1
|
Bosch PS, Cho B, Axelrod JD. Flamingo participates in multiple models of cell competition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.24.559197. [PMID: 37790459 PMCID: PMC10542155 DOI: 10.1101/2023.09.24.559197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
The growth and survival of cells with different fitness, such as those with a proliferative advantage or a deleterious mutation, is controlled through cell competition. During development, cell competition enables healthy cells to eliminate less fit cells that could jeopardize tissue integrity, and facilitates the elimination of pre-malignant cells by healthy cells as a surveillance mechanism to prevent oncogenesis. Malignant cells also benefit from cell competition to promote their expansion. Despite its ubiquitous presence, the mechanisms governing cell competition, particularly those common to developmental competition and tumorigenesis, are poorly understood. Here, we show that in Drosophila, the planar cell polarity (PCP) protein Flamingo (Fmi) is required by winners to maintain their status during cell competition in malignant tumors to overtake healthy tissue, in early pre-malignant cells when they overproliferate among wildtype cells, in healthy cells when they later eliminate pre-malignant cells, and by supercompetitors as they compete to occupy excessive territory within wildtype tissues. "Would-be" winners that lack Fmi are unable to over-proliferate, and instead become losers. We demonstrate that the role of Fmi in cell competition is independent of PCP, and that it uses a distinct mechanism that may more closely resemble one used in other less well-defined functions of Fmi.
Collapse
Affiliation(s)
- Pablo Sanchez Bosch
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Dr., Stanford CA, 94305, USA
| | - Bomsoo Cho
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Dr., Stanford CA, 94305, USA
| | - Jeffrey D Axelrod
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Dr., Stanford CA, 94305, USA
| |
Collapse
|
2
|
Parsons BL. Clonal expansion of cancer driver gene mutants investigated using advanced sequencing technologies. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2024; 794:108514. [PMID: 39369952 DOI: 10.1016/j.mrrev.2024.108514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 09/26/2024] [Accepted: 09/29/2024] [Indexed: 10/08/2024]
Abstract
Advanced sequencing technologies (ASTs) have revolutionized the quantitation of cancer driver mutations (CDMs) as rare events, which has utility in clinical oncology, cancer research, and cancer risk assessment. This review focuses on studies that have used ASTs to characterize clonal expansion (CE) of cells carrying CDMs and to explicate the selective pressures that shape CE. Importantly, high-sensitivity ASTs have made possible the characterization of mutant clones and CE in histologically normal tissue samples, providing the means to investigate nascent tumor development. Some ASTs can identify mutant clones in a spatially defined context; others enable integration of mutant data with analyses of gene expression, thereby elaborating immune, inflammatory, metabolic, and/or stromal microenvironmental impacts on CE. As a whole, these studies make it clear that a startlingly large fraction of cells in histologically normal tissues carry CDMs, CDMs may confer a context-specific selective advantage leading to CE, and only a small fraction of cells carrying CDMs eventually result in neoplasia. These observations were integrated with available literature regarding the mechanisms underlying clonal selection to interpret how measurements of CDMs and CE can be interpreted as biomarkers of cancer risk. Given the stochastic nature of carcinogenesis, the potential functional latency of driver mutations, the complexity of potential mutational and microenvironmental interactions, and involvement of other types of genetic and epigenetic changes, it is concluded that CDM-based measurements should be viewed as probabilistic rather than deterministic biomarkers. Increasing inter-sample variability in CDM levels (as a consequence of CE) may be interpretable as a shift away from normal tissue homeostasis and an indication of increased future cancer risk, a process that may reflect normal aging or carcinogen exposure. Consequently, analyses of variability in levels of CDMs have the potential to bolster existing approaches for carcinogenicity testing.
Collapse
Affiliation(s)
- Barbara L Parsons
- US Food and Drug Administration, National Center for Toxicological Research, Division of Genetic and Molecular Toxicology, 3900 NCTR Rd., Jefferson AR 72079, USA.
| |
Collapse
|
3
|
Mezentsev A, Durymanov M, Makarov VA. A Comprehensive Review of Protein Biomarkers for Invasive Lung Cancer. Curr Oncol 2024; 31:4818-4854. [PMID: 39329988 PMCID: PMC11431409 DOI: 10.3390/curroncol31090360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/16/2024] [Accepted: 08/22/2024] [Indexed: 09/28/2024] Open
Abstract
Invasion and metastasis are important hallmarks of lung cancer, and affect patients' survival. Early diagnostics of metastatic potential are important for treatment management. Recent findings suggest that the transition to an invasive phenotype causes changes in the expression of 700-800 genes. In this context, the biomarkers restricted to the specific type of cancer, like lung cancer, are often overlooked. Some well-known protein biomarkers correlate with the progression of the disease and the immunogenicity of the tumor. Most of these biomarkers are not exclusive to lung cancer because of their significant role in tumorigenesis. The dysregulation of others does not necessarily indicate cell invasiveness, as they play an active role in cell division. Clinical studies of lung cancer use protein biomarkers to assess the invasiveness of cancer cells for therapeutic purposes. However, there is still a need to discover new biomarkers for lung cancer. In the future, minimally invasive techniques, such as blood or saliva analyses, may be sufficient for this purpose. Many researchers suggest unconventional biomarkers, like circulating nucleic acids, exosomal proteins, and autoantibodies. This review paper aims to discuss the advantages and limitations of protein biomarkers of invasiveness in lung cancer, to assess their prognostic value, and propose novel biomarker candidates.
