1
|
Krystel-Whittemore M, Petrova-Drus K, Ptashkin RN, Ewalt MD, Yao J, Liu Y, Zhu M, Benhamida J, Durham B, Kumar J, Nafa K, Kiecka I, Bowman AS, Gedvilaite E, Casanova J, Lin YT, Mohanty AS, Rana S, Rema AB, Rijo I, Chaves N, Salazar P, Yun A, Lachhander S, Wang W, Haque MS, Xiao W, Roshal M, Giralt S, Salles G, Rampal R, Stein EM, Perales MA, Horwitz S, Jakubowski A, Ponce D, Markova A, Birsoy O, Mandelker D, Mantha S, Dogan A, Benayed R, Ladanyi M, Berger MF, Brannon AR, Zehir A, Vanderbilt C, Arcila ME. Cell-free DNA from nail clippings as source of normal control for genomic studies in hematologic malignancies. Haematologica 2024; 109:3269-3281. [PMID: 38450530 PMCID: PMC11443392 DOI: 10.3324/haematol.2024.285054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 02/29/2024] [Indexed: 03/08/2024] Open
Abstract
Comprehensive genomic sequencing is becoming a critical component in the assessment of hematologic malignancies, with broad implications for patients' management. In this context, unequivocally discriminating somatic from germline events is challenging but greatly facilitated by matched analysis of tumor:normal pairs of samples. In contrast to solid tumors, in hematologic malignancies conventional sources of normal control material (peripheral blood, buccal swabs, saliva) could be highly involved by the neoplastic process, rendering them unsuitable. In this work we describe our real-world experience using cell-free DNA (cfDNA) isolated from nail clippings as an alternate source of normal control material, through the dedicated review of 2,610 tumor:nail pairs comprehensively sequenced by MSK-IMPACT-heme. Overall, we found that nail cfDNA is a robust germline control for paired genomic studies. In a subset of patients, nail DNA may be contaminated by tumor DNA, reflecting unique attributes of the hematologic disease and transplant history. Contamination is generally low level, but significantly more common among patients with myeloid neoplasms (20.5%; 304/1,482) than among those with lymphoid diseases (5.4%; 61/1,128) and particularly enriched in myeloproliferative neoplasms with marked myelofibrosis. When identified in patients with lymphoid and plasma-cell neoplasms, mutations commonly reflected a myeloid profile and correlated with a concurrent/evolving clonal myeloid neoplasm. Donor DNA was identified in 22% (11/50) of nails collected after allogeneic stem-cell transplantation. In this cohort, an association with a recent history of graft-versus-host disease was identified. These findings should be considered as a potential limitation to the use of nails as a source of normal control DNA but could also provide important diagnostic information regarding the disease process.
Collapse
Affiliation(s)
| | - Kseniya Petrova-Drus
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ryan N Ptashkin
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Mark D Ewalt
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - JinJuan Yao
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ying Liu
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Menglei Zhu
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jamal Benhamida
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Benjamin Durham
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jyoti Kumar
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Khedoudja Nafa
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Iwona Kiecka
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Anita S Bowman
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Erika Gedvilaite
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jacklyn Casanova
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Yun-Te Lin
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Abhinita S Mohanty
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Satshil Rana
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Anoop Balakrishnan Rema
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ivelise Rijo
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Nelio Chaves
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Paulo Salazar
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Anita Yun
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Sean Lachhander
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Wei Wang
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Mohammad S Haque
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Wenbin Xiao
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Mikhail Roshal
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Sergio Giralt
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Gilles Salles
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Raajit Rampal
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Eytan M Stein
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - Steven Horwitz
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ann Jakubowski
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Doris Ponce
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Alina Markova
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ozge Birsoy
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Diana Mandelker
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Simon Mantha
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ahmet Dogan
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ryma Benayed
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Marc Ladanyi
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Michael F Berger
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - A Rose Brannon
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ahmet Zehir
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Chad Vanderbilt
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Maria E Arcila
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY.
| |
Collapse
|
2
|
Simons CCJM, Offermans NSM, Stoll M, van den Brandt PA, Weijenberg MP. Empirical Investigation of Genomic Clusters Associated With Height and the Risk of Postmenopausal Breast and Colorectal Cancer in the Netherlands Cohort Study. Am J Epidemiol 2022; 191:413-429. [PMID: 34729582 DOI: 10.1093/aje/kwab259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 08/18/2021] [Accepted: 10/19/2021] [Indexed: 11/13/2022] Open
Abstract
We empirically investigated genomic clusters associated with both height and postmenopausal breast cancer (BC) or colorectal cancer (CRC) (or both) in the Netherlands Cohort Study to unravel shared underlying mechanisms between height and these cancers. The Netherlands Cohort Study (1986-2006) includes 120,852 participants (case-cohort study: nsubcohort = 5,000; 20.3 years of follow-up). Variants in clusters on chromosomes 2, 4, 5, 6 (2 clusters), 10, and 20 were genotyped using toenail DNA. Cluster-specific genetic risk scores were modeled in relation to height and postmenopausal BC and CRC risk using age-adjusted linear regression and multivariable-adjusted Cox regression, respectively. Only the chromosome 10 cluster risk score was associated with all 3 phenotypes in the same sex (women); that is, it was associated with increased height (βcontinuous = 0.34, P = 0.014), increased risk of hormone-receptor-positive BC (for estrogen-receptor-positive BC, hazard ratio (HRcontinuous score) = 1.10 (95% confidence interval (CI): 1.02, 1.20); for progesterone-receptor-positive BC, HRcontinuous score = 1.15 (95% CI: 1.04, 1.26)), and increased risk of distal colon (HRcontinuous score = 1.13, 95% CI: 1.01, 1.27) and rectal (HRcontinuous score = 1.14, 95% CI: 0.99, 1.30) cancer. The chromosome 10 cluster variants were all annotated to the zinc finger MIZ-type containing 1 gene (ZMIZ1), which is involved in androgen receptor activity. This suggests that hormone-related growth mechanisms could influence both height and postmenopausal BC and CRC.
