1
|
Li H, Liu H, Lutz MW, Luo S. Novel Genetic Variants in TP37, PIK3R1, CALM1, and PLCG2 of the Neurotrophin Signaling Pathway Are Associated with the Progression from Mild Cognitive Impairment to Alzheimer's Disease. J Alzheimers Dis 2023; 91:977-987. [PMID: 36530083 PMCID: PMC9905310 DOI: 10.3233/jad-220680] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is a common neurodegenerative disease and mild cognitive impairment (MCI) is considered as the prodromal stage of AD. Previous studies showed that changes in the neurotrophin signaling pathway could lead to cognitive decline in AD. However, the association of single nucleotide polymorphisms (SNPs) in genes that are involved in this pathway with AD progression from MCI remains unclear. OBJECTIVE We investigated the associations between SNPs involved in the neurotrophin signaling pathway with AD progression. METHODS We performed single-locus analysis to identify neurotrophin-signaling-related SNPs associated with the AD progression using 767 patients from the Alzheimer's Disease Neuroimaging Initiative study and 1,373 patients from the National Alzheimer's Coordinating Center study. We constructed polygenic risk scores (PRSs) using the identified independent non-APOE SNPs and evaluated its prediction performance on AD progression. RESULTS We identified 25 SNPs significantly associated with AD progression with Bayesian false-discovery probability ≤0.8. Based on the linkage disequilibrium clumping and expression quantitative trait loci analysis, we found 6 potentially functional SNPs that were associated with AD progression independently. The PRS analysis quantified the combined effects of these SNPs on longitudinal cognitive assessments and biomarkers from cerebrospinal fluid and neuroimaging. The addition of PRSs to the prediction model for 3-year progression to AD from MCI significantly increased the predictive accuracy. CONCLUSION Genetic variants in the specific genes of the neurotrophin signaling pathway are predictors of AD progression. eQTL analysis supports that these SNPs regulate expression of key genes involved in the neurotrophin signaling pathway.
Collapse
Affiliation(s)
- Huiyue Li
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, USA
| | - Hongliang Liu
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Michael W. Lutz
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, Durham, NC, USA
| | - Sheng Luo
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, USA
| | | |
Collapse
|
2
|
Shen MH, Huang CJ, Ho TF, Liu CY, Shih YY, Huang CS, Huang CC. Colorectal cancer concurrent gene signature based on coherent patterns between genomic and transcriptional alterations. BMC Cancer 2022; 22:590. [PMID: 35637462 PMCID: PMC9150289 DOI: 10.1186/s12885-022-09627-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 05/03/2022] [Indexed: 11/10/2022] Open
Abstract
Background The aim of the study was to enhance colorectal cancer prognostication by integrating single nucleotide polymorphism (SNP) and gene expression (GE) microarrays for genomic and transcriptional alteration detection; genes with concurrent gains and losses were used to develop a prognostic signature. Methods The discovery dataset comprised 32 Taiwanese colorectal cancer patients, of which 31 were assayed for GE and copy number variations (CNVs) with Illumina Human HT-12 BeadChip v4.0 and Omni 25 BeadChip v1.1. Concurrent gains and losses were declared if coherent manners were observed between GE and SNP arrays. Concurrent genes were also identified in The Cancer Genome Atlas Project (TCGA) as the secondary discovery dataset (n = 345). Results The “universal” concurrent genes, which were the combination of z-transformed correlation coefficients, contained 4022 genes. Candidate genes were evaluated within each of the 10 public domain microarray datasets, and 1655 (2000 probe sets) were prognostic in at least one study. Consensus across all datasets was used to build a risk predictive model, while distinct relapse-free/overall survival patterns between defined risk groups were observed among four out of five training datasets. The predictive accuracy of recurrence, metastasis, or death was between 61 and 86% (cross-validation area under the receiver operating characteristic (ROC) curve: 0.548-0.833) from five independent validation studies. Conclusion The colorectal cancer concurrent gene signature is prognostic in terms of recurrence, metastasis, or mortality among 1746 patients. Genes with coherent patterns between genomic and transcriptional contexts are more likely to provide prognostication for colorectal cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09627-9.
Collapse
Affiliation(s)
- Ming-Hung Shen
- Department of Surgery, Fu-Jen Catholic University Hospital, No. 69, Guizi Road, Taishan District, New Taipei City, 243, Taiwan.,Ph. D Program in Nutrition and Food Science, College of Human Ecology, Fu-Jen Catholic University, No. 510, Zhongzheng Rd., Xinzhuang Dist., New Taipei City, 242062, Taiwan.,School of Medicine, College of Medicine, Fu-Jen Catholic University, No. 510, Zhongzheng Rd., Xinzhuang Dist., New Taipei City, 242062, Taiwan
| | - Chi-Jung Huang
- Department of Biochemistry, National Defense Medical Center, No.161, Sec. 6, Minquan E. Rd., Neihu Dist., Taipei City, 11490, Taiwan.,Department of Medical Research, Cathay General Hospital, No.280, Sec. 4, Renai Rd., Daan Dist., Taipei City, 106, Taiwan
| | - Thien-Fiew Ho
- Division of General Surgery, Cathay General Hospital Sijhih, No. 2, Ln. 59, Jiancheng Rd., Xizhi Dist., New Taipei City, 221, Taiwan
| | - Chih-Yi Liu
- Division of Pathology, Cathay General Hospital Sijhih, No. 2, Ln. 59, Jiancheng Rd., Xizhi Dist., New Taipei City, 221, Taiwan
| | - Ying-Yih Shih
- Division of Hematology and Oncology, Cathay General Hospital Sijhih, No. 2, Ln. 59, Jiancheng Rd., Xizhi Dist., New Taipei City, 221, Taiwan
| | - Ching-Shui Huang
- Department of Surgery, Cathay General Hospital, No.280, Sec. 4, Renai Rd., Daan Dist., Taipei City, 106, Taiwan. .,School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei City, 110, Taiwan.
| | - Chi-Cheng Huang
- Department of Surgery, Taipei Veterans General Hospital, No.201, Sec. 2, Shipai Rd., Beitou District, Taipei City, 11217, Taiwan. .,Comprehensive Breast Health Center, Taipei Veterans General Hospital, No.201, Sec. 2, Shipai Rd., Beitou District, Taipei City, Taiwan, 11217. .,Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, No.17, Xuzhou Rd., Taipei City, 100, Taiwan.
| |
Collapse
|