1
|
Luo CH, Hu LH, Liu JY, Xia L, Zhou L, Sun RH, Lin CC, Qiu X, Jiang B, Yang MY, Zhang XH, Yang XB, Chen GQ, Lu Y. CDK9 recruits HUWE1 to degrade RARα and offers therapeutic opportunities for cutaneous T-cell lymphoma. Nat Commun 2024; 15:10594. [PMID: 39632829 PMCID: PMC11618697 DOI: 10.1038/s41467-024-54354-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 11/05/2024] [Indexed: 12/07/2024] Open
Abstract
Cutaneous T-cell lymphoma (CTCL) is a heterogeneous non-Hodgkin lymphoma originating in the skin and invading the systemic hematopoietic system. Current treatments, including chemotherapy and monoclonal antibodies yielded limited responses with high incidence of side effects, highlighting the need for targeted therapy. Screening with small inhibitors library, herein we identify cyclin dependent kinase 9 (CDK9) as a driver of CTCL growth. Single-cell RNA-seq analysis reveals a CDK9high malignant T cell cluster with a unique actively proliferating feature. Inhibition, depletion or proteolysis targeting chimera (PROTAC)-mediated degradation of CDK9 significantly reduces CTCL cell growth in vitro and in murine models. CDK9 also promotes degradation of retinoic acid receptor α (RARα) via recruiting the E3 ligase HUWE1. Co-administration of CDK9-PROTAC (GT-02897) with all-trans retinoic acid (ATRA) leads to synergistic attenuation of tumor growth in vitro and in xenograft models, providing a potential translational treatment for complete eradication of CTCL.
Collapse
MESH Headings
- Humans
- Animals
- Cyclin-Dependent Kinase 9/metabolism
- Cyclin-Dependent Kinase 9/antagonists & inhibitors
- Lymphoma, T-Cell, Cutaneous/metabolism
- Lymphoma, T-Cell, Cutaneous/drug therapy
- Lymphoma, T-Cell, Cutaneous/pathology
- Lymphoma, T-Cell, Cutaneous/genetics
- Mice
- Ubiquitin-Protein Ligases/metabolism
- Ubiquitin-Protein Ligases/genetics
- Cell Line, Tumor
- Tumor Suppressor Proteins/metabolism
- Tumor Suppressor Proteins/genetics
- Retinoic Acid Receptor alpha/metabolism
- Retinoic Acid Receptor alpha/genetics
- Tretinoin/metabolism
- Tretinoin/pharmacology
- Xenograft Model Antitumor Assays
- Cell Proliferation/drug effects
- Skin Neoplasms/drug therapy
- Skin Neoplasms/metabolism
- Skin Neoplasms/pathology
- Skin Neoplasms/genetics
- Proteolysis/drug effects
- Female
- Mice, Inbred NOD
Collapse
Affiliation(s)
- Chen-Hui Luo
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Dermatology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li-Hong Hu
- Institute of Dermatology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jie-Yang Liu
- Institute of Dermatology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li Xia
- Department of Core Facility of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Zhou
- Department of Core Facility of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ren-Hong Sun
- Gluetacs Therapeutics (Shanghai) Co., Ltd., Shanghai, China
| | - Chen-Cen Lin
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Xing Qiu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Biao Jiang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Meng-Ying Yang
- Institute of Dermatology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Xue-Hong Zhang
- Center of Genome and Personalized Medicine, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China.
| | - Xiao-Bao Yang
- Gluetacs Therapeutics (Shanghai) Co., Ltd., Shanghai, China.
| | - Guo-Qiang Chen
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Institute of Aging & Tissue Regeneration, State Key Laboratory of Systems Medicine for Cancer, Research Units of Stress and Tumor (2019RU043), Chinese Academy of Medical Sciences, Ren-Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- School of Basic Medicine and Life Science, Hainan Academy of Medical Sciences, Hainan Medical University, Haikou, China.
| | - Ying Lu
- Institute of Dermatology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
2
|
Taiyab A, Ashraf A, Sulaimani MN, Rathi A, Shamsi A, Hassan MI. Role of MTH1 in oxidative stress and therapeutic targeting of cancer. Redox Biol 2024; 77:103394. [PMID: 39418911 PMCID: PMC11532495 DOI: 10.1016/j.redox.2024.103394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024] Open
Abstract
Cancer cells maintain high levels of reactive oxygen species (ROS) to drive their growth, but ROS can trigger cell death through oxidative stress and DNA damage. To survive enhanced ROS levels, cancer cells activate their antioxidant defenses. One such defense is MTH1, an enzyme that prevents the incorporation of oxidized nucleotides into DNA, thus preventing DNA damage and allowing cancer to proliferate. MTH1 levels are often elevated in many cancers, and thus, inhibiting MTH1 is an attractive strategy for suppressing tumor growth and metastasis. Targeted MTH1 inhibition can induce DNA damage in cancer cells, exploiting their vulnerability to oxidative stress and selectively targeting them for destruction. Targeting MTH1 is promising for cancer treatment because normal cells have lower ROS levels and are less dependent on these pathways, making the approach both effective and specific to cancer. This review aims to investigate the potential of MTH1 as a therapeutic target, especially in cancer treatment, offering detailed insights into its structure, function, and role in disease progression. We also discussed various MTH1 inhibitors that have been developed to selectively induce oxidative damage in cancer cells, though their effectiveness varies. In addition, this review provide deeper mechanistic insights into the role of MTH1 in cancer prevention and oxidative stress management in various diseases.
Collapse
Affiliation(s)
- Aaliya Taiyab
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Anam Ashraf
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Md Nayab Sulaimani
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Aanchal Rathi
- Department of Biotechnology, Faculty of Life Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Anas Shamsi
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, P.O. Box 346, United Arab Emirates.
