1
|
Koukourikis P, Papaioannou M, Georgopoulos P, Apostolidis I, Pervana S, Apostolidis A. A Study of DNA Methylation of Bladder Cancer Biomarkers in the Urine of Patients with Neurogenic Lower Urinary Tract Dysfunction. BIOLOGY 2023; 12:1126. [PMID: 37627010 PMCID: PMC10452268 DOI: 10.3390/biology12081126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/03/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023]
Abstract
Background: Bladder cancer (BCa) in patients suffering from neurogenic lower urinary tract dysfunction (NLUTD) is a significant concern due to its advanced stage at diagnosis and high mortality rate. Currently, there is a scarcity of specific guidelines for BCa screening in these patients. The development of urine biomarkers for BCa seems to be an attractive non-invasive method of screening or risk stratification in this patient population. DNA methylation is an epigenetic modification, resulting in the transcriptional silencing of tumor suppression genes, that is frequently detected in the urine of BCa patients. Objectives: We aimed to investigate DNA hypermethylation in five gene promoters, previously associated with BCa, in the urine of NLUTD patients, and in comparison with healthy controls. Design, setting and participants: This was a prospective case-control study that recruited neurourology outpatients from a public teaching hospital who had suffered from NLUTD for at least 5 years. They all underwent cystoscopy combined with biopsy for BCa screening following written informed consent. DNA was extracted and DNA methylation was assessed for the RASSF1, RARβ, DAPK, TERT and APC gene promoters via quantitative methylation-specific PCR in urine specimens from the patients and controls. Results: Forty-one patients of mixed NLUTD etiology and 35 controls were enrolled. DNA was detected in 36 patients' urine specimens and in those of 22 controls. In the urine specimens, DNA was hypermethylated in at least one of five gene promoters in 17/36 patients and in 3/22 controls (47.22% vs. 13.64%, respectively, p = 0.009). RASSF1 was hypermethylated in 10/17 (58.82%) specimens with detected methylation, APC in 7/17 (41.18%), DAPK in 4/17 (23.53%), RAR-β2 in 3/17 (17.56%) and TERT in none. According to a multivariate logistic regression analysis, NLUTD and male gender were significantly associated with hypermethylation (OR = 7.43, p = 0.007 and OR = 4.21; p = 0.04, respectively). In the tissue specimens, histology revealed TaLG BCa in two patients and urothelial squamous metaplasia in five patients. Chronic bladder inflammation was present in 35/41 bladder biopsies. Conclusions: DNA hypermethylation in a panel of five BCa-associated genes in the urine was significantly more frequent in NLUTD patients than in the controls. Our results warrant further evaluation in longitudinal studies assessing the clinical implications and possible associations between DNA hypermethylation, chronic inflammation and BCa in the NLUTD population.
Collapse
Affiliation(s)
- Periklis Koukourikis
- 2nd Department of Urology, Aristotle University of Thessaloniki, General Hospital ‘Papageorgiou’, 56403 Thessaloniki, Greece; (P.K.); (P.G.); (I.A.)
| | - Maria Papaioannou
- Department of Biological Chemistry, Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Petros Georgopoulos
- 2nd Department of Urology, Aristotle University of Thessaloniki, General Hospital ‘Papageorgiou’, 56403 Thessaloniki, Greece; (P.K.); (P.G.); (I.A.)
- Pelvic Floor Unit, Department of Urology, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Ioannis Apostolidis
- 2nd Department of Urology, Aristotle University of Thessaloniki, General Hospital ‘Papageorgiou’, 56403 Thessaloniki, Greece; (P.K.); (P.G.); (I.A.)
| | - Stavroula Pervana
- Department of Pathology, General Hospital Papageorgiou, 56429 Thessaloniki, Greece;
| | - Apostolos Apostolidis
- 2nd Department of Urology, Aristotle University of Thessaloniki, General Hospital ‘Papageorgiou’, 56403 Thessaloniki, Greece; (P.K.); (P.G.); (I.A.)
| |
Collapse
|
2
|
Jordaens S, Zwaenepoel K, Tjalma W, Deben C, Beyers K, Vankerckhoven V, Pauwels P, Vorsters A. Urine biomarkers in cancer detection: A systematic review of preanalytical parameters and applied methods. Int J Cancer 2023; 152:2186-2205. [PMID: 36647333 DOI: 10.1002/ijc.34434] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/25/2022] [Accepted: 12/29/2022] [Indexed: 01/18/2023]
Abstract
The aim of this review was to explore the status of urine sampling as a liquid biopsy for noninvasive cancer research by reviewing used preanalytical parameters and protocols. We searched two main health sciences databases, PubMed and Web of Science. From all eligible publications (2010-2022), information was extracted regarding: (a) study population characteristics, (b) cancer type, (c) urine preanalytics, (d) analyte class, (e) isolation method, (f) detection method, (g) comparator used, (h) biomarker type, (i) conclusion and (j) sensitivity and specificity. The search query identified 7835 records, of which 924 unique publications remained after screening the title, abstract and full text. Our analysis demonstrated that many publications did not report information about the preanalytical parameters of their urine samples, even though several other studies have shown the importance of standardization of sample handling. Interestingly, it was noted that urine is used for many cancer types and not just cancers originating from the urogenital tract. Many different types of relevant analytes have been shown to be found in urine. Additionally, future considerations and recommendations are discussed: (a) the heterogeneous nature of urine, (b) the need for standardized practice protocols and (c) the road toward the clinic. Urine is an emerging liquid biopsy with broad applicability in different analytes and several cancer types. However, standard practice protocols for sample handling and processing would help to elaborate the clinical utility of urine in cancer research, detection and disease monitoring.
Collapse
Affiliation(s)
- Stephanie Jordaens
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, Belgium.,Novosanis NV, Wijnegem, Belgium
| | - Karen Zwaenepoel
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, Belgium.,Laboratory of Pathological Anatomy, Antwerp University Hospital (UZA), Edegem, Belgium
| | - Wiebren Tjalma
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, Belgium.,Multidisciplinary Breast Clinic, Gynecological Oncology Unit, Department of Obstetrics and Gynecology, Antwerp University Hospital (UZA), Edegem, Belgium
| | - Christophe Deben
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, Belgium
| | | | - Vanessa Vankerckhoven
- Novosanis NV, Wijnegem, Belgium.,Center for Evaluation of Vaccination (CEV), Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
| | - Patrick Pauwels
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, Belgium.,Laboratory of Pathological Anatomy, Antwerp University Hospital (UZA), Edegem, Belgium
| | - Alex Vorsters
- Center for Evaluation of Vaccination (CEV), Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
3
|
Djomkam Zune AL, Olwal CO, Tapela K, Owoicho O, Nganyewo NN, Lyko F, Paemka L. Pathogen-Induced Epigenetic Modifications in Cancers: Implications for Prevention, Detection and Treatment of Cancers in Africa. Cancers (Basel) 2021; 13:cancers13236051. [PMID: 34885162 PMCID: PMC8656768 DOI: 10.3390/cancers13236051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer is a major public health burden worldwide. Tumor formation is caused by multiple intrinsic and extrinsic factors. Many reports have demonstrated a positive correlation between the burden of infectious pathogens and the occurrence of cancers. However, the mechanistic link between pathogens and cancer development remains largely unclear and is subject to active investigations. Apart from somatic mutations that have been widely linked with various cancers, an appreciable body of knowledge points to alterations of host epigenetic patterns as key triggers for cancer development. Several studies have associated various infectious pathogens with epigenetic modifications. It is therefore plausible to assume that pathogens induce carcinogenesis via alteration of normal host epigenetic patterns. Thus, Africa with its disproportionate burden of infectious pathogens is threatened by a dramatic increase in pathogen-mediated cancers. To curb the potential upsurge of such cancers, a better understanding of the role of tropical pathogens in cancer epigenetics could substantially provide resources to improve cancer management among Africans. Therefore, this review discusses cancer epigenetic studies in Africa and the link between tropical pathogens and cancer burden. In addition, we discuss the potential mechanisms by which pathogens induce cancers and the opportunities and challenges of tropical pathogen-induced epigenetic changes for cancer prevention, detection and management.
Collapse
Affiliation(s)
- Alexandra Lindsey Djomkam Zune
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra LG 54, Ghana; (C.O.O.); (K.T.); (O.O.); (N.N.N.)
- Correspondence: (A.L.D.Z.); (L.P.); Tel.: +233-205652619 (L.P.)
| | - Charles Ochieng’ Olwal
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra LG 54, Ghana; (C.O.O.); (K.T.); (O.O.); (N.N.N.)
| | - Kesego Tapela
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra LG 54, Ghana; (C.O.O.); (K.T.); (O.O.); (N.N.N.)
| | - Oloche Owoicho
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra LG 54, Ghana; (C.O.O.); (K.T.); (O.O.); (N.N.N.)
