1
|
Sandhu APS, Tanvir, Singh K, Singh S, Antaal H, Luthra S, Singla A, Nijjar GS, Aulakh SK, Kaur Y. Decoding Cancer Risk: Understanding Gene-Environment Interactions in Cancer Development. Cureus 2024; 16:e64936. [PMID: 39165474 PMCID: PMC11335134 DOI: 10.7759/cureus.64936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2024] [Indexed: 08/22/2024] Open
Abstract
While lifestyle choices or behavioral patterns remain the most significant factors influencing cancer risk, environmental exposure to certain chemicals, both manufactured and natural, may also contribute to an individual's likelihood of developing cancer. This interplay of factors, coupled with an aging demographic and shifting lifestyle patterns, has led to an increasing prevalence of cancer in recent years. This study examines the environmental and behavioral factors that contribute to anomalies in the immune system and increase the risk of developing cancer. Significant environmental and occupational factors include the contamination of air and water, exposure to radiation, contact with harmful microorganisms and pathogens, and workplace exposure to carcinogens such as asbestos, certain chemicals, and industrial pollutants. Behavioral factors, such as food, physical activity, stress, substance misuse, and sleep patterns, have a substantial impact on immunological function and the likelihood of developing cancer. For example, pollutants like benzene and arsenic can disrupt immune function and raise the risk of developing cancer. Similarly, lifestyle variables such as inactivity and poor nutrition have been linked to an increased risk of cancer. Long-term stress and substance abuse can also decrease immunological responses, increasing the risk of developing cancer. The review underlines the complexities of examining gene-environment interactions, as well as the importance of using several perspectives to fully comprehend these pathways. Future investigations should emphasize improved methodology and larger sample sizes. Public health campaigns should aim to reduce human exposure to cancer-causing compounds known as carcinogens while also encouraging the adoption of healthy behaviors and habits. Tailored preventive approaches that account for individual genetic vulnerabilities have the potential to improve cancer prevention and treatment.
Collapse
Affiliation(s)
- Ajay Pal Singh Sandhu
- Internal Medicine, Sri Guru Ram Das University of Health Sciences and Research, Amritsar, IND
| | - Tanvir
- Medicine, Government Medical College Amritsar, Amritsar, IND
| | | | - Sumerjit Singh
- Internal Medicine, Government Medical College Amritsar, Amritsar, IND
| | - Harman Antaal
- Internal Medicine, Government Medical College Patiala, Patiala, IND
| | - Shivansh Luthra
- Medicine, Government Medical College Amritsar, Amritsar, IND
| | | | | | - Smriti K Aulakh
- Internal Medicine, Sri Guru Ram Das University of Health Sciences and Research, Amritsar, IND
| | - Yasmeen Kaur
- Medicine, Government Medical College Amritsar, Amritsar, IND
| |
Collapse
|
2
|
Gynecologic Cancer Risk and Genetics: Informing an Ideal Model of Gynecologic Cancer Prevention. Curr Oncol 2022; 29:4632-4646. [PMID: 35877228 PMCID: PMC9322111 DOI: 10.3390/curroncol29070368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/09/2022] [Accepted: 06/22/2022] [Indexed: 11/17/2022] Open
Abstract
Individuals with proven hereditary cancer syndrome (HCS) such as BRCA1 and BRCA2 have elevated rates of ovarian, breast, and other cancers. If these high-risk people can be identified before a cancer is diagnosed, risk-reducing interventions are highly effective and can be lifesaving. Despite this evidence, the vast majority of Canadians with HCS are unaware of their risk. In response to this unmet opportunity for prevention, the British Columbia Gynecologic Cancer Initiative convened a research summit “Gynecologic Cancer Prevention: Thinking Big, Thinking Differently” in Vancouver, Canada on 26 November 2021. The aim of the conference was to explore how hereditary cancer prevention via population-based genetic testing could decrease morbidity and mortality from gynecologic cancer. The summit invited local, national, and international experts to (1) discuss how genetic testing could be more broadly implemented in a Canadian system, (2) identify key research priorities in this topic and (3) outline the core essential elements required for such a program to be successful. This report summarizes the findings from this research summit, describes the current state of hereditary genetic programs in Canada, and outlines incremental steps that can be taken to improve prevention for high-risk Canadians now while developing an organized population-based hereditary cancer strategy.