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
3
|
Li C, Xue Y, Wu J, Zhang L, Yang T, Ai M, Han J, Zheng X, Wang R, Boldogh I, Ba X. MTH1 inhibition synergizes with ROS-inducing agents to trigger cervical cancer cells undergoing parthanatos. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167190. [PMID: 38657912 DOI: 10.1016/j.bbadis.2024.167190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/26/2024]
Abstract
Cervical cancer cells possess high levels of reactive oxygen species (ROS); thus, increasing oxidative stress above the toxicity threshold to induce cell death is a promising chemotherapeutic strategy. However, the underlying mechanisms of cell death are elusive, and efficacy and toxicity issues remain. Within DNA, 8-oxo-7,8-dihydroguanine (8-oxoG) is the most frequent base lesion repaired by 8-oxoguanine glycosylase 1 (OGG1)-initiated base excision repair. Cancer cells also express high levels of MutT homolog 1 (MTH1), which prevents DNA replication-induced incorporation of 8-oxoG into the genome by hydrolyzing 8-oxo-7,8-dihydro-2'-deoxyguanosine 5'-triphosphate (8-oxo-dGTP). Here, we revealed that ROS-inducing agents triggered cervical cancer to undergo parthanatos, which was mainly induced by massive DNA strand breaks resulting from overwhelming 8-oxoG excision by OGG1. Furthermore, the MTH1 inhibitor synergized with a relatively low dose of ROS-inducing agents by enhancing 8-oxoG loading in the DNA. In vivo, this drug combination suppressed the growth of tumor xenografts, and this inhibitory effect was significantly decreased in the absence of OGG1. Hence, the present study highlights the roles of base repair enzymes in cell death induction and suggests that the combination of lower doses of ROS-inducing agents with MTH1 inhibitors may be a more selective and safer strategy for cervical cancer chemotherapy.
Collapse
Affiliation(s)
- Chunshuang Li
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, Jilin 130024, China; School of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, China
| | - Yaoyao Xue
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, Jilin 130024, China; School of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, China
| | - Jiaxin Wu
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, Jilin 130024, China; School of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, China
| | - Lihong Zhang
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, Jilin 130024, China; School of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, China
| | - Tianming Yang
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, Jilin 130024, China; School of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, China
| | - Mengtao Ai
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, Jilin 130024, China; School of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, China
| | - Jinling Han
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, Jilin 130024, China; School of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, China
| | - Xu Zheng
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, Jilin 130024, China; School of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, China
| | - Ruoxi Wang
- Key Laboratory of Animal Resistance Biology of Shandong Province, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Istvan Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Xueqing Ba
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, Jilin 130024, China; School of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, China.
| |
Collapse
|
4
|
Shen J, Guillén Mancina E, Chen S, Manolakou T, Gad H, Warpman Berglund U, Sanjiv K, Helleday T. Mitotic MTH1 inhibitor TH1579 induces PD-L1 expression and inflammatory response through the cGAS-STING pathway. Oncogenesis 2024; 13:17. [PMID: 38796460 PMCID: PMC11127983 DOI: 10.1038/s41389-024-00518-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/28/2024] Open
Abstract
The mitotic MTH1 inhibitor TH1579 is a dual inhibitor that inhibits mitosis and incorporation of oxidative DNA damage and leads to cancer-specific cell death. The response to immune checkpoint inhibitor (ICI) treatment is often augmented by DNA damaging agents through the cGAS-STING pathway. This study investigates whether TH1579 can improve the efficacy of immune checkpoint blockades through its immunomodulatory properties. Various human and murine cancer cell lines were treated with mitotic MTH1i TH1579, and the expression of PD-L1 and T-cell infiltration-related chemokines was analysed by flow cytometry and real-time qPCR. Syngeneic mouse models were established to examine the combined effect of TH1579 and PD-L1 blockade. In our investigation, we found that TH1579 upregulates PD-L1 expression at both the protein and mRNA levels in human cancer cell lines. However, in murine cell lines, the increase was less pronounced. An in vivo experiment in a syngeneic mouse melanoma model showed that TH1579 treatment significantly increased the efficacy of atezolizumab, an anti-PD-L1 antibody, compared to vehicle or atezolizumab monotherapy. Furthermore, TH1579 exhibited immune-modulatory properties, elevating cytokines such as IFN-β and chemokines including CCL5 and CXCL10, in a cGAS-STING pathway-dependent manner. In conclusion, TH1579 has the potential to improve ICI treatment by modulating immune checkpoint-related proteins and pathways.
Collapse
Affiliation(s)
- Jianyu Shen
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Emilio Guillén Mancina
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Shenyu Chen
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Theodora Manolakou
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Helge Gad
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Ulrika Warpman Berglund
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Oxcia AB, Norrbackagatan 70C, 11334, Stockholm, Sweden
| | - Kumar Sanjiv
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Thomas Helleday
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.
- Department of Oncology and Metabolism, Medical School, S10 2RX, Sheffield, UK.
| |
Collapse
|
5
|
Fan C, Yang X, Yan L, Shi Z. Oxidative stress is two-sided in the treatment of acute myeloid leukemia. Cancer Med 2024; 13:e6806. [PMID: 38715546 PMCID: PMC11077289 DOI: 10.1002/cam4.6806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/14/2023] [Accepted: 11/27/2023] [Indexed: 05/12/2024] Open
Abstract
INTRODUCTION Oxidative stress caused by elevated ROS, as a novel therapeutic mechanism, has been implicated in various tumors including AML. AML cells are chronically under oxidative stress, yet overreliance on ROS production makes tumor cells increasingly vulnerable to further damage. Reducing the cytotoxic effect of ROS on normal cells while killing leukemia stem cell (LSC) with high levels of reactive oxygen species is a new challenge for oxidative stress therapy in leukemia. METHODS By searching literature databases, we summarized recent relevant studies. The relationship of ROS on AML genes, signaling pathways, and transcription factors, and the correlation of ROS with AML bone marrow microenvironment and autophagy were summarized. In addition, we summarize the current status of research on ROS and AML therapeutics. Finally, we discuss the research progress on redox resistance in AML. RESULTS This review discusses the evidence showing the link between redox reactions and the progression of AML and compiles the latest research findings that will facilitate future biological studies of redox effects associated with AML treatment. CONCLUSION We believe that exploiting this unique oxidative stress property of AML cells may provide a new way to prevent relapse and drug resistance.