- Department of Biological Sciences, Benue State University, Makurdi P.M.B. 102119, Benue State, Nigeria
| | - Nora Nghochuzie Nganyewo
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra LG 54, Ghana; (C.O.O.); (K.T.); (O.O.); (N.N.N.)
- Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Banjul P.O. Box 273, The Gambia
| | - Frank Lyko
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, 69120 Heidelberg, Germany;
| | - Lily Paemka
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra LG 54, Ghana; (C.O.O.); (K.T.); (O.O.); (N.N.N.)
- Correspondence: (A.L.D.Z.); (L.P.); Tel.: +233-205652619 (L.P.)
| |
Collapse
|
4
|
Guo Y, Yin J, Dai Y, Guan Y, Chen P, Chen Y, Huang C, Lu YJ, Zhang L, Song D. A Novel CpG Methylation Risk Indicator for Predicting Prognosis in Bladder Cancer. Front Cell Dev Biol 2021; 9:642650. [PMID: 34540821 PMCID: PMC8440888 DOI: 10.3389/fcell.2021.642650] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 08/05/2021] [Indexed: 01/15/2023] Open
Abstract
Purpose Bladder cancer (BLCA) is one of the most common cancers worldwide. In a large proportion of BLCA patients, disease recurs and/or progress after resection, which remains a major clinical issue in BLCA management. Therefore, it is vital to identify prognostic biomarkers for treatment stratification. We investigated the efficiency of CpG methylation for the potential to be a prognostic biomarker for patients with BLCA. Patients and Methods Overall, 357 BLCA patients from The Cancer Genome Atlas (TCGA) were randomly separated into the training and internal validation cohorts. Least absolute shrinkage and selector operation (LASSO) and support vector machine-recursive feature elimination (SVM-RFE) were used to select candidate CpGs and build the methylation risk score model, which was validated for its prognostic value in the validation cohort by Kaplan–Meier analysis. Hazard curves were generated to reveal the risk nodes throughout the follow-up. Gene Set Enrichment Analysis (GSEA) was used to reveal the potential biological pathways associated with the methylation model. Quantitative real-time polymerase chain reaction (PCR) and western blotting were performed to verify the expression level of the methylated genes. Results After incorporating the CpGs obtained by the two algorithms, CpG methylation of eight genes corresponding to TNFAIP8L3, KRTDAP, APC, ZC3H3, COL9A2, SLCO4A1, POU3F3, and ADARB2 were prominent candidate predictors in establishing a methylation risk score for BLCA (MRSB), which was used to divide the patients into high- and low-risk progression groups (p < 0.001). The effectiveness of the MRSB was validated in the internal cohort (p < 0.001). In the MRSB high-risk group, the hazard curve exhibited an initial wide, high peak within 10 months after treatment, whereas some gentle peaks around 2 years were noted. Furthermore, a nomogram comprising MRSB, age, sex, and tumor clinical stage was developed to predict the individual progression risk, and it performed well. Survival analysis implicated the effectiveness of MRSB, which remains significant in all the subgroup analysis based on the clinical features. A functional analysis of MRSB and the corresponding genes revealed potential pathways affecting tumor progression. Validation of quantitative real-time PCR and western blotting revealed that TNFAIP8L3 was upregulated in the BLCA tissues. Conclusion We developed the MRSB, an eight-gene-based methylation signature, which has great potential to be used to predict the post-surgery progression risk of BLCA.
Collapse
Affiliation(s)
- Yufeng Guo
- Department of Urology, The First Affiliated Hospital & Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jianjian Yin
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yuanheng Dai
- Department of Urology, The First Affiliated Hospital & Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yudong Guan
- Department of Urology, The First Affiliated Hospital & Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Pinjin Chen
- Department of Urology, The First Affiliated Hospital & Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yongqiang Chen
- Department of Urology, The First Affiliated Hospital & Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Chenzheng Huang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yong-Jie Lu
- Department of Urology, The First Affiliated Hospital & Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China.,Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Lirong Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Dongkui Song
- Department of Urology, The First Affiliated Hospital & Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
5
|
Gaber DA, Wassef RM, El-Ayat WM, El-Moazen MI, Montasser KA, Swar SA, Amin HAA. Role of a schistosoma haematobium specific microRNA as a predictive and prognostic tool for bilharzial bladder cancer in Egypt. Sci Rep 2020; 10:18844. [PMID: 33139749 PMCID: PMC7606480 DOI: 10.1038/s41598-020-74807-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 10/05/2020] [Indexed: 12/24/2022] Open
Abstract
Urinary bladder cancer is a common malignancy in Egypt, thus reliable methodologies are required for screening and early detection. In this study, we analyzed the gene expression of a Schistosoma hematobium specific microRNA "Sha-miR-71a" and mitogen-associated protein kinase-3 (MAPK-3) in the urine samples of 50 bladder cancer patients and 50 patients with benign bilharzial cystitis. Fifty control subjects were also tested. Indirect hemagglutination test (IHA) diagnosed 70% of studied cancer cases as bilharzial associated bladder cancer (BBC), while histopathological examination detected only 18%. Urinary Sha-miR-71a & MAPK-3 revealed enhanced expression in BBC (p-value = 0.001) compared to non-bilharzial bladder cancer (NBBC) cases. Patients with chronic bilharzial cystitis exhibited a significant increase in gene expression compared to those with acute infection (p-value = 0.001). Sha-miR-71a and MAPK-3 showed good sensitivity and specificity in the diagnosis of BBC when analyzed by the receiver operating characteristic (ROC) curve. They were also prognostic regarding malignancy grade. Both biomarkers showed a positive correlation. Our results revealed that IHA is a reliable test in the diagnosis of bilharziasis associated with bladder cancer, and that Sha-miR-71a and MAPK-3 provide non-invasive specific biomarkers to diagnose BBC, as well as a potential role in testing bilharzial patients for risk to develop cancer.
Collapse
Affiliation(s)
- Dalia A Gaber
- Medical Biochemistry & Molecular Biology Department, Faculty of Medicine, Helwan University, Cairo, Egypt.
| | - Rita M Wassef
- Parasitology Department, Faculty of Medicine, Helwan University, Cairo, Egypt
| | - Wael M El-Ayat
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | | - Karim A Montasser
- Clinical Pathology Department, Faculty of Medicine, Helwan University, Cairo, Egypt
| | - Sherif A Swar
- Urology Department, National Institute of Urology and Nephrology, Cairo, Egypt
| | - Hebat Allah A Amin
- Pathology Department, Faculty of Medicine, Helwan University, Cairo, Egypt
| |
Collapse
|
6
|
Guo M, Peng Y, Gao A, Du C, Herman JG. Epigenetic heterogeneity in cancer. Biomark Res 2019; 7:23. [PMID: 31695915 PMCID: PMC6824025 DOI: 10.1186/s40364-019-0174-y] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 10/10/2019] [Indexed: 12/15/2022] Open
Abstract
Phenotypic and functional heterogeneity is one of the hallmarks of human cancers. Tumor genotype variations among tumors within different patients are known as interpatient heterogeneity, and variability among multiple tumors of the same type arising in the same patient is referred to as intra-patient heterogeneity. Subpopulations of cancer cells with distinct phenotypic and molecular features within a tumor are called intratumor heterogeneity (ITH). Since Nowell proposed the clonal evolution of tumor cell populations in 1976, tumor heterogeneity, especially ITH, was actively studied. Research has focused on the genetic basis of cancer, particularly mutational activation of oncogenes or inactivation of tumor-suppressor genes (TSGs). The phenomenon of ITH is commonly explained by Darwinian-like clonal evolution of a single tumor. Despite the monoclonal origin of most cancers, new clones arise during tumor progression due to the continuous acquisition of mutations. It is clear that disruption of the "epigenetic machinery" plays an important role in cancer development. Aberrant epigenetic changes occur more frequently than gene mutations in human cancers. The epigenome is at the intersection of the environment and genome. Epigenetic dysregulation occurs in the earliest stage of cancer. The current trend of epigenetic therapy is to use epigenetic drugs to reverse and/or delay future resistance to cancer therapies. A majority of cancer therapies fail to achieve durable responses, which is often attributed to ITH. Epigenetic therapy may reverse drug resistance in heterogeneous cancer. Complete understanding of genetic and epigenetic heterogeneity may assist in designing combinations of targeted therapies based on molecular information extracted from individual tumors.