Collapse
|
3
|
Park J, Choi JY, Choi J, Chung S, Song N, Park SK, Han W, Noh DY, Ahn SH, Lee JW, Kim MK, Jee SH, Wen W, Bolla MK, Wang Q, Dennis J, Michailidou K, Shah M, Conroy DM, Harrington PA, Mayes R, Czene K, Hall P, Teras LR, Patel AV, Couch FJ, Olson JE, Sawyer EJ, Roylance R, Bojesen SE, Flyger H, Lambrechts D, Baten A, Matsuo K, Ito H, Guénel P, Truong T, Keeman R, Schmidt MK, Wu AH, Tseng CC, Cox A, Cross SS, Andrulis IL, Hopper JL, Southey MC, Wu PE, Shen CY, Fasching PA, Ekici AB, Muir K, Lophatananon A, Brenner H, Arndt V, Jones ME, Swerdlow AJ, Hoppe R, Ko YD, Hartman M, Li J, Mannermaa A, Hartikainen JM, Benitez J, González-Neira A, Haiman CA, Dörk T, Bogdanova NV, Teo SH, Mohd Taib NA, Fletcher O, Johnson N, Grip M, Winqvist R, Blomqvist C, Nevanlinna H, Lindblom A, Wendt C, Kristensen VN, Tollenaar RAEM, Heemskerk-Gerritsen BAM, Radice P, Bonanni B, Hamann U, Manoochehri M, Lacey JV, Martinez ME, Dunning AM, Pharoah PDP, Easton DF, Yoo KY, Kang D. Gene-Environment Interactions Relevant to Estrogen and Risk of Breast Cancer: Can Gene-Environment Interactions Be Detected Only among Candidate SNPs from Genome-Wide Association Studies? Cancers (Basel) 2021; 13:2370. [PMID: 34069208 PMCID: PMC8156547 DOI: 10.3390/cancers13102370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 12/24/2022] Open
Abstract
In this study we aim to examine gene-environment interactions (GxEs) between genes involved with estrogen metabolism and environmental factors related to estrogen exposure. GxE analyses were conducted with 1970 Korean breast cancer cases and 2052 controls in the case-control study, the Seoul Breast Cancer Study (SEBCS). A total of 11,555 SNPs from the 137 candidate genes were included in the GxE analyses with eight established environmental factors. A replication test was conducted by using an independent population from the Breast Cancer Association Consortium (BCAC), with 62,485 Europeans and 9047 Asians. The GxE tests were performed by using two-step methods in GxEScan software. Two interactions were found in the SEBCS. The first interaction was shown between rs13035764 of NCOA1 and age at menarche in the GE|2df model (p-2df = 1.2 × 10-3). The age at menarche before 14 years old was associated with the high risk of breast cancer, and the risk was higher when subjects had homozygous minor allele G. The second GxE was shown between rs851998 near ESR1 and height in the GE|2df model (p-2df = 1.1 × 10-4). Height taller than 160 cm was associated with a high risk of breast cancer, and the risk increased when the minor allele was added. The findings were not replicated in the BCAC. These results would suggest specificity in Koreans for breast cancer risk.
Collapse
Affiliation(s)
- JooYong Park
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 03080, Korea; (J.P.); (S.C.); (S.K.P.); (D.K.)
- BK21plus Biomedical Science Project, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Ji-Yeob Choi
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 03080, Korea; (J.P.); (S.C.); (S.K.P.); (D.K.)
- BK21plus Biomedical Science Project, Seoul National University College of Medicine, Seoul 03080, Korea
- Institute of Health Policy and Management, Seoul National University Medical Research Center, Seoul 03080, Korea;
- Cancer Research Institute, Seoul National University, Seoul 03080, Korea; (W.H.); (D.-Y.N.)
| | - Jaesung Choi
- Institute of Health Policy and Management, Seoul National University Medical Research Center, Seoul 03080, Korea;
| | - Seokang Chung
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 03080, Korea; (J.P.); (S.C.); (S.K.P.); (D.K.)
| | - Nan Song
- College of Pharmacy, Chungbuk National University, Cheongju-si 28160, Korea;
| | - Sue K. Park
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 03080, Korea; (J.P.); (S.C.); (S.K.P.); (D.K.)
- Cancer Research Institute, Seoul National University, Seoul 03080, Korea; (W.H.); (D.-Y.N.)
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul 03080, Korea;
| | - Wonshik Han
- Cancer Research Institute, Seoul National University, Seoul 03080, Korea; (W.H.); (D.-Y.N.)
- Department of Surgery, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Dong-Young Noh
- Cancer Research Institute, Seoul National University, Seoul 03080, Korea; (W.H.); (D.-Y.N.)
- Department of Surgery, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Sei-Hyun Ahn
- Department of Surgery, Medicine and ASAN Medical Center, University of Ulsan College, Seoul 05505, Korea; (S.-H.A.); (J.W.L.)
| | - Jong Won Lee
- Department of Surgery, Medicine and ASAN Medical Center, University of Ulsan College, Seoul 05505, Korea; (S.-H.A.); (J.W.L.)
| | - Mi Kyung Kim
- Division of Cancer Epidemiology and Management, National Cancer Center, Goyang-si 10408, Korea;
| | - Sun Ha Jee
- Department of Epidemiology and Health Promotion, Institute for Health Promotion, Graduate School of Public Health, Yonsei University, Seoul 03722, Korea;
| | - Wanqing Wen
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| | - Manjeet K. Bolla
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB2 0SR, UK; (M.K.B.); (Q.W.); (J.D.); (K.M.); (P.D.P.P.); (D.F.E.)
| | - Qin Wang
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB2 0SR, UK; (M.K.B.); (Q.W.); (J.D.); (K.M.); (P.D.P.P.); (D.F.E.)
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB2 0SR, UK; (M.K.B.); (Q.W.); (J.D.); (K.M.); (P.D.P.P.); (D.F.E.)
| | - Kyriaki Michailidou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB2 0SR, UK; (M.K.B.); (Q.W.); (J.D.); (K.M.); (P.D.P.P.); (D.F.E.)
- Biostatistics Unit, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus
- Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology & Genetics, Nicosia 23462, Cyprus
| | - Mitul Shah
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge CB1 8RN, UK; (M.S.); (D.M.C.); (P.A.H.); (R.M.); (A.M.D.)
| | - Don M. Conroy
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge CB1 8RN, UK; (M.S.); (D.M.C.); (P.A.H.); (R.M.); (A.M.D.)
| | - Patricia A. Harrington
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge CB1 8RN, UK; (M.S.); (D.M.C.); (P.A.H.); (R.M.); (A.M.D.)
| | - Rebecca Mayes
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge CB1 8RN, UK; (M.S.); (D.M.C.); (P.A.H.); (R.M.); (A.M.D.)
| | - Kamila Czene
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 65 Stockholm, Sweden; (K.C.); (P.H.)
| | - Per Hall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 65 Stockholm, Sweden; (K.C.); (P.H.)