Collapse
Affiliation(s)
- Chenyang Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
| | - Xiangdong Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
| | - Lixiang Yan
- First Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
| | - Zhexin Shi
- First Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
| |
Collapse
|
6
|
Jing Q, Zhou C, Zhang J, Zhang P, Wu Y, Zhou J, Tong X, Li Y, Du J, Wang Y. Role of reactive oxygen species in myelodysplastic syndromes. Cell Mol Biol Lett 2024; 29:53. [PMID: 38616283 PMCID: PMC11017617 DOI: 10.1186/s11658-024-00570-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/27/2024] [Indexed: 04/16/2024] Open
Abstract
Reactive oxygen species (ROS) serve as typical metabolic byproducts of aerobic life and play a pivotal role in redox reactions and signal transduction pathways. Contingent upon their concentration, ROS production not only initiates or stimulates tumorigenesis but also causes oxidative stress (OS) and triggers cellular apoptosis. Mounting literature supports the view that ROS are closely interwoven with the pathogenesis of a cluster of diseases, particularly those involving cell proliferation and differentiation, such as myelodysplastic syndromes (MDS) and chronic/acute myeloid leukemia (CML/AML). OS caused by excessive ROS at physiological levels is likely to affect the functions of hematopoietic stem cells, such as cell growth and self-renewal, which may contribute to defective hematopoiesis. We review herein the eminent role of ROS in the hematological niche and their profound influence on the progress of MDS. We also highlight that targeting ROS is a practical and reliable tactic for MDS therapy.
Collapse
Affiliation(s)
- Qiangan Jing
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
- HEALTH BioMed Research & Development Center, Health BioMed Co., Ltd, Ningbo, 315803, Zhejiang, China
| | - Chaoting Zhou
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Junyu Zhang
- Department of Hematology, Lishui Central Hospital, Lishui, 323000, Zhejiang, China
| | - Ping Zhang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Yunyi Wu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Junyu Zhou
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Xiangmin Tong
- Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, Zhejiang, China
| | - Yanchun Li
- Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, Zhejiang, China.
| | - Jing Du
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China.
| | - Ying Wang
- Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, Zhejiang, China.
| |
Collapse
|
7
|
Yang ZY, Li LG, Xiong YL, Chen NN, Yu TT, Li HT, Ren T, You H, Wang X, Li TF, Wang MF, Hu J. Cepharanthine synergizes with photodynamic therapy for boosting ROS-driven DNA damage and suppressing MTH1 as a potential anti-cancer strategy. Photodiagnosis Photodyn Ther 2024; 45:103917. [PMID: 38042236 DOI: 10.1016/j.pdpdt.2023.103917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/11/2023] [Accepted: 11/29/2023] [Indexed: 12/04/2023]
Abstract
OBJECTIVE Photodynamic therapy (PDT) primarily treats skin diseases or cancer by generating reactive oxygen species (ROS) to damage cellular DNA, yet drug resistance limits its application. To tackle this problem, the present study was carried out to improve the efficacy of chlorin e6 (Ce6)-PDT using Cepharanthine (CEP) as well as to reveal the potential molecular mechanism. MATERIALS AND METHODS Lewis lung cancer cell line (LLC) was utilized as the cancer cell model. chlorin e6 (Ce6) acted as the photosensitizer to induce PDT. The in vitro anti-cancer efficacy was measured by CCK-8, Annexin-V/PI staining, and migration assay. The Ce6 uptake was observed using flow cytometry and confocal microscopy. The ROS generation was detected by the DCFH-DA probe. The analysis of MutT Homolog 1 (MTH1) expression, correlation, and prognosis in databases was conducted by bioinformatic. The MTH1 expression was detected through western blots (WB). DNA damage was assayed by WB, immunofluorescent staining, and comet assay. RESULTS Ce6-PDT showed robust resistance in lung cancer cells under certain conditions, as evidenced by the unchanged cell viability and apoptosis. The subsequent findings confirmed that the uptake of Ce6 and MTH1 expression was enhanced, but ROS generation with laser irradiation was not increased in LLC, which indicated that the ROS scavenge may be the critical reason for resistance. Surprisingly, bioinformatic and in vitro experiments identified that MTH1, which could prevent the DNA from damage of ROS, was highly expressed in lung cancer and thereby led to the poor prognosis and could be further up-regulated by Ce6 PDT. CEP exhibited a dose-dependent suppressive effect on the lung cancer cells. Further investigations presented that CEP treatment boosted ROS production, thereby resulting in DNA double-strand breakage (DDSB) with activation of MTH1, indicating that CEP facilitated Ce6-PDT-mediated DNA damage. Finally, the combination of CEP and Ce6-PDT exhibited prominent ROS accumulation, MTH1 inhibition, and anti-lung cancer efficacy, which had synergistic pro-DNA damage properties. CONCLUSION Collectively, highly expressed MTH1 and the failure of ROS generation lead to PDT resistance in lung cancer cells. CEP facilitates ROS generation of PDT, thereby promoting vigorous DNA damage, inactivating MTH1, alleviating PDT resistance, and ameliorating the anti-cancer efficacy of Ce6-PDT, provides a novel approach for augmented PDT.
