1
|
Giron-Michel J, Padelli M, Oberlin E, Guenou H, Duclos-Vallée JC. State-of-the-Art Liver Cancer Organoids: Modeling Cancer Stem Cell Heterogeneity for Personalized Treatment. BioDrugs 2025:10.1007/s40259-024-00702-0. [PMID: 39826071 DOI: 10.1007/s40259-024-00702-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2024] [Indexed: 01/20/2025]
Abstract
Liver cancer poses a global health challenge with limited therapeutic options. Notably, the limited success of current therapies in patients with primary liver cancers (PLCs) may be attributed to the high heterogeneity of both hepatocellular carcinoma (HCCs) and intrahepatic cholangiocarcinoma (iCCAs). This heterogeneity evolves over time as tumor-initiating stem cells, or cancer stem cells (CSCs), undergo (epi)genetic alterations or encounter microenvironmental changes within the tumor microenvironment. These modifications enable CSCs to exhibit plasticity, differentiating into various resistant tumor cell types. Addressing this challenge requires urgent efforts to develop personalized treatments guided by biomarkers, with a specific focus on targeting CSCs. The lack of effective precision treatments for PLCs is partly due to the scarcity of ex vivo preclinical models that accurately capture the complexity of CSC-related tumors and can predict therapeutic responses. Fortunately, recent advancements in the establishment of patient-derived liver cancer cell lines and organoids have opened new avenues for precision medicine research. Notably, patient-derived organoid (PDO) cultures have demonstrated self-assembly and self-renewal capabilities, retaining essential characteristics of their respective in vivo tissues, including both inter- and intratumoral heterogeneities. The emergence of PDOs derived from PLCs serves as patient avatars, enabling preclinical investigations for patient stratification, screening of anticancer drugs, efficacy testing, and thereby advancing the field of precision medicine. This review offers a comprehensive summary of the advancements in constructing PLC-derived PDO models. Emphasis is placed on the role of CSCs, which not only contribute significantly to the establishment of PDO cultures but also faithfully capture tumor heterogeneity and the ensuing development of therapy resistance. The exploration of PDOs' benefits in personalized medicine research is undertaken, including a discussion of their limitations, particularly in terms of culture conditions, reproducibility, and scalability.
Collapse
Affiliation(s)
- Julien Giron-Michel
- INSERM UMR-S-MD 1197, Paul-Brousse Hospital, Villejuif, France.
- Orsay-Vallée Campus, Paris-Saclay University, Gif-sur-Yvette, France.
| | - Maël Padelli
- INSERM UMR-S-MD 1197, Paul-Brousse Hospital, Villejuif, France
- Orsay-Vallée Campus, Paris-Saclay University, Gif-sur-Yvette, France
- Department of Biochemistry and Oncogenetics, Paul Brousse Hospital, AP-HP, Villejuif, France
| | - Estelle Oberlin
- INSERM UMR-S-MD 1197, Paul-Brousse Hospital, Villejuif, France
- Orsay-Vallée Campus, Paris-Saclay University, Gif-sur-Yvette, France
| | - Hind Guenou
- INSERM UMR-S-MD 1197, Paul-Brousse Hospital, Villejuif, France
- Orsay-Vallée Campus, Paris-Saclay University, Gif-sur-Yvette, France
| | - Jean-Charles Duclos-Vallée
- Orsay-Vallée Campus, Paris-Saclay University, Gif-sur-Yvette, France
- INSERM UMR-S 1193, Paul Brousse Hospital, Villejuif, France
- Hepato-Biliary Department, Paul Brousse Hospital, APHP, Villejuif, France
- Fédération Hospitalo-Universitaire (FHU) Hepatinov, Villejuif, France
| |
Collapse
|
2
|
Huang Q, Hu B, Zhang P, Yuan Y, Yue S, Chen X, Liang J, Tang Z, Zhang B. Neuroscience of cancer: unraveling the complex interplay between the nervous system, the tumor and the tumor immune microenvironment. Mol Cancer 2025; 24:24. [PMID: 39825376 PMCID: PMC11740516 DOI: 10.1186/s12943-024-02219-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 12/26/2024] [Indexed: 01/20/2025] Open
Abstract
The study of the multifaceted interactions between neuroscience and cancer is an emerging field with significant implications for understanding tumor biology and the innovation in therapeutic approaches. Increasing evidence suggests that neurological functions are connected with tumorigenesis. In particular, the peripheral and central nervous systems, synapse, neurotransmitters, and neurotrophins affect tumor progression and metastasis through various regulatory approaches and the tumor immune microenvironment. In this review, we summarized the neurological functions that affect tumorigenesis and metastasis, which are controlled by the central and peripheral nervous systems. We also explored the roles of neurotransmitters and neurotrophins in cancer progression. Moreover, we examined the interplay between the nervous system and the tumor immune microenvironment. We have also identified drugs that target the nervous system for cancer treatment. In this review we present the work supporting that therapeutic agent targeting the nervous system could have significant potential to improve cancer therapy.