Collapse
Affiliation(s)
- Mingzhou Guo
- 1Department of Gastroenterology & Hepatology, Chinese PLA General Hospital, #28 Fuxing Road, Beijing, 100853 China.,State Key Laboratory of Esophageal Cancer Prevention and Treatment, 40 Daxue Road, Zhengzhou, Henan 450052 China
| | - Yaojun Peng
- 1Department of Gastroenterology & Hepatology, Chinese PLA General Hospital, #28 Fuxing Road, Beijing, 100853 China
| | - Aiai Gao
- 1Department of Gastroenterology & Hepatology, Chinese PLA General Hospital, #28 Fuxing Road, Beijing, 100853 China
| | - Chen Du
- 1Department of Gastroenterology & Hepatology, Chinese PLA General Hospital, #28 Fuxing Road, Beijing, 100853 China
| | - James G Herman
- 3The Hillman Cancer Center, University of Pittsburgh Cancer Institute, 5117 Centre Ave., Pittsburgh, PA 15213 USA
| |
Collapse
|
7
|
Cervena K, Vodicka P, Vymetalkova V. Diagnostic and prognostic impact of cell-free DNA in human cancers: Systematic review. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2019; 781:100-129. [DOI: 10.1016/j.mrrev.2019.05.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/03/2019] [Accepted: 05/07/2019] [Indexed: 02/06/2023]
|
8
|
Larsen LK, Lind GE, Guldberg P, Dahl C. DNA-Methylation-Based Detection of Urological Cancer in Urine: Overview of Biomarkers and Considerations on Biomarker Design, Source of DNA, and Detection Technologies. Int J Mol Sci 2019; 20:ijms20112657. [PMID: 31151158 PMCID: PMC6600406 DOI: 10.3390/ijms20112657] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/23/2019] [Accepted: 05/24/2019] [Indexed: 12/11/2022] Open
Abstract
Changes in DNA methylation have been causally linked with cancer and provide promising biomarkers for detection in biological fluids such as blood, urine, and saliva. The field has been fueled by genome-wide characterization of DNA methylation across cancer types as well as new technologies for sensitive detection of aberrantly methylated DNA molecules. For urological cancers, urine is in many situations the preferred "liquid biopsy" source because it contains exfoliated tumor cells and cell-free tumor DNA and can be obtained easily, noninvasively, and repeatedly. Here, we review recent advances made in the development of DNA-methylation-based biomarkers for detection of bladder, prostate, renal, and upper urinary tract cancers, with an emphasis on the performance characteristics of biomarkers in urine. For most biomarkers evaluated in independent studies, there was great variability in sensitivity and specificity. We discuss issues that impact the outcome of DNA-methylation-based detection of urological cancer and account for the great variability in performance, including genomic location of biomarkers, source of DNA, and technical issues related to the detection of rare aberrantly methylated DNA molecules. Finally, we discuss issues that remain to be addressed to fully exploit the potential of DNA-methylation-based biomarkers in the clinic, including the need for prospective trials and careful selection of control groups.
Collapse
Affiliation(s)
| | - Guro Elisabeth Lind
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, the Norwegian Radium Hospital, NO-0424 Oslo, Norway.
| | - Per Guldberg
- Danish Cancer Society Research Center, DK-2100 Copenhagen, Denmark.
| | - Christina Dahl
- Danish Cancer Society Research Center, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
9
|
Han W, Wang Y, Fan J, Wang C. Is APC hypermethylation a diagnostic biomarker for bladder cancer? A meta-analysis. Onco Targets Ther 2018; 11:8359-8369. [PMID: 30568459 PMCID: PMC6267632 DOI: 10.2147/ott.s177601] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Objective Numerous studies have been performed to investigate the association between APC promoter hypermethylation and bladder cancer risk. Nevertheless, the conclusion was uncertain due to small sample size, different ethnicities, and tumor subtype. Hence, to accurately assess the effect of APC promoter hypermethylation on the risk of bladder cancer, we performed the meta-analysis. Materials and methods We retrieved the relevant literatures from electronic databases such as PubMed, Web of Science, Wanfang, Vapp, and CNKI (Chinese National Knowledge Infrastructure). 95% CI and OR were calculated to evaluate the associations of APC promoter hypermethylation with risk and clinical features of bladder cancer. Heterogeneity among studies was assessed with Q test and I 2 statistic. In addition, the diagnostic sensitivity, specificity, and area under the curve (AUC) value of APC hypermethylation for bladder cancer were calculated. Results In total, 14 articles with 531 controls and 1,293 cases were included to assess the associations of APC promoter hypermethylation with the risk and clinical characteristics of bladder cancer. The significant association between APC promoter hypermethylation and bladder cancer risk was detected (OR =17.01, CI =7.40-39.07). Furthermore, the results revealed that APC promoter hypermethylation was significantly correlated with the grade of bladder tumor (pTNM stage: OR =1.84, CI =0.87-3.93; grade: OR =4.11, CI =1.62-10.43). According to the results of diagnostic evaluation, the diagnostic sensitivity, specificity, and AUC value of APC hypermethylation for bladder cancer risk were 0.52 (95% CI =0.41-0.63), 0.98 (95% CI =0.90-1.00), and 0.80 (95% CI =0.76-0.83), respectively. Conclusion This meta-analysis revealed that APC promoter hypermethylation was a risk factor for bladder cancer risk. In addition, APC promoter hypermethylation was significantly associated with the grade of bladder cancer. APC hypermethylation might be a useful biomarker for the clinical diagnosis of bladder cancer.
Collapse
Affiliation(s)
- Wei Han
- Department of Pharmacy, Central Hospital of Zibo Mining Group Limited Liability Company, Zibo, China
| | - Yutao Wang
- Shandong Institute of Prevention and Control for Endemic Disease, Thyroid Disease Prevention and Control Center, Jinan, China,
| | - Jingli Fan
- Shandong Institute of Prevention and Control for Endemic Disease, Thyroid Disease Prevention and Control Center, Jinan, China,
| | - Chunlei Wang
- Shandong Institute of Prevention and Control for Endemic Disease, Thyroid Disease Prevention and Control Center, Jinan, China,
| |
Collapse
|
10
|
Liu H, He W, Wang B, Xu K, Han J, Zheng J, Ren J, Shao L, Bo S, Lu S, Lin T, Huang J. MALBAC-based chromosomal imbalance analysis: a novel technique enabling effective non-invasive diagnosis and monitoring of bladder cancer. BMC Cancer 2018; 18:659. [PMID: 29907142 PMCID: PMC6003132 DOI: 10.1186/s12885-018-4571-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 05/31/2018] [Indexed: 01/08/2023] Open
Abstract
Background The gold standard for bladder cancer detection is cystoscopy, which is an invasive procedure that causes discomfort in patients. The currently available non-invasive approaches either show limited sensitivity in low-grade tumours or possess unsatisfying specificity. The aim of the present study is to develop a new non-invasive strategy based on chromosomal imbalance levels to detect bladder cancer effectively. Methods We enrolled 74 patients diagnosed with bladder cancer (BC), 51 healthy participants and 27 patients who were diagnosed with non-malignant urinary disease (UD). The Chromosomal Imbalance Analysis (CIA) was conducted in the tumours and urine of participants via the multiple annealing and looping-based amplification cycles-next-generation sequencing (MALBAC-NGS) strategy. The threshold of the CIA was determined with the receiver operating characteristic (ROC) curve. The comparison of the CIA with voided urine cytology was also performed in a subgroup of 55 BC patients. The consistency and discrepancy of the different assays were studied with the Kappa analysis and the McNemar test, respectively. The performance of the urinary CIA was also validated in an additional group of 120 BC patients, 15 UD and 45 healthy participants. Results Good concordance (87.0%) in the assessments of patient tumour tissues and urine was observed. The urine-based evaluation also demonstrated a good performance (accuracy = 89.0%, sensitivity = 83.1%, specificity = 94.5%, NPV = 85.4% and PPV = 93.7%; AUC = 0.917, 95%CI =0.868–0.966, P < 0.001) in the training group, particularly in the patients with CIA-positive tumours (accuracy = 92.7%, sensitivity = 89.8%). The sensitivity and specificity in the validation group were 89.2 and 90.0%, respectively. Even in Ta/T1 and low-grade tumour patients, the sensitivity was 85–90%. The CIA also exhibited a significantly improved sensitivity compared to voided urine cytology. Conclusions This is the first study employing the concept of whole genome imbalance combined with the MALBAC technique to detect bladder cancer in urine. MALBAC-CIA yielded significant diagnostic power, even in early-stage/low-grade tumour patients, and it may be used as a non-invasive approach for diagnosis and recurrence surveillance in bladder cancer prior to the use of cystoscopy, which would largely reduce the burden on patients. Electronic supplementary material The online version of this article (10.1186/s12885-018-4571-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hao Liu
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiangxi Road, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiangxi Road, Guangzhou, China
| | - Wang He
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiangxi Road, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiangxi Road, Guangzhou, China
| | - Bo Wang
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiangxi Road, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiangxi Road, Guangzhou, China
| | - Kewei Xu
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiangxi Road, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiangxi Road, Guangzhou, China
| | - Jinli Han
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiangxi Road, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiangxi Road, Guangzhou, China
| | - Junjiong Zheng
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiangxi Road, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiangxi Road, Guangzhou, China
| | - Jun Ren
- Department of Clinical Research, Yikon Genomics, 1698 Wangyuan Road, Building #26, Fengxian District, Shanghai, 201400, China
| | - Lin Shao
- Department of Clinical Research, Yikon Genomics, 1698 Wangyuan Road, Building #26, Fengxian District, Shanghai, 201400, China
| | - Shiping Bo
- Department of Clinical Research, Yikon Genomics, 1698 Wangyuan Road, Building #26, Fengxian District, Shanghai, 201400, China
| | - Sijia Lu
- Department of Clinical Research, Yikon Genomics, 1698 Wangyuan Road, Building #26, Fengxian District, Shanghai, 201400, China.