Collapse
Affiliation(s)
- Zi-Yi Yang
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei 442000, China; Department of Respiratory, Taihe Hospital of Shiyan, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei 442000, China; Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China
| | - Liu-Gen Li
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei 442000, China; Department of Respiratory, Taihe Hospital of Shiyan, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei 442000, China; Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China
| | - Yi-Lian Xiong
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei 442000, China; Department of Respiratory, Taihe Hospital of Shiyan, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei 442000, China
| | - Nan-Nan Chen
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei 442000, China
| | - Ting-Ting Yu
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei 442000, China; Department of Pathology, Renmin Hospital of Shiyan, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Hai-Tao Li
- Department of Respiratory, Taihe Hospital of Shiyan, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei 442000, China
| | - Tao Ren
- Department of Respiratory, Taihe Hospital of Shiyan, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei 442000, China
| | - Hui You
- Department of Respiratory, Taihe Hospital of Shiyan, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei 442000, China
| | - Xiao Wang
- Department of Respiratory, Taihe Hospital of Shiyan, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei 442000, China
| | - Tong-Fei Li
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei 442000, China; Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China.
| | - Mei-Fang Wang
- Department of Respiratory, Taihe Hospital of Shiyan, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei 442000, China.
| | - Jun Hu
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei 442000, China; Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China.
| |
Collapse
|
8
|
Ding Y, Liu Q. Targeting the nucleic acid oxidative damage repair enzyme MTH1: a promising therapeutic option. Front Cell Dev Biol 2024; 12:1334417. [PMID: 38357002 PMCID: PMC10864502 DOI: 10.3389/fcell.2024.1334417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/17/2024] [Indexed: 02/16/2024] Open
Abstract
The accumulation of reactive oxygen species (ROS) plays a pivotal role in the development of various diseases, including cancer. Elevated ROS levels cause oxidative stress, resulting in detrimental effects on organisms and enabling tumors to develop adaptive responses. Targeting these enhanced oxidative stress protection mechanisms could offer therapeutic benefits with high specificity, as normal cells exhibit lower dependency on these pathways. MTH1 (mutT homolog 1), a homolog of Escherichia coli's MutT, is crucial in this context. It sanitizes the nucleotide pool, preventing incorporation of oxidized nucleotides, thus safeguarding DNA integrity. This study explores MTH1's potential as a therapeutic target, particularly in cancer treatment, providing insights into its structure, function, and role in disease progression.
Collapse
Affiliation(s)
| | - Qingquan Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Gannan Medical University, Jiangxi, China
| |
Collapse
|
9
|
Huth T, Dreher EC, Lemke S, Fritzsche S, Sugiyanto RN, Castven D, Ibberson D, Sticht C, Eiteneuer E, Jauch A, Pusch S, Albrecht T, Goeppert B, Candia J, Wang XW, Ji J, Marquardt JU, Nahnsen S, Schirmacher P, Roessler S. Chromosome 8p engineering reveals increased metastatic potential targetable by patient-specific synthetic lethality in liver cancer. SCIENCE ADVANCES 2023; 9:eadh1442. [PMID: 38134284 PMCID: PMC10745716 DOI: 10.1126/sciadv.adh1442] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023]
Abstract
Large-scale chromosomal aberrations are prevalent in human cancer, but their function remains poorly understood. We established chromosome-engineered hepatocellular carcinoma cell lines using CRISPR-Cas9 genome editing. A 33-mega-base pair region on chromosome 8p (chr8p) was heterozygously deleted, mimicking a frequently observed chromosomal deletion. Using this isogenic model system, we delineated the functional consequences of chr8p loss and its impact on metastatic behavior and patient survival. We found that metastasis-associated genes on chr8p act in concert to induce an aggressive and invasive phenotype characteristic for chr8p-deleted tumors. Genome-wide CRISPR-Cas9 viability screening in isogenic chr8p-deleted cells served as a powerful tool to find previously unidentified synthetic lethal targets and vulnerabilities accompanying patient-specific chromosomal alterations. Using this target identification strategy, we showed that chr8p deletion sensitizes tumor cells to targeting of the reactive oxygen sanitizing enzyme Nudix hydrolase 17. Thus, chromosomal engineering allowed for the identification of novel synthetic lethalities specific to chr8p loss of heterozygosity.
Collapse
Affiliation(s)
- Thorben Huth
- Heidelberg University, Medical Faculty, Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Emely C. Dreher
- Heidelberg University, Medical Faculty, Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Steffen Lemke
- Quantitative Biology Center (QBiC), University of Tübingen, 72076 Tübingen, Germany
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, 72076 Tübingen, Germany
- Institute for Cell Biology, Department of Immunology, University of Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, 72076 Tübingen, Germany
| | - Sarah Fritzsche
- Heidelberg University, Medical Faculty, Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Raisatun N. Sugiyanto
- Heidelberg University, Medical Faculty, Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Darko Castven
- Department of Medicine I, University Medical Center Schleswig Holstein, 23538 Lübeck, Germany
| | - David Ibberson
- Deep Sequencing Core Facility, CellNetworks Excellence Cluster, Heidelberg University, 69120 Heidelberg, Germany
| | - Carsten Sticht
- NGS Core Facility, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Eva Eiteneuer
- Heidelberg University, Medical Faculty, Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Anna Jauch
- Institute of Human Genetics, Heidelberg University, 69120 Heidelberg, Germany
| | - Stefan Pusch
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Thomas Albrecht
- Heidelberg University, Medical Faculty, Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Benjamin Goeppert
- Heidelberg University, Medical Faculty, Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany
- Institute of Tissue Medicine and Pathology, University of Bern, 3008 Bern, Switzerland
- Institute of Pathology and Neuropathology, RKH Klinikum Ludwigsburg, 71640 Ludwigsburg, Germany
| | - Julián Candia
- Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Xin Wei Wang
- Laboratory of Human Carcinogenesis and Liver Cancer Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Junfang Ji
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Jens U. Marquardt
- Department of Medicine I, University Medical Center Schleswig Holstein, 23538 Lübeck, Germany
| | - Sven Nahnsen
- Quantitative Biology Center (QBiC), University of Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, 72076 Tübingen, Germany