Collapse
Affiliation(s)
- Alexandre Mezentsev
- Medical Informatics Laboratory, Yaroslav-the-Wise Novgorod State University, 173003 Veliky Novgorod, Russia
- Center for Theoretical Problems of Physicochemical Pharmacology, 109029 Moscow, Russia
| | - Mikhail Durymanov
- Medical Informatics Laboratory, Yaroslav-the-Wise Novgorod State University, 173003 Veliky Novgorod, Russia
| | - Vladimir A Makarov
- Medical Informatics Laboratory, Yaroslav-the-Wise Novgorod State University, 173003 Veliky Novgorod, Russia
| |
Collapse
|
4
|
Tawfik HO, Mousa MHA, Zaky MY, El-Dessouki AM, Sharaky M, Abdullah O, El-Hamamsy MH, Al-Karmalawy AA. Rationale design of novel substituted 1,3,5-triazine candidates as dual IDH1(R132H)/ IDH2(R140Q) inhibitors with high selectivity against acute myeloid leukemia: In vitro and in vivo preclinical investigations. Bioorg Chem 2024; 149:107483. [PMID: 38805913 DOI: 10.1016/j.bioorg.2024.107483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/02/2024] [Accepted: 05/20/2024] [Indexed: 05/30/2024]
Abstract
In this study, novel substituted 1,3,5-triazine candidates (4a-d, 5a-j, and 6a-d) were designed as second-generation small molecules to act as dual IDH1 and IDH2 inhibitors according to the pharmacophoric features of both vorasidenib and enasidenib. Compounds 6a and 6b for leukemia cell lines showed from low to sub-micromolar GI50. Moreover, compounds 4c, 5f, and 6b described the frontier antitumor activity against THP1 and Kasumi Leukemia cancer cells with IC50 values of (10 and 12), (10.5 and 7), and (6.2 and 5.9) µg/mL, which were superior to those of cisplatin (25 and 28) µg/mL, respectively. Interestingly, compounds 4c, 6b, and 6d represented the best dual IDH1(R132H)/IDH2(R140Q) inhibitory potentials with IC50 values of (0.72 and 1.22), (0.12 and 0.93), and (0.50 and 1.28) µg/mL, respectively, compared to vorasidenib (0.02 and 0.08) µg/mL and enasidenib (0.33 and 1.80) µg/mL. Furthermore, the most active candidate (6b) has very promising inhibitory potentials towards HIF-1α, VEGF, and SDH, besides, a marked increase of ROS was observed as well. Besides, compound 6b induced the upregulation of P53, BAX, Caspases 3, 6, 8, and 9 proteins by 3.70, 1.99, 2.06, 1.73, 1.75, and 1.85-fold changes, respectively, and the downregulation for the BCL-2 protein by 0.55-fold change compared to the control. Besides, the in vivo behavior of compound 6b as an antitumor agent was evaluated in female mice bearing solid Ehrlich carcinoma tumors. Notably, compound 6b administration resulted in a prominent decrease in the weight and volume of the tumors, accompanied by improvements in biochemical, hematological, and histological parameters.
Collapse
Affiliation(s)
- Haytham O Tawfik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt.
| | - Mai H A Mousa
- Pharmaceutical Chemistry Department, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo 11786, Egypt
| | - Mohamed Y Zaky
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Egypt
| | - Ahmed M El-Dessouki
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza 12566, Egypt
| | - Marwa Sharaky
- Cancer Biology Department, Pharmacology Unit, National Cancer Institute (NCI), Cairo University, Cairo, Egypt; Biochemistry Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza 12566, Egypt
| | - Omeima Abdullah
- Pharmaceutical Sciences Department, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Mervat H El-Hamamsy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Ahmed A Al-Karmalawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta 34518, Egypt; Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza 12566, Egypt.
