1
|
Scafetta G, Rampioni Vinciguerra GL, Giglio S, Faruq O, Cirombella R, Segatto I, Citron F, Mattevi MC, Di Renzi E, Cascione L, Gasparini P, Belletti B, Baldassarre G, Sacconi A, Blandino G, Vecchione A. miR-1297 is frequently downmodulated in flat epithelial atypia of the breast and promotes mammary neoplastic transformation via EphrinA2 regulation. J Exp Clin Cancer Res 2025; 44:96. [PMID: 40082972 PMCID: PMC11908103 DOI: 10.1186/s13046-025-03354-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 02/26/2025] [Indexed: 03/16/2025] Open
Abstract
Breast cancer ranks as the most prevalent form of cancer globally. Currently, advanced screening methods have significantly improved early detection rates. These achievements have led to more non-invasive cancer diagnoses and underscored the clinical relevance of precursor lesions like flat epithelial atypia (FEA), a histological condition characterized by mild atypical changes in the normal epithelium lining the mammary ducts. Despite the increasing detection of FEA in mammary biopsy, our understanding of the biological behavior of this entity remains limited and, as a consequence, the clinical management of patients is still being debated. Evidence from the literature indicates that dysregulation of microRNAs contributes to all stages of breast cancer progression, potentially serving as valuable markers of disease evolution. In this study, through a comparison of the microRNA profiles of normal mammary epithelium, FEA, and non-invasive breast cancer in three cohorts of patients, we identified downregulation of miR-1297 as a common feature in both FEA and non-invasive breast cancer compared to the normal counterpart. Mechanistically, overexpression of miR-1297 inhibits the growth of breast cancer cells by targeting the oncogenic receptor tyrosine kinase EphrinA2. In contrast, downregulation of miR-1297 increases proliferation and alters the morphology of normal mammary epithelial cells in a three-dimensional context. These findings pinpoint the downregulation of miR-1297 as an early event in mammary transformation and suggest its potential role as a driver of progression in FEA, harboring the capacity to evolve into malignancy.
Collapse
Affiliation(s)
- Giorgia Scafetta
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, Sant'Andrea Hospital, University of Rome "Sapienza", 00189, Rome, Italy
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Gian Luca Rampioni Vinciguerra
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, Sant'Andrea Hospital, University of Rome "Sapienza", 00189, Rome, Italy.
| | - Simona Giglio
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, Sant'Andrea Hospital, University of Rome "Sapienza", 00189, Rome, Italy
| | - Omar Faruq
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, Sant'Andrea Hospital, University of Rome "Sapienza", 00189, Rome, Italy
| | - Roberto Cirombella
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, Sant'Andrea Hospital, University of Rome "Sapienza", 00189, Rome, Italy
| | - Ilenia Segatto
- Unit of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, National Cancer Institute, 33081, Aviano, Italy
| | - Francesca Citron
- Unit of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, National Cancer Institute, 33081, Aviano, Italy
| | - Maria Chiara Mattevi
- Unit of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, National Cancer Institute, 33081, Aviano, Italy
| | - Elisabetta Di Renzi
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, Sant'Andrea Hospital, University of Rome "Sapienza", 00189, Rome, Italy
| | - Luciano Cascione
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
| | - Pierluigi Gasparini
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Barbara Belletti
- Unit of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, National Cancer Institute, 33081, Aviano, Italy
| | - Gustavo Baldassarre
- Unit of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, National Cancer Institute, 33081, Aviano, Italy
| | - Andrea Sacconi
- Clinical Trial Center, Biostatistics and Bioinformatics Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Giovanni Blandino
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Andrea Vecchione
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, Sant'Andrea Hospital, University of Rome "Sapienza", 00189, Rome, Italy.
