fatty acids (PUFAs) contribute to body weight and fat free mass preservation in cancer patients. In line with these data, several studies imply a role for SCFAs and PUFAs in boosting the outcome of immunotherapy. In this review, we specifically focus on mechanistic data showing that SCFAs modulate the immunogenicity of tumor cells and we discuss the direct effects of SCFAs and PUFAs on the immune system in the context of cancer. We provide preclinical and clinical evidence indicating that SCFAs and PUFAs may have the potential to boost immunotherapy efficacy. Finally, we describe the challenges and address opportunities for successful application of nutritional interventions focusing on SCFAs and PUFAs to increase the therapeutic potential of immunotherapeutic approaches for cancer.
Collapse
Affiliation(s)
- Annemarie J. F. Westheim
- Department of Precision Medicine, GROW-Research School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, Netherlands
- Department of Genetics and Cell Biology, NUTRIM-School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Lara M. Stoffels
- Department of Precision Medicine, GROW-Research School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, Netherlands
- Department of Genetics and Cell Biology, NUTRIM-School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Ludwig J. Dubois
- Department of Precision Medicine, GROW-Research School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Jeroen van Bergenhenegouwen
- Danone Nutricia Research, Utrecht, Netherlands
- Department of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Ardy van Helvoort
- Danone Nutricia Research, Utrecht, Netherlands
- Department of Respiratory Medicine, NUTRIM-School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, Netherlands
| | - Ramon C. J. Langen
- Department of Respiratory Medicine, NUTRIM-School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, Netherlands
| | - Ronit Shiri-Sverdlov
- Department of Genetics and Cell Biology, NUTRIM-School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Jan Theys
- Department of Precision Medicine, GROW-Research School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, Netherlands
- *Correspondence: Jan Theys
| |
Collapse
|
43
|
Yin D, Hao J, Jin R, Yi Y, Bodduluri SR, Hua Y, Anand A, Deng Y, Haribabu B, Egilmez NK, Sauter ER, Li B. Epidermal Fatty Acid Binding Protein Mediates Depilatory-Induced Acute Skin Inflammation. J Invest Dermatol 2021; 142:1824-1834.e7. [DOI: 10.1016/j.jid.2021.11.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/04/2021] [Accepted: 11/22/2021] [Indexed: 12/17/2022]
|
44
|
Yu W, Lei Q, Yang L, Qin G, Liu S, Wang D, Ping Y, Zhang Y. Contradictory roles of lipid metabolism in immune response within the tumor microenvironment. J Hematol Oncol 2021; 14:187. [PMID: 34742349 PMCID: PMC8572421 DOI: 10.1186/s13045-021-01200-4] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 10/22/2021] [Indexed: 12/16/2022] Open
Abstract
Complex interactions between the immune system and tumor cells exist throughout the initiation and development of cancer. Although the immune system eliminates malignantly transformed cells in the early stage, surviving tumor cells evade host immune defense through various methods and even reprogram the anti-tumor immune response to a pro-tumor phenotype to obtain unlimited growth and metastasis. The high proliferation rate of tumor cells increases the demand for local nutrients and oxygen. Poorly organized vessels can barely satisfy this requirement, which results in an acidic, hypoxic, and glucose-deficient tumor microenvironment. As a result, lipids in the tumor microenvironment are activated and utilized as a primary source of energy and critical regulators in both tumor cells and related immune cells. However, the exact role of lipid metabolism reprogramming in tumor immune response remains unclear. A comprehensive understanding of lipid metabolism dysfunction in the tumor microenvironment and its dual effects on the immune response is critical for mapping the detailed landscape of tumor immunology and developing specific treatments for cancer patients. In this review, we have focused on the dysregulation of lipid metabolism in the tumor microenvironment and have discussed its contradictory roles in the tumor immune response. In addition, we have summarized the current therapeutic strategies targeting lipid metabolism in tumor immunotherapy. This review provides a comprehensive summary of lipid metabolism in the tumor immune response.