Collapse
Affiliation(s)
- Qibo Huang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Wuhan, Hubei, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, NHC Key Laboratory of Organ Transplantation, Wuhan, China
| | - Bai Hu
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ping Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ye Yuan
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, China
| | - Shiwei Yue
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Wuhan, Hubei, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, NHC Key Laboratory of Organ Transplantation, Wuhan, China
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China.
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Wuhan, Hubei, China.
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, NHC Key Laboratory of Organ Transplantation, Wuhan, China.
| | - Junnan Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China.
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Wuhan, Hubei, China.
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, NHC Key Laboratory of Organ Transplantation, Wuhan, China.
| | - Zhouping Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China.
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Wuhan, Hubei, China.
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, NHC Key Laboratory of Organ Transplantation, Wuhan, China.
| |
Collapse
|
3
|
Airola C, Pallozzi M, Cesari E, Cerrito L, Stella L, Sette C, Giuliante F, Gasbarrini A, Ponziani FR. Hepatocellular-Carcinoma-Derived Organoids: Innovation in Cancer Research. Cells 2024; 13:1726. [PMID: 39451244 PMCID: PMC11505656 DOI: 10.3390/cells13201726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
Hepatocellular carcinomas (HCCs) are highly heterogeneous malignancies. They are characterized by a peculiar tumor microenvironment and dense vascularization. The importance of signaling between immune cells, endothelial cells, and tumor cells leads to the difficult recapitulation of a reliable in vitro HCC model using the conventional two-dimensional cell cultures. The advent of three-dimensional organoid tumor technology has revolutionized our understanding of the pathogenesis and progression of several malignancies by faithfully replicating the original cancer genomic, epigenomic, and microenvironmental landscape. Organoids more closely mimic the in vivo environment and cell interactions, replicating factors such as the spatial organization of cell surface receptors and gene expression, and will probably become an important tool in the choice of therapies and the evaluation of tumor response to treatments. This review aimed to describe the ongoing and potential applications of organoids as an in vitro model for the study of HCC development, its interaction with the host's immunity, the analysis of drug sensitivity tests, and the current limits in this field.
Collapse
Affiliation(s)
- Carlo Airola
- Liver Unit, Centro Malattie dell’Apparato Digerente (CEMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (M.P.); (L.C.); (L.S.); (A.G.)
| | - Maria Pallozzi
- Liver Unit, Centro Malattie dell’Apparato Digerente (CEMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (M.P.); (L.C.); (L.S.); (A.G.)
| | - Eleonora Cesari
- GSTeP Organoids Research Core Facility, Fondazione Policlinico A. Gemelli, 00168 Rome, Italy; (E.C.); (C.S.)
| | - Lucia Cerrito
- Liver Unit, Centro Malattie dell’Apparato Digerente (CEMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (M.P.); (L.C.); (L.S.); (A.G.)
| | - Leonardo Stella
- Liver Unit, Centro Malattie dell’Apparato Digerente (CEMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (M.P.); (L.C.); (L.S.); (A.G.)
| | - Claudio Sette
- GSTeP Organoids Research Core Facility, Fondazione Policlinico A. Gemelli, 00168 Rome, Italy; (E.C.); (C.S.)
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Felice Giuliante
- Department of Surgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
| | - Antonio Gasbarrini
- Liver Unit, Centro Malattie dell’Apparato Digerente (CEMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (M.P.); (L.C.); (L.S.); (A.G.)
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Francesca Romana Ponziani
- Liver Unit, Centro Malattie dell’Apparato Digerente (CEMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (M.P.); (L.C.); (L.S.); (A.G.)