Collapse
|
3
|
Simons CCJM, Schouten LJ, Godschalk RWL, van Schooten FJ, Stoll M, Van Steen K, van den Brandt PA, Weijenberg MP. Polymorphisms in the mTOR-PI3K-Akt pathway, energy balance-related exposures and colorectal cancer risk in the Netherlands Cohort Study. BioData Min 2022; 15:2. [PMID: 35012583 PMCID: PMC8751328 DOI: 10.1186/s13040-021-00286-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 12/22/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The mTOR-PI3K-Akt pathway influences cell metabolism and (malignant) cell growth. We generated sex-specific polygenic risk scores capturing natural variation in 7 out of 10 top-ranked genes in this pathway. We studied the scores directly and in interaction with energy balance-related factors (body mass index (BMI), trouser/skirt size, height, physical activity, and early life energy restriction) in relation to colorectal cancer (CRC) risk in the Netherlands Cohort Study (NLCS) (n=120,852). The NLCS has a case-cohort design and 20.3 years of follow-up. Participants completed a baseline questionnaire on diet and cancer in 1986 when 55-69 years old. ~75% of the cohort returned toenail clippings used for DNA isolation and genotyping (n subcohort=3,793, n cases=3,464). To generate the scores, the dataset was split in two and risk alleles were defined and weighted based on sex-specific associations with CRC risk in the other dataset half, because there were no SNPs in the top-ranked genes associated with CRC risk in previous genome-wide association studies at a significance level p<1*10-5. RESULTS Cox regression analyses showed positive associations between the sex-specific polygenic risk scores and colon but not rectal cancer risk in men and women, with hazard ratios for continuously modeled scores close to 1.10. There was no modifying effect observed of the scores on associations between the energy balance-related factors and CRC risk. However, BMI (in men), non-occupational physical activity (in women), and height (in men and women) were associated with the risk of CRC, in particular (proximal and distal) colon cancer, in the direction as expected in the lower tertiles of the sex-specific polygenic risk scores. CONCLUSIONS Current data suggest that the mTOR-PI3K-Akt pathway may be involved in colon cancer development. This study thereby sheds more light on colon cancer etiology through use of genetic variation in the mTOR-PI3K-Akt pathway.
Collapse
Affiliation(s)
- Colinda C J M Simons
- Department of Epidemiology, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands.
| | - Leo J Schouten
- Department of Epidemiology, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
| | - Roger W L Godschalk
- Department of Pharmacology and Toxicology, NUTRIM - School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Frederik-Jan van Schooten
- Department of Pharmacology and Toxicology, NUTRIM - School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Monika Stoll
- Institute of Human Genetics, Genetic Epidemiology, University of Münster, Münster, Germany.,Department of Biochemistry, Maastricht Centre for Systems Biology (MaCSBio), School for Cardiovascular Diseases, CARIM-, Maastricht University, Maastricht, the Netherlands
| | | | - Piet A van den Brandt
- Department of Epidemiology, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
| | - Matty P Weijenberg
- Department of Epidemiology, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
4
|
Domogala DD, Gambin T, Zemet R, Wu CW, Schulze KV, Yang Y, Wilson TA, Machol I, Liu P, Stankiewicz P. Detection of low-level parental somatic mosaicism for clinically relevant SNVs and indels identified in a large exome sequencing dataset. Hum Genomics 2021; 15:72. [PMID: 34930489 PMCID: PMC8686574 DOI: 10.1186/s40246-021-00369-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/27/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Due to the limitations of the current routine diagnostic methods, low-level somatic mosaicism with variant allele fraction (VAF) < 10% is often undetected in clinical settings. To date, only a few studies have attempted to analyze tissue distribution of low-level parental mosaicism in a large clinical exome sequencing (ES) cohort. METHODS Using a customized bioinformatics pipeline, we analyzed apparent de novo single-nucleotide variants or indels identified in the affected probands in ES trio data at Baylor Genetics clinical laboratories. Clinically relevant variants with VAFs between 30 and 70% in probands and lower than 10% in one parent were studied. DNA samples extracted from saliva, buccal cells, redrawn peripheral blood, urine, hair follicles, and nail, representing all three germ layers, were tested using PCR amplicon next-generation sequencing (amplicon NGS) and droplet digital PCR (ddPCR). RESULTS In a cohort of 592 clinical ES trios, we found 61 trios, each with one parent suspected of low-level mosaicism. In 21 parents, the variants were validated using amplicon NGS and seven of them by ddPCR in peripheral blood DNA samples. The parental VAFs in blood samples varied between 0.08 and 9%. The distribution of VAFs in additional tissues ranged from 0.03% in hair follicles to 9% in re-drawn peripheral blood. CONCLUSIONS Our study illustrates the importance of analyzing ES data using sensitive computational and molecular methods for low-level parental somatic mosaicism for clinically relevant variants previously diagnosed in routine clinical diagnostics as apparent de novo.
Collapse
Affiliation(s)
- Daniel D Domogala
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.,Graduate Program in Diagnostic Genetics, School of Health Professions, University of Texas at MD Anderson, Houston, TX, USA
| | - Tomasz Gambin
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.,Institute of Computer Science, Warsaw University of Technology, Warsaw, Poland
| | - Roni Zemet
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Chung Wah Wu
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.,Baylor Genetics, Houston, TX, USA
| | - Katharina V Schulze
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.,Baylor Genetics, Houston, TX, USA
| | - Yaping Yang
- AiLife Diagnostics, 1920 Country Place Pkwy Suite 100, Pearland, TX, USA
| | - Theresa A Wilson
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | | | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.,Baylor Genetics, Houston, TX, USA
| | - Paweł Stankiewicz
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
5
|
Donor-derived DNA variability in fingernails of acute myeloid leukemia patients after allogeneic hematopoietic stem cell transplantation detected by direct PCR. Bone Marrow Transplant 2020; 55:1021-1022. [PMID: 32388533 DOI: 10.1038/s41409-020-0938-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 11/09/2022]
|
6
|
Hrzic R, Simons CCJM, Schouten LJ, van Engeland M, Brandt PVD, Weijenberg MP. Investigation of sirtuin 1 polymorphisms in relation to the risk of colorectal cancer by molecular subtype. Sci Rep 2020; 10:3359. [PMID: 32098999 PMCID: PMC7042277 DOI: 10.1038/s41598-020-60300-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 02/11/2020] [Indexed: 01/07/2023] Open
Abstract
Sirtuin 1 (SIRT1), a histone deacetylase, is involved in maintenance of genetic stability, inflammation, immune response, metabolism (energy-sensing molecule) and colorectal tumorigenesis. We investigated SIRT1's specific role in colorectal tumorigenesis by studying SIRT1 polymorphisms in relation to colorectal cancer (CRC) risk by microsatellite instability (MSI) and CpG island methylator phenotype (CIMP) status. The Netherlands Cohort study (NLCS) was initiated in 1986 and includes 120,852 participants in a case-cohort design. CRC tumour samples were available for incident cases between 1989 and 1993. Toenail deoxyribonucleic acid (DNA) was used for genotyping of two SIRT1 tagging variants (rs10997870 and rs12778366). Excluding the first 2.3 years of follow-up, subcohort members and CRC cases with no toenail DNA available and those with low sample call rates, and CRC cases with no tumour DNA available left 3478 subcohort members and 533 CRC cases. Cox regression was utilised to estimate hazard ratios (HRs) for MSI and CIMP positive and negative tumours by SIRT1 genotypes. The results were that the rs12778366 TC/CC versus TT genotype was inversely associated with MSI CRC (HR = 0.41, 95% confidence interval: 0.20, 0.88), while no association was found with the risk of an MSS tumour (TC/CC versus TT carriers: HR = 1.13, 95% CI: 0.89, 1.44). No significant associations were found between other SIRT1 genotypes and CRC subtypes. In conclusion, the results suggest a role for SIRT1 polymorphisms in colorectal tumorigenesis, particularly MSI CRC.