Collapse
Affiliation(s)
- Weina Yu
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China.,Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, 450052, Henan, China.,State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Qingyang Lei
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China.,Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, 450052, Henan, China.,State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Li Yang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China.,Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, 450052, Henan, China.,State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Guohui Qin
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China.,Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, 450052, Henan, China.,State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Shasha Liu
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China.,Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, 450052, Henan, China.,State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Dan Wang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China.,Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, 450052, Henan, China.,State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Yu Ping
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China.,Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, 450052, Henan, China.,State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Yi Zhang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China. .,Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, 450052, Henan, China. .,School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, People's Republic of China. .,State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450052, People's Republic of China.
| |
Collapse
|
45
|
Jin R, Hao J, Yi Y, Yin D, Hua Y, Li X, Bao H, Han X, Egilmez NK, Sauter ER, Li B. Dietary Fats High in Linoleic Acids Impair Antitumor T-cell Responses by Inducing E-FABP-Mediated Mitochondrial Dysfunction. Cancer Res 2021; 81:5296-5310. [PMID: 34400394 PMCID: PMC8530923 DOI: 10.1158/0008-5472.can-21-0757] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/15/2021] [Accepted: 08/13/2021] [Indexed: 12/13/2022]
Abstract
The most recent American Dietary Guidelines (2020-2025) recommend shifting dietary fats from solid saturated fats to unsaturated oils. Dietary oils contain different compositions of unsaturated fatty acids (UFA). Oleic acid (OA) and linoleic acid (LA) are the most common UFA in dietary oils. How individual UFA in oils regulate immune cell function and cancer risk remains unclear. Here we demonstrated that high-fat diets (HFD) rich either in OA or LA induced a similar degree of murine obesity, but the LA-rich HFD specifically promoted mammary tumor growth. LA impaired antitumor T-cell responses by promoting naïve T-cell apoptosis and inhibiting TNFα production. While exogenous OA and LA were taken up by T cells with similar efficacy, only LA induced significant mitochondrial reactive oxygen species production and lipid peroxidation. Importantly, naïve T cells predominantly expressed epidermal fatty acid binding protein (E-FABP), which is central in facilitating LA mitochondrial transport and cardiolipin incorporation. Genetic depletion of E-FABP rescued LA-impaired T-cell responses and suppressed LA-rich HFD-associated mammary tumor growth. Collectively, these data suggest that dietary oils high in LA promote mammary tumors by inducing E-FABP-mediated T-cell dysfunction. SIGNIFICANCE: These findings suggest that modulation of dietary oil composition and inhibition of E-FABP activity may represent novel strategies to enhance T-cell function in the prevention and treatment of obesity-associated cancers.
Collapse
Affiliation(s)
- Rong Jin
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, P.R. China
| | - Jiaqing Hao
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky
| | - Yanmei Yi
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky
- Department of Histology and Embryology, Guangdong Medical University, Zhanjiang, P.R. China
| | - Di Yin
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky
- School of Basic Medical Sciences, Guangdong Medical University, Guangzhou, P.R. China
| | - Yuan Hua
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky
| | - Xiaohong Li
- Kentucky Biomedical Research Infrastructure Network Bioinformatics Core, Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky
| | - Hanmei Bao
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Nejat K Egilmez
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky
| | | | - Bing Li
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky.
| |
Collapse
|
46
|
Jin R, Hao J, Yi Y, Sauter E, Li B. Regulation of macrophage functions by FABP-mediated inflammatory and metabolic pathways. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158964. [PMID: 33984518 PMCID: PMC8169605 DOI: 10.1016/j.bbalip.2021.158964] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 12/15/2022]
Abstract
Macrophages are almost everywhere in the body, where they serve pivotal functions in maintaining tissue homeostasis, remodeling, and immunoregulation. Macrophages are traditionally thought to differentiate from bone marrow-derived hematopoietic stem cells (HSCs). Emerging studies suggest that some tissue macrophages at steady state originate from embryonic precursors in the yolk sac or fetal liver and are maintained in situ by self-renewal, but bone marrow-derived monocytes can give rise to tissue macrophages in pathogenic settings, such as inflammatory injuries and cancer. Macrophages are popularly classified as Th1 cytokine (e.g. IFNγ)-activated M1 macrophages (the classical activation) or Th2 cytokine (e.g. IL-4)-activated M2 macrophages (the alternative activation). However, given the myriad arrays of stimuli macrophages may encounter from local environment, macrophages exhibit notorious heterogeneity in their phenotypes and functions. Determining the underlying metabolic pathways engaged during macrophage activation is critical for understanding macrophage phenotypic and functional adaptivity under different disease settings. Fatty acid binding proteins (FABPs) represent a family of evolutionarily conserved proteins facilitating lipid transport, metabolism and responses inside cells. More specifically, adipose-FABP (A-FABP) and epidermal-FABP (E-FABP) are highly expressed in macrophages and play a central role in integrating metabolic and inflammatory pathways. In this review we highlight how A-FABP and E-FABP are respectively upregulated in different subsets of activated macrophages and provide a unique perspective in defining macrophage phenotypic and functional heterogeneity through FABP-regulated lipid metabolic and inflammatory pathways.