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
4
|
Zhu X, Trehan R, Xie C. Primary liver cancer organoids and their application to research and therapy. JOURNAL OF THE NATIONAL CANCER CENTER 2024; 4:195-202. [PMID: 39281720 PMCID: PMC11401492 DOI: 10.1016/j.jncc.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/02/2024] [Accepted: 06/13/2024] [Indexed: 09/18/2024] Open
Abstract
Primary liver cancer is a leading cause of death worldwide. To create advanced treatments for primary liver cancer, studies have utilized models such as 2D cell culture and in vivo animal models. Recent developments in cancer organoids have created the possibility for 3D in vitro cultures that recapitulates the cancer cell structure and operation as well as the tumor microenvironment (TME). However, before organoids can be directly translated to clinical use, tissue processing and culture medium must be standardized with unified protocols to decrease variability in results. Herein, we present the wide variety of published methodologies used to derive liver cancer organoids from patient tumor tissues. Additionally, we summarize validation methodologies for organoids in terms of marker expression levels with immunohistochemistry as well as the presence of mutations and variants through RNA-sequencing. Primary liver cancer organoids have exciting applications allowing for faster drug testing at a larger scale. Primary liver cancer organoids also assisit in uncovering new mechanisms. Through the coculture of different immune cells and cancer organoids, organoids are now better able to recapitulate the liver cancer TME. In addition, it further aids in the investigation of drug development and drug resistance. Lastly, we posit that the usage of liver cancer organoids in animal models provides researchers a methodology to overcome the current limitations of culture systems.
Collapse
Affiliation(s)
- Xiaobin Zhu
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, USA
| | - Rajiv Trehan
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, USA
| | - Changqing Xie
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, USA
| |
Collapse
|
5
|
Fang H, Xu H, Yu J, Cao H, Li L. Human Hepatobiliary Organoids: Recent Advances in Drug Toxicity Verification and Drug Screening. Biomolecules 2024; 14:794. [PMID: 39062508 PMCID: PMC11274902 DOI: 10.3390/biom14070794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/08/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
Many drug and therapeutic modalities have emerged over the past few years. However, successful commercialization is dependent on their safety and efficacy evaluations. Several preclinical models are available for drug-screening and safety evaluations, including cellular- and molecular-level models, tissue and organoid models, and animal models. Organoids are three-dimensional cell cultures derived from primary tissues or stem cells that are structurally and functionally similar to the original organs and can self-renew, and they are used to establish various disease models. Human hepatobiliary organoids have been used to study the pathogenesis of diseases, such as hepatitis, liver fibrosis, hepatocellular carcinoma, primary sclerosing cholangitis and biliary tract cancer, as they retain the physiological and histological characteristics of the liver and bile ducts. Here, we review recent research progress in validating drug toxicity, drug screening and personalized therapy for hepatobiliary-related diseases using human hepatobiliary organoid models, discuss the challenges encountered in current research and evaluate the possible solutions.
Collapse
Affiliation(s)
- Haoyu Fang
- Department of Pathology and Pathophysiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China;
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250117, China; (J.Y.); (L.L.)
| | - Haoying Xu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China;
| | - Jiong Yu
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250117, China; (J.Y.); (L.L.)
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China;
- Zhejiang Key Laboratory for Diagnosis and Treatment of Physic-Chemical and Aging-Related Injuries, 79 Qingchun Rd., Hangzhou 310003, China
| | - Hongcui Cao
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250117, China; (J.Y.); (L.L.)
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China;
- Zhejiang Key Laboratory for Diagnosis and Treatment of Physic-Chemical and Aging-Related Injuries, 79 Qingchun Rd., Hangzhou 310003, China
| | - Lanjuan Li
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250117, China; (J.Y.); (L.L.)