Collapse
Affiliation(s)
- Rok Hrzic
- Department of Epidemiology, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands.,Department of International Health, Care and Public Health Research Institute, Maastricht University, Maastricht, the Netherlands
| | - Colinda C J M Simons
- Department of Epidemiology, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
| | - Leo J Schouten
- Department of Epidemiology, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
| | - Manon van Engeland
- Department of Pathology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Piet van den Brandt
- Department of Epidemiology, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands.,Department of Epidemiology, CAPHRI - School for Public Health and Primary Care, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Matty P Weijenberg
- Department of Epidemiology, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
7
|
Germline polymorphisms in the Von Hippel-Lindau and Hypoxia-inducible factor 1-alpha genes, gene-environment and gene-gene interactions and renal cell cancer. Sci Rep 2020; 10:137. [PMID: 31924838 PMCID: PMC6954183 DOI: 10.1038/s41598-019-56980-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 11/23/2019] [Indexed: 01/20/2023] Open
Abstract
We investigated the relationship between germline single nucleotide polymorphisms (SNPs) in Von Hippel-Lindau (VHL) and Hypoxia-inducible factor 1-alpha (HIF1A), and their gene-environment and gene-gene interactions, and clear-cell RCC (ccRCC) risk. Furthermore, we assessed the relationship between VHL SNPs and VHL promoter methylation. Three VHL polymorphisms and one HIF1A polymorphism were genotyped in the Netherlands Cohort Study. In 1986, 120,852 participants aged 55–69 completed a self-administered questionnaire on diet and lifestyle and toenail clippings were collected. Toenail DNA was genotyped using the Sequenom MassARRAY platform. After 20.3 years, 3004 subcohort members and 406 RCC cases, of which 263 ccRCC cases, were eligible for multivariate case-cohort analyses. VHL_rs779805 was associated with RCC (Hazard Ratio (HR) 1.53; 95% Confidence Interval (CI) 1.07–2.17) and ccRCC risk (HR 1.88; 95% CI 1.25–2.81). No associations were found for other SNPs. Potential gene-environment interactions were found between alcohol consumption and selected SNPs. However, none remained statistically significant after multiple comparison correction. No gene-gene interactions were observed between VHL and HIF1A. VHL promoter methylation was not associated with VHL SNPs. VHL SNPs may increase (cc)RCC susceptibility. No associations were found between gene-environment and gene-gene interactions and (cc)RCC risk and between VHL promoter methylation and VHL SNPs.
Collapse
|
8
|
Ponti G, Manfredini M, Tomasi A. Non-blood sources of cell-free DNA for cancer molecular profiling in clinical pathology and oncology. Crit Rev Oncol Hematol 2019; 141:36-42. [PMID: 31212145 DOI: 10.1016/j.critrevonc.2019.06.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/19/2018] [Accepted: 06/04/2019] [Indexed: 12/12/2022] Open
Abstract
Liquid biopsy can quantify and qualify cell-free (cfDNA) and tumour-derived (ctDNA) DNA fragments in the bloodstream. CfDNA quantification and mutation analysis can be applied to diagnosis, follow-up and therapeutic management as novel oncologic biomarkers. However, some tumor-types release a low amount of DNA into the bloodstream, hampering diagnosis through standard liquid biopsy procedures. Several tumors, as such as brain, kidney, prostate, and thyroid cancer, are in direct contact with other body fluids and may be alternative sources for cfDNA and ctDNA. Non-blood sources of cfDNA/ctDNA useful as novel oncologic biomarkers include cerebrospinal fluids, urine, sputum, saliva, pleural effusion, stool and seminal fluid. Seminal plasma cfDNA, which can be analyzed with cost-effective procedures, may provide powerful information capable to revolutionize prostate cancer (PCa) patient diagnosis and management. In the near future, cfDNA analysis from non-blood biological liquids will become routine clinical practice for cancer patient diagnosis and management.
Collapse
Affiliation(s)
- Giovanni Ponti
- Department of Surgical, Medical, Dental & Morphological Sciences with Interest Transplant, Oncological & Regenerative Medicine, Division of Clinical Pathology, University of Modena & Reggio Emilia, Modena, Italy.
| | - Marco Manfredini
- Department of Surgical, Medical, Dental & Morphological Sciences with Interest Transplant, Oncological & Regenerative Medicine, Dermatology Unit, University of Modena & Reggio Emilia, Modena, Italy
| | - Aldo Tomasi
- Department of Surgical, Medical, Dental & Morphological Sciences with Interest Transplant, Oncological & Regenerative Medicine, Division of Clinical Pathology, University of Modena & Reggio Emilia, Modena, Italy
| |
Collapse
|
9
|
Hahn M, Simons CCJM, Weijenberg MP, van den Brandt PA. Alcohol drinking, ADH1B and ADH1C genotypes and the risk of postmenopausal breast cancer by hormone receptor status: the Netherlands Cohort Study on diet and cancer. Carcinogenesis 2018; 39:1342-1351. [PMID: 30052783 DOI: 10.1093/carcin/bgy101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 07/19/2018] [Indexed: 11/13/2022] Open
Abstract
Alcohol consumption has consistently been shown to increase breast cancer (BC) risk. This association may be modified by single nucleotide polymorphisms (SNPs) in alcohol dehydrogenase (ADH) isoenzymes ADH1B and ADH1C. The Netherlands Cohort Study comprises 62 573 women, aged 55-69 years at baseline (1986). Follow-up for postmenopausal BC for 20.3 years was available. Genotyping of six tag SNPs in ADH1B and ADH1C was performed on DNA from toenails. A case-cohort approach was used for analysis (complete data available for nsubcohort = 1301; ncases = 1630). Cox regression models for postmenopausal BC were applied to determine marginal effects of alcohol intake and SNPs using a dominant genetic model, as well as multiplicative interaction of the two. Results were also obtained for subtypes by estrogen receptor (ER) and progesterone receptor (PR) status. Multiple testing was adjusted for by applying the false discovery rate (FDR). Alcohol intake (categorical) increased the risk of postmenopausal BC (Ptrend = 0.031). Trends for ER and PR subgroups followed a similar pattern. Continuous modeling of alcohol resulted in a hazard rate ratio (HR) for overall postmenopausal BC of 1.09 (95% confidence interval: 1.01-1.19) per 10 g/day of alcohol. SNPs were not associated with BC risk. No effect modification of the alcohol-BC association by SNP genotype was seen after FDR correction in overall BC and ER/PR subgroups. In conclusion, alcohol consumption was shown to increase the risk of postmenopausal BC. This association was not significantly modified by common SNPs in ADH1B and ADH1C, neither in overall BC nor in hormone receptor-defined subtypes.