| |
Collapse
|
2
|
Glogovitis I, D’Ambrosi S, Antunes-Ferreira M, Chiogna M, Yahubyan G, Baev V, Wurdinger T, Koppers-Lalic D. Combinatorial Analysis of miRNAs and tRNA Fragments as Potential Biomarkers for Cancer Patients in Liquid Biopsies. Noncoding RNA 2025; 11:17. [PMID: 39997617 PMCID: PMC11858735 DOI: 10.3390/ncrna11010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/05/2025] [Accepted: 02/08/2025] [Indexed: 02/26/2025] Open
Abstract
Background: Liquid biopsy has gained significant attention as a non-invasive method for cancer detection and monitoring. IsomiRs and tRNA-derived fragments (tRFs) are small non-coding RNAs that arise from non-canonical microRNA (miRNAs) processing and the cleavage of tRNAs, respectively. These small non-coding RNAs have emerged as pro-mising cancer biomarkers, and their distinct expression patterns highlight the need for further exploration of their roles in cancer research. Methods: In this study, we investigated the differential expression profiles of miRNAs, isomiRs, and tRFs in plasma extracellular vesicles (EVs) from colorectal and prostate cancer patients compared to healthy controls. Subsequently, a combinatorial analysis using the CombiROC package was performed to identify a panel of biomarkers with optimal diagnostic accuracy. Results: Our results demonstrate that a combination of miRNAs, isomiRs, and tRFs can effectively di- stinguish cancer patients from healthy controls, achieving accuracy and an area under the curve (AUC) of approximately 80%. Conclusions: These findings highlight the potential of a combinatorial approach to small RNA analysis in liquid biopsies for improved cancer diagnosis and management.
Collapse
Affiliation(s)
- Ilias Glogovitis
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam University Medical Centers, 1081 HV Amsterdam, The Netherlands; (I.G.); (S.D.); (M.A.-F.)
- Department of Molecular Biology, University of Plovdiv, 4000 Plovdiv, Bulgaria; (G.Y.); (V.B.)
| | - Silvia D’Ambrosi
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam University Medical Centers, 1081 HV Amsterdam, The Netherlands; (I.G.); (S.D.); (M.A.-F.)
| | - Mafalda Antunes-Ferreira
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam University Medical Centers, 1081 HV Amsterdam, The Netherlands; (I.G.); (S.D.); (M.A.-F.)
| | - Monica Chiogna
- Department of Statistical Sciences “Paolo Fortunati”, University of Bologna, 40126 Bologna, Italy;
| | - Galina Yahubyan
- Department of Molecular Biology, University of Plovdiv, 4000 Plovdiv, Bulgaria; (G.Y.); (V.B.)
| | - Vesselin Baev
- Department of Molecular Biology, University of Plovdiv, 4000 Plovdiv, Bulgaria; (G.Y.); (V.B.)
| | - Thomas Wurdinger
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam University Medical Centers, 1081 HV Amsterdam, The Netherlands; (I.G.); (S.D.); (M.A.-F.)
| | - Danijela Koppers-Lalic
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam University Medical Centers, 1081 HV Amsterdam, The Netherlands; (I.G.); (S.D.); (M.A.-F.)
- Leiden University Medical Center, Mathematical Institute, Leiden University, 2333 CA Leiden, The Netherlands
| |
Collapse
|
3
|
Marceca GP, Romano G, Acunzo M, Nigita G. ncRNA Editing: Functional Characterization and Computational Resources. Methods Mol Biol 2025; 2883:455-495. [PMID: 39702721 DOI: 10.1007/978-1-0716-4290-0_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Non-coding RNAs (ncRNAs) play crucial roles in gene expression regulation, translation, and disease development, including cancer. They are classified by size in short and long non-coding RNAs. This chapter focuses on the functional implications of adenosine-to-inosine (A-to-I) RNA editing in both short (e.g., miRNAs) and long ncRNAs. RNA editing dynamically alters the sequence and structure of primary transcripts, impacting ncRNA biogenesis and function. Notable findings include the role of miRNA editing in promoting glioblastoma invasiveness, characterizing RNA editing hotspots across cancers, and its implications in thyroid cancer and ischemia. This chapter also highlights bioinformatics resources and next-generation sequencing (NGS) technologies that enable comprehensive ncRNAome studies and genome-wide RNA editing detection. Dysregulation of RNA editing machinery has been linked to various human diseases, emphasizing the potential of RNA editing as a biomarker and therapeutic target. This overview integrates current knowledge and computational tools for studying ncRNA editing, providing insights into its biological significance and clinical applications.