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China;
| |
Collapse
|
6
|
Fukuoka M, Kodama T, Murai K, Hikita H, Sometani E, Sung J, Shimoda A, Shigeno S, Motooka D, Nishio A, Furuta K, Tatsumi T, Yusa K, Takehara T. Genome-wide loss-of-function genetic screen identifies INSIG2 as the vulnerability of hepatitis B virus-integrated hepatoma cells. Cancer Sci 2024; 115:859-870. [PMID: 38287498 PMCID: PMC10920982 DOI: 10.1111/cas.16070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/20/2023] [Accepted: 12/29/2023] [Indexed: 01/31/2024] Open
Abstract
There are approximately 250 million people chronically infected with hepatitis B virus (HBV) worldwide. Although HBV is often integrated into the host genome and promotes hepatocarcinogenesis, vulnerability of HBV integration in liver cancer cells has not been clarified. The aim of our study is to identify vulnerability factors for HBV-associated hepatocarcinoma. Loss-of-function screening was undertaken in HepG2 and HBV-integrated HepG2.2.15 cells expressing SpCas9 using a pooled genome-wide clustered regularly interspaced short palindromic repeats (CRISPR) library. Genes whose guide RNA (gRNA) abundance significantly decreased in HepG2.2.15 cells but not in HepG2 cells were extracted using the MAGeCK algorithm. We identified four genes (BCL2L1, VPS37A, INSIG2, and CFLAR) that showed significant reductions of gRNA abundance and thus potentially involved in the vulnerability of HBV-integrated cancer cells. Among them, siRNA-mediated mRNA inhibition or CRISPR-mediated genetic deletion of INSIG2 significantly impaired cell proliferation in HepG2.2.15 cells but not in HepG2 cells. Its inhibitory effect was alleviated by cotransfection of siRNAs targeting HBV. INSIG2 inhibition suppressed the pathways related to cell cycle and DNA replication, downregulated cyclin-dependent kinase 2 (CDK2) levels, and delayed the G1 -to-S transition in HepG2.2.15 cells. CDK2 inhibitor suppressed cell cycle progression in HepG2.2.15 cells and INSIG2 inhibition did not suppress cell proliferation in the presence of CDK2 inhibitor. In conclusion, INSIG2 inhibition induced cell cycle arrest in HBV-integrated hepatoma cells in a CDK2-dependent manner, and thus INSIG2 might be a vulnerability factor for HBV-associated liver cancer.
Collapse
Affiliation(s)
- Makoto Fukuoka
- Department of Gastroenterology and HepatologyOsaka University Graduate School of MedicineSuitaOsakaJapan
| | - Takahiro Kodama
- Department of Gastroenterology and HepatologyOsaka University Graduate School of MedicineSuitaOsakaJapan
| | - Kazuhiro Murai
- Department of Gastroenterology and HepatologyOsaka University Graduate School of MedicineSuitaOsakaJapan
| | - Hayato Hikita
- Department of Gastroenterology and HepatologyOsaka University Graduate School of MedicineSuitaOsakaJapan
| | - Emi Sometani
- Department of Gastroenterology and HepatologyOsaka University Graduate School of MedicineSuitaOsakaJapan
| | - Jihyun Sung
- Department of Gastroenterology and HepatologyOsaka University Graduate School of MedicineSuitaOsakaJapan
| | - Akiyoshi Shimoda
- Department of Gastroenterology and HepatologyOsaka University Graduate School of MedicineSuitaOsakaJapan
| | - Satoshi Shigeno
- Department of Gastroenterology and HepatologyOsaka University Graduate School of MedicineSuitaOsakaJapan
| | - Daisuke Motooka
- Genome Information Research Center, Research Institute for Microbial DiseasesOsaka UniversitySuitaJapan
| | - Akira Nishio
- Department of Gastroenterology and HepatologyOsaka University Graduate School of MedicineSuitaOsakaJapan
| | - Kunimaro Furuta
- Department of Gastroenterology and HepatologyOsaka University Graduate School of MedicineSuitaOsakaJapan
| | - Tomohide Tatsumi
- Department of Gastroenterology and HepatologyOsaka University Graduate School of MedicineSuitaOsakaJapan
| | - Kosuke Yusa
- Stem Cell Genetics, Institute for Frontier Life and Medical SciencesKyoto UniversityKyotoJapan
| | - Tetsuo Takehara
- Department of Gastroenterology and HepatologyOsaka University Graduate School of MedicineSuitaOsakaJapan
| |
Collapse
|
7
|
Villarruel-Melquiades F, Mendoza-Garrido ME, García-Cuellar CM, Sánchez-Pérez Y, Pérez-Carreón JI, Camacho J. Current and novel approaches in the pharmacological treatment of hepatocellular carcinoma. World J Gastroenterol 2023; 29:2571-2599. [PMID: 37213397 PMCID: PMC10198058 DOI: 10.3748/wjg.v29.i17.2571] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/19/2023] [Accepted: 04/11/2023] [Indexed: 05/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most lethal malignant tumours worldwide. The mortality-to-incidence ratio is up to 91.6% in many countries, representing the third leading cause of cancer-related deaths. Systemic drugs, including the multikinase inhibitors sorafenib and lenvatinib, are first-line drugs used in HCC treatment. Unfortunately, these therapies are ineffective in most cases due to late diagnosis and the development of tumour resistance. Thus, novel pharmacological alternatives are urgently needed. For instance, immune checkpoint inhibitors have provided new approaches targeting cells of the immune system. Furthermore, monoclonal antibodies against programmed cell death-1 have shown benefits in HCC patients. In addition, drug combinations, including first-line treatment and immunotherapy, as well as drug repurposing, are promising novel therapeutic alternatives. Here, we review the current and novel pharmacological approaches to fight HCC. Preclinical studies, as well as approved and ongoing clinical trials for liver cancer treatment, are discussed. The pharmacological opportunities analysed here should lead to significant improvement in HCC therapy.