Collapse
Affiliation(s)
- Markus Hahn
- Department of Epidemiology, School for Oncology and Developmental Biology (GROW), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
- Department of Anesthesiology, University Hospital Bern, Switzerland
| | - Colinda C J M Simons
- Department of Epidemiology, School for Oncology and Developmental Biology (GROW), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Matty P Weijenberg
- Department of Epidemiology, School for Oncology and Developmental Biology (GROW), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Piet A van den Brandt
- Department of Epidemiology, School for Oncology and Developmental Biology (GROW), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
- Department of Epidemiology, School for Public Health and Primary Care (CAPHRI), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
10
|
Simons CCJM, Schouten LJ, Godschalk RW, van Schooten FJ, van den Brandt PA, Weijenberg MP. Sirtuin 1 genetic variation, energy balance and colorectal cancer risk by sex and subsite in the Netherlands Cohort Study. Sci Rep 2018; 8:16540. [PMID: 30410074 PMCID: PMC6224413 DOI: 10.1038/s41598-018-34728-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 10/23/2018] [Indexed: 12/15/2022] Open
Abstract
Sirtuin 1 (SIRT1) is an energy-sensing protein, which may affect tumorigenesis. We used SIRT1 variants as time-independent indicators of SIRT1 involvement in carcinogenesis and we studied two tagging SIRT1 variants in relation to colorectal cancer (CRC) risk. We also evaluated known energy balance-related CRC risk factors within SIRT1 genotype strata. The Netherlands Cohort Study includes 120,852 individuals and has 20.3 years follow-up (case-cohort: nsubcohort = 5000; nCRC cases = 4667). At baseline, participants self-reported weight, weight at age 20, height, trouser/skirt size reflecting waist circumference, physical activity, and early life energy restriction. SIRT1 rs12778366 and rs10997870 were genotyped in toenail DNA available for ~75% of the cohort. Sex- and subsite-specific Cox hazard ratios (HRs) showed that the rs12778366 CC versus TT genotype decreased CRC and colon cancer risks in women (HRCRC = 0.53, 95% confidence interval: 0.30–0.94) but not men. Multiplicative interactions were observed between SIRT1 variants and energy balance-related factors in relation to CRC endpoints, but the direction of associations was not always conform expectation nor specific to one genotype stratum. In conclusion, these results support SIRT1 involvement in colon cancer development in women. No conclusions could be made regarding a modifying effect of SIRT1 variants on associations between energy balance-related factors and CRC risk.
Collapse
Affiliation(s)
- C C J M Simons
- Department of Epidemiology, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands.
| | - L J Schouten
- Department of Epidemiology, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - R W Godschalk
- Department of Toxicology & Pharmacology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - F J van Schooten
- Department of Toxicology & Pharmacology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - P A van den Brandt
- Department of Epidemiology, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands.,Department of Epidemiology, CAPHRI - School for Public Health and Primary Care, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - M P Weijenberg
- Department of Epidemiology, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
11
|
Offermans NSM, Ketcham SM, van den Brandt PA, Weijenberg MP, Simons CCJM. Alcohol intake, ADH1B and ADH1C genotypes, and the risk of colorectal cancer by sex and subsite in the Netherlands Cohort Study. Carcinogenesis 2018; 39:375-388. [PMID: 29390059 DOI: 10.1093/carcin/bgy011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 01/25/2018] [Indexed: 12/18/2022] Open
Abstract
The alcohol-colorectal cancer (CRC) association may differ by sex and ADH1B and ADH1C genotypes. ADH enzymes oxidize ethanol to acetaldehyde, both of which are human carcinogens. The Netherlands Cohort Study includes 120 852 participants, aged 55-69 years at baseline (1986), and has 20.3 years follow-up (case-cohort: nsubcohort = 4774; ncases = 4597). The baseline questionnaire included questions on alcohol intake at baseline and 5 years before. Using toenail DNA, available for ~75% of the cohort, we successfully genotyped six ADH1B and six ADH1C SNPs (nsubcohort = 3897; ncases = 3558). Sex- and subsite-specific Cox hazard ratios and 95% confidence intervals for CRC were estimated comparing alcohol categories, genotypes within drinkers and alcohol categories within genotype strata. We used a dominant genetic model and adjusted for multiple testing. Alcohol intake increased CRC risk in both sexes, though in women only in the (proximal) colon when in excess of 30 g/day. In male drinkers, ADH1B rs4147536 increased (distal) colon cancer risk. In female drinkers, ADH1C rs283415 increased proximal colon cancer risk. ADH1B rs3811802 and ADH1C rs4147542 decreased CRC risk in heavy (>30 g/day) and stable drinkers (compared to 5 years before baseline), respectively. Rs3811802 and rs4147542 significantly modified the alcohol-colon cancer association in women (Pfor interaction = 0.004 and 0.02, respectively). A difference in associations between genotype strata was generally clearer in men than women. In conclusion, men showed increased CRC risks across subsites and alcohol intake levels, while only colon cancer risk was increased in women at heavy intake levels. ADH1B rs3811802 and ADH1C rs4147542 significantly modified the alcohol-colon cancer association in women.