- Department of Oncology, Södersjukhuset, 118 83 Stockholm, Sweden
| | - Lauren R. Teras
- Department of Population Science, American Cancer Society, Atlanta, GA 30303, USA;
| | - Alpa V. Patel
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA; (A.V.P.); (F.J.C.)
| | - Fergus J. Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA; (A.V.P.); (F.J.C.)
| | - Janet E. Olson
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA;
| | - Elinor J. Sawyer
- School of Cancer & Pharmaceutical Sciences, Comprehensive Cancer Centre, Guy’s Campus, King’s College London, London SE1 9RT, UK;
| | - Rebecca Roylance
- Department of Oncology, UCLH Foundation Trust, London NW1 2PG, UK;
| | - Stig E. Bojesen
- Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, 2730 Herlev, Denmark;
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, 2730 Herlev, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Henrik Flyger
- Department of Breast Surgery, Herlev and Gentofte Hospital, Copenhagen University Hospital, 2730 Herlev, Denmark;
| | - Diether Lambrechts
- VIB Center for Cancer Biology, 3001 Leuve, Belgium;
- Laboratory for Translational Genetics, Department of Human Genetics, University of Leuven, 3000 Leuven, Belgium
| | - Adinda Baten
- Department of Radiotherapy Oncology, KU Leuven—University of Leuven, University Hospitals Leuven, 3000 Leuven, Belgium;
| | - Keitaro Matsuo
- Division of Cancer Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya 464-8681, Japan;
- Division of Cancer Epidemiology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan;
| | - Hidemi Ito
- Division of Cancer Epidemiology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan;
| | - Pascal Guénel
- Center for Research in Epidemiology and Population Health (CESP), Team Exposome and Heredity, INSERM, University Paris-Saclay, 94805 Villejuif, France; (P.G.); (T.T.)
| | - Thérèse Truong
- Center for Research in Epidemiology and Population Health (CESP), Team Exposome and Heredity, INSERM, University Paris-Saclay, 94805 Villejuif, France; (P.G.); (T.T.)
| | - Renske Keeman
- Division of Molecular Pathology, The Netherlands Cancer Institute—Antoni van Leeuwenhoek Hospital, 1066 CX Amsterdam, The Netherlands; (R.K.); (M.K.S.)
| | - Marjanka K. Schmidt
- Division of Molecular Pathology, The Netherlands Cancer Institute—Antoni van Leeuwenhoek Hospital, 1066 CX Amsterdam, The Netherlands; (R.K.); (M.K.S.)
- Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute—Antoni van Leeuwenhoek Hospital, 1066 CX Amsterdam, The Netherlands
| | - Anna H. Wu
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (A.H.W.); (C.-C.T.); (C.A.H.)
| | - Chiu-Chen Tseng
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (A.H.W.); (C.-C.T.); (C.A.H.)
| | - Angela Cox
- Sheffield Institute for Nucleic Acids (SInFoNiA), Department of Oncology and Metabolism, University of Sheffield, Sheffield S10 2TN, UK;
| | - Simon S. Cross
- Academic Unit of Pathology, Department of Neuroscience, University of Sheffield, Sheffield S10 2TN, UK;
| | - kConFab Investigators
- Peter MacCallum Cancer Center, Melbourne, VIC 3000, Australia;
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Irene L. Andrulis
- Fred A, Litwin Center for Cancer Genetics, Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada;
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - John L. Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC 3010, Australia;
| | - Melissa C. Southey
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC 3168, Australia;
- Department of Clinical Pathology, The University of Melbourne, Melbourne, VIC 3010, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC 3004, Australia
| | - Pei-Ei Wu
- Taiwan Biobank, Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan;
| | - Chen-Yang Shen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan;
- School of Public Health, China Medical University, Taichung 404, Taiwan
| | - Peter A. Fasching
- Department of Medicine Division of Hematology and Oncology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center ER-EMN, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Arif B. Ekici
- Institute of Human Genetics, Comprehensive Cancer Center Erlangen-EMN, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany;
| | - Kenneth Muir
- Division of Population Health, Health Services Research and Primary Care, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK; (K.M.); (A.L.)
| | - Artitaya Lophatananon
- Division of Population Health, Health Services Research and Primary Care, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK; (K.M.); (A.L.)
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (H.B.); (V.A.)
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Volker Arndt
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (H.B.); (V.A.)
| | - Michael E. Jones
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London SM2 5NG, UK; (M.E.J.); (A.J.S.)
| | - Anthony J. Swerdlow
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London SM2 5NG, UK; (M.E.J.); (A.J.S.)
- Division of Breast Cancer Research, The Institute of Cancer Research, London SW7 3RP, UK
| | - Reiner Hoppe
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, 70376 Stuttgart, Germany;
- University of Tübingen, 72074 Tübingen, Germany
| | - Yon-Dschun Ko
- Department of Internal Medicine, Evangelische Kliniken Bonn gGmbH, Johanniter Krankenhaus, 53177 Bonn, Germany;
| | - Mikael Hartman
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore 117549, Singapore;
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore 119228, Singapore
- Department of Surgery, National University Health System, Singapore 119228, Singapore
| | - Jingmei Li
- Human Genetics Division, Genome Institute of Singapore, Singapore 138672, Singapore;
| | - Arto Mannermaa
- Translational Cancer Research Area, University of Eastern Finland, 70210 Kuopio, Finland; (A.M.); (J.M.H.)