| | - Tianxin Lin
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiangxi Road, Guangzhou, China. .,Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiangxi Road, Guangzhou, China.
| | - Jian Huang
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiangxi Road, Guangzhou, China. .,Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiangxi Road, Guangzhou, China.
| |
Collapse
|
11
|
Begam N, Jamil K, Raju GS. Promoter epigenetics of APC gene and its implication in sporadic breast cancer patients from South Indian population. GENE REPORTS 2018. [DOI: 10.1016/j.genrep.2018.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
12
|
Yang X, Zhao L, Li M, Yan L, Zhang S, Mi Z, Ren L, Xu J. Lidocaine enhances the effects of chemotherapeutic drugs against bladder cancer. Sci Rep 2018; 8:598. [PMID: 29330444 PMCID: PMC5766619 DOI: 10.1038/s41598-017-19026-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/18/2017] [Indexed: 12/22/2022] Open
Abstract
This study aimed to investigate whether lidocaine, alone or in combination with other chemotherapeutic agents, inhibits the growth of human bladder cancer cells in vitro and orthotopically transplanted bladder tumors in vivo. The effects of lidocaine (1.25, 2.5 or 5 mg/mL), mitomycin C (MMC, 0.66 mg/mL), pirarubicin (0.75 mg/mL) and Su Fu’ning lotion (SFN, 0.0625 mg/mL) on the proliferation of human bladder cancer (BIU-87) cells were studied using the MTT assay. A Balb/c nude mouse model of bladder cancer was developed by orthotopic transplantation of BIU-87 cells, and the effects of intravesical instillation of lidocaine and MMC on bladder wet weight (a measure of tumor size) and survival (over 60 days) were studied. Lidocaine inhibited proliferation of BIU-87 cells in a concentration-dependent manner and (when given in combination) enhanced the actions of each of the other antiproliferative agents. In tumor-bearing mice, MMC alone had no effect on mean survival or bladder wet weight. However, the combination of 0.66 mg/mL MMC and 5 mg/mL lidocaine prolonged survival (from 34.62 ± 6.49 to 49.30 ± 6.72 days; n = 8, P < 0.05) and reduced bladder wet weight (from 68.94 ± 53.61 to 20.26 ± 6.07; n = 8, P < 0.05). Intravesical instillation of lidocaine combined with other chemotherapeutic agents potentially could be an effective therapy for bladder cancer.
Collapse
Affiliation(s)
- Xihua Yang
- Affiliated Cancer Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Lili Zhao
- Affiliated Cancer Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Meiping Li
- College of Life Science, Shanxi University, Taiyuan, Shanxi, China
| | - Lei Yan
- Affiliated Cancer Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Shengwan Zhang
- College of Life Science, Shanxi University, Taiyuan, Shanxi, China
| | - Zhenguo Mi
- Affiliated Cancer Hospital, Shanxi Medical University, Taiyuan, Shanxi, China.
| | - Liansheng Ren
- Affiliated Cancer Hospital, Shanxi Medical University, Taiyuan, Shanxi, China.
| | - Jun Xu
- Affiliated Cancer Hospital, Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
13
|
Peng M, Chen C, Hulbert A, Brock MV, Yu F. Non-blood circulating tumor DNA detection in cancer. Oncotarget 2017; 8:69162-69173. [PMID: 28978187 PMCID: PMC5620327 DOI: 10.18632/oncotarget.19942] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 07/25/2017] [Indexed: 01/01/2023] Open
Abstract
Tumor DNA contains specific somatic alterations that are crucial for the diagnosis and treatment of cancer. Due to the spatial and temporal intra-tumor heterogeneity, multi-sampling is needed to adequately characterize the somatic alterations. Tissue biopsy, however, is limited by the restricted access to sample and the challenges to recapitulate the tumor clonal diversity. Non-blood circulating tumor DNA are tumor DNA fragments presents in non-blood body fluids, such as urine, saliva, sputum, stool, pleural fluid, and cerebrospinal fluid (CSF). Recent studies have demonstrated the presence of tumor DNA in these non-blood body fluids and their application to the diagnosis, screening, and monitoring of cancers. Non-blood circulating tumor DNA has an enormous potential for large-scale screening of local neoplasms because of its non-invasive nature, close proximity to the tumors, easiness and it is an economically viable option. It permits longitudinal assessments and allows sequential monitoring of response and progression. Enrichment of tumor DNA of local cancers in non-blood body fluids may help to archive a higher sensitivity than in plasma ctDNA. The direct contact of cancerous cells and body fluid may facilitate the detection of tumor DNA. Furthermore, normal DNA always dilutes the plasma ctDNA, which may be aggravated by inflammation and injury when very high amounts of normal DNA are released into the circulation. Altogether, our review indicate that non-blood circulating tumor DNA presents an option where the disease can be tracked in a simple and less-invasive manner, allowing for serial sampling informing of the tumor heterogeneity and response to treatment.
Collapse
Affiliation(s)
- Muyun Peng
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, P.R China
| | - Chen Chen
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, P.R China
| | - Alicia Hulbert
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Malcolm V Brock
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Fenglei Yu
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, P.R China
| |
Collapse
|
14
|
Analysis of DNA Methylation Status in Bodily Fluids for Early Detection of Cancer. Int J Mol Sci 2017; 18:ijms18040735. [PMID: 28358330 PMCID: PMC5412321 DOI: 10.3390/ijms18040735] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 03/24/2017] [Accepted: 03/26/2017] [Indexed: 02/07/2023] Open
Abstract
Epigenetic alterations by promoter DNA hypermethylation and gene silencing in cancer have been reported over the past few decades. DNA hypermethylation has great potential to serve as a screening marker, a prognostic marker, and a therapeutic surveillance marker in cancer clinics. Some bodily fluids, such as stool or urine, were obtainable without any invasion to the body. Thus, such bodily fluids were suitable samples for high throughput cancer surveillance. Analyzing the methylation status of bodily fluids around the cancer tissue may, additionally, lead to the early detection of cancer, because several genes in cancer tissues are reported to be cancer-specifically hypermethylated. Recently, several studies that analyzed the methylation status of DNA in bodily fluids were conducted, and some of the results have potential for future development and further clinical use. In fact, a stool DNA test was approved by the U.S. Food and Drug Administration (FDA) for the screening of colorectal cancer. Another promising methylation marker has been identified in various bodily fluids for several cancers. We reviewed studies that analyzed DNA methylation in bodily fluids as a less-invasive cancer screening.
Collapse
|
15
|
Pietrusiński M, Kȩpczyński Ƚ, Jȩdrzejczyk A, Borkowska E, Traczyk-Borszyńska M, Constantinou M, Kaƚużewski B, Borowiec M. Detection of bladder cancer in urine sediments by a hypermethylation panel of selected tumor suppressor genes. Cancer Biomark 2017; 18:47-59. [PMID: 27814275 DOI: 10.3233/cbm-160673] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Promoter hypermethylation can be a useful biomarker for early detection and prognosis of bladder cancer, monitoring response to treatment and complement classical diagnostic procedures. OBJECTIVE The molecular test was performed on DNA from bladder cancer cells in voided urine samples, tumor tissue DNA and normal control DNAs. We aimed to assess the diagnostic potential of epigenetic changes in urine DNA from bladder cancer cases at various clinico-pathological stages of the disease. METHODS The methylation status of 5 genes (p14ARF, p16INK4A, RASSF1A, DAPK, APC) in 113 tumor samples paired with voided urine specimens was analyzed by MSP. We compared the results of methylation analysis with UroVysion test. RESULTS The methylation profile in tumor/urine DNA was significantly correlated (p ≤ 0,05) with tumor grade in p14ARF, RASSF1a, APC/p14ARF, APC genes, respectively and with stage in p14ARF, RASSF1a/p14ARF genes, respectively. The results of UroVysion test were in correlation with hypermethylation both in tumor and urine DNA in p14ARF, RASSF1a and APC genes (p = 0,008; 0,02 and 0,04, respectively). CONCLUSIONS Promoter hypermethylation of tumor suppressor genes is a frequent mechanism in bladder cancer. We found promoter hypermethylation in all grades and stages of all cases examined. Methylation profile of selected suppressor genes may be a potential useful biomarker and enhance early detection of bladder cancer using a noninvasive urine test.