- Biomedical Data Science, Department of Computer Science, University of Tübingen, 72076 Tübingen, Germany
- The M3 Research Center, University of Tübingen, 72076 Tübingen, Germany
| | - Peter Schirmacher
- Heidelberg University, Medical Faculty, Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Stephanie Roessler
- Heidelberg University, Medical Faculty, Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
10
|
Xiao X, Wang P, Zhang W, Wang J, Cai M, Jiang H, Wu Y, Shan H. GNF-7, a novel FLT3 inhibitor, overcomes drug resistance for the treatment of FLT3‑ITD acute myeloid leukemia. Cancer Cell Int 2023; 23:302. [PMID: 38037057 PMCID: PMC10691066 DOI: 10.1186/s12935-023-03142-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/13/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML) with FMS-like tyrosine kinase 3 internal tandem duplication (FLT3-ITD) mutation accounts for a large proportion of AML patients and diagnosed with poor prognosis. Although the prognosis of FLT3-ITD AML has been greatly improved, the drug resistance frequently occurred in the treatment of FLT3 targeting drugs. GNF-7, a multitargeted kinase inhibitor, which provided a novel therapeutic strategy for overriding leukemia. In this study, we explored the antitumor activity of GNF-7 against FLT3-ITD and clinically-relevant drug resistance in FLT3 mutant AML. METHODS Growth inhibitory assays were performed in AML cell lines and Ba/F3 cells expressing various FLT3 mutants to evaluate the antitumor activity of GNF-7 in vitro. Western blotting was used to examine the inhibitory effect of GNF-7 on FLT3 and its downstream pathways. Molecular docking and cellular thermal shift assay (CETSA) were performed to demonstrate the binding of FLT3 to GNF-7. The survival benefit of GNF-7 in vivo was assessed in mouse models of transformed Ba/F3 cells harboring FLT3-ITD and FLT3-ITD/F691L mutation. Primary patient samples and a patient-derived xenograft (PDX) model were also used to determine the efficacy of GNF-7. RESULTS GNF-7 inhibited the cell proliferation of Ba/F3 cells expressing FLT3-ITD and exhibited potently anti-leukemia activity on primary FLT3-ITD AML samples. Moreover, GNF-7 could bind to FLT3 protein and inhibit the downstream signaling pathway activated by FLT3 including STAT5, PI3K/AKT and MAPK/ERK. In vitro and in vivo studies showed that GNF-7 exhibited potent inhibitory activity against FLT3-ITD/F691L that confers resistant to quizartinib (AC220) or gilteritinib. Importantly, GNF-7 showed potent cytotoxic effect on leukemic stem cells, significantly extend the survival of PDX model and exhibited similar therapy effect compared with gilteritinib. CONCLUSIONS Our results show that GNF-7 is a potent FLT3-ITD inhibitor and may become a promising lead compound applied for treating some of the clinically drug resistant patients.
Collapse
Affiliation(s)
- Xinhua Xiao
- Department of Hematology and Oncology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China.
| | - Peihong Wang
- Department of Hematology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, 510000, Guangdong, China
| | - Weina Zhang
- Department of Hematology and Oncology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Jiayi Wang
- Department of Hematology and Oncology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Mansi Cai
- Department of Hematology and Oncology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Hua Jiang
- Department of Hematology and Oncology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China.
| | - Yingli Wu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Research Units of Stress and Tumor (2019RU043), Shanghai Jiao Tong University School of Medicine, Chinese Academy of Medical Sciences, Shanghai, 200025, China.
| | - Huizhuang Shan
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510000, Guangdong, China.
| |
Collapse
|
11
|
Feng L, Zhang PY, Gao W, Yu J, Robson SC. Targeting chemoresistance and mitochondria-dependent metabolic reprogramming in acute myeloid leukemia. Front Oncol 2023; 13:1244280. [PMID: 37746249 PMCID: PMC10513429 DOI: 10.3389/fonc.2023.1244280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/23/2023] [Indexed: 09/26/2023] Open
Abstract
Chemoresistance often complicates the management of cancer, as noted in the instance of acute myeloid leukemia (AML). Mitochondrial function is considered important for the viability of AML blasts and appears to also modulate chemoresistance. As mitochondrial metabolism is aberrant in AML, any distinct pathways could be directly targeted to impact both cell viability and chemoresistance. Therefore, identifying and targeting those precise rogue elements of mitochondrial metabolism could be a valid therapeutic strategy in leukemia. Here, we review the evidence for abnormalities in mitochondria metabolic processes in AML cells, that likely impact chemoresistance. We further address several therapeutic approaches targeting isocitrate dehydrogenase 2 (IDH2), CD39, nicotinamide phosphoribosyl transferase (NAMPT), electron transport chain (ETC) complex in AML and also consider the roles of mesenchymal stromal cells. We propose the term "mitotherapy" to collectively refer to such regimens that attempt to override mitochondria-mediated metabolic reprogramming, as used by cancer cells. Mounting evidence suggests that mitotherapy could provide a complementary strategy to overcome chemoresistance in liquid cancers, as well as in solid tumors.
Collapse
Affiliation(s)
- Lili Feng
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Center for Inflammation Research, Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Philip Y. Zhang
- Center for Inflammation Research, Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Wenda Gao
- Antagen Institute for Biomedical Research, Canton, MA, United States
| | - Jinming Yu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Simon C. Robson
- Center for Inflammation Research, Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Department of Medicine, Division of Gastroenterology/Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
12
|
Chen G, Wang X, He Z, Li X, Yang Z, Zhang Y, Li Y, Zheng L, Miao Y, Zhang D. Light-Elicited and Oxygen-Saved Iridium Nanocapsule for Oxidative Damage Intensified Oncotherapy. Molecules 2023; 28:molecules28114397. [PMID: 37298873 DOI: 10.3390/molecules28114397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/18/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Regulating redox homeostasis in tumor cells and exploiting oxidative stress to damage tumors is an efficacious strategy for cancer therapy. However, the strengths of organic nanomaterials within this strategy are often ignored. In this work, a light-triggered reactive oxygen species (ROS) damaging nanoamplifier (IrP-T) was developed for enhanced photodynamic therapy (PDT). The IrP-T was fabricated with an amphiphilic iridium complex and a MTH1 inhibitor (TH287). Under green light stimulation, IrP-T catalyzed the oxygen in cells to generate ROS for realizing oxidative damage; meanwhile, TH287 increased the accumulation of 8-oxo-dGTP, further strengthening oxidative stress and inducing cell death. IrP-T could maximize the use of a small amount of oxygen, thus further boosting the efficacy of PDT in hypoxic tumors. The construction of nanocapsules provided a valuable therapeutic strategy for oxidative damage and synergizing PDT.