| |
Collapse
|
5
|
El-Gamil DS, Zaky MY, Maximous PM, Sharaky M, El-Dessouki AM, Riad NM, Shaaban S, Abdel-Halim M, Al-Karmalawy AA. Exploring chromone-2-carboxamide derivatives for triple-negative breast cancer targeting EGFR, FGFR3, and VEGF pathways: Design, synthesis, and preclinical insights. Drug Dev Res 2024; 85:e22228. [PMID: 38952003 DOI: 10.1002/ddr.22228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/27/2024] [Accepted: 06/17/2024] [Indexed: 07/03/2024]
Abstract
Chromone-based compounds have established cytotoxic, antiproliferative, antimetastatic, and antiangiogenic effects on various cancer cell types via modulating different molecular targets. Herein, 17 novel chromone-2-carboxamide derivatives were synthesized and evaluated for their in vitro anticancer activity against 15 human cancer cell lines. Among the tested cell lines, MDA-MB-231, the triple-negative breast cancer cell line, was found to be the most sensitive, where the N-(2-furylmethylene) (15) and the α-methylated N-benzyl (17) derivatives demonstrated the highest growth inhibition with GI50 values of 14.8 and 17.1 μM, respectively. In vitro mechanistic studies confirmed the significant roles of compounds 15 and 17 in the induction of apoptosis and suppression of EGFR, FGFR3, and VEGF protein levels in MDA-MB-231 cancer cells. Moreover, compound 15 exerted cell cycle arrest at both the G0-G1 and G2-M phases. The in vivo efficacy of compound 15 as an antitumor agent was further investigated in female mice bearing Solid Ehrlich Carcinoma. Notably, administration of compound 15 resulted in a marked decrease in both tumor weight and volume, accompanied by improvements in biochemical, hematological, histological, and immunohistochemical parameters that verified the repression of both angiogenesis and inflammation as additional Anticancer mechanisms. Moreover, the binding interactions of compounds 15 and 17 within the binding sites of all three target receptors (EGFR, FGFR3, and VEGF) were clearly illustrated using molecular docking.
Collapse
Affiliation(s)
- Dalia S El-Gamil
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Mohamed Y Zaky
- Zoology Department, Molecular Physiology Division, Faculty of Science, Beni-Suef University, Beni Suef, Egypt
| | - Patrick M Maximous
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Marwa Sharaky
- Cancer Biology Department, Pharmacology Unit, National Cancer Institute (NCI), Cairo University, Cairo, Egypt
- Biochemistry Department, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Ahmed M El-Dessouki
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Noura M Riad
- Department of Chemistry, School of Life and Medical Sciences, New Administrative Capital, University of Hertfordshire hosted by Global Academic Foundation, Cairo, Egypt
| | - Saad Shaaban
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
- Organic Chemistry Division, Department of Chemistry, College of Science, Mansoura University, Mansoura, Egypt
| | - Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Ahmed A Al-Karmalawy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, Egypt
| |
Collapse
|
6
|
Vibishan B, B V H, Dey S. A resource-based mechanistic framework for castration-resistant prostate cancer (CRPC). J Theor Biol 2024; 587:111806. [PMID: 38574968 DOI: 10.1016/j.jtbi.2024.111806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/04/2024] [Accepted: 03/25/2024] [Indexed: 04/06/2024]
Abstract
Cancer therapy often leads to the selective elimination of drug-sensitive cells from the tumour. This can favour the growth of cells resistant to the therapeutic agent, ultimately causing a tumour relapse. Castration-resistant prostate cancer (CRPC) is a well-characterised instance of this phenomenon. In CRPC, after systemic androgen deprivation therapy (ADT), a subset of drug-resistant cancer cells autonomously produce testosterone, thus enabling tumour regrowth. A previous theoretical study has shown that such a tumour relapse can be delayed by inhibiting the growth of drug-resistant cells using biotic competition from drug-sensitive cells. In this context, the centrality of resource dynamics to intra-tumour competition in the CRPC system indicates clear scope for the construction of theoretical models that can explicitly incorporate the underlying mechanisms of tumour ecology. In the current study, we use a modified logistic framework to model cell-cell interactions in terms of the production and consumption of resources. Our results show that steady state composition of CRPC can be understood as a composite function of the availability and utilisation efficiency of two resources-oxygen and testosterone. In particular, we show that the effect of changing resource availability or use efficiency is conditioned by their general abundance regimes. Testosterone typically functions in trace amounts and thus affects steady state behaviour of the CRPC system differently from oxygen, which is usually available at higher levels. Our data thus indicate that explicit consideration of resource dynamics can produce novel and useful mechanistic understanding of CRPC. Furthermore, such a modelling approach also incorporates variables into the system's description that can be directly measured in a clinical context. This is therefore a promising avenue of research in cancer ecology that could lead to therapeutic approaches that are more clearly rooted in the biology of CRPC.
