1
|
Fu B, Lou Y, Lu X, Wu Z, Ni J, Jin C, Wu P, Xu C. tRF-1:30-Gly-CCC-3 inhibits thyroid cancer via binding to PC and modulating metabolic reprogramming. Life Sci Alliance 2024; 7:e202302285. [PMID: 38081642 PMCID: PMC10713435 DOI: 10.26508/lsa.202302285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 12/18/2023] Open
Abstract
tRFs and tiRNAs (tRNA-derived fragments) are an emerging class of small noncoding RNAs produced by the precise shearing of tRNAs in response to specific stimuli. They have been reported to regulate the pathological processes of numerous human cancers. However, the biofunction of tRFs and tiRNAs in the development and progression of papillary thyroid cancer (PTC) has not been reported yet. In this study, we aimed to explore the biological roles of tRFs and tiRNAs in PTC and discovered that a novel 5'tRNA-derived fragment called tRF-1:30-Gly-CCC-3 (tRF-30) was markedly down-regulated in PTC tissues and cell lines. Functionally, tRF-30 inhibited the proliferation and invasion of PTC cells. Mechanistically, tRF-30 directly bound to the biotin-dependent enzyme pyruvate carboxylase (PC), downregulated its protein level, interfered with the TCA cycle intermediate anaplerosis, and thus affected metabolic reprogramming and PTC progression. These findings revealed a novel regulatory mechanism for tRFs and a potential therapeutic target for PTC.
Collapse
Affiliation(s)
- Bifei Fu
- Department of Breast and Thyroid Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - YuMing Lou
- Department of Breast and Thyroid Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Xiaofeng Lu
- Department of Breast and Thyroid Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Zhaolin Wu
- Department of Anaesthesiology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Junjie Ni
- Department of Breast and Thyroid Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Cong Jin
- Department of Breast and Thyroid Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Pu Wu
- Central Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Chaoyang Xu
- Department of Breast and Thyroid Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
- Central Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| |
Collapse
|
2
|
Cai F, Liu L, Bo Y, Yan W, Tao X, Peng Y, Zhang Z, Liao Q, Yi Y. LncRNA RPARP-AS1 promotes the progression of osteosarcoma cells through regulating lipid metabolism. BMC Cancer 2024; 24:166. [PMID: 38308235 PMCID: PMC10835925 DOI: 10.1186/s12885-024-11901-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/20/2024] [Indexed: 02/04/2024] Open
Abstract
Osteosarcoma (OS) is a highly malignant tumor, and its dysregulated lipid metabolism is associated with tumorigenesis and unfavorable prognosis. Interestingly, long noncoding RNAs (lncRNAs) have emerged as pivotal regulators of lipid metabolism, exerting notable impacts on tumor proliferation. Nevertheless, the involvement of RPARP-AS1, a novel lipid metabolism-associated lncRNA, remains unexplored in the context of OS. This study aims to identify functionally relevant lncRNAs impacting OS proliferation and lipid metabolism and seeks to shed light on the upstream regulatory mechanisms governing lipogenic enzyme activity. Based on comprehensive bioinformatic analysis and the establishment of a risk model, we identified seven lncRNAs significantly associated with clinical characteristics and lipid metabolism-related genes in patients with OS. Among these, RPARP-AS1 was selected for in-depth investigation regarding its roles in OS proliferation and lipid metabolism. Experimental techniques including RT-qPCR, Western blot, cell viability assay, assessment, and quantification of free fatty acids (FFAs) and triglycerides (TGs) were utilized to elucidate the functional significance of RPARP-AS1 in OS cells and validate its effects on lipid metabolism. Manipulation of RPARP-AS1 expression via ectopic expression or siRNA-mediated knockdown led to alterations in epithelial-mesenchymal transition (EMT) and expression of apoptosis-associated proteins, thereby influencing OS cell proliferation and apoptosis. Mechanistically, RPARP-AS1 was found to augment the expression of key lipogenic enzymes (FABP4, MAGL, and SCD1) and potentially modulate the Akt/mTOR pathway, thereby contributing to lipid metabolism (involving alterations in FFA and TG levels) in OS cells. Collectively, our findings establish RPARP-AS1 as a novel oncogene in OS cells and suggest its role in fostering tumor growth through the enhancement of lipid metabolism.
Collapse
Affiliation(s)
- Feng Cai
- The Third Affiliated Hospital of Nanchang University, North 128 Xiangshan Road, Nanchang, Jiangxi, 330008, P.R. China
- Department of Orthopedics, The First Hospital of Nanchang, North 128 Xiangshan Road, Nanchang, Jiangxi, 330008, P.R. China
| | - Luhua Liu
- The Third Affiliated Hospital of Nanchang University, North 128 Xiangshan Road, Nanchang, Jiangxi, 330008, P.R. China
| | - Yuan Bo
- The Third Affiliated Hospital of Nanchang University, North 128 Xiangshan Road, Nanchang, Jiangxi, 330008, P.R. China
| | - Wenjing Yan
- The Third Affiliated Hospital of Nanchang University, North 128 Xiangshan Road, Nanchang, Jiangxi, 330008, P.R. China
| | - Xuchang Tao
- The Third Affiliated Hospital of Nanchang University, North 128 Xiangshan Road, Nanchang, Jiangxi, 330008, P.R. China
| | - Yuanxiang Peng
- Department of Orthopedics, The First Hospital of Nanchang, North 128 Xiangshan Road, Nanchang, Jiangxi, 330008, P.R. China
| | - Zhiping Zhang
- The Third Affiliated Hospital of Nanchang University, North 128 Xiangshan Road, Nanchang, Jiangxi, 330008, P.R. China
| | - Qi Liao
- The Third Affiliated Hospital of Nanchang University, North 128 Xiangshan Road, Nanchang, Jiangxi, 330008, P.R. China
| | - Yangyan Yi
- Department of Plastic Surgery, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, Jiangxi, 330008, P.R. China.