Collapse
Affiliation(s)
| | - Ƚukasz Kȩpczyński
- Department of Clinical Genetics, Medical University of Łódź, Łódź, Poland
| | - Adam Jȩdrzejczyk
- Department of Urology, John Paul II Regional Hospital Beƚchatów, Beƚchatów, Poland
| | - Edyta Borkowska
- Department of Clinical Genetics, Medical University of Łódź, Łódź, Poland
| | | | - Maria Constantinou
- Department of Clinical Genetics, Medical University of Łódź, Łódź, Poland
| | - Bogdan Kaƚużewski
- Department of Clinical Genetics, Medical University of Łódź, Łódź, Poland
| | - Maciej Borowiec
- Department of Clinical Genetics, Medical University of Łódź, Łódź, Poland
| |
Collapse
|
16
|
Direct quantitative detection for cell-free miR-155 in urine: a potential role in diagnosis and prognosis for non-muscle invasive bladder cancer. Oncotarget 2016; 7:3255-66. [PMID: 26657502 PMCID: PMC4823104 DOI: 10.18632/oncotarget.6487] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 11/21/2015] [Indexed: 11/25/2022] Open
Abstract
High recurrence rates of non-muscle invasive bladder cancer (NMIBC) in patients require lifelong testing and monitoring. The aim of this study is to develop a simplified RT-qPCR method (RT-qPCR-D) which directly quantifies cell-free miR-155 in urine without RNA extraction, and assess it as a potential tool in NMIBC detection. A pilot study including 60 urine samples was used to investigate the feasibility of RT-qPCR-D in detecting cell-free miR-155. Then, miR-155 levels were quantified in a large independent cohort of urine from 162 NIMBC patients, 76 cystitis patients, and 86 healthy donors using the RT-qPCR-D method. Changes of cell-free miR-155 before and after operation were also analyzed in 32 NIMBC patients. In pilot study, we found a significant linear association between RT-qPCR and RT-qPCR-D in urinary miR-155 detection. Both methods showed cell-free miR-155 were significantly increased in NMIBC patients, and could reflect their expression in tissues. Then, the increased expression of cell-free miR-155 was successfully validated in 162 NIMBC patients when compared with cystitis patients and healthy donors. Moreover, it distinguished NMIBC patients from others with 80.2% sensitivity and 84.6% specificity, which was superior to urine cytology. Cell-free miR-155 correlated with NMIBC stage and grade, and was an independent factor for predicting recurrence and progression to muscle invasion. In addition, cell-free miR-155 was significantly decreased after NMIBC patients underwent transurethral bladder resection. In conclusion, detection of cell-free miR-155 in urine using RT-qPCR-D is a simple and noninvasive approach which may be used for NMIBC diagnosis and prognosis prediction.
Collapse
|
17
|
The NIH-NIAID Schistosomiasis Resource Center at the Biomedical Research Institute: Molecular Redux. PLoS Negl Trop Dis 2016; 10:e0005022. [PMID: 27764112 PMCID: PMC5072641 DOI: 10.1371/journal.pntd.0005022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Schistosomiasis remains a health burden in many parts of the world. The complex life cycle of Schistosoma parasites and the economic and societal conditions present in endemic areas make the prospect of eradication unlikely in the foreseeable future. Continued and vigorous research efforts must therefore be directed at this disease, particularly since only a single World Health Organization (WHO)-approved drug is available for treatment. The National Institutes of Health (NIH)–National Institute of Allergy and Infectious Diseases (NIAID) Schistosomiasis Resource Center (SRC) at the Biomedical Research Institute provides investigators with the critical raw materials needed to carry out this important research. The SRC makes available, free of charge (including international shipping costs), not only infected host organisms but also a wide array of molecular reagents derived from all life stages of each of the three main human schistosome parasites. As the field of schistosomiasis research rapidly advances, it is likely to become increasingly reliant on omics, transgenics, epigenetics, and microbiome-related research approaches. The SRC has and will continue to monitor and contribute to advances in the field in order to support these research efforts with an expanding array of molecular reagents. In addition to providing investigators with source materials, the SRC has expanded its educational mission by offering a molecular techniques training course and has recently organized an international schistosomiasis-focused meeting. This review provides an overview of the materials and services that are available at the SRC for schistosomiasis researchers, with a focus on updates that have occurred since the original overview in 2008.
Collapse
|
18
|
Abstract
DNA methylation alterations are common in urothelial carcinoma, a prevalent cancer worldwide caused predominantly by chemical carcinogens. Recent studies have proposed sets of hypermethylated genes as promising diagnostic and prognostic biomarkers from urine or tissue samples, which require validation. Other studies have revealed intriguing links between specific carcinogens and DNA methylation alterations in cancer tissues or blood that might clarify carcinogenesis mechanisms and aid prevention. Like DNA methylation alterations, mutations in chromatin regulators are frequent, underlining the importance of epigenetic changes. However, the relations between the two changes and their functions in urothelial carcinogenesis remain unclear. Transcription factor genes with altered methylation deserve particular interest. Elucidating the functional impact of methylation changes is a prerequisite for their therapeutic targeting.
Collapse
Affiliation(s)
- Wolfgang A Schulz
- Department of Urology, Medical Faculty, Heinrich Heine University Duesseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Wolfgang Goering
- Department of Pathology, Medical Faculty, Heinrich Heine University Duesseldorf, Germany
| |
Collapse
|
19
|
Koonrungsesomboon N, Wadagni AC, Mbanefo EC. Molecular markers and Schistosoma-associated bladder carcinoma: A systematic review and meta-analysis. Cancer Epidemiol 2015; 39:487-96. [PMID: 26162479 DOI: 10.1016/j.canep.2015.06.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 06/20/2015] [Accepted: 06/22/2015] [Indexed: 01/10/2023]
Abstract
BACKGROUND Molecular mechanisms and pathogenesis of schistosomal-associated bladder cancer (SABC), one of the most common malignancies in Africa and parts of the Middle East, is still unclear. Identification of host molecular markers involved in schistosomal related bladder carcinogenesis is of value in prediction of high-risk group, early detection and timely intervention. METHODS PubMed, Scopus, Google Scholar, Cochrane Library and African Journals Online databases were systematically searched and reviewed. A total of 63 articles reporting 41 host molecular factors were included in the meta-analysis. RESULTS Pooled odds ratio demonstrated associations of p53 expression, telomerase activity and sFas with SABC as compared to other schistosomal patients (p53 expression: OR=9.46, 95%CI=1.14-78.55, p=0.04; telomerase by TERT: OR=37.38, 95%CI=4.17-334.85, p=0.001; telomerase by TRAP: OR=10.36, 95%CI=6.08-17.64, p<0.00001; sFas: OR=34.37, 95%CI=3.32-355.51, p=0.003). In comparison to bladder cancers of other etiology, positive associations were found between SABC and p15 deletion, p16 deletion, telomerase activity and sFas (p15 deletion: OR=4.20, 95%CI=2.58-6.82, p<0.00001; p16 deletion: OR=4.93, 95%CI=2.52-9.65, p<0.00001; telomerase by TERT: OR=3.01, 95%CI=1.51-5.97, p=0.002; telomerase by TRAP: OR=2.66, 95%CI=1.18-6.01, p=0.02; sFas: OR=4.50, 95%CI=1.78-11.40, p=0.001). Other identified associations were reported by few numbers of studies to enable reliable interpretation. CONCLUSIONS Variations in gene expression or genomic alterations of some molecular markers in SABC as compared to non-SABC or other schistosomal patients were identified. These suggest minute differences in the pathogenesis and physiological profile of SABC, in relation to non-SABC.