Collapse
Affiliation(s)
| | - Giulia Romano
- Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Mario Acunzo
- Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Giovanni Nigita
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
- Center for RNA Biology, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
4
|
Zhang Y, Li L, Mendoza JJ, Wang D, Yan Q, Shi L, Gong Z, Zeng Z, Chen P, Xiong W. Advances in A-to-I RNA editing in cancer. Mol Cancer 2024; 23:280. [PMID: 39731127 DOI: 10.1186/s12943-024-02194-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 12/04/2024] [Indexed: 12/29/2024] Open
Abstract
RNA modifications are widespread throughout the mammalian transcriptome and play pivotal roles in regulating various cellular processes. These modifications are strongly linked to the development of many cancers. One of the most prevalent forms of RNA modifications in humans is adenosine-to-inosine (A-to-I) editing, catalyzed by the enzyme adenosine deaminase acting on RNA (ADAR) in double-stranded RNA (dsRNA). With advancements in RNA sequencing technologies, the role of A-to-I modification in cancer has garnered increasing attention. Research indicates that the levels and specific sites of A-to-I editing are significantly altered in many malignant tumors, correlating closely with tumor progression. This editing occurs in both coding and noncoding regions of RNA, influencing signaling pathways involved in cancer development. These modifications can either promote or suppress cancer progression through several mechanisms, including inducing non-synonymous amino acid mutations, altering the immunogenicity of dsRNAs, modulating mRNA interactions with microRNAs (miRNAs), and affecting the splicing of circular RNAs (circRNAs) as well as the function of long non-coding RNAs (lncRNAs). A comprehensive understanding of A-to-I RNA editing is crucial for advancing the diagnosis, treatment, and prognosis of human cancers. This review explores the regulatory mechanisms of A-to-I editing in cancers and examines their potential clinical applications. It also summarizes current research, identifies future directions, and highlights potential therapeutic implications.
Collapse
Affiliation(s)
- Yi Zhang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, School of Basic Medicine Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Lvyuan Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, School of Basic Medicine Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Juana Jessica Mendoza
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, School of Basic Medicine Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Dan Wang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, School of Basic Medicine Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Qijia Yan
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Lei Shi
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Zhaojian Gong
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, School of Basic Medicine Sciences, Central South University, Changsha, Hunan, 410078, China
- Furong Laboratory, Changsha, Hunan, 410078, China
| | - Pan Chen
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, School of Basic Medicine Sciences, Central South University, Changsha, Hunan, 410078, China.
- Furong Laboratory, Changsha, Hunan, 410078, China.
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, School of Basic Medicine Sciences, Central South University, Changsha, Hunan, 410078, China.
- Furong Laboratory, Changsha, Hunan, 410078, China.
| |
Collapse
|
5
|
Tomasello L, Holub SM, Nigita G, Distefano R, Croce CM. Poly(A)-specific RNase (PARN) generates and regulates miR-125a-5p 3'-isoforms, displaying an altered expression in breast cancer. Signal Transduct Target Ther 2024; 9:90. [PMID: 38616203 PMCID: PMC11016533 DOI: 10.1038/s41392-024-01795-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/12/2024] [Accepted: 03/10/2024] [Indexed: 04/16/2024] Open
Affiliation(s)
- Luisa Tomasello
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA.
| | - Shoshanah M Holub
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA
| | - Giovanni Nigita
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA
| | - Rosario Distefano
- Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, OH, USA
| | - Carlo M Croce
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
6
|
Guo S, Mao C, Peng J, Xie S, Yang J, Xie W, Li W, Yang H, Guo H, Zhu Z, Zheng Y. Improved lung cancer classification by employing diverse molecular features of microRNAs. Heliyon 2024; 10:e26081. [PMID: 38384512 PMCID: PMC10878959 DOI: 10.1016/j.heliyon.2024.e26081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 02/07/2024] [Indexed: 02/23/2024] Open
Abstract
MiRNAs are edited or modified in multiple ways during their biogenesis pathways. It was reported that miRNA editing was deregulated in tumors, suggesting the potential value of miRNA editing in cancer classification. Here we extracted three types of miRNA features from 395 LUAD and control samples, including the abundances of original miRNAs, the abundances of edited miRNAs, and the editing levels of miRNA editing sites. Our results show that eight classification algorithms selected generally had better performances on combined features than on the abundances of miRNAs or editing features of miRNAs alone. One feature selection algorithm, i.e., the DFL algorithm, selected only three features, i.e., the frequencies of hsa-miR-135b-5p, hsa-miR-210-3p and hsa-mir-182_48u (an edited miRNA), from 316 training samples. Seven classification algorithms achieved 100% accuracies on these three features for 79 independent testing samples. These results indicate that the additional information of miRNA editing is useful in improving the classification of LUAD samples.