Collapse
Affiliation(s)
- B Vibishan
- Department of Biology, Indian Institute of Science Education and Research (IISER) Pune, Pune, Maharashtra, India.
| | - Harshavardhan B V
- Department of Biology, Indian Institute of Science Education and Research (IISER) Pune, Pune, Maharashtra, India; IISc Mathematics Initiative, Indian Institute of Science, Bangalore, Karnataka, India.
| | - Sutirth Dey
- Department of Biology, Indian Institute of Science Education and Research (IISER) Pune, Pune, Maharashtra, India.
| |
Collapse
|
7
|
Hefny SM, El-Moselhy TF, El-Din N, Giovannuzzi S, Bin Traiki T, Vaali-Mohammed MA, El-Dessouki AM, Yamaguchi K, Sugiura M, Shaldam MA, Supuran CT, Abdulla MH, Eldehna WM, Tawfik HO. Discovery and Mechanistic Studies of Dual-Target Hits for Carbonic Anhydrase IX and VEGFR-2 as Potential Agents for Solid Tumors: X-ray, In Vitro, In Vivo, and In Silico Investigations of Coumarin-Based Thiazoles. J Med Chem 2024. [PMID: 38642371 DOI: 10.1021/acs.jmedchem.4c00239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2024]
Abstract
A dual-targeting approach is predicted to yield better cancer therapy outcomes. Consequently, a series of coumarin-based thiazoles (5a-h, 6, and 7a-e) were designed and constructed as potential carbonic anhydrase (CA) and VEGFR-2 suppressors. The inhibitory actions of the target compounds were assessed against CA isoforms IX and VEGFR-2. The assay results showed that coumarin-based thiazoles 5a, 5d, and 5e can effectively inhibit both targets. 5a, 5d, and 5e cytotoxic effects were tested on pancreatic, breast, and prostate cancer cells (PANC1, MCF7, and PC3). Further mechanistic investigation disclosed the ability of 5e to interrupt the PANC1 cell progression in the S stage by triggering the apoptotic cascade, as seen by increased levels of caspases 3, 9, and BAX, alongside the Bcl-2 decline. Moreover, the in vivo efficacy of compound 5e as an antitumor agent was evaluated. Also, molecular docking and dynamics displayed distinctive interactions between 5e and CA IX and VEGFR-2 binding pockets.
Collapse
Affiliation(s)
- Salma M Hefny
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Tarek F El-Moselhy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Nabaweya El-Din
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Simone Giovannuzzi
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019 Sesto Fiorentino, Firenze Italy
| | - Thamer Bin Traiki
- Department of Surgery, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | | | - Ahmed M El-Dessouki
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Ahram Canadian University, sixth of October City, Giza 12566, Egypt
| | - Koki Yamaguchi
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto 860-0082, Japan
| | - Masaharu Sugiura
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto 860-0082, Japan
| | - Moataz A Shaldam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019 Sesto Fiorentino, Firenze Italy
| | - Maha-Hamadien Abdulla
- Department of Surgery, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Haytham O Tawfik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| |
Collapse
|
8
|
Dochi H, Kondo S, Komura S, Moriyama-Kita M, Komori T, Nanbo A, Sakaguchi M, Fukuyo M, Hamabe-Horiike T, Tanaka M, Mizokami H, Kano M, Kitagawa Y, Kobayashi E, Hirai N, Ueno T, Nakanishi Y, Endo K, Sugimoto H, Hanayama R, Kaneda A, Yoshizaki T. Peritumoral SPARC expression induced by exosomes from nasopharyngeal carcinoma infected Epstein-Barr virus: A poor prognostic marker. Int J Cancer 2024; 154:895-911. [PMID: 37907830 DOI: 10.1002/ijc.34777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 09/10/2023] [Accepted: 09/21/2023] [Indexed: 11/02/2023]
Abstract
Epstein-Barr virus (EBV)-associated nasopharyngeal carcinoma (NPC) cells have high metastatic potential. Recent research has revealed that the interaction of between tumor cells and the surrounding stroma plays an important role in tumor invasion and metastasis. In this study, we showed the prognostic value of expression of SPARC, an extracellular matrix protein with multiple cellular functions, in normal adjacent tissues (NAT) surrounding NPC. In the immunohistochemical analysis of 51 NPC biopsy specimens, SPARC expression levels were significantly elevated in the NAT of EBER (EBV-encoded small RNA)-positive NPC compared to that in the NAT of EBER-negative NPC. Moreover, increased SPARC expression in NAT was associated with a worsening of overall survival. The enrichment analysis of RNA-seq of publicly available NPC and NAT surrounding NPC data showed that high SPARC expression in NPC was associated with epithelial mesenchymal transition promotion, and there was a dynamic change in the gene expression profile associated with interference of cellular proliferation in NAT, including SPARC expression. Furthermore, EBV-positive NPC cells induce SPARC expression in normal nasopharyngeal cells via exosomes. Induction of SPARC in cancer-surrounding NAT cells reduced intercellular adhesion in normal nasopharyngeal structures and promoted cell competition between cancer cells and normal epithelial cells. These results suggest that epithelial cells loosen their own binding with the extracellular matrix as well as stromal cells, facilitating the invasion of tumor cells into the adjacent stroma by activating cell competition. Our findings reveal a new mechanism by which EBV creates a pro-metastatic microenvironment by upregulating SPARC expression in NPC.