Collapse
Affiliation(s)
- Guobo Chen
- School of Materials and Chemistry, Institute of Bismuth, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xiang Wang
- School of Materials and Chemistry, Institute of Bismuth, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zongyan He
- School of Materials and Chemistry, Institute of Bismuth, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xueyu Li
- School of Materials and Chemistry, Institute of Bismuth, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zhijin Yang
- Shanghai Environmental Biosafety Instruments and Equipment Engineering Technology Research Center, Engineering Research Center of Optical Instrument and System, The Ministry of Education & Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yule Zhang
- Shanghai Environmental Biosafety Instruments and Equipment Engineering Technology Research Center, Engineering Research Center of Optical Instrument and System, The Ministry of Education & Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yuhao Li
- School of Materials and Chemistry, Institute of Bismuth, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Lulu Zheng
- Shanghai Environmental Biosafety Instruments and Equipment Engineering Technology Research Center, Engineering Research Center of Optical Instrument and System, The Ministry of Education & Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yuqing Miao
- School of Materials and Chemistry, Institute of Bismuth, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Dawei Zhang
- Shanghai Environmental Biosafety Instruments and Equipment Engineering Technology Research Center, Engineering Research Center of Optical Instrument and System, The Ministry of Education & Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
13
|
Costa RG, Silva SL, Dias IR, Oliveira MDS, Rodrigues ACBDC, Dias RB, Bezerra DP. Emerging drugs targeting cellular redox homeostasis to eliminate acute myeloid leukemia stem cells. Redox Biol 2023; 62:102692. [PMID: 37031536 PMCID: PMC10119960 DOI: 10.1016/j.redox.2023.102692] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Acute myeloid leukemia (AML) is a very heterogeneous group of disorders with large differences in the percentage of immature blasts that presently are classified according to the specific mutations that trigger malignant proliferation among thousands of mutations reported thus far. It is an aggressive disease for which few targeted therapies are available and still has a high recurrence rate and low overall survival. The main reason for AML relapse is believed to be due to leukemic stem cells (LSCs) that have unlimited self-renewal capacity and long residence in a quiescent state, which promote greater resistance to traditional therapies for this cancer. AML LSCs have low oxidative stress levels, which appear to be caused by a combination of low mitochondrial activity and high activity of ROS-removing pathways. In this sense, oxidative stress has been thought to be an important new potential target for the treatment of AML patients, targeting the eradication of AML LSCs. The aim of this review is to discuss some drugs that induce oxidative stress to direct new goals for future research focusing on redox imbalance as an effective strategy to eliminate AML LSCs.
Collapse
|
14
|
Tanushi X, Pinna G, Vandamme M, Siberchicot C, D’Augustin O, Di Guilmi AM, Radicella JP, Castaing B, Smith R, Huet S, Leteurtre F, Campalans A. OGG1 competitive inhibitors show important off-target effects by directly inhibiting efflux pumps and disturbing mitotic progression. Front Cell Dev Biol 2023; 11:1124960. [PMID: 36819096 PMCID: PMC9936318 DOI: 10.3389/fcell.2023.1124960] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/17/2023] [Indexed: 02/05/2023] Open
Abstract
One of the most abundant DNA lesions induced by Reactive oxygen species (ROS) is 8-oxoG, a highly mutagenic lesion that compromises genetic instability when not efficiently repaired. 8-oxoG is specifically recognized by the DNA-glycosylase OGG1 that excises the base and initiates the Base Excision Repair pathway (BER). Furthermore, OGG1 has not only a major role in DNA repair but it is also involved in transcriptional regulation. Cancer cells are particularly exposed to ROS, thus challenging their capacity to process oxidative DNA damage has been proposed as a promising therapeutic strategy for cancer treatment. Two competitive inhibitors of OGG1 (OGG1i) have been identified, TH5487 and SU0268, which bind to the OGG1 catalytic pocket preventing its fixation to the DNA. Early studies with these inhibitors show an enhanced cellular sensitivity to cytotoxic drugs and a reduction in the inflammatory response. Our study uncovers two unreported off-targets effects of these OGG1i that are independent of OGG1. In vitro and in cellulo approaches have unveiled that OGG1i TH5487 and SU0268, despite an unrelated molecular structure, are able to inhibit some members of the ABC family transporters, in particular ABC B1 (MDR1) and ABC G2 (BCRP). The inhibition of these efflux pumps by OGG1 inhibitors results in a higher intra-cellular accumulation of various fluorescent probes and drugs, and largely contributes to the enhanced cytotoxicity observed when the inhibitors are combined with cytotoxic agents. Furthermore, we found that SU0268 has an OGG1-independent anti-mitotic activity-by interfering with metaphase completion-resulting in a high cellular toxicity. These two off-target activities are observed at concentrations of OGG1i that are normally used for in vivo studies. It is thus critical to consider these previously unreported non-specific effects when interpreting studies using TH5487 and SU0268 in the context of OGG1 inhibition. Additionally, our work highlights the persistent need for new specific inhibitors of the enzymatic activity of OGG1.