| |
Collapse
|
3
|
Che G, Wang W, Wang J, He C, Yin J, Chen Z, He C, Wang X, Yang Y, Liu J. Sulfotransferase SULT2B1 facilitates colon cancer metastasis by promoting SCD1-mediated lipid metabolism. Clin Transl Med 2024; 14:e1587. [PMID: 38372484 PMCID: PMC10875708 DOI: 10.1002/ctm2.1587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 01/24/2024] [Accepted: 01/31/2024] [Indexed: 02/20/2024] Open
Abstract
Metastasis is responsible for at least 90% of colon cancer (CC)-related deaths. Lipid metabolism is a critical factor in cancer metastasis, yet the underlying mechanism requires further investigation. Herein, through the utilisation of single-cell sequencing and proteomics, we identified sulfotransferase SULT2B1 as a novel metastatic tumour marker of CC, which was associated with poor prognosis. CC orthotopic model and in vitro assays showed that SULT2B1 promoted lipid metabolism and metastasis. Moreover, SULT2B1 directly interacted with SCD1 to facilitate lipid metabolism and promoted metastasis of CC cells. And the combined application of SCD1 inhibitor CAY with SULT2B1- konockout (KO) demonstrated a more robust inhibitory effect on lipid metabolism and metastasis of CC cells in comparison to sole application of SULT2B1-KO. Notably, we revealed that lovastatin can block the SULT2B1-induced promotion of lipid metabolism and distant metastasis in vivo. Further evidence showed that SMC1A transcriptionally upregulated the expression of SULT2B1. Our findings unveiled the critical role of SULT2B1 in CC metastasis and provided a new perspective for the treatment of CC patients with distant metastasis.
Collapse
Affiliation(s)
- Gang Che
- Department of Surgical OncologyThe First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouZhejiangChina
- Center Laboratory, The First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangChina
| | - Wankun Wang
- Department of Surgical OncologyThe First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouZhejiangChina
- Center Laboratory, The First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangChina
| | - Jiawei Wang
- Department of Colorectal SurgerySir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangChina
| | - Cheng He
- Department of Thoracic SurgeryThe First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangChina
| | - Jie Yin
- Department of Colorectal MedicineZhejiang Cancer HospitalHangzhouZhejiangChina
| | - Zhendong Chen
- Department of Surgical OncologyThe First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouZhejiangChina
- Center Laboratory, The First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangChina
| | - Chao He
- Department of Surgical OncologyThe First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouZhejiangChina
- Center Laboratory, The First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangChina
| | - Xujing Wang
- Department of Surgical OncologyThe First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouZhejiangChina
- Center Laboratory, The First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangChina
| | - Yan Yang
- Department of Surgical OncologyThe First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouZhejiangChina
- Center Laboratory, The First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangChina
| | - Jian Liu
- Department of Surgical OncologyThe First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouZhejiangChina
- Center Laboratory, The First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangChina
| |
Collapse
|
4
|
Liu S, Jiao B, Zhao H, Liang X, Jin F, Liu X, Hu J. LncRNAs-circRNAs as Rising Epigenetic Binary Superstars in Regulating Lipid Metabolic Reprogramming of Cancers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303570. [PMID: 37939296 PMCID: PMC10767464 DOI: 10.1002/advs.202303570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/28/2023] [Indexed: 11/10/2023]
Abstract
As one of novel hallmarks of cancer, lipid metabolic reprogramming has recently been becoming fascinating and widely studied. Lipid metabolic reprogramming in cancer is shown to support carcinogenesis, progression, distal metastasis, and chemotherapy resistance by generating ATP, biosynthesizing macromolecules, and maintaining appropriate redox status. Notably, increasing evidence confirms that lipid metabolic reprogramming is under the control of dysregulated non-coding RNAs in cancer, especially lncRNAs and circRNAs. This review highlights the present research findings on the aberrantly expressed lncRNAs and circRNAs involved in the lipid metabolic reprogramming of cancer. Emphasis is placed on their regulatory targets in lipid metabolic reprogramming and associated mechanisms, including the clinical relevance in cancer through lipid metabolism modulation. Such insights will be pivotal in identifying new theranostic targets and treatment strategies for cancer patients afflicted with lipid metabolic reprogramming.
Collapse
Affiliation(s)
- Shanshan Liu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of EducationCancer Center, First HospitalJilin UniversityChangchun130021China
- Hematology DepartmentFirst HospitalJilin UniversityChangchun130021China
| | - Benzheng Jiao
- NHC Key Laboratory of Radiobiology (Jilin University)School of Public HealthJilin UniversityChangchun130021China
- Nuclear Medicine DepartmentFirst HospitalJilin UniversityChangchun130021China
| | - Hongguang Zhao
- Nuclear Medicine DepartmentFirst HospitalJilin UniversityChangchun130021China
| | - Xinyue Liang
- Hematology DepartmentFirst HospitalJilin UniversityChangchun130021China
| | - Fengyan Jin
- Hematology DepartmentFirst HospitalJilin UniversityChangchun130021China
| | - Xiaodong Liu
- NHC Key Laboratory of Radiobiology (Jilin University)School of Public HealthJilin UniversityChangchun130021China
- Radiation Medicine Department, School of Public Health and ManagementWenzhou Medical UniversityWenzhou325035China
| | - Ji‐Fan Hu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of EducationCancer Center, First HospitalJilin UniversityChangchun130021China
- Palo Alto Veterans Institute for ResearchStanford University Medical SchoolPalo AltoCA94304USA
| |
Collapse
|
5
|
Ao YQ, Gao J, Jiang JH, Wang HK, Wang S, Ding JY. Comprehensive landscape and future perspective of long noncoding RNAs in non-small cell lung cancer: it takes a village. Mol Ther 2023; 31:3389-3413. [PMID: 37740493 PMCID: PMC10727995 DOI: 10.1016/j.ymthe.2023.09.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/01/2023] [Accepted: 09/17/2023] [Indexed: 09/24/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) are a distinct subtype of RNA that lack protein-coding capacity but exert significant influence on various cellular processes. In non-small cell lung cancer (NSCLC), dysregulated lncRNAs act as either oncogenes or tumor suppressors, contributing to tumorigenesis and tumor progression. LncRNAs directly modulate gene expression, act as competitive endogenous RNAs by interacting with microRNAs or proteins, and associate with RNA binding proteins. Moreover, lncRNAs can reshape the tumor immune microenvironment and influence cellular metabolism, cancer cell stemness, and angiogenesis by engaging various signaling pathways. Notably, lncRNAs have shown great potential as diagnostic or prognostic biomarkers in liquid biopsies and therapeutic strategies for NSCLC. This comprehensive review elucidates the significant roles and diverse mechanisms of lncRNAs in NSCLC. Furthermore, we provide insights into the clinical relevance, current research progress, limitations, innovative research approaches, and future perspectives for targeting lncRNAs in NSCLC. By summarizing the existing knowledge and advancements, we aim to enhance the understanding of the pivotal roles played by lncRNAs in NSCLC and stimulate further research in this field. Ultimately, unraveling the complex network of lncRNA-mediated regulatory mechanisms in NSCLC could potentially lead to the development of novel diagnostic tools and therapeutic strategies.