Collapse
Affiliation(s)
- Hirotomo Dochi
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Satoru Kondo
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Shigetaka Komura
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Makiko Moriyama-Kita
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Takeshi Komori
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Asuka Nanbo
- Department of Virus Infection Dynamics, National Research Center for the Control and Prevention of Infectious Diseases, Nagasaki University, Nagasaki, Japan
| | - Miako Sakaguchi
- Central Laboratory, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Masaki Fukuyo
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Toshihide Hamabe-Horiike
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Mariko Tanaka
- Center for Biochemical Research and Education, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Harue Mizokami
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Makoto Kano
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Yuki Kitagawa
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Eiji Kobayashi
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Nobuyuki Hirai
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Takayoshi Ueno
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Yosuke Nakanishi
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Kazuhira Endo
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Hisashi Sugimoto
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Rikinari Hanayama
- Department of Immunology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, Japan
| | - Atsushi Kaneda
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tomokazu Yoshizaki
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical science, Kanazawa University, Kanazawa, Ishikawa, Japan
| |
Collapse
|
9
|
An L, Han Y, Jiao S, Zhou Z. Road of no return - loss of TP53 paves a defined evolution path from gastric preneoplasia-to-cancer. Cancer Biol Med 2024; 20:j.issn.2095-3941.2023.0435. [PMID: 38318814 PMCID: PMC10845934 DOI: 10.20892/j.issn.2095-3941.2023.0435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/28/2023] [Indexed: 02/07/2024] Open
Affiliation(s)
- Liwei An
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital, School of Life Sciences, Fudan University, Shanghai 200438, China
- Department of Stomatology, Shanghai Tenth People’s Hospital, Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai 200072, China
| | - Yi Han
- Department of Stomatology, Shanghai Tenth People’s Hospital, Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai 200072, China
| | - Shi Jiao
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Zhaocai Zhou
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital, School of Life Sciences, Fudan University, Shanghai 200438, China
| |
Collapse
|
10
|
Wang Y, Douville C, Chien YW, Wang BG, Chen CL, Pinto A, Smith SA, Drapkin R, Chui MH, Numan T, Vang R, Papadopoulos N, Wang TL, Shih IM. Aneuploidy Landscape in Precursors of Ovarian Cancer. Clin Cancer Res 2024; 30:600-615. [PMID: 38048050 DOI: 10.1158/1078-0432.ccr-23-0932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/21/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
PURPOSE Serous tubal intraepithelial carcinoma (STIC) is now recognized as the main precursor of ovarian high-grade serous carcinoma (HGSC). Other potential tubal lesions include p53 signatures and tubal intraepithelial lesions. We aimed to investigate the extent and pattern of aneuploidy in these epithelial lesions and HGSC to define the features that characterize stages of tumor initiation and progression. EXPERIMENTAL DESIGN We applied RealSeqS to compare genome-wide aneuploidy patterns among the precursors, HGSC (cases, n = 85), and histologically unremarkable fallopian tube epithelium (HU-FTE; control, n = 65). On the basis of a discovery set (n = 67), we developed an aneuploidy-based algorithm, REAL-FAST (Repetitive Element AneupLoidy Sequencing Fallopian Tube Aneuploidy in STIC), to correlate the molecular data with pathology diagnoses. We validated the result in an independent validation set (n = 83) to determine its performance. We correlated the molecularly defined precursor subgroups with proliferative activity and histology. RESULTS We found that nearly all p53 signatures lost the entire Chr17, offering a "two-hit" mechanism involving both TP53 and BRCA1 in BRCA1 germline mutation carriers. Proliferatively active STICs harbor gains of 19q12 (CCNE1), 19q13.2, 8q24 (MYC), or 8q arm, whereas proliferatively dormant STICs show 22q loss. REAL-FAST classified HU-FTE and STICs into 5 clusters and identified a STIC subgroup harboring unique aneuploidy that is associated with increased proliferation and discohesive growth. On the basis of a validation set, REAL-FAST showed 95.8% sensitivity and 97.1% specificity in detecting STIC/HGSC. CONCLUSIONS Morphologically similar STICs are molecularly distinct. The REAL-FAST assay identifies a potentially "aggressive" STIC subgroup harboring unique DNA aneuploidy that is associated with increased cellular proliferation and discohesive growth. REAL-FAST offers a highly reproducible adjunct technique to assist the diagnosis of STIC lesions.