Collapse
Affiliation(s)
- Xhaferr Tanushi
- Université Paris-Saclay, CEA/IBFJ/IRCM. UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France,Université de Paris-Cité, CEA/IBFJ/IRCM. UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France
| | - Guillaume Pinna
- Université Paris-Saclay, Inserm, CEA/IBFJ/IRCM/Plateforme PARi, UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France,Université de Paris-Cite, Inserm, CEA/IBFJ/IRCM/Plateforme PARi, UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France
| | - Marie Vandamme
- Université Paris-Saclay, Inserm, CEA/IBFJ/IRCM/Plateforme PARi, UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France,Université de Paris-Cite, Inserm, CEA/IBFJ/IRCM/Plateforme PARi, UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France
| | - Capucine Siberchicot
- Université Paris-Saclay, CEA/IBFJ/IRCM. UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France,Université de Paris-Cité, CEA/IBFJ/IRCM. UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France
| | - Ostiane D’Augustin
- Université Paris-Saclay, CEA/IBFJ/IRCM. UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France,Université de Paris-Cité, CEA/IBFJ/IRCM. UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France,Université Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes)—UMR 6290, BIOSIT—UMS 3480, Rennes, France
| | - Anne-Marie Di Guilmi
- Université Paris-Saclay, CEA/IBFJ/IRCM. UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France,Université de Paris-Cité, CEA/IBFJ/IRCM. UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France
| | - J. Pablo Radicella
- Université Paris-Saclay, CEA/IBFJ/IRCM. UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France,Université de Paris-Cité, CEA/IBFJ/IRCM. UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France
| | - Bertrand Castaing
- Centre de Biophysique Moléculaire (CBM)UPR4301 CNRS, Université d’Orléans, Orléans, France
| | - Rebecca Smith
- Université Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes)—UMR 6290, BIOSIT—UMS 3480, Rennes, France
| | - Sebastien Huet
- Université Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes)—UMR 6290, BIOSIT—UMS 3480, Rennes, France,Institut Universitaire de France, Paris, France
| | - François Leteurtre
- Université Paris-Saclay, CEA/IBFJ/IRCM. UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France,Université de Paris-Cité, CEA/IBFJ/IRCM. UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France
| | - Anna Campalans
- Université Paris-Saclay, CEA/IBFJ/IRCM. UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France,Université de Paris-Cité, CEA/IBFJ/IRCM. UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France,*Correspondence: Anna Campalans,
| |
Collapse
|
15
|
Helleday T. Mitotic MTH1 Inhibitors in Treatment of Cancer. Cancer Treat Res 2023; 186:223-237. [PMID: 37978139 DOI: 10.1007/978-3-031-30065-3_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
The DNA damage response (DDR) protein MTH1 is sanitising the oxidized dNTP pool and preventing incorporation of oxidative damage into DNA and has an emerging role in mitosis. It is a stress-induced protein and often found to be overexpressed in cancer. Mitotic MTH1 inhibitors arrest cells in mitosis and result in incorporation of oxidative damage into DNA and selective killing of cancer cells. Here, I discuss the leading mitotic MTH1 inhibitor TH1579 (OXC-101, karonudib), now being evaluated in clinical trials, and describe its dual effect on mitosis and incorporation of oxidative DNA damage in cancer cells. I describe why MTH1 inhibitors that solely inhibits the enzyme activity fail to kill cancer cells and discuss if MTH1 is a valid target for cancer treatment. I discuss emerging roles of MTH1 in regulating tubulin polymerisation and mitosis and the necessity of developing the basic science insights along with translational efforts. I also give a perspective on how edgetic perturbation is making target validation difficult in the DDR field.
Collapse
Affiliation(s)
- Thomas Helleday
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.
- Department of Oncology and Metabolism, Weston Park Cancer Centre, University of Sheffield, Sheffield, UK.
| |
Collapse
|
16
|
Helleday T, Rudd SG. Targeting the DNA damage response and repair in cancer through nucleotide metabolism. Mol Oncol 2022; 16:3792-3810. [PMID: 35583750 PMCID: PMC9627788 DOI: 10.1002/1878-0261.13227] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/05/2022] [Accepted: 05/17/2022] [Indexed: 12/24/2022] Open
Abstract
The exploitation of the DNA damage response and DNA repair proficiency of cancer cells is an important anticancer strategy. The replication and repair of DNA are dependent upon the supply of deoxynucleoside triphosphate (dNTP) building blocks, which are produced and maintained by nucleotide metabolic pathways. Enzymes within these pathways can be promising targets to selectively induce toxic DNA lesions in cancer cells. These same pathways also activate antimetabolites, an important group of chemotherapies that disrupt both nucleotide and DNA metabolism to induce DNA damage in cancer cells. Thus, dNTP metabolic enzymes can also be targeted to refine the use of these chemotherapeutics, many of which remain standard of care in common cancers. In this review article, we will discuss both these approaches exemplified by the enzymes MTH1, MTHFD2 and SAMHD1. © 2022 The Authors. Molecular Oncology published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.