Collapse
Affiliation(s)
- Shiyong Guo
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
- College of Big Data, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Chunyi Mao
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Jun Peng
- Department of Thoracic Surgery, The First People's Hospital of Yunnan Province, i.e., The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650032, China
| | - Shaohui Xie
- College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Jun Yang
- School of Criminal Investigation, Yunnan Police College, Kunming, Yunnan 650223, China
| | - Wenping Xie
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
- College of Big Data, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Wanran Li
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
- College of Big Data, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Huaide Yang
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
- College of Big Data, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Hao Guo
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Zexuan Zhu
- National Engineering Laboratory for Big Data System Computing Technology, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Yun Zheng
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
- College of Big Data, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| |
Collapse
|
7
|
La Ferlita A, Alaimo S, Nigita G, Distefano R, Beane JD, Tsichlis PN, Ferro A, Croce CM, Pulvirenti A. tRFUniverse: A comprehensive resource for the interactive analyses of tRNA-derived ncRNAs in human cancer. iScience 2024; 27:108810. [PMID: 38303722 PMCID: PMC10831894 DOI: 10.1016/j.isci.2024.108810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/02/2023] [Accepted: 01/02/2024] [Indexed: 02/03/2024] Open
Abstract
tRNA-derived ncRNAs are a heterogeneous class of non-coding RNAs recently proposed to be active regulators of gene expression and be involved in many diseases, including cancer. Consequently, several online resources on tRNA-derived ncRNAs have been released. Although interesting, such resources present only basic features and do not adequately exploit the wealth of knowledge available about tRNA-derived ncRNAs. Therefore, we introduce tRFUniverse, a novel online resource for the analysis of tRNA-derived ncRNAs in human cancer. tRFUniverse presents an extensive collection of classes of tRNA-derived ncRNAs analyzed across all the TCGA and TARGET tumor cohorts, NCI-60 cell lines, and biological fluids. Moreover, public AGO CLASH/CLIP-Seq data were analyzed to identify the molecular interactions between tRNA-derived ncRNAs and other transcripts. Importantly, tRFUniverse combines in a single resource a comprehensive set of features that we believe may be helpful to investigate the involvement of tRNA-derived ncRNAs in cancer biology.
Collapse
Affiliation(s)
- Alessandro La Ferlita
- Department of Cancer Biology and Genetics, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Salvatore Alaimo
- Department of Clinical and Experimental Medicine, Knowmics Lab, University of Catania, Catania, Italy
| | - Giovanni Nigita
- Department of Cancer Biology and Genetics, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Rosario Distefano
- Department of Cancer Biology and Genetics, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Joal D. Beane
- Department of Surgery, Division of Surgical Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Philip N. Tsichlis
- Department of Cancer Biology and Genetics, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Alfredo Ferro
- Department of Clinical and Experimental Medicine, Knowmics Lab, University of Catania, Catania, Italy
| | - Carlo M. Croce
- Department of Cancer Biology and Genetics, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Alfredo Pulvirenti
- Department of Clinical and Experimental Medicine, Knowmics Lab, University of Catania, Catania, Italy
| |
Collapse
|
8
|
Cui Y, Qi Y, Ding L, Ding S, Han Z, Wang Y, Du P. miRNA dosage control in development and human disease. Trends Cell Biol 2024; 34:31-47. [PMID: 37419737 DOI: 10.1016/j.tcb.2023.05.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/23/2023] [Accepted: 05/29/2023] [Indexed: 07/09/2023]
Abstract
In mammals, miRNAs recognize target mRNAs via base pairing, which leads to a complex 'multiple-to-multiple' regulatory network. Previous studies have focused on the regulatory mechanisms and functions of individual miRNAs, but alterations of many individual miRNAs do not strongly disturb the miRNA regulatory network. Recent studies revealed the important roles of global miRNA dosage control events in physiological processes and pathogenesis, suggesting that miRNAs can be considered as a 'cellular buffer' that controls cell fate. Here, we review the current state of research on how global miRNA dosage is tightly controlled to regulate development, tumorigenesis, neurophysiology, and immunity. We propose that methods of controlling global miRNA dosage may serve as effective therapeutic tools to cure human diseases.