Collapse
Affiliation(s)
- Yeh Wang
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Christopher Douville
- Department of Oncology, the Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- The Ludwig Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Yen-Wei Chien
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Brant G Wang
- Department of Pathology, Inova Fairfax Hospital, Falls Church, Virginia
- School of Medicine Inova Campus, University of Virginia, Falls Church, Virginia
- Department of Pathology, Georgetown University Medical Center, Washington, DC
| | - Chi-Long Chen
- Department of Pathology, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Andre Pinto
- University of Miami Sylvester Comprehensive Cancer Center, Miami, Florida
| | - Saron Ann Smith
- Cascade Pathology Services, Legacy Health System, Portland, Oregon
| | - Ronny Drapkin
- Department of Obstetrics and Gynecology and Basser Center for BRCA, University of Pennsylvania, Philadelphia, Pennsylvania
| | - M Herman Chui
- Department of Pathology and Laboratory Medicine, Sloan-Kettering Cancer Center, New York, New York
| | - Tricia Numan
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland
- Department of Pathology, Sibley Memorial Hospital, Washington, DC
| | - Russell Vang
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Nickolas Papadopoulos
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland
- Department of Oncology, the Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- The Ludwig Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Tian-Li Wang
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
- Department of Gynecology and Obstetrics, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Ie-Ming Shih
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
- Department of Gynecology and Obstetrics, Johns Hopkins Medical Institutions, Baltimore, Maryland
| |
Collapse
|
11
|
Neagu AN, Whitham D, Bruno P, Arshad A, Seymour L, Morrissiey H, Hukovic AI, Darie CC. Onco-Breastomics: An Eco-Evo-Devo Holistic Approach. Int J Mol Sci 2024; 25:1628. [PMID: 38338903 PMCID: PMC10855488 DOI: 10.3390/ijms25031628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/21/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Known as a diverse collection of neoplastic diseases, breast cancer (BC) can be hyperbolically characterized as a dynamic pseudo-organ, a living organism able to build a complex, open, hierarchically organized, self-sustainable, and self-renewable tumor system, a population, a species, a local community, a biocenosis, or an evolving dynamical ecosystem (i.e., immune or metabolic ecosystem) that emphasizes both developmental continuity and spatio-temporal change. Moreover, a cancer cell community, also known as an oncobiota, has been described as non-sexually reproducing species, as well as a migratory or invasive species that expresses intelligent behavior, or an endangered or parasite species that fights to survive, to optimize its features inside the host's ecosystem, or that is able to exploit or to disrupt its host circadian cycle for improving the own proliferation and spreading. BC tumorigenesis has also been compared with the early embryo and placenta development that may suggest new strategies for research and therapy. Furthermore, BC has also been characterized as an environmental disease or as an ecological disorder. Many mechanisms of cancer progression have been explained by principles of ecology, developmental biology, and evolutionary paradigms. Many authors have discussed ecological, developmental, and evolutionary strategies for more successful anti-cancer therapies, or for understanding the ecological, developmental, and evolutionary bases of BC exploitable vulnerabilities. Herein, we used the integrated framework of three well known ecological theories: the Bronfenbrenner's theory of human development, the Vannote's River Continuum Concept (RCC), and the Ecological Evolutionary Developmental Biology (Eco-Evo-Devo) theory, to explain and understand several eco-evo-devo-based principles that govern BC progression. Multi-omics fields, taken together as onco-breastomics, offer better opportunities to integrate, analyze, and interpret large amounts of complex heterogeneous data, such as various and big-omics data obtained by multiple investigative modalities, for understanding the eco-evo-devo-based principles that drive BC progression and treatment. These integrative eco-evo-devo theories can help clinicians better diagnose and treat BC, for example, by using non-invasive biomarkers in liquid-biopsies that have emerged from integrated omics-based data that accurately reflect the biomolecular landscape of the primary tumor in order to avoid mutilating preventive surgery, like bilateral mastectomy. From the perspective of preventive, personalized, and participatory medicine, these hypotheses may help patients to think about this disease as a process governed by natural rules, to understand the possible causes of the disease, and to gain control on their own health.
Collapse
Affiliation(s)
- Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, Carol I bvd. 20A, 700505 Iasi, Romania
| | - Danielle Whitham
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (D.W.); (P.B.); (A.A.); (L.S.); (H.M.); (A.I.H.)
| | - Pathea Bruno
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (D.W.); (P.B.); (A.A.); (L.S.); (H.M.); (A.I.H.)
| | - Aneeta Arshad
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (D.W.); (P.B.); (A.A.); (L.S.); (H.M.); (A.I.H.)
| | - Logan Seymour
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (D.W.); (P.B.); (A.A.); (L.S.); (H.M.); (A.I.H.)
| | - Hailey Morrissiey
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (D.W.); (P.B.); (A.A.); (L.S.); (H.M.); (A.I.H.)
| | - Angiolina I. Hukovic
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (D.W.); (P.B.); (A.A.); (L.S.); (H.M.); (A.I.H.)
| | - Costel C. Darie
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (D.W.); (P.B.); (A.A.); (L.S.); (H.M.); (A.I.H.)