Collapse
Affiliation(s)
- Yong-Qiang Ao
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jian Gao
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jia-Hao Jiang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hai-Kun Wang
- CAS Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Shuai Wang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Jian-Yong Ding
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
6
|
Wu YP, Zheng WC, Huang Q, Huang XY, Lin F, Ke ZB, You Q, Zheng QS, Wei Y, Xue XY, Xu N. ND630 controls ACACA and lipid reprogramming in prostate cancer by regulating the expression of circKIF18B_003. J Transl Med 2023; 21:877. [PMID: 38049827 PMCID: PMC10694902 DOI: 10.1186/s12967-023-04760-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 11/24/2023] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND ND630 is believed to be a new therapy pharmacologic molecule in targeting the expression of ACACA and regulating the lipid metabolism. However, the function of ND630 in prostate cancer remains unknown. KIF18B, as an oncogene, plays a vital role in prostate cancer progression. circKIF18B_003 was derived from oncogene KIF18B and was markedly overexpressed in prostate cancer tissues. We speculated that oncoprotein KIF18B-derived circRNA circKIF18B_003 might have roles in prostate cancer promotion. The aim of this study was to validate whether ND630 could control ACACA and lipid reprogramming in prostate cancer by regulating the expression of circKIF18B_003. METHODS RT-qPCR was used to analyze the expression of circKIF18B_003 in prostate cancer cell lines and prostate cancer samples. circKIF18B_003 expression was modulated in prostate cancer cells using circKIF18B_003 interference or overexpression plasmid. We examined the function and effects of circKIF18B_003 in prostate cancer cells using CCK-8, colony formation, wound healing, and Transwell invasion assays and xenograft models. Fluorescence in situ hybridization (FISH) was performed to evaluate the localization of circKIF18B_003. RNA immunoprecipitation (RIP), RNA pull down, and luciferase reporter assay were performed to explore the potential mechanism of circKIF18B_003. RESULTS The function of ND630 was determined in this study. circKIF18B_003 was overexpressed in prostate cancer tissues, and overexpression of circKIF18B_003 was associated with poor survival outcome of prostate cancer patients. The proliferation, migration, and invasion of prostate cancer cells were enhanced after up-regulation of circKIF18B_003. circKIF18B_003 is mainly located in the cytoplasm of prostate cancer cells, and the RIP and RNA pull down assays confirmed that circKIF18B_003 could act as a sponge for miR-370-3p. Further study demonstrated that up-regulation of circKIF18B_003 increased the expression of ACACA by sponging miR-370-3p. The malignant ability of prostate cancer cells enhanced by overexpression of circKIF18B_003 was reversed by the down-regulation of ACACA. We found that overexpression of circKIF18B_003 was associated with lipid metabolism, and a combination of ND-630 and docetaxel markedly attenuated tumor growth. CONCLUSION ND630 could control ACACA and lipid reprogramming in prostate cancer by regulating the expression of circKIF18B_003. ND630 and circKIF18B_003 may represent a novel target for prostate cancer.
Collapse
Affiliation(s)
- Yu-Peng Wu
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, China
- Department of Urology, National Region Medical Centre, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Wen-Cai Zheng
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, China
- Department of Urology, National Region Medical Centre, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Qi Huang
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, China
- Department of Urology, National Region Medical Centre, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Xu-Yun Huang
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, China
- Department of Urology, National Region Medical Centre, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Fei Lin
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, China
- Department of Urology, National Region Medical Centre, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Zhi-Bin Ke
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, China
- Department of Urology, National Region Medical Centre, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Qi You
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, China
- Department of Urology, National Region Medical Centre, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Qing-Shui Zheng
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, China
- Department of Urology, National Region Medical Centre, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Yong Wei
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, China
- Department of Urology, National Region Medical Centre, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Xue-Yi Xue
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, China.
- Department of Urology, National Region Medical Centre, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China.
- Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
| | - Ning Xu
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, China.
- Department of Urology, National Region Medical Centre, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China.
- Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
| |
Collapse
|
7
|
Zhang Y, Chen XN, Zhang H, Wen JK, Gao HT, Shi B, Wang DD, Han ZW, Gu JF, Zhao CM, Xue WY, Zhang YP, Qu CB, Yang Z. CDK13 promotes lipid deposition and prostate cancer progression by stimulating NSUN5-mediated m5C modification of ACC1 mRNA. Cell Death Differ 2023; 30:2462-2476. [PMID: 37845385 PMCID: PMC10733287 DOI: 10.1038/s41418-023-01223-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 09/05/2023] [Indexed: 10/18/2023] Open
Abstract
Cyclin-dependent kinases (CDKs) regulate cell cycle progression and the transcription of a number of genes, including lipid metabolism-related genes, and aberrant lipid metabolism is involved in prostate carcinogenesis. Previous studies have shown that CDK13 expression is upregulated and fatty acid synthesis is increased in prostate cancer (PCa). However, the molecular mechanisms linking CDK13 upregulation and aberrant lipid metabolism in PCa cells remain largely unknown. Here, we showed that upregulation of CDK13 in PCa cells increases the fatty acyl chains and lipid classes, leading to lipid deposition in the cells, which is positively correlated with the expression of acetyl-CoA carboxylase (ACC1), the first rate-limiting enzyme in fatty acid synthesis. Gain- and loss-of-function studies showed that ACC1 mediates CDK13-induced lipid accumulation and PCa progression by enhancing lipid synthesis. Mechanistically, CDK13 interacts with RNA-methyltransferase NSUN5 to promote its phosphorylation at Ser327. In turn, phosphorylated NSUN5 catalyzes the m5C modification of ACC1 mRNA, and then the m5C-modified ACC1 mRNA binds to ALYREF to enhance its stability and nuclear export, thereby contributing to an increase in ACC1 expression and lipid deposition in PCa cells. Overall, our results disclose a novel function of CDK13 in regulating the ACC1 expression and identify a previously unrecognized CDK13/NSUN5/ACC1 pathway that mediates fatty acid synthesis and lipid accumulation in PCa cells, and targeting this newly identified pathway may be a novel therapeutic option for the treatment of PCa.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
| | - Xiao-Nan Chen
- Department of Urology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, 110004, P R China
| | - Hong Zhang
- Department of Biochemistry and Molecular Biology, Ministry of Education of China, Hebei Medical University, No. 361 Zhongshan E Rd, Shijiazhuang, 050017, China
| | - Jin-Kun Wen
- Department of Biochemistry and Molecular Biology, Ministry of Education of China, Hebei Medical University, No. 361 Zhongshan E Rd, Shijiazhuang, 050017, China
| | - Hai-Tao Gao
- Department of Urology, The Second Hospital of Hebei Medical University, 215 Heping W Rd, Shijiazhuang, 050000, China
| | - Bei Shi
- Department of Urology, The Second Hospital of Hebei Medical University, 215 Heping W Rd, Shijiazhuang, 050000, China
| | - Dan-Dan Wang
- Department of Urology, The Second Hospital of Hebei Medical University, 215 Heping W Rd, Shijiazhuang, 050000, China
| | - Zhen-Wei Han
- Department of Urology, The Second Hospital of Hebei Medical University, 215 Heping W Rd, Shijiazhuang, 050000, China
| | - Jun-Fei Gu
- Department of Urology, The Second Hospital of Hebei Medical University, 215 Heping W Rd, Shijiazhuang, 050000, China
| | - Chen-Ming Zhao
- Department of Urology, The Second Hospital of Hebei Medical University, 215 Heping W Rd, Shijiazhuang, 050000, China
| | - Wen-Yong Xue
- Department of Urology, The Second Hospital of Hebei Medical University, 215 Heping W Rd, Shijiazhuang, 050000, China
| | - Yan-Ping Zhang
- Department of Urology, The Second Hospital of Hebei Medical University, 215 Heping W Rd, Shijiazhuang, 050000, China
| | - Chang-Bao Qu
- Department of Urology, The Second Hospital of Hebei Medical University, 215 Heping W Rd, Shijiazhuang, 050000, China.
| | - Zhan Yang
- Department of Urology, The Second Hospital of Hebei Medical University, 215 Heping W Rd, Shijiazhuang, 050000, China.
- Center of Tumor Immunology and Cytotherapy, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
| |
Collapse
|
8
|
Tang P, Sun D, Xu W, Li H, Chen L. Long non‑coding RNAs as potential therapeutic targets in non‑small cell lung cancer (Review). Int J Mol Med 2023; 52:68. [PMID: 37350412 PMCID: PMC10413047 DOI: 10.3892/ijmm.2023.5271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 05/02/2023] [Indexed: 06/24/2023] Open
Abstract
Non‑small cell lung cancer (NSCLC) is one of the most common malignancies with a high morbidity and mortality rate. Long non‑coding RNAs (lncRNAs) have been reported to be closely associated with the occurrence and progression of NSCLC. In addition, lncRNAs have been documented to participate in the development of drug resistance and radiation sensitivity in patients with NSCLC. Due to their extensive functional characterization, high tissue specificity and sex specificity, lncRNAs have been proposed to be novel biomarkers and therapeutic targets for NSCLC. Therefore, in the current review, the functional classification of lncRNAs were presented, whilst the potential roles of lncRNAs in NSCLC were also summarized. Various physiological aspects, including proliferation, invasion and drug resistance, were all discussed. It is anticipated that the present review will provide a perspective on lncRNAs as potential diagnostic molecular biomarkers and therapeutic targets for NSCLC.
Collapse
Affiliation(s)
- Peiyu Tang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016
| | - Dejuan Sun
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016
| | - Wei Xu
- Institute of Structural Pharmacology and TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016
- Institute of Structural Pharmacology and TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016
| |
Collapse
|
9
|
Chen M, Zhang R, Chen Y, Chen X, Li Y, Shen J, Yuan M, Chen Y, Wu J, Sun Q. Nobiletin inhibits de novo FA synthesis to alleviate gastric cancer progression by regulating endoplasmic reticulum stress. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 116:154902. [PMID: 37270969 DOI: 10.1016/j.phymed.2023.154902] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND Gastric cancer (GC) is a common malignant tumor with limited treatment options. The natural flavonoid nobiletin (NOB) is a beneficial antioxidant that possesses anticancer activity. However, the mechanisms by which NOB inhibits GC progression remain unclear. METHODS A CCK-8 assay was performed to determine cytotoxicity. Cell cycle and apoptosis analyses were performed by flow cytometry. RNA-seq was performed to detect differential gene expression after NOB treatment. RT‒qPCR, Western blot and immunofluorescence staining were used to examine the underlying mechanisms of NOB in GC. Xenograft tumor models were constructed to verify the effect of NOB and its specific biological mechanism in GC. RESULTS NOB inhibited cell proliferation, caused cell cycle arrest and induced apoptosis in GC cells. KEGG classification identified that the inhibitory effect of NOB on GC cells mainly involved the lipid metabolism pathway. We further showed that NOB reduced de novo fatty acid (FA) synthesis, as evidenced by the decreased levels of neutral lipids and the expression levels of ACLY, ACACA and FASN, and ACLY abrogated the effect of NOB on lipid deposits in GC cells. In addition, we also found that NOB triggered endoplasmic reticulum (ER) stress by activating the IRE-1α/GRP78/CHOP axis, but overexpression of ACLY reversed ER stress. Mechanistically, inhibiting ACLY expression with NOB significantly reduced neutral lipid accumulation, thereby inducing apoptosis by activating IRE-1α-mediated ER stress and inhibiting GC cell progression. Finally, in vivo results also demonstrated that NOB inhibited tumor growth by decreasing de novo FA synthesis. CONCLUSION NOB could inhibit the expression of ACLY to activate IRE-1α-induced ER stress, which ultimately led to GC cell apoptosis. Our results provide novel insight into the use of de novo FA synthesis for GC treatment and are the first to reveal that NOB inhibits GC progression by ACLY-dependent ER stress.