Collapse
Affiliation(s)
- Fernanda Villarruel-Melquiades
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City 07360, Mexico
| | - María Eugenia Mendoza-Garrido
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City 07360, Mexico
| | - Claudia M García-Cuellar
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología (INCan), Mexico City 14080, Mexico
| | - Yesennia Sánchez-Pérez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología (INCan), Mexico City 14080, Mexico
| | - Julio Isael Pérez-Carreón
- Instituto Nacional de Medicina Genómica, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico
| | - Javier Camacho
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City 07360, Mexico
| |
Collapse
|
8
|
El-Khobar KE, Sukowati CHC. Updates on Organoid Model for the Study of Liver Cancer. Technol Cancer Res Treat 2023; 22:15330338231154090. [PMID: 36788421 PMCID: PMC9932758 DOI: 10.1177/15330338231154090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
Liver cancer remains one of the most common cancers worldwide with limited therapy options. The main risk factors for hepatocellular carcinoma (HCC), the most common form of liver cancer, include chronic infection with hepatitis B or hepatitis C viruses, alcohol abuse, and metabolic disease. Current systemic therapies for advanced HCCs have greatly improved in the last decade, but there is still a need to develop more targeted drug therapy for HCCs. The development of liver organoids, a self-organising and self-renewal three-dimensional cell culture model, has greatly improved cancer research, including liver cancer. The generation of liver organoids provides a physiologically relevant model to study cancer drug screening and development, personalized medicine, liver disease modeling, and liver regeneration. However, the advent of organoid development also comes with few shortcomings that must be overcome, including the high cost of the model, the availability of origin tissues, and the need for multilineage liver organoids to replicate the true cellular heterogeneity of the liver. Despite all the limitations, liver organoids provide a reliable in vitro model for translational applications to develop more effective HCC therapy and to understand the underlying pathogenic mechanism in various liver diseases.
Collapse
Affiliation(s)
- Korri E. El-Khobar
- Eijkman Research Centre for Molecular Biology, Research Organization
for HealthNational
Research and Innovation Agency, Cibinong,
Indonesia,Korri E. El-Khobar, Eijkman Research Centre
for Molecular Biology, Research Organization for Health, National Research and
Innovation, Soekarno Science and Technology Area, Jl. Raya Jakarta-Bogor Km 46,
Cibinong, West Java 16911, Indonesia.
| | - Caecilia H. C. Sukowati
- Eijkman Research Centre for Molecular Biology, Research Organization
for HealthNational
Research and Innovation Agency, Cibinong,
Indonesia,Fondazione
Italiana Fegato ONLUS, AREA Science Park,
Trieste, Italy
| |
Collapse
|
9
|
Xie C, Gu A, Khan M, Yao X, Chen L, He J, Yuan F, Wang P, Yang Y, Wei Y, Tang F, Su H, Chen J, Li J, Cen B, Xu Z. Opportunities and challenges of hepatocellular carcinoma organoids for targeted drugs sensitivity screening. Front Oncol 2023; 12:1105454. [PMID: 36686807 PMCID: PMC9853547 DOI: 10.3389/fonc.2022.1105454] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 12/16/2022] [Indexed: 01/07/2023] Open
Abstract
Hepatocellular carcinoma is one of the malignancies worldwide with a high mortality rate and an increasing incidence. Molecular Targeted agents are its common first-line treatment. Organoid technology, as a cutting-edge technology, is gradually being applied in the development of therapeutic oncology. Organoid models can be used to perform sensitivity screening of targeted drugs to facilitate the development of innovative therapeutic agents for the treatment of hepatocellular carcinoma. The purpose of this review is to provide an overview of the opportunities and challenges of hepatocellular carcinoma organoids in targeted drug sensitivity testing as well as a future outlook.