Collapse
Affiliation(s)
- Yingzi Cui
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Ye Qi
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Li Ding
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Shuangjin Ding
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, 100871, China
| | - Zonglin Han
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, 100871, China
| | - Yangming Wang
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, 100871, China.
| | - Peng Du
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.
| |
Collapse
|
9
|
Pal A, Ojha A, Ju J. Functional and Potential Therapeutic Implication of MicroRNAs in Pancreatic Cancer. Int J Mol Sci 2023; 24:17523. [PMID: 38139352 PMCID: PMC10744132 DOI: 10.3390/ijms242417523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/01/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
The alarmingly low five-year survival rate for pancreatic cancer presents a global health challenge, contributing to about 7% of all cancer-related deaths. Late-stage diagnosis and high heterogeneity are the biggest hurdles in treating pancreatic cancer. Thus, there is a pressing need to discover novel biomarkers that could help in early detection as well as improve therapeutic strategies. MicroRNAs (miRNAs), a class of short non-coding RNA, have emerged as promising candidates with regard to both diagnostics and therapeutics. Dysregulated miRNAs play pivotal roles in accelerating tumor growth and metastasis, orchestrating tumor microenvironment, and conferring chemoresistance in pancreatic cancer. The differential expression profiles of miRNAs in pancreatic cancer could be utilized to explore novel therapeutic strategies. In this review, we also covered studies on recent advancements in various miRNA-based therapeutics such as restoring miRNAs with a tumor-suppressive function, suppressing miRNA with an oncogenic function, and combination with chemotherapeutic drugs. Despite several challenges in terms of specificity and targeted delivery, miRNA-based therapies hold the potential to revolutionize the treatment of pancreatic cancer by simultaneously targeting multiple signaling pathways.
Collapse
Affiliation(s)
- Amartya Pal
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (A.P.); (A.O.)
- Graduate Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Anushka Ojha
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (A.P.); (A.O.)
- Graduate Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Jingfang Ju
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (A.P.); (A.O.)
- The Northport Veteran’s Administration Medical Center, Northport, NY 11768, USA
| |
Collapse
|
10
|
Gómez-Martín C, Aparicio-Puerta E, van Eijndhoven MA, Medina JM, Hackenberg M, Pegtel DM. Reassessment of miRNA variant (isomiRs) composition by small RNA sequencing. CELL REPORTS METHODS 2023; 3:100480. [PMID: 37323569 PMCID: PMC10261927 DOI: 10.1016/j.crmeth.2023.100480] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 03/07/2023] [Accepted: 04/21/2023] [Indexed: 06/17/2023]
Abstract
IsomiRs, sequence variants of mature microRNAs, are usually detected and quantified using high-throughput sequencing. Many examples of their biological relevance have been reported, but sequencing artifacts identified as artificial variants might bias biological inference and therefore need to be ideally avoided. We conducted a comprehensive evaluation of 10 different small RNA sequencing protocols, exploring both a theoretically isomiR-free pool of synthetic miRNAs and HEK293T cells. We calculated that, with the exception of two protocols, less than 5% of miRNA reads can be attributed to library preparation artifacts. Randomized-end adapter protocols showed superior accuracy, with 40% of true biological isomiRs. Nevertheless, we demonstrate concordance across protocols for selected miRNAs in non-templated uridyl additions. Notably, NTA-U calling and isomiR target prediction can be inaccurate when using protocols with poor single-nucleotide resolution. Our results highlight the relevance of protocol choice for biological isomiRs detection and annotation, which has key potential implications for biomedical applications.
Collapse
Affiliation(s)
- Cristina Gómez-Martín
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Pathology, De Boelelaan, 1117 Amsterdam, the Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands
| | | | - Monique A.J. van Eijndhoven
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Pathology, De Boelelaan, 1117 Amsterdam, the Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands
| | - José M. Medina
- Department of Genetics, Faculty of Science, University of Granada, 18071 Granada, Spain
- Bioinformatics Laboratory, Biotechnology Institute, Centro de Investigación Biomédica, PTS, Avda. del Conocimiento s/n, 18100 Granada, Spain
| | - Michael Hackenberg
- Department of Genetics, Faculty of Science, University of Granada, 18071 Granada, Spain
- Bioinformatics Laboratory, Biotechnology Institute, Centro de Investigación Biomédica, PTS, Avda. del Conocimiento s/n, 18100 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, University of Granada, 18071 Granada, Spain
- Excellence Research Unit “Modelling Nature” (MNat), University of Granada, 18071 Granada, Spain
| | - D. Michiel Pegtel
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Pathology, De Boelelaan, 1117 Amsterdam, the Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands
| |
Collapse
|