Collapse
Affiliation(s)
- Nadine S M Offermans
- Department of Epidemiology, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
| | - Shannon M Ketcham
- Department of Epidemiology, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
| | - Piet A van den Brandt
- Department of Epidemiology, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands.,Department of Epidemiology, CAPHRI - School for Public Health and Primary Care, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Matty P Weijenberg
- Department of Epidemiology, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
| | - Colinda C J M Simons
- Department of Epidemiology, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
12
|
Efficient identification of somatic mutations in acute myeloid leukaemia using whole exome sequencing of fingernail derived DNA as germline control. Sci Rep 2018; 8:13751. [PMID: 30213991 PMCID: PMC6137150 DOI: 10.1038/s41598-018-31503-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 08/06/2018] [Indexed: 11/09/2022] Open
Abstract
Recent advances in next-generation sequencing have made it possible to perform genome wide identification of somatic mutation in cancers. Most studies focus on identifying somatic mutations in the protein coding portion of the genome using whole exome sequencing (WES). Every human genome has around 4 million single nucleotide polymorphisms (SNPs). A sizeable fraction of these germline SNPs is very rare and will not be found in the databases. Thus, in order to unambiguously identify somatic mutation, it is absolutely necessary to know the germline SNPs of the patient. While a blood sample can serve as source of germline DNA from patients with solid tumours, obtaining germline DNA from patients with haematological malignancies is very difficult. Tumor cells often infiltrate the skin, and their DNA can be found in saliva and buccal swab samples. The DNA in the tips of nails stems from keratinocytes that have undergone keratinization several months ago. DNA was successfully extracted from nail clippings of 5 probands for WES. We were able to identify somatic mutations in one tumor exome by using the nail exome as germline reference. Our results demonstrate that nail DNA is a reliable source of germline DNA in the setting of hematological malignancies.
Collapse
|
13
|
Integrative genomic analysis reveals cancer-associated mutations at diagnosis of CML in patients with high-risk disease. Blood 2018; 132:948-961. [PMID: 29967129 DOI: 10.1182/blood-2018-02-832253] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 06/20/2018] [Indexed: 12/12/2022] Open
Abstract
Genomic events associated with poor outcome in chronic myeloid leukemia (CML) are poorly understood. We performed whole-exome sequencing, copy-number variation, and/or RNA sequencing for 65 patients to discover mutations at diagnosis and blast crisis (BC). Forty-six patients with chronic-phase disease with the extremes of outcome were studied at diagnosis. Cancer gene variants were detected in 15 (56%) of 27 patients with subsequent BC or poor outcome and in 3 (16%) of 19 optimal responders (P = .007). Frequently mutated genes at diagnosis were ASXL1, IKZF1, and RUNX1 The methyltransferase SETD1B was a novel recurrently mutated gene. A novel class of variant associated with the Philadelphia (Ph) translocation was detected at diagnosis in 11 (24%) of 46 patients comprising fusions and/or rearrangement of genes on the translocated chromosomes, with evidence of fragmentation, inversion, and imperfect sequence reassembly. These were more frequent at diagnosis in patients with poor outcome: 9 (33%) of 27 vs 2 (11%) of 19 optimal responders (P = .07). Thirty-nine patients were tested at BC, and all had cancer gene variants, including ABL1 kinase domain mutations in 58%. However, ABL1 mutations cooccurred with other mutated cancer genes in 89% of cases, and these predated ABL1 mutations in 62% of evaluable patients. Gene fusions not associated with the Ph translocation occurred in 42% of patients at BC and commonly involved fusion partners that were known cancer genes (78%). Genomic analysis revealed numerous relevant variants at diagnosis in patients with poor outcome and all patients at BC. Future refined biomarker testing of specific variants will likely provide prognostic information to facilitate a risk-adapted therapeutic approach.
Collapse
|
14
|
Establishing a Twin Register: An Invaluable Resource for (Behavior) Genetic, Epidemiological, Biomarker, and ‘Omics’ Studies. Twin Res Hum Genet 2018; 21:239-252. [DOI: 10.1017/thg.2018.23] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Twin registers are wonderful research resources for research applications in medical and behavioral genetics, epidemiology, psychology, molecular genetics, and other areas of research. New registers continue to be launched all over the world as researchers from different disciplines recognize the potential to boost and widen their research agenda. In this article, we discuss multiple aspects that need to be taken into account when initiating a register, from its preliminary sketch to its actual development. This encompasses aspects related to the strategic planning and key elements of research designs, promotion and management of a twin register, including recruitment and retaining of twins and family members of twins, phenotyping, database organization, and collaborations between registers. We also present information on questions unique to twin registers and twin-biobanks, such as the assessment of zygosity by SNP arrays, the design of (biomarker) studies involving related participants, and the analyses of clustered data. Altogether, we provide a number of basic guidelines and recommendations for reflection when planning a twin register.
Collapse
|
15
|
Perloy A, Schouten LJ, van den Brandt PA, Godschalk R, van Schooten FJ, Hogervorst JGF. The Role of Genetic Variants in the Association between Dietary Acrylamide and Advanced Prostate Cancer in the Netherlands Cohort Study on Diet and Cancer. Nutr Cancer 2018; 70:620-631. [DOI: 10.1080/01635581.2018.1460682] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Andy Perloy
- Department of Epidemiology, GROW – School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Leo J. Schouten
- Department of Epidemiology, GROW – School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Piet A. van den Brandt
- Department of Epidemiology, GROW – School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Roger Godschalk
- Department of Pharmacology and Toxicology, NUTRIM – School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Frederik-Jan van Schooten
- Department of Pharmacology and Toxicology, NUTRIM – School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Janneke G. F. Hogervorst
- Department of Epidemiology, GROW – School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
- Center for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| |
Collapse
|
16
|
Interaction between dietary acrylamide intake and genetic variants for estrogen receptor-positive breast cancer risk. Eur J Nutr 2018; 58:1033-1045. [PMID: 29445914 PMCID: PMC6499753 DOI: 10.1007/s00394-018-1619-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 01/21/2018] [Indexed: 12/31/2022]
Abstract
Purpose The association between dietary acrylamide intake and estrogen receptor-positive (ER+) breast cancer risk in epidemiological studies is inconsistent. By analyzing gene-acrylamide interactions for ER+ breast cancer risk, we aimed to clarify the role of acrylamide intake in ER+ breast cancer etiology. Methods The prospective Netherlands Cohort Study on diet and cancer includes 62,573 women, aged 55–69 years. At baseline, a random subcohort of 2589 women was sampled from the total cohort for a case–cohort analysis approach. Dietary acrylamide intake of subcohort members (n = 1449) and ER+ breast cancer cases (n = 844) was assessed with a food frequency questionnaire. We genotyped single nucleotide polymorphisms (SNPs) in genes in acrylamide metabolism, sex steroid systems, oxidative stress and DNA repair. Multiplicative interaction between acrylamide intake and SNPs was assessed with Cox proportional hazards analysis, based on 20.3 years of follow-up. Results Unexpectedly, there was a statistically non-significant inverse association between acrylamide and ER+ breast cancer risk among all women but with no clear dose–response relationship, and no association among never smokers. Among the results for 57 SNPs and 2 gene deletions, rs1056827 in CYP1B1, rs2959008 and rs7173655 in CYP11A1, the GSTT1 gene deletion, and rs1052133 in hOGG1 showed a statistically significant interaction with acrylamide intake for ER+ breast cancer risk. Conclusions This study did not provide evidence for a positive association between acrylamide intake and ER+ breast cancer risk. If anything, acrylamide was associated with a decreased ER+ breast cancer risk. The interaction with SNPs in CYP1B1 and CYP11A1 suggests that acrylamide may influence ER+ breast cancer risk through sex hormone pathways. Electronic supplementary material The online version of this article (10.1007/s00394-018-1619-z) contains supplementary material, which is available to authorized users.