Collapse
Affiliation(s)
- Thomas Helleday
- Science for Life LaboratoryDepartment of Oncology‐PathologyKarolinska InstitutetStockholmSweden
- Department of Oncology and Metabolism, Weston Park Cancer CentreUniversity of SheffieldUK
| | - Sean G. Rudd
- Science for Life LaboratoryDepartment of Oncology‐PathologyKarolinska InstitutetStockholmSweden
| |
Collapse
|
17
|
Centio A, Estruch M, Reckzeh K, Sanjiv K, Vittori C, Engelhard S, Warpman Berglund U, Helleday T, Theilgaard-Mönch K. Inhibition of Oxidized Nucleotide Sanitation By TH1579 and Conventional Chemotherapy Cooperatively Enhance Oxidative DNA Damage and Survival in AML. Mol Cancer Ther 2022; 21:703-714. [PMID: 35247918 DOI: 10.1158/1535-7163.mct-21-0185] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 12/20/2021] [Accepted: 02/09/2022] [Indexed: 11/16/2022]
Abstract
Currently, the majority of patients with acute myeloid leukemia (AML) still die of their disease due to primary resistance or relapse toward conventional reactive oxygen species (ROS)- and DNA damage-inducing chemotherapy regimens. Herein, we explored the therapeutic potential to enhance chemotherapy response in AML, by targeting the ROS scavenger enzyme MutT homolog 1 (MTH1, NUDT1), which protects cellular integrity through prevention of fatal chemotherapy-induced oxidative DNA damage. We demonstrate that MTH1 is a potential druggable target expressed by the majority of patients with AML and the inv(16)/KITD816Y AML mouse model mimicking the genetics of patients with AML exhibiting poor response to standard chemotherapy (i.e., anthracycline & cytarabine). Strikingly, combinatorial treatment of inv(16)/KITD816Y AML cells with the MTH1 inhibitor TH1579 and ROS- and DNA damage-inducing standard chemotherapy induced growth arrest and incorporated oxidized nucleotides into DNA leading to significantly increased DNA damage. Consistently, TH1579 and chemotherapy synergistically inhibited growth of clonogenic inv(16)/KITD816Y AML cells without substantially inhibiting normal clonogenic bone marrow cells. In addition, combinatorial treatment of inv(16)/KITD816Y AML mice with TH1579 and chemotherapy significantly reduced AML burden and prolonged survival compared with untreated or single treated mice. In conclusion, our study provides a rationale for future clinical studies combining standard AML chemotherapy with TH1579 to boost standard chemotherapy response in patients with AML. Moreover, other cancer entities treated with ROS- and DNA damage-inducing chemo- or radiotherapies might benefit therapeutically from complementary treatment with TH1579.
Collapse
Affiliation(s)
- Anders Centio
- The Finsen Laboratory, Centre for Cancer and Organ Diseases, Rigshospitalet/National University Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Biotech Research and Innovation Center, Faculty of Health and Medical Sciences (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Montserrat Estruch
- The Finsen Laboratory, Centre for Cancer and Organ Diseases, Rigshospitalet/National University Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Biotech Research and Innovation Center, Faculty of Health and Medical Sciences (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Kristian Reckzeh
- The Finsen Laboratory, Centre for Cancer and Organ Diseases, Rigshospitalet/National University Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Biotech Research and Innovation Center, Faculty of Health and Medical Sciences (BRIC), University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Stem Cell Biology, Centre for Stem Cell Research and Developmental Biology (DanStem), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kumar Sanjiv
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| | - Camilla Vittori
- The Finsen Laboratory, Centre for Cancer and Organ Diseases, Rigshospitalet/National University Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Biotech Research and Innovation Center, Faculty of Health and Medical Sciences (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Sophia Engelhard
- The Finsen Laboratory, Centre for Cancer and Organ Diseases, Rigshospitalet/National University Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Biotech Research and Innovation Center, Faculty of Health and Medical Sciences (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Ulrika Warpman Berglund
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| | - Thomas Helleday
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| | - Kim Theilgaard-Mönch
- The Finsen Laboratory, Centre for Cancer and Organ Diseases, Rigshospitalet/National University Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Biotech Research and Innovation Center, Faculty of Health and Medical Sciences (BRIC), University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Stem Cell Biology, Centre for Stem Cell Research and Developmental Biology (DanStem), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Hematology, Rigshospitalet/National University Hospital, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
18
|
Rajendraprasad G, Eibes S, Boldú CG, Barisic M. TH588 and Low-Dose Nocodazole Impair Chromosome Congression by Suppressing Microtubule Turnover within the Mitotic Spindle. Cancers (Basel) 2021; 13:cancers13235995. [PMID: 34885104 PMCID: PMC8657032 DOI: 10.3390/cancers13235995] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 01/04/2023] Open
Abstract
Simple Summary A promising anti-cancer compound TH588 has been recently identified as a microtubule-targeting agent that inhibits tubulin polymerization in vitro and interferes with microtubule dynamics in interphase cells. Although it was shown to arrest cells in mitosis, its effect on microtubule dynamics in dividing cells remained unknown. By analyzing microtubule dynamics in living cells treated with either TH588 or low-dose nocodazole, we revealed that both of these drugs stabilize microtubules within the mitotic spindle, leading to premature formation of kinetochore-microtubule end-on attachments on uncongressed chromosomes. This causes mitotic arrest, ultimately resulting in cell death or cell division with uncongressed chromosomes. Both of these cell fates could contribute to the selective effect associated with the activity of TH588 in cancer cells. Abstract Microtubule-targeting agents (MTAs) have been used for decades to treat different hematologic and solid cancers. The mode of action of these drugs mainly relies on their ability to bind tubulin subunits and/or microtubules and interfere with microtubule dynamics. In addition to its MTH1-inhibiting activity, TH588 has been recently identified as an MTA, whose anticancer properties were shown to largely depend on its microtubule-targeting ability. Although TH588 inhibited tubulin polymerization in vitro and reduced microtubule plus-end mobility in interphase cells, its effect on microtubule dynamics within the mitotic spindle of dividing cells remained unknown. Here, we performed an in-depth analysis of the impact of TH588 on spindle-associated microtubules and compared it to the effect of low-dose nocodazole. We show that both treatments reduce microtubule turnover within the mitotic spindle. This microtubule-stabilizing effect leads to premature formation of kinetochore-microtubule end-on attachments on uncongressed chromosomes, which consequently cannot be transported to the cell equator, thereby delaying cell division and leading to cell death or division with uncongressed chromosomes.
Collapse
Affiliation(s)
- Girish Rajendraprasad
- Cell Division and Cytoskeleton, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark; (G.R.); (S.E.); (C.G.B.)
| | - Susana Eibes
- Cell Division and Cytoskeleton, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark; (G.R.); (S.E.); (C.G.B.)
| | - Claudia Guasch Boldú
- Cell Division and Cytoskeleton, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark; (G.R.); (S.E.); (C.G.B.)
| | - Marin Barisic
- Cell Division and Cytoskeleton, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark; (G.R.); (S.E.); (C.G.B.)
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Correspondence:
| |
Collapse
|