Collapse
Affiliation(s)
- Cuiying Xie
- Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou, China,National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Ancheng Gu
- Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou, China,National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Muhammad Khan
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiangcao Yao
- Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou, China,National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Leping Chen
- Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou, China,National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jiali He
- Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou, China,National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Fumiao Yuan
- Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou, China,National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Ping Wang
- Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou, China,National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Yufan Yang
- Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou, China,National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Yerong Wei
- Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou, China,National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Fang Tang
- Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou, China,National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Hualong Su
- Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou, China,National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jiamin Chen
- Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou, China,National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jinxia Li
- Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou, China,National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Bohong Cen
- Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou, China,National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China,Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, Guangdong, China,*Correspondence: Bohong Cen, ; Zhongyuan Xu,
| | - Zhongyuan Xu
- Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou, China,National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China,*Correspondence: Bohong Cen, ; Zhongyuan Xu,
| |
Collapse
|
10
|
Chiu CH. CRISPR/Cas9 genetic screens in hepatocellular carcinoma gene discovery. CURRENT RESEARCH IN BIOTECHNOLOGY 2023; 5:100127. [DOI: 10.1016/j.crbiot.2023.100127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
|
11
|
Tong M, Ma S. Protocols to culture and harvest hepatic tumor organoids for metabolic assays. STAR Protoc 2022; 3:101597. [PMID: 35942348 PMCID: PMC9356172 DOI: 10.1016/j.xpro.2022.101597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Three-dimensional organoids, which resemble the pathophysiology and structural architecture of the original tissues, are a preferable in vitro model system for assessing metabolic activities in response to various environmental or nutritional changes. Here, we describe step-by-step protocols to establish and culture mouse and human hepatic tumor organoids. We also describe two straightforward and efficient approaches to harvest tumor organoids for investigating the effects of metabolites/drugs on viability and metabolic functions of tumor organoids. For complete details on the use and execution of this protocol, please refer to Tong et al. (2018), Leung et al. (2020), Tong et al. (2021), and Xu et al. (2021). Protocol to culture mouse and human hepatic tumor organoids in metabolic assays Two optimized approaches to harvest organoids for downstream functional assays Straightforward and efficient testing of candidate metabolites/drugs in organoids
Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional guidelines for laboratory safety and ethics.
Collapse
|
12
|
Ren X, Chen W, Yang Q, Li X, Xu L. Patient-derived cancer organoids for drug screening: Basic technology and clinical application. J Gastroenterol Hepatol 2022; 37:1446-1454. [PMID: 35771719 DOI: 10.1111/jgh.15930] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/16/2022] [Accepted: 06/25/2022] [Indexed: 12/13/2022]
Abstract
Cancer organoids, a three-dimensional (3D) culture system of cancer cells derived from tumor tissues, recapitulate physiological structure of the parental tumor. Different tumor organoids have been established for a variety of tumor types, such as colorectal, liver, stomach, pancreatic and brain tumors. Some tumor organoid biobanks are built to screen and discover novel antitumor drug targets. Moreover, patients-derived tumor organoids (PDOs) could predict treatment response to chemoradiotherapy, targeted therapy and immunotherapy to provide guidance for personalized cancer therapy. In this review, we provide an updated overview of tumor organoid development, summarize general approach to establish tumor organoids, and discuss the application of anti-cancer drug screening based on tumor organoid and its application in personalized therapy. We also outline the opportunities and challenges for organoids to guide precision medicine.