Collapse
Affiliation(s)
- Rong Jin
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, USA; Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Jiaqing Hao
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, USA
| | - Yanmei Yi
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, USA; School of Basic Medical Sciences, Guangdong Medical University, Zhanjiang, China
| | - Edward Sauter
- Division of Cancer Prevention, NIH/NCI, Bethesda, MD, USA
| | - Bing Li
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
47
|
Liput KP, Lepczyński A, Ogłuszka M, Nawrocka A, Poławska E, Grzesiak A, Ślaska B, Pareek CS, Czarnik U, Pierzchała M. Effects of Dietary n-3 and n-6 Polyunsaturated Fatty Acids in Inflammation and Cancerogenesis. Int J Mol Sci 2021; 22:6965. [PMID: 34203461 PMCID: PMC8268933 DOI: 10.3390/ijms22136965] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/24/2021] [Accepted: 06/24/2021] [Indexed: 12/30/2022] Open
Abstract
The dietary recommendation encourages reducing saturated fatty acids (SFA) in diet and replacing them with polyunsaturated fatty acids (PUFAs) n-3 (omega-3) and n-6 (omega-6) to decrease the risk of metabolic disturbances. Consequently, excessive n-6 PUFAs content and high n-6/n-3 ratio are found in Western-type diet. The importance of a dietary n-6/n-3 ratio to prevent chronic diseases is linked with anti-inflammatory functions of linolenic acid (ALA, 18:3n-3) and longer-chain n-3 PUFAs. Thus, this review provides an overview of the role of oxylipins derived from n-3 PUFAs and oxylipins formed from n-6 PUFAs on inflammation. Evidence of PUFAs' role in carcinogenesis was also discussed. In vitro studies, animal cancer models and epidemiological studies demonstrate that these two PUFA groups have different effects on the cell growth, proliferation and progression of neoplastic lesions.
Collapse
Affiliation(s)
- Kamila P. Liput
- Department of Genomics and Biodiversity, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzebiec, 05-552 Magdalenka, Poland; (K.P.L.); (M.O.); (A.N.); (E.P.)
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzebiec, 05-552 Magdalenka, Poland
| | - Adam Lepczyński
- Department of Physiology, Cytobiology and Proteomics, West Pomeranian University of Technology, ul. K. Janickiego 29, 71-270 Szczecin, Poland; (A.L.); (A.G.)
| | - Magdalena Ogłuszka
- Department of Genomics and Biodiversity, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzebiec, 05-552 Magdalenka, Poland; (K.P.L.); (M.O.); (A.N.); (E.P.)
| | - Agata Nawrocka
- Department of Genomics and Biodiversity, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzebiec, 05-552 Magdalenka, Poland; (K.P.L.); (M.O.); (A.N.); (E.P.)