Collapse
|
17
|
Interactions between dietary acrylamide intake and genes for ovarian cancer risk. Eur J Epidemiol 2017; 32:431-441. [PMID: 28391539 PMCID: PMC5506210 DOI: 10.1007/s10654-017-0244-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 03/30/2017] [Indexed: 01/03/2023]
Abstract
Some epidemiological studies observed a positive association between dietary acrylamide intake and ovarian cancer risk but the causality needs to be substantiated. By analyzing gene-acrylamide interactions for ovarian cancer risk for the first time, we aimed to contribute to this. The prospective Netherlands Cohort Study on diet and cancer includes 62,573 women, aged 55–69 years. At baseline in 1986, a random subcohort of 2589 women was sampled from the total cohort for a case cohort analysis approach. Dietary acrylamide intake of subcohort members and ovarian cancer cases (n = 252, based on 20.3 years of follow-up) was assessed with a food frequency questionnaire. We selected single nucleotide polymorphisms (SNPs) in genes in acrylamide metabolism and in genes involved in the possible mechanisms of acrylamide-induced carcinogenesis (effects on sex steroid systems, oxidative stress and DNA damage). Genotyping was done on DNA from toenails through Agena’s MassARRAY iPLEX platform. Multiplicative interaction between acrylamide intake and SNPs was assessed with Cox proportional hazards analysis. Among the results for 57 SNPs and 2 gene deletions, there were no statistically significant interactions between acrylamide and gene variants after adjustment for multiple testing. However, there were several nominally statistically significant interactions between acrylamide intake and SNPs in the HSD3B1/B2 gene cluster: (rs4659175 (p interaction = 0.04), rs10923823 (p interaction = 0.06) and its proxy rs7546652 (p interaction = 0.05), rs1047303 (p interaction = 0.005), and rs6428830 (p interaction = 0.05). Although in need of confirmation, results of this study suggest that acrylamide may cause ovarian cancer through effects on sex hormones.
Collapse
|
18
|
Albujja MH, Bin Dukhyil AA, Chaudhary AR, Kassab AC, Refaat AM, Babu SR, Okla MK, Kumar S. Evaluation of Skin Surface as an Alternative Source of Reference DNA Samples: A Pilot Study. J Forensic Sci 2017; 63:227-233. [DOI: 10.1111/1556-4029.13468] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 01/11/2017] [Accepted: 01/16/2017] [Indexed: 11/27/2022]
Affiliation(s)
- Mohammed H. Albujja
- College of Forensic Sciences; Naif Arab University for Security Sciences; P.O. Box: 6830 Riyadh 11452 Saudi Arabia
| | - Abdul Aziz Bin Dukhyil
- College of Applied Medical Sciences; Majmaah University; P.O. Box: 1816 Majmaah 11952 Saudi Arabia
| | - Abdul Rauf Chaudhary
- College of Forensic Sciences; Naif Arab University for Security Sciences; P.O. Box: 6830 Riyadh 11452 Saudi Arabia
| | - Ahmed Ch. Kassab
- College of Forensic Sciences; Naif Arab University for Security Sciences; P.O. Box: 6830 Riyadh 11452 Saudi Arabia
| | - Ahmed M. Refaat
- College of Forensic Sciences; Naif Arab University for Security Sciences; P.O. Box: 6830 Riyadh 11452 Saudi Arabia
| | - Saranya Ramesh Babu
- College of Forensic Sciences; Naif Arab University for Security Sciences; P.O. Box: 6830 Riyadh 11452 Saudi Arabia
| | - Mohammad K. Okla
- College of Science; King Saud University; P.O. Box: 2455 Riyadh 11451 Saudi Arabia
| | - Sachil Kumar
- College of Forensic Sciences; Naif Arab University for Security Sciences; P.O. Box: 6830 Riyadh 11452 Saudi Arabia
| |
Collapse
|
19
|
A systematic SNP selection approach to identify mechanisms underlying disease aetiology: linking height to post-menopausal breast and colorectal cancer risk. Sci Rep 2017; 7:41034. [PMID: 28117334 PMCID: PMC5259777 DOI: 10.1038/srep41034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 12/15/2016] [Indexed: 01/28/2023] Open
Abstract
Data from GWAS suggest that SNPs associated with complex diseases or traits tend to co-segregate in regions of low recombination, harbouring functionally linked gene clusters. This phenomenon allows for selecting a limited number of SNPs from GWAS repositories for large-scale studies investigating shared mechanisms between diseases. For example, we were interested in shared mechanisms between adult-attained height and post-menopausal breast cancer (BC) and colorectal cancer (CRC) risk, because height is a risk factor for these cancers, though likely not a causal factor. Using SNPs from public GWAS repositories at p-values < 1 × 10−5 and a genomic sliding window of 1 mega base pair, we identified SNP clusters including at least one SNP associated with height and one SNP associated with either post-menopausal BC or CRC risk (or both). SNPs were annotated to genes using HapMap and GRAIL and analysed for significantly overrepresented pathways using ConsensuspathDB. Twelve clusters including 56 SNPs annotated to 26 genes were prioritised because these included at least one height- and one BC risk- or CRC risk-associated SNP annotated to the same gene. Annotated genes were involved in Indian hedgehog signalling (p-value = 7.78 × 10−7) and several cancer site-specific pathways. This systematic approach identified a limited number of clustered SNPs, which pinpoint potential shared mechanisms linking together the complex phenotypes height, post-menopausal BC and CRC.