Collapse
Affiliation(s)
- Menglin Chen
- Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, Jiangsu 210029, China; No.1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Ruijuan Zhang
- Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, Jiangsu 210029, China; No.1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Yaling Chen
- No.1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Xu Chen
- Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, Jiangsu 210029, China; No.1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Yaqi Li
- Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, Jiangsu 210029, China; No.1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Junyu Shen
- Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, Jiangsu 210029, China; No.1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Mengyun Yuan
- Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, Jiangsu 210029, China; No.1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Yuxuan Chen
- Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, Jiangsu 210029, China; No.1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Jian Wu
- Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, Jiangsu 210029, China.
| | - Qingmin Sun
- Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, Jiangsu 210029, China.
| |
Collapse
|
10
|
Yu Y, Nie Q, Wang Z, Di Y, Chen X, Ren K. Targeting acetyl-CoA carboxylase 1 for cancer therapy. Front Pharmacol 2023; 14:1129010. [PMID: 36843935 PMCID: PMC9950103 DOI: 10.3389/fphar.2023.1129010] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/30/2023] [Indexed: 02/12/2023] Open
Abstract
Metabolic adaptation is an emerging hallmark of tumors. De novo fatty acid synthesis is an important metabolic process to produce metabolic intermediates for energy storage, biosynthesis of membrane lipids and generation of signaling molecules. Acetyl-CoA carboxylase 1 (ACC1) is a critical enzyme in the fatty acid synthesis, which carboxylates acetyl-CoA carboxylic acid to form malonyl-CoA. The role of acetyl-CoA carboxylase 1 in fatty acid synthesis makes it a promising therapeutic target for various metabolic diseases such as non-alcoholic fatty liver disease, obesity and diabetes. Tumors have a high energy flow and a strong dependence on fatty acid synthesis. Thus, acetyl-CoA carboxylase inhibition has become a potential choice for anti-tumor therapy. In this review, we first introduced the structure and expression pattern of Acetyl-CoA carboxylase 1. We also discussed the molecular mechanisms of acetyl-CoA carboxylase 1 in the initiation and progression of various cancer types. Furthermore, acetyl-CoA carboxylase1 inhibitors has also been discussed. Collectively, we summarized the interplay between acetyl-CoA carboxylase 1 and tumorigenesis, indicating acetyl-CoA carboxylase 1 as a promising therapeutic target for tumor management.
Collapse
Affiliation(s)
- Yong Yu
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Qingzhu Nie
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ziyi Wang
- Department of Thoracic Surgery, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yu Di
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiaolong Chen
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Kaiming Ren
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China,*Correspondence: Kaiming Ren,
| |
Collapse
|
11
|
Yan T, Zhu M, Weng F, Zhu S, Wang C, Guo C. Comprehensive analysis of roles of atrial-fibrillation-related genes in lung adenocarcinoma using bioinformatic methods. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 40:55. [PMID: 36542177 DOI: 10.1007/s12032-022-01912-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022]
Abstract
Atrial fibrillation (AF) is the most common tachyarrhythmia in the world. Lung cancer is the leading cause of cancer deaths in 93 countries. Previous studies demonstrated that the prevalence of AF was higher in patients with lung cancer. However, research on the associations between AF and lung cancer is still rare. In the present study, we first identified AF-related genes using weighted gene correlation network analysis. We then analyzed the expression profiles, prognosis, immune infiltration, and methylation characteristics of these genes in LUAD patients using bioinformatics analysis. We found several AF-related genes, including CBX3, BUB1, DSC2, P4HA1, and CYP4Z1, which differently expressed between tumor and normal tissues. Survival analysis demonstrated that CYP4Z1 was positively correlated with overall survival in LUAD patients, while CBX3, BUB1, DSC2, and P4HA1 were negatively correlated. Moreover, we found that the methylation level of DSC2 in normal lung tissues was significantly higher than that in tumor tissues, and six methylation sites in the DNA sequences of DSC2 were identified negatively correlated with its expression levels. Immune infiltration analysis suggested that levels of immune cell infiltration were related to gene expression levels in varying degrees. We identified AF-related genes and found these genes were correlated with prognosis, immune infiltration, and methylation levels in lung cancer patients. We also constructed a risk signature based on these genes in LUAD patients. We hoped that the current study could provide a novel insight into roles of AF-related genes in lung cancer patients.
Collapse
Affiliation(s)
- Tao Yan
- Department of Cardiovascular Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Miao Zhu
- Department of Cardiovascular Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Fan Weng
- Department of Cardiovascular Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Shijie Zhu
- Department of Cardiovascular Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Chunsheng Wang
- Department of Cardiovascular Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
| | - Changfa Guo
- Department of Cardiovascular Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
| |
Collapse
|
12
|
Nadhan R, Dhanasekaran DN. Regulation of Tumor Metabolome by Long Non-Coding RNAs. J Mol Signal 2022. [DOI: 10.55233/1750-2187-16-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
13
|
LINC00491 Facilitates Tumor Progression of Lung Adenocarcinoma via Wnt/β-Catenin-Signaling Pathway by Regulating MTSS1 Ubiquitination. Cells 2022; 11:cells11233737. [PMID: 36496997 PMCID: PMC9738320 DOI: 10.3390/cells11233737] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/15/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022] Open
Abstract
Background: Long non-coding RNAs have been reported to be involved in tumorigenesis and progression through different regulatory mechanisms. It has been reported that aberrantly expressed long non-coding RNA LINC00491 promotes malignancy in multiple tumors, while the role of LINC00491 in lung adenocarcinoma (LUAD) is little reported and the mechanism for regulating tumor progression has not been elucidated. Methods: RNA sequencing and the TCGA database were combined to screen differentially expressed lncRNAs that facilitate tumor progression. The expression level of LINC00491 was examined in LUAD clinical samples and in cell lines using RT-qPCR. In vitro experiments including colony formation assay, EdU assay, cell migration and invasion assay and wound healing assay, and in vivo experiments including xenografting subcutaneous tumors and lung metastasis models were performed to investigate the function of LINC00491 in LUAD tumor progressions. RNA pull-down, mass spectrometry, RIP assays and truncation experiments were carried out to explore the proteins binding to LINC00491 and the specific interactions between the RNA-protein complex. Results: Our results showed that LINC0491 was significantly upregulated in LUAD and positively correlated with poor survival. High LINC00491 expression promoted proliferation, migration and invasion, and resulted in a high metastatic burden in LUAD. Using pull-down assay and mass spectrometry, MTSS1 was found binding to LINC00491, and the conducted experiments verified the direct interaction between LINC00491 and MTSS1. Meanwhile, LINC00491 was found to regulate MTSS1 degradation by promoting the MTSS1 ubiquitination level and then activating the Wnt/β-catenin-signaling pathway. LINC00491/MTSS1/β-catenin may act as a complex to facilitate tumor progression. Conclusions: In summary, our results found a novel mechanism in which LINC00491 directly interacts with MTSS1 by affecting its ubiquitination modification to promote LUAD proliferation, migration and invasion, then activating the Wnt/β-catenin-signaling pathway, demonstrating its significant role in tumor progression and suggesting that the LINC00491/MTSS1/Wnt/β-catenin-signaling pathway could serve as a potential therapeutic target for lung adenocarcinoma in the future.