- Department of Experimental Genomics, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzebiec, 05-552 Magdalenka, Poland
| | - Ewa Poławska
- Department of Genomics and Biodiversity, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzebiec, 05-552 Magdalenka, Poland; (K.P.L.); (M.O.); (A.N.); (E.P.)
| | - Agata Grzesiak
- Department of Physiology, Cytobiology and Proteomics, West Pomeranian University of Technology, ul. K. Janickiego 29, 71-270 Szczecin, Poland; (A.L.); (A.G.)
| | - Brygida Ślaska
- Institute of Biological Bases of Animal Production, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland;
| | - Chandra S. Pareek
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, ul. J. Gagarina 7, 87-100 Toruń, Poland;
- Division of Functional Genomics in Biological and Biomedical Research, Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, ul. Wilenska 4, 87-100 Torun, Poland
| | - Urszula Czarnik
- Department of Pig Breeding, Faculty of Animal Bio-Engineering, University of Warmia and Mazury in Olsztyn, ul. M. Oczapowskiego 5, 10-719 Olsztyn, Poland;
| | - Mariusz Pierzchała
- Department of Genomics and Biodiversity, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzebiec, 05-552 Magdalenka, Poland; (K.P.L.); (M.O.); (A.N.); (E.P.)
| |
Collapse
|
48
|
Monk JM, Liddle DM, Hutchinson AL, Burns JL, Wellings H, Cartwright NM, Muller WJ, Power KA, Robinson LE, Ma DWL. Fish oil supplementation increases expression of mammary tumor apoptosis mediators and reduces inflammation in an obesity-associated HER-2 breast cancer model. J Nutr Biochem 2021; 95:108763. [PMID: 33965532 DOI: 10.1016/j.jnutbio.2021.108763] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 03/10/2021] [Accepted: 04/16/2021] [Indexed: 12/12/2022]
Abstract
Obesity is associated with inflammation and has been shown to increase breast cancer severity. The objective of this study was to examine the effect of fish oil (FO) supplementation in obesity-associated mammary tumorigenesis in the MMTV-neu(ndl)-YD5 mouse model of human epidermal growth factor receptor-2 positive BC. Female mice were fed one of three diets for 16 weeks: i) high fat diet [HF, % kacl: 41.2% lard, 18.7% corn oil (CO)], ii) an isocaloric HF plus menhaden FO diet (HF+FO, % kcal: 41.2 lard, 13.4% CO, 5.3% FO), iii) low fat diet (LF, % kcal: 4.7% lard, 6% CO). HF mice had increased body weight, visceral adipose weight and serum hormone concentrations (increased leptin and resistin; decreased adiponectin) versus LF, which was attenuated in the HF+FO group versus HF (P<.05). Compared to HF, tumor onset was delayed in HF+FO and LF mice (P<0.05). Compared to HF, HF+FO reduced mammary tumor multiplicity (-27%), tumor weight (-46%) and total tumor volume (-50%) (P<0.05). Additionally, HF+FO reduced mammary tumor multiplicity (-33%), tumor weight (-39%) and total tumor volume (-60%) versus LF. HF+FO improved mammary tumor apoptosis status with increased expression of pro-apoptotic Bad and decreased expression of anti-apoptotic Bcl-xLmediators versus HF (P<0.05). Additionally, HF+FO decreased tumor protein expression of activated Akt, NFκB p65 and STAT3, versus HF (P<0.05). Tumor mRNA expression of inflammatory mediators TNFα, IL-6 and leptin were reduced in HF+FO, whereas IL-10 expression was increased compared to HF (P<0.05). Collectively these results demonstrate the efficacy of FO supplementation for improving obesity-associated breast cancer outcomes.
Collapse
Affiliation(s)
- Jennifer M Monk
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph ON, Canada, N1G 2W1.
| | - Danyelle M Liddle
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph ON, Canada, N1G 2W1
| | - Amber L Hutchinson
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph ON, Canada, N1G 2W1
| | - Jessie L Burns
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph ON, Canada, N1G 2W1
| | - Hannah Wellings
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph ON, Canada, N1G 2W1
| | - Nadia M Cartwright
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph ON, Canada, N1G 2W1
| | - William J Muller
- Department of Biochemistry, McGill University, Rosalind and Morris Goodman Cancer Research, Montreal, QC, Canada
| | - Krista A Power
- School of Nutrition Sciences, University of Ottawa, Ottawa ON, Canada, K1H 8L1
| | - Lindsay E Robinson
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph ON, Canada, N1G 2W1
| | - David W L Ma
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph ON, Canada, N1G 2W1.
| |
Collapse
|