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, 70210 Kuopio, Finland
- Biobank of Eastern Finland, Kuopio University Hospital, 70210 Kuopio, Finland
| | - Jaana M. Hartikainen
- Translational Cancer Research Area, University of Eastern Finland, 70210 Kuopio, Finland; (A.M.); (J.M.H.)
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, 70210 Kuopio, Finland
| | - Javier Benitez
- Biomedical Network on Rare Diseases (CIBERER), 28029 Madrid, Spain;
- Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain;
| | - Anna González-Neira
- Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain;
| | - Christopher A. Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (A.H.W.); (C.-C.T.); (C.A.H.)
| | - Thilo Dörk
- Gynaecology Research Unit, Hannover Medical School, 30625 Hannover, Germany; (T.D.); (N.V.B.)
| | - Natalia V. Bogdanova
- Gynaecology Research Unit, Hannover Medical School, 30625 Hannover, Germany; (T.D.); (N.V.B.)
- Department of Radiation Oncology, Hannover Medical School, 30625 Hannover, Germany
- NN Alexandrov Research Institute of Oncology and Medical Radiology, 223040 Minsk, Belarus
| | - Soo Hwang Teo
- Breast Cancer Research Programme, Cancer Research Malaysia, Subang Jaya 47500, Malaysia;
- Department of Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Nur Aishah Mohd Taib
- Breast Cancer Research Unit, University Malaya Cancer Research Institute, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Olivia Fletcher
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London SW7 3RP, UK; (O.F.); (N.J.)
| | - Nichola Johnson
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London SW7 3RP, UK; (O.F.); (N.J.)
| | - Mervi Grip
- Department of Surgery, Oulu University Hospital, University of Oulu, 90220 Oulu, Finland;
| | - Robert Winqvist
- Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit, Biocenter Oulu, University of Oulu, 90570 Oulu, Finland;
- Laboratory of Cancer Genetics and Tumor Biology, Northern Finland Laboratory Centre Oulu, Oulu 90570, Finland
| | - Carl Blomqvist
- Department of Oncology, Helsinki University Hospital, University of Helsinki, 00290 Helsinki, Finland;
- Department of Oncology, Örebro University Hospital, 70185 Örebro, Sweden
| | - Heli Nevanlinna
- Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, 00290 Helsinki, Finland;
| | - Annika Lindblom
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden;
- Department of Clinical Genetics, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Camilla Wendt
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, 118 83 Stockholm, Sweden;
| | - Vessela N. Kristensen
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway; (V.N.K.); (NBCS Collaborators)
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway
| | - NBCS Collaborators
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway; (V.N.K.); (NBCS Collaborators)
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway
- Department of Research, Vestre Viken Hospital, 3004 Drammen, Norway
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, 0450 Oslo, Norway
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital-Radiumhospitalet, 0450 Oslo, Norway
- Section for Breast- and Endocrine Surgery, Department of Cancer, Division of Surgery, Cancer and Transplantation Medicine, Oslo University Hospital-Ullevål, 0450 Oslo, Norway
- Department of Radiology and Nuclear Medicine, Oslo University Hospital, 0450 Oslo, Norway
- Department of Pathology at Akershus University Hospital, 1478 Lørenskog, Norway
- Department of Oncology, Division of Surgery and Cancer and Transplantation Medicine, University Hospital-Radiumhospitalet, 0405 Oslo, Norway
- National Advisory Unit on Late Effects after Cancer Treatment, Department of Oncology, Oslo University Hospital, 0405 Oslo, Norway
- Department of Oncology, Akershus University Hospital, 1478 Lørenskog, Norway
- Oslo Breast Cancer Research Consortium, Oslo University Hospital, 0405 Oslo, Norway
| | - Rob A. E. M. Tollenaar
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| | | | - Paolo Radice
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori (INT), 20133 Milan, Italy;
| | - Bernardo Bonanni
- Division of Cancer Prevention and Genetics, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy;
| | - Ute Hamann
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (U.H.); (M.M.)
| | - Mehdi Manoochehri
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (U.H.); (M.M.)
| | - James V. Lacey
- Department of Computational and Quantitative Medicine, City of Hope, Duarte, CA 91010, USA;
- City of Hope Comprehensive Cancer Center, City of Hope, Duarte, CA 91010, USA
| | - Maria Elena Martinez
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92037, USA;
- Herbert Wertheim School of Public Health and Longevity Science, University of California San Diego, La Jolla, CA 92161, USA
| | - Alison M. Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge CB1 8RN, UK; (M.S.); (D.M.C.); (P.A.H.); (R.M.); (A.M.D.)
| | - Paul D. P. Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB2 0SR, UK; (M.K.B.); (Q.W.); (J.D.); (K.M.); (P.D.P.P.); (D.F.E.)
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge CB1 8RN, UK; (M.S.); (D.M.C.); (P.A.H.); (R.M.); (A.M.D.)
| | - Douglas F. Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB2 0SR, UK; (M.K.B.); (Q.W.); (J.D.); (K.M.); (P.D.P.P.); (D.F.E.)
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge CB1 8RN, UK; (M.S.); (D.M.C.); (P.A.H.); (R.M.); (A.M.D.)
| | - Keun-Young Yoo
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul 03080, Korea;
| | - Daehee Kang
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 03080, Korea; (J.P.); (S.C.); (S.K.P.); (D.K.)
- Cancer Research Institute, Seoul National University, Seoul 03080, Korea; (W.H.); (D.-Y.N.)