| |
Collapse
|
12
|
Zheng J, Guo Y, Shi C, Yang S, Xu W, Ma X. Differential Ire1 determines loser cell fate in tumor-suppressive cell competition. Cell Rep 2023; 42:113303. [PMID: 37924514 DOI: 10.1016/j.celrep.2023.113303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 08/31/2023] [Accepted: 10/03/2023] [Indexed: 11/06/2023] Open
Abstract
Tumor-suppressive cell competition (TSCC) is a conserved surveillance mechanism in which neighboring cells actively eliminate oncogenic cells. Despite overwhelming studies showing that the unfolded protein response (UPR) is dysregulated in various tumors, it remains debatable whether the UPR restrains or promotes tumorigenesis. Here, using Drosophila eye epithelium as a model, we uncover a surprising decisive role of the Ire1 branch of the UPR in regulating cell polarity gene scribble (scrib) loss-induced TSCC. Both mutation and hyperactivation of Ire1 accelerate elimination of scrib clones via inducing apoptosis and autophagy, respectively. Unexpectedly, relative Ire1 activity is also crucial for determining loser cell fate, as dysregulating Ire1 signaling in the surrounding healthy cells reversed the "loser" status of scrib clones by decreasing their apoptosis. Furthermore, we show that Ire1 is required for cell competition in mammalian cells. Together, these findings provide molecular insights into scrib-mediated TSCC and highlight Ire1 as a key determinant of loser cell fate.
Collapse
Affiliation(s)
- Jiadong Zheng
- Fudan University, Shanghai 200433, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
| | - Yifan Guo
- Fudan University, Shanghai 200433, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
| | - Changyi Shi
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
| | - Shuai Yang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
| | - Wenyan Xu
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China.
| | - Xianjue Ma
- Fudan University, Shanghai 200433, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China.
| |
Collapse
|
13
|
Maji S, Pradhan AK, Kumar A, Bhoopathi P, Mannangatti P, Guo C, Windle JJ, Subler MA, Wang XY, Semmes OJ, Nyalwidhe JO, Mukhopadhyay N, Paul AK, Hatfield B, Levit MM, Madan E, Sarkar D, Emdad L, Cohen DJ, Gogna R, Cavenee WK, Das SK, Fisher PB. MDA-9/Syntenin in the tumor and microenvironment defines prostate cancer bone metastasis. Proc Natl Acad Sci U S A 2023; 120:e2307094120. [PMID: 37922327 PMCID: PMC10636346 DOI: 10.1073/pnas.2307094120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 09/25/2023] [Indexed: 11/05/2023] Open
Abstract
Bone metastasis is a frequent and incurable consequence of advanced prostate cancer (PC). An interplay between disseminated tumor cells and heterogeneous bone resident cells in the metastatic niche initiates this process. Melanoma differentiation associated gene-9 (mda-9/Syntenin/syndecan binding protein) is a prometastatic gene expressed in multiple organs, including bone marrow-derived mesenchymal stromal cells (BM-MSCs), under both physiological and pathological conditions. We demonstrate that PDGF-AA secreted by tumor cells induces CXCL5 expression in BM-MSCs by suppressing MDA-9-dependent YAP/MST signaling. CXCL5-derived tumor cell proliferation and immune suppression are consequences of the MDA-9/CXCL5 signaling axis, promoting PC disease progression. mda-9 knockout tumor cells express less PDGF-AA and do not develop bone metastases. Our data document a previously undefined role of MDA-9/Syntenin in the tumor and microenvironment in regulating PC bone metastasis. This study provides a framework for translational strategies to ameliorate health complications and morbidity associated with advanced PC.
Collapse
Affiliation(s)
- Santanu Maji
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA23298
| | - Anjan K. Pradhan
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA23298
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA23298
| | - Amit Kumar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA23298
| | - Praveen Bhoopathi
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA23298
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA23298
| | - Padmanabhan Mannangatti
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA23298
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA23298
| | - Chunqing Guo
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA23298
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA23298
- VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA23298
| | - Jolene J. Windle
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA23298
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA23298
- VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA23298
| | - Mark A. Subler
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA23298
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA23298
| | - Xiang-Yang Wang
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA23298
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA23298
- VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA23298
| | - Oliver J. Semmes
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA23507
| | - Julius O. Nyalwidhe
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA23507
| | - Nitai Mukhopadhyay
- VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA23298
- Department of Biostatistics, Virginia Commonwealth University, School of Medicine, Richmond, VA23238
| | - Asit Kr. Paul
- VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA23298
- Department of Internal Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA23238
| | - Bryce Hatfield
- Department of Pathology, Virginia Commonwealth University, School of Medicine, Richmond, VA23238
| | - Michael M. Levit
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA23238
| | - Esha Madan
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA23298
- VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA23298
- Department of Surgery, Virginia Commonwealth University, School of Medicine, Richmond, VA23238
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA23298
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA23298
- VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA23298
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA23298
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA23298
- VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA23298
| | - David J. Cohen
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA23238
| | - Rajan Gogna
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA23298
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA23298
- VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA23298
| | - Webster K. Cavenee
- Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA92093
| | - Swadesh K. Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA23298
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA23298
- VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA23298
| | - Paul B. Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA23298
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA23298
- VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA23298
| |
Collapse
|
14
|
Wang Y, Wang P, Zhang Z, Zhou J, Fan J, Sun Y. Dissecting the tumor ecosystem of liver cancers in the single-cell era. Hepatol Commun 2023; 7:e0248. [PMID: 37639704 PMCID: PMC10461950 DOI: 10.1097/hc9.0000000000000248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 06/24/2023] [Indexed: 08/31/2023] Open
Abstract
Primary liver cancers (PLCs) are a broad class of malignancies that include HCC, intrahepatic cholangiocarcinoma, and combined hepatocellular and intrahepatic cholangiocarcinoma. PLCs are often associated with a poor prognosis due to their high relapse and low therapeutic response rates. Importantly, PLCs exist within a dynamic and complex tumor ecosystem, which includes malignant, immune, and stromal cells. It is critical to dissect the PLC tumor ecosystem to uncover the underlying mechanisms associated with tumorigenesis, relapse, and treatment resistance to facilitate the discovery of novel therapeutic targets. Single-cell and spatial multi-omics sequencing techniques offer an unprecedented opportunity to elucidate spatiotemporal interactions among heterogeneous cell types within the complex tumor ecosystem. In this review, we describe the latest advances in single-cell and spatial technologies and review their applications with respect to dissecting liver cancer tumor ecosystems.