Collapse
Affiliation(s)
- Nut Koonrungsesomboon
- Department of Clinical Product Development, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, 852-8523, Japan.
| | - Anita Carolle Wadagni
- Centre for Buruli Ulcer Screening and Treatment, Ministry of Health, Cotonou, BP 03, Allada, Benin.
| | - Evaristus Chibunna Mbanefo
- Department of Parasitology and Entomology, Faculty of Bioscience, Nnamdi Azikiwe University, P.M.B. 5025, Awka, Nigeria; Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, 852-8523, Japan.
| |
Collapse
|
20
|
Eissa S, Matboli M, Shawky S, Essawy NOE. Urine biomarkers of schistosomiais and its associated bladder cancer. Expert Rev Anti Infect Ther 2015; 13:985-93. [PMID: 26105083 DOI: 10.1586/14787210.2015.1051032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Schistosomiasis (SCH) is the second only to malaria among the parasitic diseases affecting humans regarding the prevalence of infection worldwide. In this nonsystematic review, we summarize the existing data on commercially available and promising investigational urine markers for the detection of SCH and its associated bladder cancer (BC). We searched PubMed, Scopus and Cochran without time limits. We reviewed the recent literatures on urine-based markers for SCH and its associated BC. Many studies identified several urine biomarkers of Schistosoma haematobium and Schistosoma mansoni worms and their associated BC using automated, inexpensive, quantitative assays in urine. These markers may aid in early detection of bladder carcinoma and have the potential to reduce the number of follow-up cystoscopy, thus reducing healthcare costs and patient discomfort, at the same time. Nevertheless, clinical evidence is insufficient to warrant the substitution of the cystoscopic follow-up scheme by any of the currently available urine marker tests.
Collapse
Affiliation(s)
- Sanaa Eissa
- Medical Biochemistry and Molecular Biology Department, Oncology Diagnostic Unit, Faculty of Medicine, Ain Shams University, Abbassia, Cairo, P.O. box 11381, Egypt
| | | | | | | |
Collapse
|
21
|
Conti SL, Honeycutt J, Odegaard JI, Gonzalgo ML, Hsieh MH. Alterations in DNA methylation may be the key to early detection and treatment of schistosomal bladder cancer. PLoS Negl Trop Dis 2015; 9:e0003696. [PMID: 26042665 PMCID: PMC4456143 DOI: 10.1371/journal.pntd.0003696] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Simon L. Conti
- Department of Urology, Stanford University, Stanford, California, United States of America
| | - Jared Honeycutt
- Stanford Immunology, Stanford University, Stanford, California, United States of America
| | - Justin I. Odegaard
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California, United States of America
| | - Mark L. Gonzalgo
- Department of Urology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Michael H. Hsieh
- Biomedical Research Institute, Rockville, Maryland, United States of America
- Division of Urology, Children’s National Health System, Washington, D.C., United States of America
- Department of Urology, The George Washington University, Washington, D.C., United States of America
- * E-mail:
| |
Collapse
|
22
|
Swellam M, Abdelmaksoud MDE, Sayed Mahmoud M, Ramadan A, Abdel-Moneem W, Hefny MM. Aberrant methylation of APC and RARβ2 genes in breast cancer patients. IUBMB Life 2015; 67:61-8. [PMID: 25684670 DOI: 10.1002/iub.1346] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 12/30/2014] [Indexed: 01/22/2023]
Abstract
Changes in the status of DNA methylation are one of the most common molecular alterations in human neoplasia. We aimed to identify epigenetic molecular markers in serum for early detection of breast cancer. Authors analyzed retrospectively the methylation status of RARβ2 and APC genes in serum samples from 121 breast cancer patients, 79 patients with benign breast diseases, and 66 healthy volunteers using methylation-specific PCR. The methylated APC and RARβ2 were significantly higher in breast cancer patients (93.4%, 95.6%) than benign (7.8%, 14.5%) but not detected in healthy volunteers (0%) at (P < 0.0001). Both methylated genes showed no significant difference among clinicopathological factors apart from triple negative breast cancer patients as all of them (χ(2) = 7.4, P = 0.007) reported to be methylated RARβ2 genes. Both methylated genes were detected in all grades and stages. Both sensitivities and specificities of the methylated genes for breast cancer detection were superior to traditional tumor markers in detection of breast cancer, early stage, low grade tumors, and triple negative breast cancer patients. Thus methylated APC and RARβ2 genes might be valuable serum-based molecular markers for early detection of breast cancer.
Collapse
Affiliation(s)
- Menha Swellam
- Department of Biochemistry, Genetic Engineering and Biotechnology Research Division, National Research Centre, El Bohouth, Dokki, Giza, Egypt
| | | | | | | | | | | |
Collapse
|
23
|
Guo S, Tan L, Pu W, Wu J, Xu K, Wu J, Li Q, Ma Y, Xu J, Jin L, Wang J. Quantitative assessment of the diagnostic role of APC promoter methylation in non-small cell lung cancer. Clin Epigenetics 2014; 6:5. [PMID: 24661338 PMCID: PMC3997934 DOI: 10.1186/1868-7083-6-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 02/27/2014] [Indexed: 12/16/2022] Open
Abstract
Background Adenomatous polyposis coli (APC) has been reported to be a candidate tumor suppressor in many cancers. However, the diagnostic role of APC promoter methylation in non-small cell lung cancer (NSCLC) remains unclear. We systematically integrated published articles and DNA methylation microarray data to investigate the diagnostic performance of the APC methylation test for NSCLC. Two thousand two hundred and fifty-nine NSCLC tumor samples and 1,039 controls were collected from 17 published studies and TCGA NSCLC data. The association between APC promoter methylation and NSCLC was evaluated in a meta-analysis. An independent DNA methylation microarray dataset from TCGA project, in which five CpG sites located in the promoter region of APC were involved, was used to validate the results of the meta-analysis. Results A significant association was observed between APC promoter hypermethylation and NSCLC, with an aggregated odds ratio (OR) of 3.79 (95% CI: 2.22 to 6.45) in a random effects model. Pooled sensitivity and specificity were 0.548 (95% CI: 0.42 to 0.67, P < 0.0001) and 0.776 (95% CI: 0.62 to 0.88, P < 0.0001), respectively. Each of the five CpG sites was much better in prediction (area under the curve, AUC: 0.71 to 0.73) in lung adenocarcinoma (Ad) than in lung squamous cell carcinoma (Sc) (AUC: 0.45 to 0.61). The AUCs of the logistic prediction model based on these five CpGs were 0.73 and 0.60 for Ad and Sc, respectively. Integrated analysis indicated that CpG site location, heterogeneous or autogenous controls, and the proportion of adenocarcinoma in samples were the most significant heterogeneity sources. Conclusions The methylation status of APC promoter was strongly associated with NSCLC, especially adenocarcinoma. The APC methylation test could be applied in the clinical diagnosis of lung adenocarcinoma.
Collapse
Affiliation(s)
- Shicheng Guo
- Ministry of Education Key Laboratory of Contemporary Anthropology and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Lixing Tan
- Ministry of Education Key Laboratory of Contemporary Anthropology and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Weilin Pu
- Ministry of Education Key Laboratory of Contemporary Anthropology and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Junjie Wu
- Ministry of Education Key Laboratory of Contemporary Anthropology and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China.,Department of Pneumology, Changhai Hospital of Shanghai, Second Military Medical University, Shanghai 200433, China
| | - Kuan Xu
- Department of Head and Neck Surgery, Cancer Hospital, Fudan University, Shanghai 200032, China
| | - Jinhui Wu
- Department of General Surgery, University of Qingdao Affiliated Hospital of Medical College, Qingdao University, 1677 Wutaishan Street, Qingdao City 266071, China
| | - Qiang Li
- Department of Pneumology, Changhai Hospital of Shanghai, Second Military Medical University, Shanghai 200433, China
| | - Yanyun Ma
- Ministry of Education Key Laboratory of Contemporary Anthropology and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Jibin Xu
- Department of Cardiothoracic Surgery, Changhai Hospital of Shanghai, Second Military Medical University, Shanghai, China
| | - Li Jin
- Ministry of Education Key Laboratory of Contemporary Anthropology and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Jiucun Wang
- Ministry of Education Key Laboratory of Contemporary Anthropology and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China
| |
Collapse
|
24
|
Oikonomopoulou K, Brinc D, Hadjisavvas A, Christofi G, Kyriacou K, Diamandis EP. The bifacial role of helminths in cancer: Involvement of immune and non-immune mechanisms. Crit Rev Clin Lab Sci 2014; 51:138-48. [DOI: 10.3109/10408363.2014.886180] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
25
|
Calistri D, Casadio V, Bravaccini S, Zoli W, Amadori D. Urinary biomarkers of non-muscle-invasive bladder cancer: current status and future potential. Expert Rev Anticancer Ther 2014; 12:743-52. [DOI: 10.1586/era.12.50] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
26
|
Eissa S, Matboli M, Mansour A, Mohamed S, Awad N, Kotb YM. Evaluation of urinary HURP mRNA as a marker for detection of bladder cancer: relation to bilharziasis. Med Oncol 2013; 31:804. [PMID: 24375315 DOI: 10.1007/s12032-013-0804-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 12/04/2013] [Indexed: 10/25/2022]
Abstract
This study was carried out to assess the efficacy of urinary hepatoma up-regulated protein (HURP) RNA in bladder cancer diagnosis and its relation to bilharziasis. Voided urine samples and blood were collected from 344 consecutive participants: 211 patients diagnosed with bladder cancer, 71 patients with benign urological disorders and 62 healthy volunteers. Serologic assessment of schistosomiasis antibody in sera, urine cytology and estimation of HURP RNA by reverse transcription polymerase chain reaction in urothelial cells was carried out in all samples. HURP RNA expression showed a significant difference among the three investigated groups. The best cutoff point for HURP RNA was determined as 0.0132 at 78.67 % sensitivity and 94 % specificity. The sensitivity of urine cytology was improved when combined with HURP RNA in detection of early stage (77.3 %), low grade (85.3 %) and bilharzial bladder cancer (78.1 %). Detection of urinary HURP RNA is a useful non-invasive test for early detection of bladder cancer and bilharzial bladder cancer and it improves sensitivity of urine cytology up to 91 %.