Collapse
Affiliation(s)
- Xiaoxue Ren
- Department of Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Weikang Chen
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qingxia Yang
- Department of Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoxing Li
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lixia Xu
- Department of Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
13
|
Mechanisms of resistance to tyrosine kinase inhibitors in liver cancer stem cells and potential therapeutic approaches. Essays Biochem 2022; 66:371-386. [PMID: 35818992 DOI: 10.1042/ebc20220001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/13/2022] [Accepted: 06/17/2022] [Indexed: 12/24/2022]
Abstract
The administration of tyrosine kinase inhibitors (TKIs) for the treatment of advanced-stage patients is common in hepatocellular carcinoma (HCC). However, therapy resistance is often encountered, and its emergence eventually curtails long-term clinical benefits. Cancer stem cells (CSCs) are essential drivers of tumor recurrence and therapy resistance; thus, the elucidation of key hallmarks of resistance mechanisms of liver CSC-driven HCC may help improve patient outcomes and reduce relapse. The present review provides a comprehensive summary of the intrinsic and extrinsic mechanisms of TKI resistance in liver CSCs, which mediate treatment failure, and discusses potential strategies to overcome TKI resistance from a preclinical perspective.
Collapse
|
14
|
Huang M, Lin Y, Wang C, Deng L, Chen M, Assaraf YG, Chen ZS, Ye W, Zhang D. New insights into antiangiogenic therapy resistance in cancer: Mechanisms and therapeutic aspects. Drug Resist Updat 2022; 64:100849. [PMID: 35842983 DOI: 10.1016/j.drup.2022.100849] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Angiogenesis is a hallmark of cancer and is required for tumor growth and progression. Antiangiogenic therapy has been revolutionarily developing and was approved for the treatment of various types of cancer for nearly two decades, among which bevacizumab and sorafenib continue to be the two most frequently used antiangiogenic drugs. Although antiangiogenic therapy has brought substantial survival benefits to many cancer patients, resistance to antiangiogenic drugs frequently occurs during clinical treatment, leading to poor outcomes and treatment failure. Cumulative evidence has demonstrated that the intricate interplay among tumor cells, bone marrow-derived cells, and local stromal cells critically allows for tumor escape from antiangiogenic therapy. Currently, drug resistance has become the main challenge that hinders the therapeutic efficacies of antiangiogenic therapy. In this review, we describe and summarize the cellular and molecular mechanisms conferring tumor drug resistance to antiangiogenic therapy, which was predominantly associated with redundancy in angiogenic signaling molecules (e.g., VEGFs, GM-CSF, G-CSF, and IL17), alterations in biological processes of tumor cells (e.g., tumor invasiveness and metastasis, stemness, autophagy, metabolic reprogramming, vessel co-option, and vasculogenic mimicry), increased recruitment of bone marrow-derived cells (e.g., myeloid-derived suppressive cells, tumor-associated macrophages, and tumor-associated neutrophils), and changes in the biological functions and features of local stromal cells (e.g., pericytes, cancer-associated fibroblasts, and endothelial cells). We also review potential biomarkers to predict the response to antiangiogenic therapy in cancer patients, which mainly consist of imaging biomarkers, cellular and extracellular proteins, a certain type of bone marrow-derived cells, local stromal cell content (e.g., pericyte coverage) as well as serum or plasma biomarkers (e.g., non-coding RNAs). Finally, we highlight the recent advances in combination strategies with the aim of enhancing the response to antiangiogenic therapy in cancer patients and mouse models. This review introduces a comprehensive understanding of the mechanisms and biomarkers associated with the evasion of antiangiogenic therapy in cancer, providing an outlook for developing more effective approaches to promote the therapeutic efficacy of antiangiogenic therapy.
Collapse
Affiliation(s)
- Maohua Huang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China; Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, China
| | - Yuning Lin
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Chenran Wang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Lijuan Deng
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Minfeng Chen
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Institute for Biotechnology, St. John's University, NY 11439, USA.
| | - Wencai Ye
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China.
| | - Dongmei Zhang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
15
|
CRISPR screening in cancer stem cells. Essays Biochem 2022; 66:305-318. [PMID: 35713228 DOI: 10.1042/ebc20220009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/04/2022] [Accepted: 06/07/2022] [Indexed: 12/14/2022]
Abstract
Cancer stem cells (CSCs) are a subpopulation of tumor cells with self-renewal ability. Increasing evidence points to the critical roles of CSCs in tumorigenesis, metastasis, therapy resistance, and cancer relapse. As such, the elimination of CSCs improves cancer treatment outcomes. However, challenges remain due to limited understanding of the molecular mechanisms governing self-renewal and survival of CSCs. Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 screening has been increasingly used to identify genetic determinants in cancers. In this primer, we discuss the progress made and emerging opportunities of coupling advanced CRISPR screening systems with CSC models to reveal the understudied vulnerabilities of CSCs.
Collapse
|