Collapse
|
14
|
Wang Y, Li Q, Wang S, Wang BJ, Jin Y, Hu H, Fu QS, Wang JW, Wu Q, Qian L, Cao TT, Xia YB, Huang XX, Xu L. The role of noncoding RNAs in cancer lipid metabolism. Front Oncol 2022; 12:1026257. [PMID: 36452489 PMCID: PMC9704363 DOI: 10.3389/fonc.2022.1026257] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/20/2022] [Indexed: 12/03/2023] Open
Abstract
Research on noncoding ribonucleic acids (ncRNAs) is mostly and broadly focused on microRNAs (miRNAs), cyclic RNAs (circRNAs), and long ncRNAs (lncRNAs), which have been confirmed to play important roles in tumor cell proliferation, invasion, and migration. Specifically, recent studies have shown that ncRNAs contribute to tumorigenesis and tumor development by mediating changes in enzymes related to lipid metabolism. The purpose of this review is to discuss the characterized ncRNAs involved in the lipid metabolism of tumors to highlight ncRNA-mediated lipid metabolism-related enzyme expression in malignant tumors and its importance to tumor development. In this review, we describe the types of ncRNA and the mechanism of tumor lipid metabolism and analyze the important role of ncRNA in tumor lipid metabolism and its future prospects from the perspectives of ncRNA biological function and lipid metabolic enzyme classification. However, several critical issues still need to be resolved. Because ncRNAs can affect tumor processes by regulating lipid metabolism enzymes, in the future, we can study the unique role of ncRNAs from four aspects: disease prevention, detection, diagnosis, and treatment. Therefore, in the future, the development of ncRNA-targeted therapy will become a hot direction and shoulder a major task in the medical field.
Collapse
Affiliation(s)
- Ye Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wuhu, Anhui, China
- Non-coding RNA Research Center of Wannan Medical College, Yijishan Hospital, Wuhu, Anhui, China
| | - Qian Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wuhu, Anhui, China
- Non-coding RNA Research Center of Wannan Medical College, Yijishan Hospital, Wuhu, Anhui, China
| | - Song Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wuhu, Anhui, China
- Non-coding RNA Research Center of Wannan Medical College, Yijishan Hospital, Wuhu, Anhui, China
| | - Bi-jun Wang
- Department of Clinical Medicine, Clinical College of Anhui Medical University, Hefei, Anhui, China
| | - Yan Jin
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wuhu, Anhui, China
- Non-coding RNA Research Center of Wannan Medical College, Yijishan Hospital, Wuhu, Anhui, China
| | - Hao Hu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wuhu, Anhui, China
- Non-coding RNA Research Center of Wannan Medical College, Yijishan Hospital, Wuhu, Anhui, China
| | - Qing-sheng Fu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wuhu, Anhui, China
- Non-coding RNA Research Center of Wannan Medical College, Yijishan Hospital, Wuhu, Anhui, China
| | - Jia-wei Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wuhu, Anhui, China
- Non-coding RNA Research Center of Wannan Medical College, Yijishan Hospital, Wuhu, Anhui, China
| | - Qing Wu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wuhu, Anhui, China
- Non-coding RNA Research Center of Wannan Medical College, Yijishan Hospital, Wuhu, Anhui, China
| | - Long Qian
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wuhu, Anhui, China
- Non-coding RNA Research Center of Wannan Medical College, Yijishan Hospital, Wuhu, Anhui, China
| | - Ting-ting Cao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wuhu, Anhui, China
- Non-coding RNA Research Center of Wannan Medical College, Yijishan Hospital, Wuhu, Anhui, China
| | - Ya-bin Xia
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wuhu, Anhui, China
- Non-coding RNA Research Center of Wannan Medical College, Yijishan Hospital, Wuhu, Anhui, China
| | - Xiao-xu Huang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wuhu, Anhui, China
- Non-coding RNA Research Center of Wannan Medical College, Yijishan Hospital, Wuhu, Anhui, China
| | - Li Xu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wuhu, Anhui, China
- Non-coding RNA Research Center of Wannan Medical College, Yijishan Hospital, Wuhu, Anhui, China
| |
Collapse
|
15
|
Yang J, Qian X, Qiu Q, Xu L, Pan M, Li J, Ren J, Lu B, Qiu T, Chen E, Ying K, Zhang H, Lu Y, Liu P. LCAT1 is an oncogenic LncRNA by stabilizing the IGF2BP2-CDC6 axis. Cell Death Dis 2022; 13:877. [PMID: 36257938 PMCID: PMC9579176 DOI: 10.1038/s41419-022-05316-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/27/2022] [Accepted: 09/30/2022] [Indexed: 12/02/2022]
Abstract
Long non-coding RNAs (lncRNAs) is known to play vital roles in modulating tumorigenesis. We previously reported that LCAT1, a novel lncRNA, promotes the growth and metastasis of lung cancer cells both in vitro and in vivo. However, the underlying mechanism(s) of LCAT1 as an oncogenic regulator remains elusive. Here, we showed that LCAT1 physically interacts with and stabilizes IGF2BP2, an m6A reader protein, by preventing its degradation via autolysosomes. IGF2BP2 is overexpressed in lung cancer tissues, which is associated with poor survival of non-small cell lung cancer patients, suggesting its oncogenic role. Biologically, IGF2BP2 depletion inhibits growth and survival as well as the migration of lung cancer cells. Mechanistically, the LCAT1/IGF2BP2 complex increased the levels of CDC6, a key cell cycle regulator, by stabilizing its mRNA in an m6A-dependent manner. Like IGF2BP2, CDC6 is also overexpressed in lung cancer tissues with poor patient survival, and CDC6 knockdown has oncogenic inhibitory activity. Taken together, the LCAT1-IGF2BP2-CDC6 axis appears to play a vital role in promoting the growth and migration of lung cancer cells, and is a potential therapeutic target for lung cancer. Importantly, our finding also highlights a previously unknown critical role of LCAT1 in m6A-dependent gene regulation by preventing autolytic degradation of IGF2BP2.