Collapse
Affiliation(s)
- Sanaa Eissa
- Oncology Diagnostic Unit, Medical Biochemistry Department, Faculty of Medicine, Ain Shams University, P.O. Box 11381, Abbassia, Cairo, Egypt,
| | | | | | | | | | | |
Collapse
|
27
|
Eissa S, Matboli M. Integrated technologies in the post-genomic era for discovery of bladder cancer urinary markers. World J Clin Urol 2013; 2:20-31. [DOI: 10.5410/wjcu.v2.i3.20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Revised: 11/10/2013] [Accepted: 11/21/2013] [Indexed: 02/06/2023] Open
Abstract
The incidence of bladder cancer (BC) continues to rise with high recurrence and mortality rate, especially in the past three decades. The development of accurate and successful BC treatment relies mainly on early diagnosis. BC is a heterogeneous disease reflected by the presence of many potential biomarkers associated with different disease phenotypes. Nowadays, cystoscopy and urinary cytology are considered the gold standard diagnostic tools for BC. There are many limitations to cystoscopy including being invasive, labor-intensive and carcinoma in situ of the bladder may easily be missed. Urinary cytology is still a noninvasive technique with high accuracy in high-grade BC with a median sensitivity of 35%. Furthermore, the need for a sensitive, specific, non invasive, easily accessible BC biomarker is a major clinical need. The field of urinary BC biomarkers discovery is still a rapidly evolving discipline in which more recent technologies are evaluated and often optimized if they are not clinically significant to the urologists. Most of the current strategies for BC urinary biomarker detection depend on integration of information gleaned from the fields of genomics, transcriptomics, proteomics, epigenetics, metabolomics and bionanotechnology. Effort is currently being made to identify the most potentially beneficial urinary biomarkers. The purpose of this review is to summarize and explore the efficacy of gathering the information revealed from the cooperation of different omic strategies that paves the way towards various urinary markers discovery for screening, diagnosis and prognosis of human BC.
Collapse
|
28
|
Casadio V, Molinari C, Calistri D, Tebaldi M, Gunelli R, Serra L, Falcini F, Zingaretti C, Silvestrini R, Amadori D, Zoli W. DNA Methylation profiles as predictors of recurrence in non muscle invasive bladder cancer: an MS-MLPA approach. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2013; 32:94. [PMID: 24252461 PMCID: PMC4176288 DOI: 10.1186/1756-9966-32-94] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 11/07/2013] [Indexed: 01/06/2023]
Abstract
Background Although non muscle invasive bladder cancer (NMIBC) generally has a good long-term prognosis, up to 80% of patients will nevertheless experience local recurrence after the primary tumor resection. The search for markers capable of accurately identifying patients at high risk of recurrence is ongoing. We retrospectively evaluated the methylation status of a panel of 24 tumor suppressor genes (TIMP3, APC, CDKN2A, MLH1, ATM, RARB, CDKN2B, HIC1, CHFR, BRCA1, CASP8, CDKN1B, PTEN, BRCA2, CD44, RASSF1, DAPK1, FHIT, VHL, ESR1, TP73, IGSF4, GSTP1 and CDH13) in primary lesions to obtain information about their role in predicting local recurrence in NMIBC. Methods Formaldehyde-fixed paraffin-embedded (FFPE) samples from 74 patients operated on for bladder cancer were analyzed by methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA): 36 patients had relapsed and 38 were disease-free at the 5-year follow up. Methylation status was considered as a dichotomous variable and genes showing methylation ≥20% were defined as “positive”. Results Methylation frequencies were higher in non recurring than recurring tumors. A statistically significant difference was observed for HIC1 (P = 0.03), GSTP1 (P = 0.02) and RASSF1 (P = 0.03). The combination of the three genes showed 78% sensitivity and 66% specificity in identifying recurrent patients, with an overall accuracy of 72%. Conclusions Our preliminary data suggest a potential role of HIC1, GSTP1 and RASSF1 in predicting local recurrence in NMIBC. Such information could help clinicians to identify patients at high risk of recurrence who require close monitoring during follow up.
Collapse
Affiliation(s)
- Valentina Casadio
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via P, Maroncelli 40, Meldola 47014, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Eissa S, Shawky SM, Matboli M, Mohamed S, Azzazy HME. Direct detection of unamplified hepatoma upregulated protein RNA in urine using gold nanoparticles for bladder cancer diagnosis. Clin Biochem 2013; 47:104-10. [PMID: 24183881 DOI: 10.1016/j.clinbiochem.2013.10.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Revised: 10/16/2013] [Accepted: 10/21/2013] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To develop a gold nanoparticle (AuNP) assay for direct detection of unamplified HURP RNA in urine. DESIGN AND METHODS HURP RNA was extracted from urine samples (50 bladder carcinoma patients, 25 benign bladder lesions, and 25 controls) and further purified using magnetic nanoparticles (MNPs), functionalized with HURP RNA-specific oligonucleotides, and then detected by RT-PCR or gold nanoparticles. RESULTS The developed HURP RNA AuNP assay has a sensitivity and a specificity of 88.5% and 94%, respectively, and a detection limit of 2.4 nmol/L. The concordance between the HURP AuNP assay with RT-PCR after RNA purification using functionalized MNPs was 97%. CONCLUSIONS The developed colorimetric HURP RNA AuNP assay is sensitive, simple, and can aid noninvasive diagnosis of bladder cancer.
Collapse
Affiliation(s)
- Sanaa Eissa
- Oncology Diagnostic Unit, Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Abbassia, Cairo 11381, Egypt
| | - Sherif M Shawky
- Youssef Jameel Science & Technology Research Center, The American University in Cairo, P.O. Box 74, New Cairo 11835, Egypt
| | - Marwa Matboli
- Oncology Diagnostic Unit, Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Abbassia, Cairo 11381, Egypt
| | - Shaymaa Mohamed
- Oncology Diagnostic Unit, Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Abbassia, Cairo 11381, Egypt
| | - Hassan M E Azzazy
- Youssef Jameel Science & Technology Research Center, The American University in Cairo, P.O. Box 74, New Cairo 11835, Egypt; Department of Chemistry, The American University in Cairo, P.O. Box 74, New Cairo 11835, Egypt.
| |
Collapse
|
30
|
Cheng H, Deng Z, Wang Z, Zhang W, Su J. The role of aberrant promoter hypermethylation of DACT1 in bladder urothelial carcinoma. J Biomed Res 2013; 26:319-24. [PMID: 23554767 PMCID: PMC3613729 DOI: 10.7555/jbr.26.20110099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 09/30/2011] [Accepted: 02/12/2012] [Indexed: 11/17/2022] Open
Abstract
The purpose of this study was to determine the relationship between hypermethylation of DACT1 gene promoter and lower mRNA expression in bladder urothelial carcinoma tissue. The methylation status of 29 urothelial carcinoma samples and 29 normal tissue samples were examined by methylation-specific polymerase chain reaction (MSP). The DACT1 mRNA transcript levels and DACT1 protein levels in all samples were then evaluated to define the relationship between the methylation status of the DACT1 promoter and its expression at the transcriptional and translational levels. Decreased expression of DACT1 was detected in 89.66% of urothelial carcinomas (26/29; P < 0.005). Promoter hypermethylation was found in 58.62% (17/29) urothelial carcinomas and 25% (7/29) normal tissues, respectively (P < 0.05). DACT1 expression was lower in tissues where the DACT1 gene promoter was hypermethylated than in unmethylated tissues (0.25±0.17 vs 0.69±0.30, P < 0.05). DACT1 gene hypermethylation was closely related to tumor size, grade and stage (P < 0.05). Our results indicate that silencing and downregulation of DACT1 mRNA may be implicated in carcinogenesis and the progression of bladder urothelial carcinoma, and may be a potential prognostic factor.