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul 03080, Korea;
| |
Collapse
|
4
|
Mbemi A, Khanna S, Njiki S, Yedjou CG, Tchounwou PB. Impact of Gene-Environment Interactions on Cancer Development. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E8089. [PMID: 33153024 PMCID: PMC7662361 DOI: 10.3390/ijerph17218089] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/26/2020] [Accepted: 10/30/2020] [Indexed: 12/24/2022]
Abstract
Several epidemiological and experimental studies have demonstrated that many human diseases are not only caused by specific genetic and environmental factors but also by gene-environment interactions. Although it has been widely reported that genetic polymorphisms play a critical role in human susceptibility to cancer and other chronic disease conditions, many single nucleotide polymorphisms (SNPs) are caused by somatic mutations resulting from human exposure to environmental stressors. Scientific evidence suggests that the etiology of many chronic illnesses is caused by the joint effect between genetics and the environment. Research has also pointed out that the interactions of environmental factors with specific allelic variants highly modulate the susceptibility to diseases. Hence, many scientific discoveries on gene-environment interactions have elucidated the impact of their combined effect on the incidence and/or prevalence rate of human diseases. In this review, we provide an overview of the nature of gene-environment interactions, and discuss their role in human cancers, with special emphases on lung, colorectal, bladder, breast, ovarian, and prostate cancers.
Collapse
Affiliation(s)
- Ariane Mbemi
- NIH/NIMHD RCMI-Center for Health Disparities Research, Jackson State University, 1400 Lynch Street, Box 18750, Jackson, MS 39217, USA; (A.M.); (S.N.)
- Department of Biology, College of Science, Engineering and Technology, Jackson State University, 1400 Lynch Street, Box 18540, Jackson, MS 39217, USA
| | - Sunali Khanna
- Department of Oral Medicine and Radiology, Nair Hospital Dental College, Municipal Corporation of Greater Mumbai, Mumbai 400 008, India;
| | - Sylvianne Njiki
- NIH/NIMHD RCMI-Center for Health Disparities Research, Jackson State University, 1400 Lynch Street, Box 18750, Jackson, MS 39217, USA; (A.M.); (S.N.)
- Department of Biology, College of Science, Engineering and Technology, Jackson State University, 1400 Lynch Street, Box 18540, Jackson, MS 39217, USA
| | - Clement G. Yedjou
- Department of Biological Sciences, College of Science and Technology, Florida Agricultural and Mechanical University, 1610 S. Martin Luther King Blvd., Tallahassee, FL 32307, USA;
| | - Paul B. Tchounwou
- NIH/NIMHD RCMI-Center for Health Disparities Research, Jackson State University, 1400 Lynch Street, Box 18750, Jackson, MS 39217, USA; (A.M.); (S.N.)
- Department of Biology, College of Science, Engineering and Technology, Jackson State University, 1400 Lynch Street, Box 18540, Jackson, MS 39217, USA
| |
Collapse
|
5
|
Li J, Ji Z, Luo X, Li Y, Yuan P, Long J, Shen N, Lu Q, Zeng Q, Zhong R, Shen Y, Cheng L. Urinary bisphenol A and its interaction with ESR1 genetic polymorphism associated with non-small cell lung cancer: findings from a case-control study in Chinese population. CHEMOSPHERE 2020; 254:126835. [PMID: 32348927 DOI: 10.1016/j.chemosphere.2020.126835] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/07/2020] [Accepted: 04/16/2020] [Indexed: 06/11/2023]
Abstract
Bisphenol A (BPA), a well-known endocrine disruptor, was reported to promote migration and invasion of lung cancer cells, but findings in human study is absent. A case-control study in Chinese population was conducted to evaluate the association between BPA exposure and non-small cell lung cancer (NSCLC), and explore the interaction between BPA exposure and estrogen-related genetic polymorphism on NSCLC. BPA concentrations were measured in urine samples using an UHPLC-MS method and rs2046210 in estrogen receptor α (ESR1) gene was genotyped by TaqMan genotyping system. Logistic regression was performed to estimate odds ratios (OR) and 95% confidence intervals (95% CI) for the association analyses. As a result, 615 NSCLC cases and 615 healthy controls were enrolled from Wuhan, central China. The mean age was 58.0 (SD: 7.9) years old for controls and 59.2 (SD: 8.8) years old for cancer cases. The creatinine-adjusted BPA levels were significantly higher in NSCLC cases than that in healthy controls (median: 0.97 vs 0.73 μg/L, P < 0.001). Exposure to high levels of BPA was significantly associated with NSCLC (adjusted OR = 1.91, 95%CI: 1.39-2.62, P < 0.001 for the highest quartile). We also observed a shallow concave dose-response relationship about the overall association between BPA and NSCLC. Moreover, interaction analyses showed that BPA exposure interacted multiplicatively with rs2046210, with a marginal P value (P = 0.049), to contribute to NSCLC. In conclusion, exposure to high levels BPA may be associated with NSCLC and the relationship may be modified by genetic polymorphism in ESR1.