Collapse
Affiliation(s)
- Juze Yang
- grid.13402.340000 0004 1759 700XDepartment of Respiratory Medicine, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016 China
| | - Xinyi Qian
- grid.13402.340000 0004 1759 700XDepartment of Respiratory Medicine, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016 China
| | - Qiongzi Qiu
- grid.13402.340000 0004 1759 700XZhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Gynecologic Oncology, Women’s Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006 China
| | - Lingling Xu
- grid.13402.340000 0004 1759 700XDepartment of Respiratory Medicine, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016 China
| | - Meidie Pan
- grid.13402.340000 0004 1759 700XDepartment of Respiratory Medicine, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016 China
| | - Jia Li
- grid.13402.340000 0004 1759 700XDepartment of Respiratory Medicine, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016 China
| | - Jiayi Ren
- grid.13402.340000 0004 1759 700XDepartment of Respiratory Medicine, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016 China
| | - Bingjian Lu
- grid.13402.340000 0004 1759 700XZhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Gynecologic Oncology, Women’s Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006 China
| | - Ting Qiu
- grid.13402.340000 0004 1759 700XDepartment of Respiratory Medicine, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016 China
| | - Enguo Chen
- grid.13402.340000 0004 1759 700XDepartment of Respiratory Medicine, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016 China
| | - Kejing Ying
- grid.13402.340000 0004 1759 700XDepartment of Respiratory Medicine, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016 China
| | - Honghe Zhang
- grid.13402.340000 0004 1759 700XDepartment of Pathology, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences, Zhejiang University School of Medicine, Hangzhou, 310058 Zhejiang China ,grid.13402.340000 0004 1759 700XCancer center, Zhejiang University, Hangzhou, Zhejiang 310013 China
| | - Yan Lu
- grid.13402.340000 0004 1759 700XZhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Gynecologic Oncology, Women’s Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006 China ,grid.13402.340000 0004 1759 700XCancer center, Zhejiang University, Hangzhou, Zhejiang 310013 China
| | - Pengyuan Liu
- grid.13402.340000 0004 1759 700XDepartment of Respiratory Medicine, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016 China ,grid.13402.340000 0004 1759 700XCancer center, Zhejiang University, Hangzhou, Zhejiang 310013 China ,grid.30760.320000 0001 2111 8460Department of Physiology and Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, WI USA
| |
Collapse
|
16
|
Zhang L, Chang N, Liu J, Liu Z, Wu Y, Sui L, Chen W. Reprogramming lipid metabolism as potential strategy for hematological malignancy therapy. Front Oncol 2022; 12:987499. [PMID: 36106108 PMCID: PMC9465383 DOI: 10.3389/fonc.2022.987499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Hematological malignancies are one of the most lethal illnesses that seriously threaten human life and health. Lipids are important constituents of various biological membranes and substances for energy storage and cell signaling. Furthermore, lipids are critical in the normal physiological activities of cells. In the process of the lethal transformation of hematological malignancies, lipid metabolism reprogramming meets the material and energy requirements of rapidly proliferating and dividing tumor cells. A large number of studies have shown that dysregulated lipid metabolism, commonly occurs in hematological malignancies, mediating the proliferation, growth, migration, invasion, apoptosis, drug resistance and immune escape of tumor cells. Targeting the lipid metabolism pathway of hematological malignancies has become an effective therapeutic approach. This article reviews the oncogenic mechanisms of lipid metabolism reprogramming in hematological malignancies, including fatty acid, cholesterol and phospholipid metabolism, thereby offering an insight into targeting lipid metabolism in the treatment of hematological malignancies.
Collapse
Affiliation(s)
- Leqiang Zhang
- School of Engineering Medicine, Beihang University, Beijing, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Ning Chang
- Peking University Cancer Hospital, Beijing, China
| | - Jia Liu
- School of Engineering Medicine, Beihang University, Beijing, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Zhuojun Liu
- School of Engineering Medicine, Beihang University, Beijing, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Yajin Wu
- School of Engineering Medicine, Beihang University, Beijing, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Linlin Sui
- Core Lab Glycobiol & Glycoengn, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
- *Correspondence: Linlin Sui, ; Wei Chen,
| | - Wei Chen
- School of Engineering Medicine, Beihang University, Beijing, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
- *Correspondence: Linlin Sui, ; Wei Chen,
| |
Collapse
|
17
|
Long Noncoding RNAs and Circular RNAs in the Metabolic Reprogramming of Lung Cancer: Functions, Mechanisms, and Clinical Potential. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4802338. [PMID: 35757505 PMCID: PMC9217624 DOI: 10.1155/2022/4802338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/25/2021] [Accepted: 05/12/2022] [Indexed: 11/18/2022]
Abstract
As key regulators of gene function, long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) are generally accepted to be involved in lung cancer pathogenesis and progression. Recent research has clarified the phenomenon of metabolic reprogramming in lung cancer because of its significant role in tumor proliferation, migration, invasion, metastasis, and other malignant biological behaviors. Emerging evidence has also shown a relationship between the aberrant expression of lncRNAs and circRNAs and metabolic reprogramming in lung cancer tumorigenesis. This review provides insight regarding the roles of different lncRNAs and circRNAs in lung cancer metabolic reprogramming, by how they target transporter proteins and key enzymes in glucose, lipid, and glutamine metabolic signaling pathways. The clinical potential of lncRNAs and circRNAs as early diagnostic biomarkers and components of therapeutic strategies in lung cancer is further discussed, including current challenges in their utilization from the bench to the bedside and how to adopt a proper delivery system for their therapeutic use.