Collapse
|
20
|
Hall J, Jeggo PA, West C, Gomolka M, Quintens R, Badie C, Laurent O, Aerts A, Anastasov N, Azimzadeh O, Azizova T, Baatout S, Baselet B, Benotmane MA, Blanchardon E, Guéguen Y, Haghdoost S, Harms-Ringhdahl M, Hess J, Kreuzer M, Laurier D, Macaeva E, Manning G, Pernot E, Ravanat JL, Sabatier L, Tack K, Tapio S, Zitzelsberger H, Cardis E. Ionizing radiation biomarkers in epidemiological studies - An update. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2017; 771:59-84. [PMID: 28342453 DOI: 10.1016/j.mrrev.2017.01.001] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 01/09/2017] [Indexed: 01/13/2023]
Abstract
Recent epidemiology studies highlighted the detrimental health effects of exposure to low dose and low dose rate ionizing radiation (IR): nuclear industry workers studies have shown increased leukaemia and solid tumour risks following cumulative doses of <100mSv and dose rates of <10mGy per year; paediatric patients studies have reported increased leukaemia and brain tumours risks after doses of 30-60mGy from computed tomography scans. Questions arise, however, about the impact of even lower doses and dose rates where classical epidemiological studies have limited power but where subsets within the large cohorts are expected to have an increased risk. Further progress requires integration of biomarkers or bioassays of individual exposure, effects and susceptibility to IR. The European DoReMi (Low Dose Research towards Multidisciplinary Integration) consortium previously reviewed biomarkers for potential use in IR epidemiological studies. Given the increased mechanistic understanding of responses to low dose radiation the current review provides an update covering technical advances and recent studies. A key issue identified is deciding which biomarkers to progress. A roadmap is provided for biomarker development from discovery to implementation and used to summarise the current status of proposed biomarkers for epidemiological studies. Most potential biomarkers remain at the discovery stage and for some there is sufficient evidence that further development is not warranted. One biomarker identified in the final stages of development and as a priority for further research is radiation specific mRNA transcript profiles.
Collapse
Affiliation(s)
- Janet Hall
- Centre de Recherche en Cancérologie de Lyon, INSERM 1052, CNRS 5286, Univ Lyon, Université Claude Bernard, Lyon 1, Lyon, F-69424, France.
| | - Penny A Jeggo
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9RQ, United Kingdom
| | - Catharine West
- Translational Radiobiology Group, Institute of Cancer Sciences, The University of Manchester, Manchester Academic Health Science Centre, Christie Hospital, Manchester, M20 4BX, United Kingdom
| | - Maria Gomolka
- Federal Office for Radiation Protection, Department of Radiation Protection and Health, D-85764 Neuherberg, Germany
| | - Roel Quintens
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK·CEN, B-2400 Mol, Belgium
| | - Christophe Badie
- Cancer Mechanisms and Biomarkers group, Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Didcot, United Kingdom
| | - Olivier Laurent
- Institut de Radioprotection et de Sûreté Nucléaire, F-92260 Fontenay-aux-Roses, France
| | - An Aerts
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK·CEN, B-2400 Mol, Belgium
| | - Nataša Anastasov
- Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Institute of Radiation Biology, D-85764 Neuherberg, Germany
| | - Omid Azimzadeh
- Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Institute of Radiation Biology, D-85764 Neuherberg, Germany
| | - Tamara Azizova
- Southern Urals Biophysics Institute, Clinical Department, Ozyorsk, Russia
| | - Sarah Baatout
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK·CEN, B-2400 Mol, Belgium; Cell Systems and Imaging Research Group, Department of Molecular Biotechnology, Ghent University, B-9000 Ghent, Belgium
| | - Bjorn Baselet
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK·CEN, B-2400 Mol, Belgium; Pole of Pharmacology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, B-1200 Brussels, Belgium
| | - Mohammed A Benotmane
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK·CEN, B-2400 Mol, Belgium
| | - Eric Blanchardon
- Institut de Radioprotection et de Sûreté Nucléaire, F-92260 Fontenay-aux-Roses, France
| | - Yann Guéguen
- Institut de Radioprotection et de Sûreté Nucléaire, F-92260 Fontenay-aux-Roses, France
| | - Siamak Haghdoost
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE 106 91 Stockholm, Sweden
| | - Mats Harms-Ringhdahl
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE 106 91 Stockholm, Sweden
| | - Julia Hess
- Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Institute of Radiation Biology, D-85764 Neuherberg, Germany
| | - Michaela Kreuzer
- Federal Office for Radiation Protection, Department of Radiation Protection and Health, D-85764 Neuherberg, Germany
| | - Dominique Laurier
- Institut de Radioprotection et de Sûreté Nucléaire, F-92260 Fontenay-aux-Roses, France
| | - Ellina Macaeva
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK·CEN, B-2400 Mol, Belgium; Cell Systems and Imaging Research Group, Department of Molecular Biotechnology, Ghent University, B-9000 Ghent, Belgium
| | - Grainne Manning
- Cancer Mechanisms and Biomarkers group, Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Didcot, United Kingdom
| | - Eileen Pernot
- INSERM U897, Université de Bordeaux, F-33076 Bordeaux cedex, France
| | - Jean-Luc Ravanat
- Laboratoire des Lésions des Acides Nucléiques, Univ. Grenoble Alpes, INAC-SCIB, F-38000 Grenoble, France; Commissariat à l'Énergie Atomique, INAC-SyMMES, F-38000 Grenoble, France
| | - Laure Sabatier
- Commissariat à l'Énergie Atomique, BP6, F-92265 Fontenay-aux-Roses, France
| | - Karine Tack
- Institut de Radioprotection et de Sûreté Nucléaire, F-92260 Fontenay-aux-Roses, France
| | - Soile Tapio
- Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Institute of Radiation Biology, D-85764 Neuherberg, Germany
| | - Horst Zitzelsberger
- Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Institute of Radiation Biology, D-85764 Neuherberg, Germany
| | - Elisabeth Cardis
- Barcelona Institute of Global Health (ISGlobal), Centre for Research in Environmental Epidemiology, Radiation Programme, Barcelona Biomedical Research Park, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF) (MTD formerly), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.