Collapse
Affiliation(s)
- Jiaoyuan Li
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi Ji
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xia Luo
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Li
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peihong Yuan
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jieyi Long
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Na Shen
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Lu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiang Zeng
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rong Zhong
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Shen
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Liming Cheng
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
6
|
Conversano C, Di Giuseppe M, Miccoli M, Ciacchini R, Di Silvestre A, Lo Sterzo R, Gemignani A, Orrù G. Retrospective Analyses of Psychological Distress and Defense Style Among Cancer Patients. CLINICAL NEUROPSYCHIATRY 2020; 17:217-224. [PMID: 34908997 PMCID: PMC8629055 DOI: 10.36131/cnfioritieditore20200403] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Psychological distress is common in cancer patients during the diagnostic phase. Research demonstrated that anxiety, depression and defense mechanisms may influence physical and psychological well-being in patients with malignant tumors. The present retrospective study investigated the associations between clinical and psychological characteristics of cancer patients waiting for the diagnosis, focusing on metastatic cancer (MC) and breast cancer (BC). METHOD Patients with a new diagnosis of cancer referring to a Clinical Oncology Unit in Central Italy were interviewed during the 2017 for psychological assessment. Double-blind information about anxiety, depression, sleep disorders, defense style, and cancer diagnosis were available for the 567 patients included in this study. T-test, chi-squared and regression analyses were performed to detect associations between psychological variables and the presence of metastasis (MC) in the whole sample and in the subgroup of breast cancer (BC) patients. RESULTS Female gender and younger age were associated with anxiety, depression, and maladaptive defense style. A significant positive relationship was found between presence of metastasis and symptoms of anxiety. Depression resulted significantly more frequent in BC, while there was a trend close to statistical significance in MC. Immature defense style was widely used by BC women, with a score close to statistical significance. CONCLUSIONS This retrospective study provided empirical evidence of the relationship between psychological functioning and clinical characteristics of cancer. In line with previous research, our findings confirmed the peculiar psychological functioning of BC patients. Further investigations are needed to understand how the diagnosis of cancer may influence the individual psychological functioning and vice versa.
Collapse
Affiliation(s)
- Ciro Conversano
- Department of Surgical, Medical and Molecular Pathology, Critical and Care Medicine, University of Pisa, Italy
| | - Mariagrazia Di Giuseppe
- Department of Surgical, Medical and Molecular Pathology, Critical and Care Medicine, University of Pisa, Italy
| | - Mario Miccoli
- Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Rebecca Ciacchini
- Department of Surgical, Medical and Molecular Pathology, Critical and Care Medicine, University of Pisa, Italy
| | | | | | - Angelo Gemignani
- Department of Surgical, Medical and Molecular Pathology, Critical and Care Medicine, University of Pisa, Italy
| | - Graziella Orrù
- Department of Surgical, Medical and Molecular Pathology, Critical and Care Medicine, University of Pisa, Italy
| |
Collapse
|
7
|
Single nucleotide polymorphism of PIK3CA and its interaction with the environment are risk factors for Chinese Han ovarian cancer. Pathol Res Pract 2019; 215:152520. [PMID: 31288947 DOI: 10.1016/j.prp.2019.152520] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 06/03/2019] [Accepted: 06/26/2019] [Indexed: 01/01/2023]
Abstract
BACKGROUND AND PURPOSE The PI3K pathway is an important signaling network that regulates key cell functions such as cell growth, proliferation and survival. PIK3CA mutations are found in a variety of human cancers. This study aimed to analyze the effect of interactions between PIK3CA rs2699887, rs3976507, rs6443626 single nucleotide polymorphisms (SNPs), and the environment on the risk of Chinese Han ovarian cancer. METHODS Sanger sequencing was used to analyze the PIK3CA rs2699887, rs3976507, rs6443626 genotypes in 350 Chinese Han ovarian cancer patients and 350 control individuals, and the expression of PIK3CA protein was detected in 117 ovarian cancer patients. RESULTS In subjects with age ≥60 years, Number liveborn ≤ 3, no smoking, no alcohol, and no family history of ovarian cancer, the risk of ovarian cancer of the rs2699887 T allele carriers were increased (all p < 0.05). In subjects with obesity (BMI ≥ 24 kg/m2), Number liveborn ≤3, no smoking, no alcohol, and no family history of ovarian cancer, the risk of ovarian cancer of rs3976507 T allele carriers and rs6443626 C allele carriers were increased (all p < 0.05). PIK3CA protein expression level in PIK3CA rs2699887 C > T, rs3976507 C > T, rs6443626 T > C locus homozygotes was significantly higher than that in heterozygotes (p < 0.05). CONCLUSION Interaction between PIK3CA rs2699887 SNP and age, number of liveborn, tobacco, alcohol, a family history of ovarian cancer and other factors are associated with ovarian cancer risk. Interaction between PIK3CA rs3976507 and rs6443626 loci, and factors such as BMI, number of liveborn, tobacco, alcohol, and family history of ovarian cancer are associated with ovarian cancer risk.