Collapse
Affiliation(s)
- Huan Cheng
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | | | | | | | | |
Collapse
|
31
|
Nogueira da Costa A, Herceg Z. Detection of cancer-specific epigenomic changes in biofluids: powerful tools in biomarker discovery and application. Mol Oncol 2012; 6:704-15. [PMID: 22925902 PMCID: PMC5528342 DOI: 10.1016/j.molonc.2012.07.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2012] [Accepted: 07/30/2012] [Indexed: 01/30/2023] Open
Abstract
The genetic and epigenetic material originating from tumour that can be found in body fluids of individuals with cancer harbours tumour-specific alterations and represents an attractive target for biomarker discovery. Epigenetic changes (DNA methylation, histone modifications and non-coding RNAs) are present ubiquitously in virtually all types of human malignancies and may appear in early cancer development, and thus they provide particularly attractive markers with broad applications in diagnostics. In addition, because changes in the epigenome may constitute a signature of specific exposure to certain risk factors, they have the potential to serve as highly specific biomarkers for risk assessment. While reliable detection of cancer-specific epigenetic changes has proven to be technically challenging, a substantial progress has been made in developing the methodologies that allow an efficient and sensitive detection of epigenomic changes using the material originating from body fluids. In this review we discuss the application of epigenomics as a tool for biomarker research, with the focus on the analysis of DNA methylation in biofluids.
Collapse
Affiliation(s)
- André Nogueira da Costa
- Epigenetics Group, International Agency for Research on Cancer, 150 Cours Albert Thomas, 69372 Lyon, Cedex 08, France
| | | |
Collapse
|
32
|
Aberrant promoter methylation of the RASSF1A and APC genes in epithelial ovarian carcinoma development. Cell Oncol (Dordr) 2012; 35:473-9. [PMID: 23055343 DOI: 10.1007/s13402-012-0106-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2012] [Indexed: 10/27/2022] Open
Abstract
PURPOSE Tumor suppressor gene (TSG) silencing through promoter hypermethylation plays an important role in cancer development. The aim of this study was to assess the extent of methylation of the RASSF1A and APC TSG promoters in ovarian epithelial adenomas, low malignant potential tumours and carcinomas in order to reveal a role for epigenetic TSG silencing in the development of these ovarian malignancies. METHOD The promoter methylation status of the RASSF1A and APC genes was assessed in 19 benign cystadenomas, 14 low malignant potential (LMP) tumours, and 86 carcinomas using methylation specific PCR (MSP). RESULTS The methylation frequencies of the RASSF1A and APC gene promoters in benign cystadenomas were found to be 37 % and 16 %, respectively. The LMP tumours exhibited RASSF1A and APC gene promoter methylation frequencies of 50 % and 28 %, respectively, whereas the carcinomas exhibited methylation frequencies of 58 % and 29 %, respectively. Methylation of either the RASSF1A or the APC gene promoter was encountered in 58 % of the invasive carcinomas. CONCLUSION The observed aberrant methylation frequencies of the RASSF1A and APC gene promoters indicate that an accumulation of epigenetic events at these specific TSG promoters may be associated with the malignant transformation of benign cystadenomas and LMP tumours to carcinomas.
Collapse
|
33
|
Kacevska M, Ivanov M, Ingelman-Sundberg M. Epigenetic-dependent regulation of drug transport and metabolism: an update. Pharmacogenomics 2012; 13:1373-85. [DOI: 10.2217/pgs.12.119] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The pharmacokinetics of a drug are subject to large interindividual variability, which can result in lack of response or adverse drug reactions. In addition to genetic polymorphisms and drug interactions, key genes involved in the metabolism and transport of drugs are demonstrated to have epigenetic influences that can potentially affect interindividual variability in drug response. Emerging studies have focused on the importance of DNA methylation for ADME gene expression and for drug action and resistance, particularly in cancer. However, the epigenetic and ncRNA-dependent regulation of these genes, as well as the pharmacological consequences, is in need of greater attention. In the current review we provide an update of epigenetic and ncRNA-dependent regulation of ADME genes.
Collapse
Affiliation(s)
- Marina Kacevska
- Section of Pharmacogenetics, Department of Physiology & Pharmacology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Maxim Ivanov
- Section of Pharmacogenetics, Department of Physiology & Pharmacology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Magnus Ingelman-Sundberg
- Section of Pharmacogenetics, Department of Physiology & Pharmacology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| |
Collapse
|
34
|
Current world literature. Curr Opin Urol 2012; 22:432-43. [PMID: 22854603 DOI: 10.1097/mou.0b013e3283572fe1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
35
|
How Kit A, Nielsen HM, Tost J. DNA methylation based biomarkers: practical considerations and applications. Biochimie 2012; 94:2314-37. [PMID: 22847185 DOI: 10.1016/j.biochi.2012.07.014] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 07/16/2012] [Indexed: 02/06/2023]
Abstract
A biomarker is a molecular target analyzed in a qualitative or quantitative manner to detect and diagnose the presence of a disease, to predict the outcome and the response to a specific treatment allowing personalized tailoring of patient management. Biomarkers can belong to different types of biochemical molecules such as proteins, DNA, RNA or lipids, whereby protein biomarkers have been the most extensively studied and used, notably in blood-based protein quantification tests or immunohistochemistry. The rise of interest in epigenetic mechanisms has allowed the identification of a new type of biomarker, DNA methylation, which is of great potential for many applications. This stable and heritable covalent modification mostly affects cytosines in the context of a CpG dinucleotide in humans. It can be detected and quantified by a number of technologies including genome-wide screening methods as well as locus- or gene-specific high-resolution analysis in different types of samples such as frozen tissues and FFPE samples, but also in body fluids such as urine, plasma, and serum obtained through non-invasive procedures. In some cases, DNA methylation based biomarkers have proven to be more specific and sensitive than commonly used protein biomarkers, which could clearly justify their use in clinics. However, very few of them are at the moment used in clinics and even less commercial tests are currently available. The objective of this review is to discuss the advantages of DNA methylation as a biomarker, the practical considerations for their development, and their use in disease detection, prediction of outcome or treatment response, through multiple examples mainly focusing on cancer, but also to evoke their potential for complex diseases and prenatal diagnostics.
Collapse
Affiliation(s)
- Alexandre How Kit
- Laboratory for Functional Genomics, Fondation Jean Dausset - CEPH, 27 rue Juliette Dodu, 75010 Paris, France
| | | | | |
Collapse
|
36
|
Hypermethylation in bladder cancer: biological pathways and translational applications. Tumour Biol 2012; 33:347-61. [PMID: 22274923 DOI: 10.1007/s13277-011-0310-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 12/28/2011] [Indexed: 12/18/2022] Open
Abstract
A compelling body of evidences sustains the importance of epigenetic mechanisms in the development and progression of cancer. Assessing the epigenetic component of bladder tumors is strongly improving our understanding of their biology and clinical behavior. In terms of DNA methylation, cancer cells show genome-wide hypomethylation and site-specific CpG island promoter hypermethylation. In the context of other epigenetic alterations, this review will focus on the hypermethylation of CpG islands in promoter regions, as the most widely described epigenetic modification in bladder cancer. CpG islands hypermethylation is believed to be critical in the transcriptional silencing and regulation of tumor suppressor and crucial cancer genes involved in the major molecular pathways controlling bladder cancer development and progression. In particular, several biological pathways of frequently methylated genes include cell cycle, DNA repair, apoptosis, and invasion, among others. Furthermore, translational aspects of bladder cancer methylomes described to date will be discussed towards their potential application as bladder cancer biomarkers. Several tissue methylation signatures and individual candidates have been evidenced, that could potentially stratify tumors histopathologically, and discriminate patients in terms of their clinical outcome. Tumor methylation profiles could also be detected in urinary specimens showing a promising role as non-invasive markers for cancer diagnosis towards an early detection and potentially for the surveillance of bladder cancer patients in a near future. However, the epigenomic exploration of bladder cancer has only just begun. Genome-scale DNA methylation profiling studies will further highlight the relevance of the epigenetic component to gain knowledge of bladder cancer biology and identify those profiles and candidates better correlating with clinical behavior.
Collapse
|