Collapse
|
15
|
Winkler F. The winner takes it all: Competition drives clonal selection in gliomagenesis. Cancer Cell 2023; 41:1394-1396. [PMID: 37541246 DOI: 10.1016/j.ccell.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/10/2023] [Accepted: 07/10/2023] [Indexed: 08/06/2023]
Abstract
The exact mechanisms that govern clonal dynamics and selection during early tumorigenesis remain largely elusive. Ceresa et al. provide experimental and mathematical evidence that MYC-dependent competition between individual clones is one driving force of brain tumor evolution, adding a winner/loser aspect to the picture that complements existing concepts.
Collapse
Affiliation(s)
- Frank Winkler
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany; Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
16
|
Knapp K, Verchio V, Coburn-Flynn O, Li Y, Xiong Z, Morrison JC, Shersher DD, Spitz F, Chen X. Exploring cell competition for the prevention and therapy of esophageal squamous cell carcinoma. Biochem Pharmacol 2023; 214:115639. [PMID: 37290594 PMCID: PMC10528900 DOI: 10.1016/j.bcp.2023.115639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/10/2023]
Abstract
Esophageal squamous cell carcinoma (ESCC) is characterized by the development of cancer in the esophageal squamous epithelium through a step-by-step accumulation of genetic, epigenetic, and histopathological alterations. Recent studies have demonstrated that cancer-associated gene mutations exist in histologically normal or precancerous clones of the human esophageal epithelium. However, only a small proportion of such mutant clones will develop ESCC, and most ESCC patients develop only one cancer. This suggests that most of these mutant clones are kept in a histologically normal state by neighboring cells with higher competitive fitness. When some of the mutant cells evade cell competition, they become "super-competitors" and develop into clinical cancer. It is known that human ESCC is composed of a heterogeneous population of cancer cells that interact with and influence their environment and neighbors. During cancer therapy, these cancer cells not only respond to therapeutic agents but also compete with each other. Therefore, competition between ESCC cells within the same ESCC tumor is a constantly dynamic process. However, it remains challenging to fine-tune the competitive fitness of various clones for therapeutic benefits. In this review, we will explore the role of cell competition in carcinogenesis, cancer prevention, and therapy, using NRF2, NOTCH pathway, and TP53 as examples. We believe that cell competition is a research area with promising targets for clinical translation. Manipulating cell competition may help improve the prevention and therapy of ESCC.
Collapse
Affiliation(s)
- Kristen Knapp
- Department of Surgery, Cooper University Hospital, Camden, NJ 08103, USA
| | - Vincent Verchio
- Department of Surgery, Cooper University Hospital, Camden, NJ 08103, USA
| | | | - Yahui Li
- Coriell Institute for Medical Research, Camden, NJ 08103, USA
| | - Zhaohui Xiong
- Coriell Institute for Medical Research, Camden, NJ 08103, USA
| | - Jamin C Morrison
- MD Anderson Cancer Center at Cooper, Camden, NJ 08103, USA; Cooper Medical School of Rowan University, Camden, NJ 08103, USA
| | - David D Shersher
- Department of Surgery, Cooper University Hospital, Camden, NJ 08103, USA; MD Anderson Cancer Center at Cooper, Camden, NJ 08103, USA; Cooper Medical School of Rowan University, Camden, NJ 08103, USA
| | - Francis Spitz
- Department of Surgery, Cooper University Hospital, Camden, NJ 08103, USA; MD Anderson Cancer Center at Cooper, Camden, NJ 08103, USA; Cooper Medical School of Rowan University, Camden, NJ 08103, USA
| | - Xiaoxin Chen
- Department of Surgery, Cooper University Hospital, Camden, NJ 08103, USA; Coriell Institute for Medical Research, Camden, NJ 08103, USA; MD Anderson Cancer Center at Cooper, Camden, NJ 08103, USA; Cooper Medical School of Rowan University, Camden, NJ 08103, USA.
| |
Collapse
|