Collapse
|
8
|
Kim S, Wang M, Tyrer JP, Jensen A, Wiensch A, Liu G, Lee AW, Ness RB, Salvatore M, Tworoger SS, Whittemore AS, Anton-Culver H, Sieh W, Olson SH, Berchuck A, Goode EL, Goodman MT, Doherty JA, Chenevix-Trench G, Rossing MA, Webb PM, Giles GG, Terry KL, Ziogas A, Fortner RT, Menon U, Gayther SA, Wu AH, Song H, Brooks-Wilson A, Bandera EV, Cook LS, Cramer DW, Milne RL, Winham SJ, Kjaer SK, Modugno F, Thompson PJ, Chang-Claude J, Harris HR, Schildkraut JM, Le ND, Wentzensen N, Trabert B, Høgdall E, Huntsman D, Pike MC, Pharoah PD, Pearce CL, Mukherjee B. A comprehensive gene-environment interaction analysis in Ovarian Cancer using genome-wide significant common variants. Int J Cancer 2019; 144:2192-2205. [PMID: 30499236 PMCID: PMC6399057 DOI: 10.1002/ijc.32029] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 10/24/2018] [Indexed: 12/18/2022]
Abstract
As a follow-up to genome-wide association analysis of common variants associated with ovarian carcinoma (cancer), our study considers seven well-known ovarian cancer risk factors and their interactions with 28 genome-wide significant common genetic variants. The interaction analyses were based on data from 9971 ovarian cancer cases and 15,566 controls from 17 case-control studies. Likelihood ratio and Wald tests for multiplicative interaction and for relative excess risk due to additive interaction were used. The top multiplicative interaction was noted between oral contraceptive pill (OCP) use (ever vs. never) and rs13255292 (p value = 3.48 × 10-4 ). Among women with the TT genotype for this variant, the odds ratio for OCP use was 0.53 (95% CI = 0.46-0.60) compared to 0.71 (95%CI = 0.66-0.77) for women with the CC genotype. When stratified by duration of OCP use, women with 1-5 years of OCP use exhibited differential protective benefit across genotypes. However, no interaction on either the multiplicative or additive scale was found to be statistically significant after multiple testing correction. The results suggest that OCP use may offer increased benefit for women who are carriers of the T allele in rs13255292. On the other hand, for women carrying the C allele in this variant, longer (5+ years) use of OCP may reduce the impact of carrying the risk allele of this SNP. Replication of this finding is needed. The study presents a comprehensive analytic framework for conducting gene-environment analysis in ovarian cancer.
Collapse
Affiliation(s)
- Sehee Kim
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Miao Wang
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Jonathan P. Tyrer
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Allan Jensen
- Department of Virus, Lifestyle and Genes, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Ashley Wiensch
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Gang Liu
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Alice W. Lee
- Department of Health Science, California State University, Fullerton, Fullerton, CA, USA
| | - Roberta B. Ness
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Maxwell Salvatore
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Shelley S. Tworoger
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA
- Research Institute and Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Alice S. Whittemore
- Department of Health Research and Policy - Epidemiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
| | - Hoda Anton-Culver
- Department of Epidemiology, Genetic Epidemiology Research Institute, University of California Irvine, Irvine, CA, USA
| | - Weiva Sieh
- Department of Genetics and Genomic Sciences, Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sara H. Olson
- Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Andrew Berchuck
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, USA
| | - Ellen L. Goode
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Marc T. Goodman
- Cancer Prevention and Control, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Community and Population Health Research Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jennifer Anne Doherty
- Department of Population Health Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Georgia Chenevix-Trench
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Mary Anne Rossing
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Penelope M. Webb
- Population Health Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Graham G. Giles
- Cancer Epidemiology & Intelligence Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Kathryn L. Terry
- Obstetrics and Gynecology Epidemiology Center, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Argyrios Ziogas
- Department of Epidemiology, Genetic Epidemiology Research Institute, University of California Irvine, Irvine, CA, USA
| | - Renée T. Fortner
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Usha Menon
- Gynaecological Cancer Research Centre, Women’s Cancer, Institute for Women’s Health, University College London, London, UK
| | - Simon A. Gayther
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Anna H. Wu
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Honglin Song
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Angela Brooks-Wilson
- Genome Sciences Centre, BC Cancer Agency, Vancouver, BC, Canada
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Elisa V. Bandera
- Cancer Prevention and Control Program, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Linda S. Cook
- University of New Mexico Health Sciences Center, University of New Mexico, Albuquerque, NM, USA
- Division of Cancer Care, Department of Population Health Research, Alberta Health Services, Calgary, AB, Canada
| | - Daniel W. Cramer
- Obstetrics and Gynecology Epidemiology Center, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Roger L. Milne
- Cancer Epidemiology & Intelligence Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Stacey J. Winham
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Susanne K. Kjaer
- Department of Virus, Lifestyle and Genes, Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Gynaecology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Francesmary Modugno
- Ovarian Cancer Center of Excellence, Womens Cancer Research Program, Magee-Womens Research Institute and Hillman Cancer Center, Pittsburgh, PA, USA
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Pamela J. Thompson
- Cancer Prevention and Control, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Research Group Genetic Cancer Epidemiology, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Holly R. Harris
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - Nhu D. Le
- Cancer Control Research, BC Cancer Agency, Vancouver, BC, Canada
| | - Nico Wentzensen
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Britton Trabert
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Estrid Høgdall
- Department of Virus, Lifestyle and Genes, Danish Cancer Society Research Center, Copenhagen, Denmark
- Molecular Unit, Department of Pathology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - David Huntsman
- British Columbia’s Ovarian Cancer Research (OVCARE) program, Vancouver General Hospital, BC Cancer Agency and University of British Columbia
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Malcolm C. Pike
- Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Paul D.P. Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Celeste Leigh Pearce
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
- Center for Cancer Prevention and Translational Genomics, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Bhramar Mukherjee
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| |
Collapse
|
9
|
Kar SP, Berchuck A, Gayther SA, Goode EL, Moysich KB, Pearce CL, Ramus SJ, Schildkraut JM, Sellers TA, Pharoah PDP. Common Genetic Variation and Susceptibility to Ovarian Cancer: Current Insights and Future Directions. Cancer Epidemiol Biomarkers Prev 2018; 27:395-404. [PMID: 28615364 DOI: 10.1158/1055-9965.epi-17-0315] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 05/24/2017] [Accepted: 06/06/2017] [Indexed: 11/16/2022] Open
Abstract
In this review, we summarize current progress in the genetic epidemiology of epithelial ovarian cancer (EOC), focusing exclusively on elucidating the role of common germline genetic variation in conferring susceptibility to EOC. We provide an overview of the more than 30 EOC risk loci identified to date by genome-wide association studies (GWAS) and describe the contribution of large-scale, cross-cancer type, custom genotyping projects, such as the OncoArray and the Collaborative Oncological Gene-Environment Study, to locus discovery and replication. We discuss the histotype-specific nature of these EOC risk loci, pleiotropy, or overlapping genetic effects between EOC and other hormone-related cancer types, and the application of findings to polygenic risk prediction for EOC. The second part of the article offers a concise review of primarily laboratory-based studies that have led to the identification of several putative EOC susceptibility genes using common variants at the known EOC risk loci as starting points. More global biological insights emerging from network- and pathway-based analyses of GWAS for EOC susceptibility are also highlighted. Finally, we delve into potential future directions, including the need to identify EOC risk loci in non-European populations and the next generation of GWAS functional studies that are likely to involve genome editing to establish the cell type-specific carcinogenic effects of EOC risk variants Cancer Epidemiol Biomarkers Prev; 27(4); 395-404. ©2018 AACRSee all articles in this CEBP Focus section, "Genome-Wide Association Studies in Cancer."