| |
Collapse
|
21
|
Simons CCJM, Schouten LJ, Godschalk RW, van Engeland M, van den Brandt PA, van Schooten FJ, Weijenberg MP. Energy restriction at young age, genetic variants in the insulin-like growth factor pathway and colorectal cancer risk in the Netherlands Cohort Study. Int J Cancer 2016; 140:272-284. [PMID: 27649841 DOI: 10.1002/ijc.30439] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 08/08/2016] [Accepted: 08/18/2016] [Indexed: 12/16/2022]
Abstract
The energy restriction (ER)-colorectal cancer (CRC) association is inconsistent in literature. To strengthen the biological plausibility of the ER-CRC association, we investigated whether genetic variation in the insulin-like growth factor (IGF) pathway, a putative underlying mechanism, modulated this association in the Netherlands Cohort Study. Participants completed a questionnaire (n = 120,852) and provided toenail clippings for DNA (∼75%) at baseline. Individuals living in a Western city during the Hunger Winter (1944-45) or Western rural versus non-Western area were exposed to (severe) ER at young age. Genotyping was performed for 3,768 subcohort members and 2,580 CRC cases (case-cohort with 16.3 years follow-up). Cox hazard ratios for CRC were estimated across combined categories of ER and a genetic sum score of unfavorable alleles based on 18 single nucleotide polymorphisms in IGF-related genes and ER and an IGF1 19-CA repeat polymorphism. The reference included ER exposed individuals, so that increased hazard ratios were expected in higher combined categories for calculating relative excess risks due to interaction (additive interactions). Wald tests for multiplicative interactions were also performed. Multiplicative and additive interactions were nonsignificant. Combined ER-genetic sum score categories showed increasing CRC risks in men, but confidence intervals were wide. Women carrying two variant IGF1 19-CA repeat alleles versus those carrying two wild type IGF1 19-CA repeat alleles were at an ∼50% decreased CRC risk, irrespective of ER exposure. In conclusion, data indicate that the IGF pathway might be involved in the ER-CRC association in men, but not women, although interactions were nonsignificant, hampering definite conclusions.
Collapse
Affiliation(s)
- Colinda C J M Simons
- Department of Epidemiology, GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
| | - Leo J Schouten
- Department of Epidemiology, GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
| | - Roger W Godschalk
- Department of Toxicology, NUTRIM-School for Nutrition and Translational Research on Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Manon van Engeland
- Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Piet A van den Brandt
- Department of Epidemiology, GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
| | - Frederik J van Schooten
- Department of Toxicology, NUTRIM-School for Nutrition and Translational Research on Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Matty P Weijenberg
- Department of Epidemiology, GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
22
|
Hogervorst JGF, van den Brandt PA, Godschalk RWL, van Schooten FJ, Schouten LJ. The influence of single nucleotide polymorphisms on the association between dietary acrylamide intake and endometrial cancer risk. Sci Rep 2016; 6:34902. [PMID: 27713515 PMCID: PMC5054678 DOI: 10.1038/srep34902] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 09/14/2016] [Indexed: 02/07/2023] Open
Abstract
It is unclear whether the association between dietary acrylamide intake and endometrial cancer risk as observed in some epidemiological studies reflects a causal relationship. We aimed at clarifying the causality by analyzing acrylamide-gene interactions for endometrial cancer risk. The prospective Netherlands Cohort Study on diet and cancer includes 62,573 women, aged 55–69 years. At baseline, a random subcohort of 2589 women was selected for a case cohort analysis approach. Acrylamide intake of subcohort members and endometrial cancer cases (n = 315) was assessed with a food frequency questionnaire. Single nucleotide polymorphisms (SNPs) in genes in acrylamide metabolism, sex steroid systems, oxidative stress and DNA repair were assessed through a MassARRAY iPLEX Platform. Interaction between acrylamide and SNPs was assessed with Cox proportional hazards analysis, based on 11.3 years of follow-up. Among the results for 57 SNPs and 2 gene deletions, there were no statistically significant interactions after adjustment for multiple testing. However, there were nominally statistically significant interactions for SNPs in acrylamide-metabolizing enzymes: CYP2E1 (rs915906 and rs2480258) and the deletions of GSTM1 and GSTT1. Although in need of confirmation, the interactions between acrylamide intake and CYP2E1 SNPs contribute to the evidence for a causal relationship between acrylamide and endometrial cancer risk.
Collapse
Affiliation(s)
- Janneke G F Hogervorst
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium.,Department of Epidemiology, School for Oncology &Developmental Biology (GROW), Maastricht University, Maastricht, the Netherlands
| | - Piet A van den Brandt
- Department of Epidemiology, School for Oncology &Developmental Biology (GROW), Maastricht University, Maastricht, the Netherlands
| | - Roger W L Godschalk
- Department of Pharmacology and Toxicology, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, the Netherlands
| | - Frederik-Jan van Schooten
- Department of Pharmacology and Toxicology, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, the Netherlands
| | - Leo J Schouten
- Department of Epidemiology, School for Oncology &Developmental Biology (GROW), Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
23
|
Potential role of gene-environment interactions in ion transport mechanisms in the etiology of renal cell cancer. Sci Rep 2016; 6:34262. [PMID: 27686058 PMCID: PMC5043233 DOI: 10.1038/srep34262] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 09/07/2016] [Indexed: 01/20/2023] Open
Abstract
We investigated the ion transport mechanism (ITM) in renal cell cancer (RCC) etiology using gene-environment interactions between candidate single nucleotide polymorphisms (SNPs) and associated environmental factors, including dietary intakes of sodium, potassium and fluid, hypertension and diuretic medication. A literature-based selection of 13 SNPs in ten ITM genes were successfully genotyped in toenail DNA of 3,048 subcohort members and 419 RCC cases from the Netherlands Cohort Study. Diet and lifestyle were measured with baseline questionnaires. Cox regression analyses were conducted for main effects and gene-environment interactions. ADD1_rs4961 was significantly associated with RCC risk, showing a Hazard Ratio (HR) of 1.24 (95% confidence intervals (CI): 1.01–1.53) for the GT + TT (versus GG) genotype. Four of 65 tested gene-environment interactions were statistically significant. Three of these interactions clustered in SLC9A3_rs4957061, including the ones with fluid and potassium intake, and diuretic medication. For fluid intake, the RCC risk was significantly lower for high versus low intake in participants with the CC genotype (HR(95% CI): 0.47(0.26–0.86)), but not for the CT + TT genotype (P-interaction = 0.002). None of the main genetic effects and gene-environment interactions remained significant after adjustment for multiple testing. Data do not support the general hypothesis that the ITM is a disease mechanism in RCC etiology.
Collapse
|