Collapse
|
18
|
Chen W, Liu Y, Kang S, Lv X, Fu W, Zhang J, Song C. LINC00092 Modulates Oxidative Stress and Glycolysis of Breast Cancer Cells via Pyruvate Carboxylase-Mediated AKT/mTOR Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5215748. [PMID: 35799892 PMCID: PMC9256459 DOI: 10.1155/2022/5215748] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/16/2022] [Accepted: 05/24/2022] [Indexed: 11/23/2022]
Abstract
Background The discovery of noncoding RNAs (ncRNAs) offers new options for cancer-targeted therapy. This study is aimed at exploring the regulatory function of LINC00092 on breast cancer (BC) oxidative stress and glycolysis, along with internal mechanism concerning pyruvate carboxylase (PC). Methods Bioinformatics analysis was used to explore LINC00092 (or friend leukemia virus integration 1 (FLI1)) expression on BC progression, as well as oxidative stress and glycolysis in BC. After LINC00092 overexpression or silence, BC cell viability, proliferation, migration, invasion, oxidative stress, glycolysis, and AKT/mTOR pathway were detected. Following 2-DG, SC79, or MK2206 treatment, effects of LINC00092 on BC cells were measured. Moreover, regulatory activity of LINC00092 in PC expression was analyzed. Whether PC participated in the modulation of LINC00092 on BC cell functions was explored. Results LINC00092 was lowly expressed in BC and negatively related to BC progression. FLI1 bound to LINC00092 promoter to positively modulate LINC00092. LINC00092 overexpression inhibited BC cell proliferation, migration, invasion, oxidative stress, glycolysis, and AKT/mTOR pathway and likewise suppressed BC growth in vivo. Silence of LINC00092 had opposite influences. 2-DG partially reversed the LINC00092 silence-resulted increase of BC cell proliferation. SC79 alleviated the function of LINC00092 overexpression on BC cell functions. MK2206 had the contrary influence of SC79. Besides, LINC00092 bound to PC to modulate ubiquitination degradation of PC protein. PC took part in the influences of LINC00092 on BC cell functions. Conclusions LINC0092 modulates oxidative stress and glycolysis of BC cells via the PC-mediated AKT/mTOR pathway, which is possibly a target for BC diagnosis and therapy.
Collapse
Affiliation(s)
- Wei Chen
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province 350001, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province 350001, China
| | - Yushan Liu
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province 350001, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province 350001, China
| | - Shaohong Kang
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province 350001, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province 350001, China
| | - Xinying Lv
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province 350001, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province 350001, China
| | - Wenfen Fu
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province 350001, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province 350001, China
| | - Jie Zhang
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province 350001, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province 350001, China
- Breast Cancer Institute, Fujian Medical University, Fuzhou, Fujian Province 350001, China
| | - Chuangui Song
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province 350001, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province 350001, China
- Breast Cancer Institute, Fujian Medical University, Fuzhou, Fujian Province 350001, China
| |
Collapse
|
19
|
Yin X, Lin H, Lin L, Miao L, He J, Zhuo Z. LncRNAs and CircRNAs in cancer. MedComm (Beijing) 2022; 3:e141. [PMID: 35592755 PMCID: PMC9099016 DOI: 10.1002/mco2.141] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 12/24/2022] Open
Affiliation(s)
- Xin Yin
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center Guangzhou Medical University Guangzhou Guangdong China
- College of Pharmacy Jinan University Guangzhou Guangdong China
| | - Huiran Lin
- Faculty of Medicine Macau University of Science and Technology Macau China
| | - Lei Lin
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center Guangzhou Medical University Guangzhou Guangdong China
| | - Lei Miao
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center Guangzhou Medical University Guangzhou Guangdong China
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center Guangzhou Medical University Guangzhou Guangdong China
| | - Zhenjian Zhuo
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center Guangzhou Medical University Guangzhou Guangdong China
- Laboratory Animal Center, School of Chemical Biology and Biotechnology Peking University Shenzhen Graduate School Shenzhen China
| |
Collapse
|
20
|
Huang J, Wang J, He H, Huang Z, Wu S, Chen C, Liu W, Xie L, Tao Y, Cong L, Jiang Y. Close interactions between lncRNAs, lipid metabolism and ferroptosis in cancer. Int J Biol Sci 2021; 17:4493-4513. [PMID: 34803512 PMCID: PMC8579446 DOI: 10.7150/ijbs.66181] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/01/2021] [Indexed: 12/19/2022] Open
Abstract
Abnormal lipid metabolism including synthesis, uptake, modification, degradation and transport has been considered a hallmark of malignant tumors and contributes to the supply of substances and energy for rapid cell growth. Meanwhile, abnormal lipid metabolism is also associated with lipid peroxidation, which plays an important role in a newly discovered type of regulated cell death termed ferroptosis. Long noncoding RNAs (lncRNAs) have been proven to be associated with the occurrence and progression of cancer. Growing evidence indicates that lncRNAs are key regulators of abnormal lipid metabolism and ferroptosis in cancer. In this review, we mainly summarized the mechanism by which lncRNAs regulate aberrant lipid metabolism in cancer, illustrated that lipid metabolism can also influence the expression of lncRNAs, and discussed the mechanism by which lncRNAs affect ferroptosis. A comprehensive understanding of the interactions between lncRNAs, lipid metabolism and ferroptosis could help us to develop novel strategies for precise cancer treatment in the future.
Collapse
Affiliation(s)
- Jingjing Huang
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, 410013 Hunan, China.,School of Medicine, Hunan Normal University, Changsha, 410013 Hunan, China
| | - Jin Wang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210013 Jiangsu, China
| | - Hua He
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, 410013 Hunan, China.,School of Medicine, Hunan Normal University, Changsha, 410013 Hunan, China
| | - Zichen Huang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210013 Jiangsu, China
| | - Sufang Wu
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, 410013 Hunan, China.,School of Medicine, Hunan Normal University, Changsha, 410013 Hunan, China
| | - Chao Chen
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210013 Jiangsu, China
| | - Wenbing Liu
- Department of Head and Neck Surgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 Hunan, P.R. China
| | - Li Xie
- Department of Head and Neck Surgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 Hunan, P.R. China
| | - Yongguang Tao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, School of Basic Medicine, Central South University, Changsha, 410078 Hunan, China
| | - Li Cong
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, 410013 Hunan, China.,School of Medicine, Hunan Normal University, Changsha, 410013 Hunan, China
| | - Yiqun Jiang
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, 410013 Hunan, China.,School of Medicine, Hunan Normal University, Changsha, 410013 Hunan, China
| |
Collapse
|