Collapse
Affiliation(s)
- Siddhartha P Kar
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Strangeways Research Laboratory, Cambridge, United Kingdom.
| | - Andrew Berchuck
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, North Carolina
| | - Simon A Gayther
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Ellen L Goode
- Department of Health Science Research, Division of Epidemiology, Mayo Clinic, Rochester, Minnesota
| | - Kirsten B Moysich
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, New York
| | - Celeste Leigh Pearce
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, Michigan
| | - Susan J Ramus
- School of Women's and Children's Health, University of New South Wales, Sydney, Australia
| | - Joellen M Schildkraut
- Department of Public Health Sciences, University of Virginia School of Medicine, Virginia
| | - Thomas A Sellers
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, Florida
| | - Paul D P Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Strangeways Research Laboratory, Cambridge, United Kingdom.
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Strangeways Research Laboratory, Cambridge, United Kingdom
| |
Collapse
|
10
|
Abstract
The association between obesity and ovarian cancer risk has been extensively investigated, but studies have yielded inconsistent findings. This review aims to summarise and discuss the evidence generated to date. Articles published in English prior to August 2016 were retrieved from PubMed. Keywords included obesity, overweight, body size, body mass index, waist-hip ratio, waist circumference, body weight, ovarian cancer, ovarian carcinoma, ovarian neoplasm, and ovarian tumour. Eligible studies compared two or more groups of women, with at least one group in the overweight or obese category and one comprising normal weight controls. Summary data in the form of relative risk, hazard ratio, or odds ratio for each comparison group from individual studies were collated and reviewed. Forty-three studies were included in the final analysis, with a total of 3,491,943 participants. All studies included body mass index as an exposure measure, and a majority relied on self-reported measures from participants; 14 studies found a statistically significant positive association between ovarian cancer risk and higher body mass index, 26 studies found no significant association, and 3 studies found a negative association between ovarian cancer risk and higher body mass index. This review concludes that there is limited, inconsistent evidence of a positive association between obesity and ovarian cancer risk.
Collapse
Affiliation(s)
- Ke Wei Foong
- 1 School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Helen Bolton
- 2 Department of Gynaecological Oncology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| |
Collapse
|
11
|
Manna PR, Molehin D, Ahmed AU. Dysregulation of Aromatase in Breast, Endometrial, and Ovarian Cancers: An Overview of Therapeutic Strategies. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 144:487-537. [PMID: 27865465 DOI: 10.1016/bs.pmbts.2016.10.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Aromatase is the rate-limiting enzyme in the biosynthesis of estrogens, which play crucial roles on a spectrum of developmental and physiological processes. The biological actions of estrogens are classically mediated by binding to two estrogen receptors (ERs), ERα and ERβ. Encoded by the cytochrome P450, family 19, subfamily A, polypeptide 1 (CYP19A1) gene, aromatase is expressed in a wide variety of tissues, as well as benign and malignant tumors, and is regulated in a pathway- and tissue-specific manner. Overexpression of aromatase, leading to elevated systemic levels of estrogen, is unequivocally linked to the pathogenesis and growth of a number malignancies, including breast, endometrium, and ovarian cancers. Aromatase inhibitors (AIs) are routinely used to treat estrogen-dependent breast cancers in postmenopausal women; however, their roles in endometrial and ovarian cancers remain obscure. While AI therapy is effective in hormone sensitive cancers, they diminish estrogen production throughout the body and, thus, generate undesirable side effects. Despite the effectiveness of AI therapy, resistance to endocrine therapy remains a major concern and is the leading cause of cancer death. Considerable advances, toward mitigating these issues, have evolved in conjunction with a number of histone deacetylase (HDAC) inhibitors for countering an assortment of diseases and cancers, including the aforesaid malignancies. HDACs are a family of enzymes that are frequently dysregulated in human tumors. This chapter will discuss the current understanding of aberrant regulation and expression of aromatase in breast, endometrial, and ovarian cancers, and potential therapeutic strategies for prevention and treatment of these life-threatening diseases.
Collapse
Affiliation(s)
- P R Manna
- Texas Tech University Health Sciences Center School of Medicine, Lubbock, TX, United States.
| | - D Molehin
- Texas Tech University Health Sciences Center School of Medicine, Lubbock, TX, United States
| | - A U Ahmed
- Texas Tech University Health Sciences Center School of Medicine, Lubbock, TX, United States
| |
Collapse
|